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1 Introduction 

The basic operations performed by a computer system comprise processing, storing, 
and transferring data. Recent increases in processor speed have outpaced those in 
communication speed, making latency between the processor and the storage element 
a system bottleneck. A method of improving the overall response time of a computer 
system is to anticipate a request for data by the processor and prefetch data that 
is likely to be accessed by the application in the near future. This report describes 
three deterministic, adaptive algorithms based on theoretically optimal algorithms 
and presents results of applying these techniques to actual program access traces. 

1.1 Motivation and goals 

In most computer systems, memory is hierarchical in nature, with a fast memory, or 
cache, at the top and slow memory such as disk storage below it in the hierarchy. 
An application requires that the pages it accesses be in cache. In the event that it 
is in cache a page hit occurs; otherwise a page fault occurs and the page is fetched 
from slow memory to cache. The application has to wait until this fetch is completed. 
The time that it takes to complete this task is called the I/O latency. The method 
of fetching pages into cache only when a fault occurs is called demand fetching. The 
problem of caching is to decide which pages to remove from cache to accommodate 
the incoming pages. 

In many OODB applications and hypertext systems, users spend a significant 
amount of time processing a page, and the computer and I/O system are essentially 
idle during that period. If the computer system can predict the page the user will 
access next, it can fetch that page into cache (if it is not already in cache) before the 
user asks for it. Thus, when the user actually asks for the page, it is available instan
taneously, and the user perceives a faster response time. This method of anticipating 
and getting pages into cache in the background is called prefetching. 

Current database systems perform prefetching using techniques derived from older 
virtual memory systems. The I/O bottleneck is a limiting factor for the performance 
of large-scale databases, and the demand for improving response time performance 
is growing [Bra]. This has stimulated renewed interest in developing improved algo
rithms for prefetching [ChB, Lai, MLG, PaZb, RoL]. Independent to our approach, 
there has been recent work by Palmer and Zdonik, who use a pattern matching ap
proach for prediction [PaZb], by Salem, who computes various first-order statistics 
for prediction [Sal], and by Laird, who uses a growing order Markov predictor [Lai]. 
Prefetching in a parallel environment is studied in [KoE]. 

The idea of using data compression techniques for prefetching was advocated by 
Vitter and Krishnan [ViK]. The intuition is that data compressors typically operate 
by postulating (either implicitly or explicitly) a probability distribution on the data to 
be compressed. Data expected with high probability are encoded with few bits, and 

1
 



unexpected data with many bits. Thus, if a data compressor successfully compresses 
the data, then its probability distribution on the data must be realistic and can be 
used for effective prediction. 

Assuming that as many pages as desired can be prefetched limited only by the 
cache size k (the pure pre/etching assumption), it is shown in [KrV] [ViK] that any 
theoretically optimal character-by-character data compressor (for example, one ob
tained from the Lempel-Ziv compressor) can be converted to a prefetcher that has 
an optimal hit rate. In [ViK], one prefetcher is shown to be optimal in the limit for 
sequences of page accesses generated by a Markov source (where the page accesses 
correspond to the arcs not the states). The result was generalized in [KrV] to show 
that a modified prefetcher was optimal among finite-state prefetchers for arbitrary 
worst-case sequences of page accesses. 

The pure prefetching assumption is not valid in many real-world applications. In 
this report, we consider non-pure prefetching in which only limited and varying time 
is allowed for the prefetching. 

We consider three data compressors that perform well in practice, and we build 
simple, deterministic, universal2 prefetchers based on them. We run our simulations 
on page access sequences derived from the DEC 007 benchmark [CDN], the Object 
Operations (001) benchmark [CaS], and from CAD applications used at Digital 
Equipment Corporation. We find that the fault rate (the ratio of number of page 
faults to the number of page accesses) decreases significantly in relationship to a 
paging scheme using just the least-recently-used (LRU) heuristic. The reduction in 
fault rate is also better than that of recent proposed schemes for prefetching [PaZb]. 

1.2 History of the project 

My introduction to this area of research began in December of 1991 at meeting with 
Professor Jeff Vitter to discuss working with him on a master's project. He suggested 
looking at applying algorithms for prefetching based on data compression that he and 
P. Krishnan, a Ph.D. candidate, had devised. My previous experience with prefetching 
came from an operating systems course where we learned that some operating systems 
perform sequential prefetch of pages to improve system performance. This method 
of prefetching relies on the fact that sequential access is fairly common. For some 
applications like reading a file for sequential processing, data at location i + 1 will be 
accessed directly after data at location i, but, in general, this is not always the case. 
The more general scheme proposed by Vitter and Krishnan [ViK] seemed to be quite 
elegant and intuitively sound, especially for database systems with access patterns 
generated by user's requests. 

2A universal prefetcher makes no assumptions about the application or data representation. Older 
virtual memory prefetchers that prefetch pages in sequence, that is, prefetch page i + 1 when page 
i was being accessed, are not universal. The usefulness of universality is extremely significant in 
current databases [Sal]. Any specific knowledge about the sequence of page accesses can be utilized 
to improve the performance further using the techniques of [FKL]. 
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To form a solid basis in this area of research, I began learning about lossless data 
compression algorithms, looking at database systems that might benefit from prefetch
ing, and by collecting page fault traces from database systems and applications that 
use a database (such as CAD applications). I then developed a simulation environ
ment to gain some experience with the algorithms and data structures involved. The 
results were encouraging and are presented in Section 7. 

There are a number of data compression algorithms ranging from simple to com
plicated. Their performance for compression is generally related to their complexity. 
We decided first to implement a prefetcher based on the well known Lempel-Ziv dic
tionary scheme devised in the late 1970s. Results of prefetching using this algorithm 
were quite positive and suggested promise for prefetching in a real-world environ
ment. The next algorithm we simulated was based on one of the best compression 
schemes, prediction by partial match (PPM), a context-based scheme. Just as in data 
compression, PPM gave better results than the Lempel-Ziv approach. 

After simulating prefetching in an "ideal" environment, it was time to think about 
system issues like the amount of time needed to make a prediction, how many pre
dictions should be made at any point in time, and how much space the prediction 
model occupied. Up to this point, we had made the assumption that we had all of the 
time and space that we needed and that we could prefetch as much data as would fit 
in cache. As a basis for comparison to a relatively simple and compact prefetcher, I 
implemented a model of the access pattern based on a first order Markov model with 
a fixed size, sliding window passing over the access sequence. 

We obtained traces from a CAD application and two sets of database benchmark 
suites. The CAD traces were used by Mark Palmer for evaluation of his prefetcher 
and give an indication of the relative performance of his scheme compared to ours. 
Results of prefetching based on the three algorithms were good and we submitted a 
paper to the ACM SIGMOD '93 conference which will be presented in Washington, 
D.C. May 1993 and which will be included in the conference proceedings. 

The final feature added to the simulator was the ability to limit the number of 
pages prefetched at anyone time by using the toss of two biased coins to determine 
if there was time to prefetch, and if so, how many pages could be prefetched. By 
biasing the coins appropriately, we could model several light, moderate, and heavy 
workloads in a system environment and study its effects on our prefetching scheme. 

1.3 Paper structure 

In Section 2 we describe the system environment. In Section 3 we look more closely 
at problems stemming from memory and time restrictions unique to prefetching. 
We propose solutions to these problems and bound their worst-case behavior. We 
describe our three prefetchers in Section 4. Our method of keeping the prefetcher's 
model intact when there is not time to prefetch is described in Section 5. In Section 6 
we present our simulation environment. In Section 7 we give a brief description of 
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the page access traces and present our simulation results. We discuss related work in 
Section 8, and present our conclusions in Section 9. 
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2 System environment 

2.1 The client-server model 

The familiar client-server model of computing has become quite popular with the 
advent of relatively inexpensive desktop workstations. Practical aspects of managing 
data accessed by workstations are resolved by having a centralized server responsible 
for and capable of this task. When the common data is a database and the clients 
are running a database application, the database system is made up of a server that 
manages the database and clients that access and modify the database. Clients and 
servers pass messages and data back and forth. A client can use local memory to 
cache data that it has requested and send modified data or log entries back to the 
server. Both the client and server are distinct processes that can either coexist on 
one computer system or can exist on separate systems. Typically, in large database 
systems the server runs on a dedicated machine equipped with a large amount of 
secondary storage and network connections to a number of client machines in a dis
tributed database system. The client-server architecture is shown in Figure 1. 

CI~nt Server 

cache 

\ 
Preletcher 

Figure 1: The client-server model 

2.2 Slowdown associated with distribution 

One limiting factor in the performance of a distributed database is the network 
bandwidth-the amount of data per unit time a network can handle [GrR]. Another 
important factor to consider is the load on the network-the number of messages and 
data being sent and received at anyone time. Together, the bandwidth and load 
determine the latency associated with client-server communication. The benefits of 
distributed databases are easily understood. A drawback to the distributed approach 
is the relatively high cost of transferring data over a network connection. Prefetching 
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reduces the effect of network latency by anticipating the client's future requests and 
making such requests when the network is idle. 

2.3 Database support for prefetching 

The server has the ability to handle demand read requests from the application and 
prefetch read requests from the prefetcher. The server gives priority to the applica
tion's requests, flushing prefetch requests in its queue when a demand request comes 
in. Such provisions are generally available in prefetching systems [GrR, PaZa]. 

The prefetcher can be either part of the application or an entity distinct from the 
application. It works by listening to the application's request sequence and making 
requests for data from the server. 

Due to the diverse nature of a user's access patterns, the improvement in fault rate 
is best when each instance of an application (i.e., each user) on the client runs a copy 
of the prefetcher that takes into account only its access sequence. 
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3 System issues related to prefetching 

Independent of the prefetching algorithm used to decide which pages to prefetch, a 
number of system issues must be considered when devising a prefetching engine for 
a database system. We consider those aspects closely related to the prefetcher and 
its associated data, and the management of the prefetched data itself. We describe 
our caching scheme in Section 3.1 and then look at some constraints placed on the 
prefetcher by the run-time environment. 

The purpose of prefetching is to increase the system performance by submitting 
read requests to the server when it is otherwise idle, thus spreading out the I/O 
activity in the computer system. The most important property of a good prefetcher 
is that it not degrade the system performance. A prefetcher can degrade system 
performance by making incorrect predictions and requests that replace relevant data 
in cache with data that will not be accessed in the near future. 

The prefetcher makes processor (time) and data (space) requirements of the 
database system. It can degrade performance of the application when it takes too 
much time to make predictions, preempting processing of data by the application. 
The space used by the prefetcher effectively reduces the amount of cache space avail
able to the database application. We would expect the prefetcher to make better use 
of system resources than the application would if these resources were dedicated to 
the application as cache space. We address a way to reduce the space requirements 
of a prefetcher in Section 3.3.1 and a way to model the application's temporal nature 
in Section 3.3.2. 

Higher level considerations, such as the ACID3 properties, logging, recovery, repli
cation, authentication, authorization, and naming [GrR] are essential elements of a 
distributed database system and are assumed to be managed by the database system. 

3.1 Caching issues 

Caching issues automatically arise when we prefetch less data than fits in the cache; we 
need to decide which pages to evict from cache to make space for incoming pages. Any 
caching scheme is considered independently of the prefetching algorithm employed by 
the system. We can use the probabilities of the prefetcher to determine those pages to 
evict from cache, or adapt strategies like the MLP replacement strategy from [PaZb]' 
or adapt well-known cachers like FIFO or LRU. In our simulations, we use a version 
of LRU suitably modified to handle prefetched pages. An important motivation for 
this scheme is simplicity. 

The scheme we use works as follows: Prefetched items are put into cache as if 
they were demand-fetched. They are marked as most recently used items, with more 
probable pages marked as more recently used. Prefetched data replace the least 

3 Atomicity, Consistency, Isolation, and Durability 
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recently used pages which, if modified, are written back to disk by the database 
management system. 

A number of additional issues related to caching arise in distributed database de
sign and implementation. These include data sharing, replication, and transparency. 
While these are important to maintaining the integrity of the database they are the 
subject of current research and implemented in existing database systems. We are 
aware, but do not address these issues in this report. 

3.2 Accounting for the space used by the prefetcher 

In order to form a fair basis of comparison between a system with prefetching and a 
system without prefetching, we will run our system without prefetching with a larger 
data cache. The added space is made available by the absence of the prefetch data 
structure and is used to cache database pages. 

3.3 Prefetching in a restricted memory environment 

For some applications and system environments, it is reasonable to assume that re
sources required by the prefetcher do not exceed the capacity of the computer system, 
but we cannot expect all systems to exhibit such nice characteristics. 

Similar problems arise in data compression, and several techniques are known for 
limiting data structure size in data compressors [Sto]. An explicit upper bound M 
is placed on the size of the data structure. The data structure is either frozen when 
its size reaches M, flushed and rebuilt when its size reaches M, or frozen when its 
size reaches M /2 (and a new data structure is built while the old one is used for 
prefetching). There are also more sophisticated techniques that use an LRD strategy 
on the data structure to maintain its size [BuB]. Our ongoing work studies these 
techniques in the prefetching context. However, explicit bounds on the data structure 
size degrade performance as is evidenced by a look at the results from Section 7 and 
comparing order 1 PPM with FOM. 

Motivated by the above observation, we present the following new scheme to 
prefetch in a restricted memory environment. 

3.3.1 Paging the data structure 

The data structures used by our prefetchers are modified trees (see Figures 2 and 3). 
Each node of the tree maintains information about its children (their counts, ad
dresses, etc.). This information is required to make predictions for the next access. 
It is reasonable to assume that every node of the tree (except maybe the root) fits in 
at most one page of memory. (This can be ensured by simple schemes.) 

We maintain some nodes of the tree in cache using one of many heuristics (like LRD) 
to decide what to evict from cache. In particular, the root is always maintained in 
cache. We page in a node of the tree when it is required. This scheme works smoothly 
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if each node is given its own page and at least two extra I/Os can be performed 
between two accesses (to write out the evicted node and read in the desired node). 

It is more space-efficient to compact "small" nodes together into one page. In such 
cases, nodes may have to be moved when they threaten to overflow a page. For a 
pure tree data structure as in LZ (Figure 2), it can be verified that nodes can be 
reallocated to "less crowded" pages in a lazy fashion using one extra I/O for the 
movement, and no subsequent extra I/Os. In PPM, the node of the data structure 
can have many (vine) pointers into it. In this case, when a node moves, it leaves a 
"forwarding address", and when a vine pointer is traversed, this forwarding address 
pointer is "short-circuited", that is the pointer is updated in the predecessor so that 
the next time this path is traversed, the old node will have been eliminated from the 
path. In the worst case there may be one extra I/O per vine pointer per reallocation 
(although in practice our simulators show few reallocations and few short-circuitings 
of pointers). 

3.3.2 Sequence of fast accesses 

The scheme explained in Section 3.3.1 solves the limited memory problem by us
ing disk space efficiently but creates a new "timing" problem of fast accesses (some 
number of page requests that occur so close to one another that they allow no data 
structure or prefetching I/O to be performed between them). When the data struc
ture is always in cache, it can be updated every time even when there is no time to 
prefetch between page requests. If the data structure is paged, a sequence of fast 
accesses can force us to disregard important sequence information. 

We propose the following strategy to cope with the problem of updating the data 
structure during fast accesses: In both LZ and PPM, the pages in the fast access 
sequence are used to increment the counts/probabilities of the current node (that 
is, the node used for prediction just before the fast access started). The intuition 
behind this scheme is that if the sequence of fast accesses is context-dependent then 
accumulating statistics at the current node will ensure the prefetching of the correct 
pages in the future before the start of the fast access subsequence. This is explored 
further in Section 5. 
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4 Algorithms for Prefetching 

Let a be the alphabet size (total number of pages in the database) and k be the cache 
size in pages. In typical databases, a is large and k ~ a. 

In this section, we describe our three simple, deterministic prefetching algorithms 
based on practical data compressors. (An elegant discussion of the data compres
sors appears in [BCW].) We describe our prefetchers in Sections 4.1- 4.3 in their 
"generic" form: as prefetchers that can store their entire data structure in cache. 
These prefetchers make k suggestions for prefetch ordered by their relative merit. To 
make these suggestions the algorithms use O(k) time. Sometimes the algorithms may 
have information to make kl < k suggestions. In such cases, the remaining k - kl 

locations of cache are left undisturbed. 
In Section 3.1 we look at the modification to the "generic" algorithm when we can 

prefetch less than k pages at each time instant. This occurs because the time between 
accesses is small (or as mentioned earlier, the prefetcher makes only k1 < k educated 
choices). This automatically introduces the problem of caching; our decision strategy 
on what is evicted from cache becomes important. It is implicit in our discussion that 
the page the application is working on is left undisturbed; hence the actual number 
of pages in cache is k + 1. Other changes to the "generic" algorithms in situations 
that arise in practice (for example, when the data structure cannot be stored entirely 
in cache) are discussed in Section 3. 

4.1 Algorithm LZ 

We denote the empty string by A. Algorithm LZ of [ViK] is based on the character
based version of the Lempel-Ziv algorithm for data compression. The original Lempel
Ziv algorithm [ZiL] is a word-based data compression algorithm. The Lempel-Ziv 
encoder breaks the input string into blocks of relatively large length n, and it encodes 
these blocks using a block-to-variable code in the following way: It parses each block 
of size n into distinct substrings Xo = A, Xl, X2, ••• , Xc such that for all j 2 1 
substring X j withoutits last character is equal to some Xi, for 0 $ i < j. It encodes 
the substring Xj by the value i, using fIgjl bits, followed by the ascii encoding of the 
last character of Xj, using fIg a1 bits. 

The equivalent character-based algorithm builds in an online fashion a probabilistic 
model that feeds probability information to an arithmetic coder [HoV, Lan, WNC]. 
(The exact compression method is irrelevant for our current discussion and is omit
ted.) We show by an example how the probabilistic model is built. 

Example 1 Assume for simplicity that our alphabet is {a, b}. We consider the page 
access sequence "aaaababaabbbabaa ". The Lempel-Ziv encoder parses this string 
as "(a)(aa)(ab)(aba)(abb)(b)(abaa) ". 

In the character-based version £ of the Lempel-Ziv encoder, a probabilistic model 
(or parse tree) is built for each substring when the previous substring ends. The 
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parse tree at the start of the seventh substring is pictured in Figure 2. There are 
five previous substrings beginning with an "a" and one beginning with a "b." The 
page "a" is therefore assigned a probability of 5/6 at the root, and "b" is assigned a 
probability of 1/6 at the root. Similarly, of the 5 substrings that begin with an "a," 
one begins with an "aa" and three begin with an "ab," accounting for the probabilities 
of 1/5 for "a" and 3/5 for "b" at node x, and so on. 

RootD Leaf 

Figure 2: The parse tree constructed by the character-based encoder £ for Example 1. 
Notice that since the substrings are prefix-closed, they can be represented by a tree 
in a natural way. 

Our prefetcher LZ uses the probabilistic model built by the encoder £ as follows: 
At the start of each substring, LZ's current node is set to be the root of £'s parse 
tree. (See Figure 2.) Before each page access, LZ prefetches the pages with the top 
k estimated probabilities as specified by the transitions out of its current node. On 
seeing the actual page requested, LZ resets its current node by walking down the 
transition labeled by that page and gets ready to prefetch again. In addition, if the 
page is not in memory, a page fault is generated. When LZ reaches a leaf, it fetches 
in k pages at random. The next page request ends the substring, and LZ resets its 
current node to be the root. Updating the model can be done dynamically while LZ 
traverses it. At the end of n page accesses, for some appropriately large n, LZ throws 
away its model and starts afresh. 

In our simulations, we use a heuristic in LZ (that parallels the Welsh implemen
tation [BCW] of the Lempel-Ziv data compressor). While LZ is at a leaf .e, instead 
of fetching in k pages at random, it resets its current node to be the root (that is, it 
goes to the root one step early). However, it updates the node.e and the root based 
on the next access. 
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The data structure used for prediction is a tree with at most one pointer into each 
node. 

4.2 Algorithm PPM 

Although the LZ prefetcher is optimal in the limit against the class of finite state 
prefetchers [KrV, ViK], convergence to optimality is slow. This motivates us to adapt 
the prediction by partial match data compressor (that performs better in practice for 
compression of text than the Lempel-Ziv algorithm) for prefetching. 

A jth-order Markov predictor on page access sequence u uses statistics of contexts 
of length j from the sequence to make its predictions for the next character. 

Example 2 Let j = 2, and let the page access sequence u be "abbababab." The 
next character is predicted based on the current context, that is on the last j = 2 
characters "ab" of u. In u, an "a" follows an "ab" twice, and a "b" follows an "ab" 
once. Hence "a" is predicted with a probability of 2/3, and "b" is predicted with a 
probability of 1/3. If j = 0 (no context) , each character is predicted based on the 
relative number of times it appears in the access sequence. 0 

--o:J"~ pointers to 
children 

- -;- vine pointers 

A empty string 

Figure 3: Snapshot of the data structure for PPM of order 2 when the access sequence 
is "abbababab." The vine pointer from node "ab" to node "b" indicates that if the 
current 2-character context is "ab," then the current one-character context is "b." 

The PPM prefetcher has an order parameter m associated with it. A PPM 
prefetcher of order m maintains jth-order Markov predictors (on the page access 
sequence seen till now) for all 0 ~ j ~ m. Let nj be the number of pages predicted 
by the jth-order Markov predictor4 (for the current context) that is not predicted by 

4 nj can be less than k if, for example, the current context occurs rarely in the past. 
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any rth-order Markov predictor, r > j. Intuitively, PPM prefetches the k pages with 
the maximum k probabilities giving preference to pages predicted by higher order 
contexts. Formally, it executes the following loop: 

for j = m downto 0 do 
begin 

tj := min(nj, k - n m - nm-l - ... - nj+t}; 
tj := max(tj, 0); 
prefetch the pages with the maximum tj probabilities 

as given by the jth-order Markov predictor; 
end 

The above technique is based on the prediction by partial match algorithm for data 
compression using exclusion [BCW]. 

The various jth-order Markov predictors, j = 0,1, ... , m, can be represented and 
updated simultaneously in an efficient manner using a forward tree with vine pointers 
[BCW]. An example of a forward tree with vine pointers is given in Figure 3. The 
data structure is "almost" a tree; there can be more than one edge into a node because 
of vine pointers. In our simulations we use PPM of order 3 and order 1. 

4.3 Algorithm FOM 

Algorithm FOM is a limited memory prefetcher designed so it can always fit in a small 
cache. It takes as parameter a quantity w, the window size. Algorithm FOM with 
window size w maintains a 1st-order Markov predictor on the page access sequence 
formed by the last w page accesses. (The 1st-order Markov predictor is explained in 
Section 4.2.) It prefetches the k pages with the maximum k probabilities as given by 
this 1st-order Markov predictor. We use w = 1,000 in our experiments reported in 
Section 7.2. We would expect FOM with w == 00 to be "close to" PPM of order 1 in 
performance. (Note that unlike FOM, algorithm PPM of order 1 uses an additional 
order 0 context for prediction.) 

4.4 Adaptive prefetching 

Our prefetcher is adaptive meaning that after each demand request made by the 
application, the prefetcher updates its model to reflect the new state of the access 
sequence. Adaptive techniques are commonly used in practice for data compression 
[BCW]. Our prefetcher continuously adapts its model of the access sequence and 
predicts whenever possible. 

4.5 Cold and warm startup 

For simplicity, our implementation begins each simulation in cold startup mode, that 
is, the data structure for prefetching is empty. A warm startup should be consid
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ered for applications that would benefit by using information from previous runs to 
generate predictions for the current run. A warm startup would only require saving 
the prefetch data structure at the end of a database session and restoring it at the 
beginning of the next session. The data structures used by the algorithms described 
in this section can easily be saved and restored with little processing overhead. 

4.6 Lazy addition of leaves in the tree 

The sizes of the data structures for LZ and PPM tend to grow as the application 
runs. In Section 3.3.1 we discussed paging the prefetch data structure. In addition 
to employing this technique for managing a fairly large data structure, we use lazy 
addition of nodes in the tree to reduce the amount of space used by the prefetch 
data structure. Each internal node of the tree contains a pointer and reference count 
for each of its children. Until a leaf becomes an internal node, it contains no useful 
information and, as such, it is not allocated any space until a subsequent access 
through which it becomes an internal node. It is at this point we allocate space for 
it in a lazy fashion. 

4.7 Prefetching Heuristics 

Our prefetching algorithms are deterministic and make predictions based only upon 
past history. In some cases, it is desirable to stray from the predictions that the 
unmodified algorithm makes and make others based upon specific knowledge of the 
application program or simple observations about the access sequence or the predic
tion accuracy. 

4.7.1 Sequential Access 

It is possible that an access sequence exhibits a simple access pattern such as purely 
sequential or a slight variation that walks through the database with a "stride" of i. 
If this sequence does not repeat itself, the algorithms in this section will recognize 
the pattern and make correct predictions. In an application that is likely to exhibit 
sequential access patterns, it would be fairly simple to add a heuristic approach that 
recognizes the pattern and replaces the least likely page predicted by the prefetcher 
with the next page in the sequence. With such a heuristic and a sequential access 
pattern, the application will enjoy a decrease in fault rate. 

4.7.2 Random access sequences 

Unfortunately, our algorithms are not a panacea for prefetching in an arbitrary en
vironment. It is possible to devise a nemesis sequence that causes the prefetcher to 
degrade the system's performance by having it prefetch pages that will not be used 
in the near future and having it evict pages that will be used in the near future. An 
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approach to limit the degradation of such a sequence would be to monitor the number 
of hits associated with prefetched pages and to reduce or completely stop prefetching 
when this hit rate goes below some threshold. 

4.8 Scalability 

Vitter and Krishnan report that their algorithms are theoretically optimal in the limit 
for almost all sequences of page accesses against the class of finite state prefetchers 
[KrV, ViK]. The consequence of this property is that we expect the algorithms to 
perform better on longer access sequences such as we would find in an online en
vironment. Given that the algorithm's performance improves as it becomes more 
experienced with an access pattern, we have to account for the increased size of the 
data structure and time to make predictions. Our paging scheme described in Sec
tion 3.3.1 proposes a way to manage a large prefetching model with a minimum of 
overhead. 
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5 Handling fast accesses in the algorithms 

We described the notion of fast accesses in Section 3.3.2. A fast access occurs at 
the point when two or more pages are requested by the application without leaving 
time to perform prefetching. The implication for the action of the prefetcher is clear; 
no prefetching is done in order to stay out of the way of the application making 
demand requests for data. What happens to the model is not so obvious. Since the 
FOM model fits completely in memory, we must only worry about how the model is 
updated. On the other hand, if the relevant nodes of the data structures for LZ and 
PPM are not in cache, our model could become out of sync with the actual access 
pattern and degrade performance by making bad predictions. 

When there is enough time to prefetch, the model is updated and the node cor
responding to the demand requested page is made current (or nodes, in the case of 
PPM). The approach of Section 3.3.2 proposes making updates to that part of the 
model resident in cache, effectively modifying the data structure without moving to 
a new current node. The effect of not moving to the new node is that it removes the 
need for paging in a node of the prefetch data structure and takes the temporal prop
erty of the access sequence into account. It is our expectation that an application will 
display a consistent relationship between a set of pages accessed and the time used 
to process those pages. If that is the case, then our scheme should work especially 
well. This conclusion is further supported by the good prefetching performance of 
our scheme under an independent scenario, in which the locations and durations of 
the fast accesses are independent of the page accesses. 

Each node of the LZ tree contains all of the information necessary to make pre
dictions and updates based upon demand requests. The significance of keeping this 
information in the current node is seen in the case of fast accesses. At any point 
during processing, the "current node" of the prefetch data structure is by definition 
in cache; it is only when we move forward in the model that we may have to cause a 
page fault to bring in a new node. 

Example 3 Consider the subsequence "... abba ..." of an access sequence. In one 
extreme, the three requests following the first a can all be normal accesses that allow 
time to prefetch and update the prefetch data structure. At the other extreme, 
the requests could all come at once, leaving time neither to prefetch nor to page 
nodes in the data structure. We will show what happens in both of these cases by 
showing the state of the prefetch data structure before and after processing the access 
sequence as all fast or all normal accesses. Any combination of slow or fast accesses is 
accommodated by making the appropriate updates to the data structure and current 
node in a straightforward manner. 

Assume that we are at the current node in the data structure after the page access 
a is processed. For clarity, we will only show the relevant nodes in the subtree of the 
data structure for LZ. The starting state for our data structure is shown in Figure 4a. 
The arc between nodes is labeled with the page identifier and reference count. 
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The model of the normal access pattern updates the reference count for page b as 
a child of the current node and we move to the appropriate new current node. Then 
we update the count for b as the child of the node b and move to the appropriate 
current node. Finally, update the count for a and move to the new current node. The 
updated data structure is shown in Figure 4b. 

The model of the fast access pattern behaves in a completely different manner. 
The current node never changes during a sequence of fast accesses. The reference 
counts for a and b are incremented in the same current node. The current node, by 
definition, is always accessible to the prefetcher in cache. Since a node fits on a page, 
no page faults are required to update the data structure and our model is in step with 
the access sequence. The updated data structure is shown in Figure 4c. 0 
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Figure 4: Effect of updating the data structure for LZ for the subsequence 
", , , abba . .." . Figure (a) shows a subset of the inital data structure. Figure (b) 
shows the same data structure updated after a series of normal accesses. Figure (c) 
shows the data structure updated after a series of fast accesses. The arc between 
nodes is labeled with the page identifier and reference count. 
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6 Simulation environment 

In this section we describe the simulation environment we developed to evaluate each 
of our prefetching algorithms. We first look at the assumptions we make for simulation 
and then describe the method used for simulations. 

6.1 Modeling run-time constraints 

6.1.1	 Paging the data structure 

Associated with each node of the data structure is a logical page number used for 
caching the nodes of the tree. We page the data structure just as we page the actual 
database, evicting (and writing out) the least-recently-used page and replacing it with 
the page containing the node needed by the prefetcher. 

6.1.2	 Sequence of fast accesses 

Fast access sequences preclude any paging activity by the prefetcher. While we cannot 
prefetch any pages or page the prefetch data structure, we do update the prefetcher's 
model as described in Section 5. 

In order to simulate with fast accesses, we need either traces with detailed timing 
information and system timing information or, alternatively, a probabilistic approach 

':	 to decide when and if prefetching can occur, and if it can occur, how much data can be 
prefetched. The former approach is difficult to obtain with reliable timing information 
for purposes of prefetching. The latter approach is far simpler and more widely 
applicable and was our method of choice, although it removes the relationship between 
the previous context and the occurrence of fast accesses we expect in practice. As a 
result, the simulations can be expected to offer a conservative estimate of prefetching 
performance. 

6.2 Simplifying assumptions 

We bound the complexity of the simulator with the following assumptions about the 
application being analyzed 5 : 

•	 Data items can either be pages or objects and are generically referred to as 
pages for purposes of discussion. 

•	 Pages have a name, address, and a location. We make the assumption that this 
information remains fixed during a run of prefetcher. This restriction obviates 
the requirement to resolve an objects location with the use of a naJ;Ile server. 

•	 Pages are assumed to be of a fixed size to allow uniform fetching. 

5Similar assumptions are common and have been made by others doing related work [PaZb]. 
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•	 Our simulator uses a parameter d, that determines the maximum number of 
pages to prefetch at each step. When the prefetcher makes d1 < d predictions, 
up to d1 pages are prefetched. We refer to simulation results using this constraint 
as uniform prefetching results. 

•	 In order to experiment with our methods of handling fast accesses, we implement 
a probablistic model to determine the maximum number of I/O transactions, r, 
that can occur between any two demand fetches. One step of our algorithm com
prises prefetching up to r pages and fetching (if necessary) the page requested 
by the application and updating the requested page's LRU rank in the cache. 
Two probabilities6 p and q, (0 ::; p, q ::; 1) which a user specifies, simulate a 
workload in the computer system on which the application is running. Setting 
p and q to a real number close to zero simulates a heavily loaded system while 
setting p and q to a real number close to one simulates a lightly loaded system. 
The load on the system is inversely proportional to the amount of prefetching 
that can occur in the system. 

The first probability, p, determines the likelihood of a "head" for the toss of one 
coin.7 The second probability, q, gives the likelihood of a "head" for the toss 
of the other coin. The first coin is flipped, and with probability p, at least one 
page is prefetched at this time instant; the second coin is then flipped repeatedly 
until a "tail" occurs. The number of "heads" determines how many additional 
pages can be prefetched up to the limit d. Given that the first coin is a "head," 
the expected number of pages to be prefetched is 1/(1 - q), assuming we can 
prefetch any number of pages. Since we can only prefetch a number of pages 
equal to the cache size k minus 1 (assuming that the application is working with 
one page of cache), we can express the expected number of pages prefetched, 
given that the first coin is a "head" as 

L:: min{t,k-1}qt-l(1-q) 
19$k-l 

6.3 Simulation method 

Three simulators are used to perform prefetching. In each simulator, we have the 
ability to perform uniform prefetching or prefetching with fast accesses. 

The prefetcher's model contains information necessary for monitoring its paging 
behavior. For both LZ and PPM, the root is always kept in cache and the rest of the 
structure can be paged in and out on demand. In the FOM algorithm, the whole data 
structure is assumed to fit in memory and is therefore not paged. It is instructive 
to know the amount of paging activity needed by the prefetch data structure for 

6We use the C library pseudo-random number generator, "drand480", to realize our probabilistic 
model. 

7We know that when the probability of a head is not 50% then the coin is said to be biased. 
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processing prefetch requests and updating the model to get an idea of the overhead 
associated with the prefetch engine. We assume that the prefetch data structure can 
be paged to local disk as opposed to a disk on the server to reduce the paging cost 
but we realize that paging may reduce the benefit of prefetching. Our results show 
us that the number of page faults incurred by the prefetcher for its data structure is 
very small compared to the size of the access trace. 

Common to the simulators are the cache routines that implement our modified 
LRU cache described in Section 3.1. Specific to each simulator is the code that 
implements the prefetcher and its associated model (or data structure). From least 
to most complex, the predictors rank: FOM, LZ, and PPM. Not surprisingly, their 
performance corresponds directly to their complexity. 

The simulator measures the cache fault rate for an access sequence using each of 
the prediction algorithms and for any value of d from 0 up to k. The number d1 is 
computed on-the-fly by using the two probabilities specified for a given run of the 
simulator and the random number generator provided by the system. Statistics about 
the number of faults, the size of the prefetch data structure, and the average number 
of predictions at each step are reported. Such information will be useful in designing 
an efficient online prefetcher. 

For each page access sequence (j, we simulate each of our prefetchers from Section 4 
on (j, prefetching d1 , 0 :S d1 :S d pages at each step. 

6.3.1 Uniform prefetching 

The simulator reads a sequence of numbers. A number specifies the page (or object) 
identifier requested by the application. The prefetcher's job is to make predictions 
based upon previous page requests using one of the algorithms described in Section 4. 
The simulator requires a parameter that specifies the maximum number of prefetches 
that occur between any two demand fetches. 

The number of pages prefetched, dl , is the larger of d and the number of predictions 
available in the model. 

The prefetcher executes the following loop: 

for each time step do 
begin 

prefetch up to d most probable pages 
get the actual page requested by the user into cache (if not in cache) 
update the LRU rank of the actual page requested by the user 
update and advance the data structure to reflect the actual request 
update the prefetcher's statistics 

end 
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6.3.2 Prefetching with fast accesses 

The simulator reads a sequence of pairs of numbers. The first number is the page (or 
object) identifier requested by the application and the second is the number of pages 
we can prefetch before fulfilling this demand request. The prefetcher's job is to make 
predictions based upon previous page requests using one of the algorithms described 
in Section 4. If the number of pages allowed to be prefetched at any point is zero, 
then there are no pages prefetched and the model is updated based upon the demand 
request. The model is not advanced, that is, the current substring (in the case of 
Lempel-Ziv, or context for PPM) is kept current. By not advancing our model, we 
distinguish between normal and fast accesses. 

The number of pages prefetched, d1 , is determined by flipping two biased coins 
as described above and by the prefetch data structure. From Section 3.1 it follows 
that when d = 0 the prefetcher works as an LRU cache. This provides a basis for 
comparison against our prefetcher. 

The prefetcher executes the following loop: 

for each time step do 
begin 

prefetch up to r most probable pages 
get the actual page requested by the user into cache (if not in cache) 
update the LRU rank of the actual page requested by the user 
update the data structure to reflect the actual request 
advance the data structure's current pointer if r > 0 
update the prefetcher's statistics 

end 
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7 Experimental results 

This section presents the results of simulating our prefetcher on access traces gener
ated by a CAD application, the Object Operations Benchmark (001), and the DEC 
007 benchmark written at the University of Wisconsin [CDN]. We first describe the 
access traces and then present our results. 

7.1 Description of the traces 

The following characterizes the traces that were used to test our prefetching 
algorithms8 

: 

CADI, CAD2: These are object ID (UID) traces from a CAD tool written at Dig
ital's CAD/CAM Technology Center in Chelmsford MA. We include them here 
as a comparison to the Fido [PaZb] algorithm that analyzed prefetching on the 
same traces. 

The references represent UIDs requested by the application using tool func
tions: invocation, zoom in and out, select ICs, and setting filters that remove 
certain parts of the board display (e.g. runs and junctions). The circuit design 
data contained 100,000 objects, but only 10,000 or so could fit in the "usable 
window" at once. The first trace, CADI, has 73,767 accesses and the second, 
CAD2, has 147,345 accesses. 

Database benchmarks: The 001 database benchmark, also known as the "Sun 
Benchmark", was run on the DEC Object/DB9 product to generate page fault 
information for all phases of the benchmark. The more interesting phases in
clude traversal of the structure in both the forward and reverse directions. The 
001 benchmark tests aspects of a DBMS that are critical in computer-aided 
software engineering (CASE) and computer-aided design (CAD) applications 
[CaS] engineering applications. 

The DEC 007 benchmark, developed at the University of Wisconsin [CDN], 
tests critical aspects of object-oriented database systems not covered by other 
benchmarks. This suite of tests was also run on the DEC Object/DB prod
uct used for the 001 tests. This benchmark includes tests and reports the 
performance of an object oriented database in the following key areas: 

1. Pointer traversal. 

2. Application-DBMS coupling. 

3. Complex object support and long data items. 

4. Updates and Recovery. 

8The traces were provided as part of the DEC-ERP grant 1139.
 
9DEC Object/DB is a trademark of Digital Equipment Corporation, Maynard MA.
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5. Path indexing. 

6. Caching and clustering. 

7. Queries and optimization. 

8. Concurrency control. 

9. Relationships and versioning. 

The benchmark performs traversals, associative queries, insert/delete opera
tions, and multiuser tests [CDN]. We tested our prefetcher running with traces 
from the traversal and associative query portions of the benchmark. 

7.2 Prefetch results for uniform prefetching 

For every access sequence, we simulate for a fixed cache size k each of our algorithms 
and represent the results in easy-to-read graphical form. The y-axis denotes the fault 
rate10 and the x-axis denotes the parameter d (the number of pages prefetched at each 
time step) that varies from a to k. When d = 0, the fault rate generated is exactly 
the fault rate of an LRD cache and is a basis for comparison with our prefetcher. 
Representative graphs of the results are shown in Figures 5, 6, 7, 8, 9, and 10. 

7.3 Prefetch results with fast accesses 

This section contains the results of prefetching using our probabilistic model for deter
mining the amount of I/O activity between any two demand fetches by the database 
system (as described in Section 5). 

Multiple simulation runs, using different seeds in the random number generator, 
produced little variation in the results. We present our results of running Algorithm 
PPM order 3 on the traces CADI and 007_T1 in Figures 11 and 12. The cache size 
used is 10 pages, the probability, p, is fixed for each graph and displayed in the title. 
The value of the probability q ranges from 0.0 to 1.0 on the x-axis and the fault rate 
is shown on the y-axis . Two curves are shown, "Prefetch" for PPM order 3, and 
"LRD" for caching without prefetching. 

The results suggest that the load on the system is inversely proportional to the 
improvement gained by prefetching and that, even under heavy load, a system with 
prefetching outperforms one without. Our results confirm the validity of our methods 
for modeling fast accesses in the algorithms. 

7.4 Prefetch overhead statistics 

We present statistics of the data structure size and the total number of page faults 
incurred during the simulation run. 

laThe fault rate f, is ratio of page faults to the total number of pages accessed in the trace, 
o~ f ~ 100. 

24 



100. 

Figure 5: The fault rate for prefetching d objects (0 :s; d :s; k) for a fixed cache size. 
(a) k = 10. (b) k = 50 for the trace CADI. There are 73768 object references and 
15430 distinct objects in trace CADI. 
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Figure 6: The fault rate for prefetching d objects (0 :s; d:S; k) for a fixed cache size. 
(a) k = 10. (b) k = 50 for the trace CAD2. There are 147344 object references and 
15430 distinct objects in trace CAD2. 
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Figure 7: The fault rate for prefetching d objects (0 ~ d ~ k) for a fixed cache size. 
(a) k = 10. (b) k = 50 for the trace OOLF. There are 11719 page references and 526 
distinct pages in trace OOLF. 
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Figure 9: The fault rate for prefetching d pages (0 ~ d ~ k) for a fixed cache size. 
(a) k = 10. (b) k = 50 for the trace 007_Tl. There are 28103 page references and 
6033 distinct pages in trace 007_T1. 

PIIIIlR'" 
Cacho. 50 

1'I'!ToiiICf-3I I I I 
100.0(\- I 

- pp~oma-3 
~ -

_ l'OI'l" .. 

-
70.001 , _ 

6O.00f-- '\..•• _11_..._111-..•• _ ••• _ ••• _ •••_111._•••_ ••• _ ••_._ 

50.001 . 
40.001- \;0 ...... 

30.00 -
20.00 -
10.00 10.00_ -

0.00_0.00 -
I 1 1 1 I 

0.00 10.00 20.00 30.00 40.00 
_Size 

(b) 

Figure 10: The fault rate for prefetching d pages (0 ~ d ~ k) for a fixed cache size. 
(a) k = 10. (b) k = 50 for the trace 007_T3A. There are 30127 page references and 
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Figure 11: The fault rate for prefetching with the fast access model for a cache size of 
10 on the trace CADI using Algorithm PPM order 3. The probability q is shown on 
the x-axis and the fault rate is shown on the y-axis. There are 73768 object references 
and 15430 distinct objects in trace CADI. 
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Figure 12: The fault rate for prefetcmng with the fast access model for a cache size of 
10 on the trace 007_T1 using algorithm PPM order 3. The probability q is shown on 
the x-axis and the fault rate is shown on the y-axis. There are 28103 page references 
and 6033 distinct pages in trace 007_Tl. 
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7.4.1 Algorithm LZ 

The tree (or more correctly, trie) data structure used by the LZ algorithm grows as 
the access pattern is processed. In our simulations, we allow this data to grow as 
large as necessary and control its resource utilization by paging nodes on secondary 
storage. We found that even with a modest amount of space dedicated in cache to 
this data structure, its paging activity was small compared to the length of the access 
sequence. Some typical overall data structure sizes are contained in Table 1. 

7.4.2 Algorithm PPM 

As a fair basis of comparison to LZ, we used the raw size (number of bytes needed 
to represent the model) of the data structure built by LZ for a given trace and 
bounded the raw size of the PPM data structure by that amount. When the PPM 
model exceeded that amount, it was flushed and restarted. This method was used for 
simplicity and is only one of the many available (see Section 3.3). Directly after the 
model is flushed we expect the predictor to perform poorly but that it will resume 
making good predictions fairly quickly (in relation to the length of the trace). The 
following table contains the memory usage, page fault statistics and number of times 
the prefetch data structure was restarted for the sample traces. The memory limit 
was set equal to the memory used by LZ in as shown in Section 7.4.1. Ten pages of 
cache were reserved for paging the prefetch data structure. The page size is 8,192 
bytes. The results are shown in Table 1. 

7.4.3 Algorithm FOM 

The data structure for the first order Markov predictor is bounded by the window 
size, w. It will occupy the maximum amount of space when the window contains w 
distinct pages, requiring one state node for each page. In the other extreme, if all of 
the references contained in the window refer to the same page, there will only be one 
stat node in the graph. 

7.5 Analyzing the results 

The results of the simulations are analyzed in detail in this section. The global goal of 
prefetching is to reduce the overall fault rate obtained by running without prefetching 
as seen by the application. A more subtle point is to assure that the prefetcher's 
activities do not incur undue delay at anyone point during the application. This 
information is more difficult to discern from our simulation runs but we will report 
the results we do have in this area. 
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LZ
 
Trace name Number of nodes in Data structure 
(total accesses) the data structure page faults 
CADI (73,768) 28,513 27,961 
CAD2 (147,344) 44,000 43,448 
OOLF (11,719) 1,792 1,240 
OOLR (11,700) 1,902 1,350 
007_Tl (28,103) 13,479 12,927 
007_T3A (30,127) 14,161 13,609 
007_T4 (1,529) 1,525 973 

PPM Order 1 
Trace name Number of nodes in Data structure Data structure 
(total accesses) the data structure page faults restarts 

at end of run 
CADI (73,768) 32,871 42,050 0 
CAD2 (147,344) 35,886 68,215 0 
OOLF (11,719) 8,807 14,894 0 
OOLR (11,700) 8,842 15,540 0 
007_Tl (28,103) 17,462 23,251 0 
007_T3A (30,127) 18,695 25,768 0 
007_T4 (1,529) 3,048 131 0 

PPM Order 3 
Trace name Number of nodes in Data structure Data structure 
(total accesses) the data structure page faults restarts 

at end of run 
CADI (73,768) 69,986 69,478 0 
CAD2 (147,344) 40,664 92,139 0 
OOLF (11,719) 28,127 35,048 1 
OOLR (11,700) 28,837 36,144 1 
007_Tl (28,103) 45,486 1,272 0 
007_T3A (30,127) 49,650 1,170 0 
007_T4 (1,529) 6,108 12 0 

Table 1: Uniform prefetching memory use and page fault statistics for Algorithms LZ 
and PPM 
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7.5.1 Improvement over LRU 

For each of our traces, our prefetchers achieve a significantly reduced fault rate than 
that of a pure LRU cache. (The fault rates reduce by about 60% for the CAD ap
plication traces and by about 20%-30% for the 001 traces.) The number of faults 
is related directly to the number of I/Os, and hence good prefetching is extremely 
significant in reducing the time taken by the application to complete its task. Im
provements in fault rate of x% translate to speedups of roughly x%. 

7.5.2 Relationship to data compression performance 

One algorithm's prefetching performance relative to the others parallels their relative 
performance for data compression: FpPM < FLZ < FpOM (where FA is the fault rate 
for algorithm A). 

7.5.3 Benefit realized with few prefetches 

In most cases it takes only a small number of predictions (one or two) to greatly 
reduce the fault rate of the application. 

7.5.4 Cache size less significant in decreasing fault rate 

Increasing the cache size by a significant factor of 5 (from 10 to 50 in the figures in 
this section) does not lower the fault rate much. Hence LRU with a larger cache can 
be compared to our prefetcher with a smaller cache (with the remaining cache space 
used for storing the in-core prefetch data structures), and the gains in fault rate seen 
in the above figures still hold. 

The true test of a prefetcher is when the cache size is small. We have simulated 
using a cache size that is roughly 1/100-1/1000 of the number of distinct pages in 
the trace. 

7.5.5 Simple cache replacement performs well 

The caching strategy used in conjunction with the uniform prefetcher is extremely 
relevant. (This is also suggested by the slight increase in fault rate with increasing 
d in Figures 7b, 8b.) Our caching scheme performs very well as seen. Some other 
caching strategy may give even better improvements. 

7.5.6 Comparing results with Fido 

For comparison with Fido [PaZb], we simulated our algorithms on the same trace 
(CAD2) with the same cache sizes for LRU (2,000) and the prefetcher (1,500) as 
used in [PaZb]. Fido decreased the fault rate from 45.8% to about 23.5%. Our 
improvement (for PPM of order 1) was from 45.8% to 18.2%. 
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7.5.7 Comparing results with sequential prefetching 

For comparison with popular heuristics, we analyzed the 001 traces using sequential 
prefetching (that is prefetching page i +1 after a request to page i). We found that 
such an approach decreases the cache fault rate only minimally (by 5%). 

7.5.8 Comparing results with the optimal prefetcher 

There are 73, 768 object references and 15,430 distinct objects in trace CADI, yielding 
a lower bound of 15,430/73,768 = 20.8% on the fault rate of any universal prefetcher 
that does not prefetch pages not previously accessed. The 26.7% fault rate of the 
PPM algorithm of order 3 is close to this lower bound. 
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8 Related work in prefetching 

Fido was developed by Palmer and Zdonik [PaZb] as a prefetcher for databases. It 
uses a pattern matching approach to prediction. The predictor is trained on an access 
sequence, the model is frozen, and it is used for prefetching on access traces from 
similar applications. (This is in contrast to our adaptive approach which continuously 
learns and predicts for each access sequence.) The MLP caching strategy in Fido ranks 
prefetched data differently from demand fetched data; this idea can be used in our 
approach too. Simulations performed on object traces (the CADI and CAD2 traces 
from Section 7) using a cache size of 1500 objects gave impressive improvements in 
fault rate of almost 22.3% for Fido. Our prefetcher on the same traces and for the 
same cache size gives improvements of 27.6%. 

Work at the NASA Ames Research Center by Philip Laird [Lai] uses a transi
tion directed acyclic graph (TDAG) as a sequence-learning tool for discrete sequence 
prediction. The TDAG can be applied to dynamically optimize Prolog programs or 
for maintaining a cache for a database on mass storage. TDAG approximates an 
unbounded-order PPM model with limited data structure. The TDAG algorithm 
when used for compression performs comparably to the Lempel-Ziv data compressor 
(the Unix compress program). In practice, the prediction by partial match algo
rithm compresses better than Lempel-Ziv [BCW]. Since better compressors typically 
yield better prefetchers as we report in Section 7.5 (Observation 7.5.2), we expect 
that the PPM prefetcher should compare favorably to TDAG. We are in touch with 
Dr. Laird to compare our implementation with his under similar conditions and access 
sequences. 

Other interesting work in prefetching done by Salem uses various first order statis
tics of the access frequency of database objects to discover "hot spots" in a database. 
Objects that are found to be hot are kept close at hand with the expectation that 
they will be referenced frequently. We expect such an approach to perform similar to 
FOM given its similarity. 

Research projects in prefetching at a much lower level of abstraction include a 
software approach in which the compiler reorders instructions to reduce the effect of 
cache misses [MLG], a hardware scheme of non-blocking and prefetching caches that 
let processing continue when a cache miss occurs, blocking only when the missed data 
is actually needed [ChB], and a combined hardware and software approach which uses 
an optimizing compiler and speculative loads to issue read requests in anticipation of 
a demand request [RoL]. 
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9 Conclusions 

We started with the theoretical result from [KrV, ViK] that using data compression 
for prefetching is a promising technique. We observed that the practical issues in 
prefetching in databases are much different from the practical issues in data com
pression, and the pure prefetching assumption made in [KrV, ViK], although valid 
for hypertext systems needs to be relaxed while looking at general databases. Mo
tivated by this, we converted three practical data compressors to get three practical 
prefetchers. We simulated our prefetchers on page access traces generated from the 
DEC 007 benchmark, the 001 benchmark and from CAD applications at DEC. We 
observed a significant decrease in fault rate in comparison to using an LRU cache, 
and in comparison to other good prefetchers. 

General predictors (except the simplest ones) can be expected to require nontrivial 
data structures, and these may not fit in cache for some applications. We looked 
at the data structures used by our algorithms, and suggested techniques for paging 
in the data structures efficiently with a minimum number of I/Os. We have also 
proposed a solution to the problem of fast accesses and found that our method for 
dealing with this system constraint was valid and produced good prefetching results. 

An interesting result of our simulations is that the prefetching performance of our 
prefetchers is directly related to the compression ability of the data compressors they 
are derived from; in particular, algorithm PPM performs better than LZ for both 
compression and for prefetching. This suggests strongly that the vast research being 
done in developing good data compressors can be used to develop good prefetchers. 
The importance of the current report also lies in its attempt to unite two seemingly 
different practical fields of research. There is a note of caution required since the 
issues in data compression are different from the ones in prefetching; significant work 
is required to convert a data compressor to a prefetcher or vice-versa. We expect that 
the problems encountered in this task are similar to the ones addressed in the current 
report. 

Another interesting result of our simulations is that the biggest benefit of prefetch
ing usually comes from the first page prefetched, and that subsequent pages prefetched 
do not appreciably reduce the fault rate. 

Another important way to achieve better response time is to use clustering. Clus
tering is in a way dual to prefetching. Clustering algorithms attempt to improve the 
performance of database systems by placing related sets of objects on the same page 
in the hopes of reducing the number of average I/Os needed to retrieve objects. There 
has been extensive work in clustering [BeD, Sta, TsNa, TsNb]. It would be interesting 
to see the combination of clustering and prefetching on response-time performance. 
Using prefetch data structures for clustering could also be considered. 

There are many open problems that this work motivates, both theoretical and 
practical. Can our strategy of using LRU with prefetching be shown to be optimal 
in some reasonable models? Otherwise, is there some other provably optimal caching 
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strategy that can be blended with prefetchers? We expect that recent work on caching 
models in [KPR] may be relevant. Can our techniques be extended for prefetching in 
parallel environments? 

36
 



Acknowledgements 

Thanks to Digital Equipment Corporation's GEEP program for making it possible 
for me to attend Brown University. 

On the technical side, I'd like to extend thanks to my advisor Professor Jeff Vitter, 
Ph. D. candidate P. Krishnan and former GEEP participant and current member 
of Digital's Database Group, Mark Palmer. I would also like to thank my technical 
advisor at Digital, John Kirk, for providing much needed advice and assistance and 
a even few free lunches during my stay at Brown. 

Thanks to my father, Ken Curewitz (Sr.), for helping me make this document 
readable and as error free as possible. 

Finally and most importantly, thanks to my wife Shawn for all of her support 
and endurance and to my two daughters, Danielle and Alexandra, for keeping life in 
perspective (and keeping me from sleeping too late!). 

37
 



A Implementation details 

We implemented our simulator in ANSI C on a SUN Sparcstation 1 running SunOS 
Release 4.1. The simulator also runs without modification (after recompilation) on a 
DECstation 5000/20 under Ultrix V4.2. 

We present the actual C code that defines the data structures used by the prefetch
ers in the following sections and finally include the code used to define the cache and 
its management. 

A.l Algorithm LZ 

The LZ data structure is a trie. Each node in the data structure contains in it all of 
the information necessary to make predictions. The fixed size part of the node is the 
below defined "tnode" and the variable size part is an array of "childinfo" elements. 
The root is allocated a large number of "childinfo" elements and other nodes of the 
tree are allocated a small number. When the "childinfo" arrays become full, they 
are reallocated to larger sizes and moved to another page if necessary. 

typedef unsigned int event; 1* distinguish what an event is *1 

typedef struct tnode { 1* a node in the tree *1 
struct tnode *parent; 1* this node's parent *1 
unsigned int max_children; 1* maximum number of children *1 
unsigned int num_children; 1* current number of children *1 
unsigned int ds_page; 1* data structure page allocated on *1 
struct child_info *child_info; 1* the array of children *1 

} t_node; 

typedef struct child_info { 
event pageno; 1* the page number *1 
int event_num; 1* when this page last occurred *1 
unsigned int refcnt; 1* number of times it's been referenced *1 
t_node *child; 1* pointer to child with this info *1 

} c_info; 

A.2 Algorithm PPM 

The PPM data structure is a slight modification of that used by data compression. 
Each node in the tree is an "eventnode", its children are pointed to by the "eventset" 
structure. Vine pointers are realized by the "prev" pointer in "eventnode". 
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typedef struct { 
uns totalcnt; 1* the number of events which follow *1 
point list; 1* list storing the event records *1 

} event set ; 

typedef struct { 

event eventnum; 1* the "event" is the page or object *1 
uns count; 1* count is its frequency count *1 
point next; 1* the right sibling in tree *1 
point prev; 1* the left sibling in tree *1 
eventset foIl; 1* list of following events *1 
unsigned int ds_page; 1* "data structure" page we're on *1 

} eventnode, *eventptr; 

A.3 Algorithm FOM 

The FOM data structure consists of "window_elements" and "state-nodes". There is a 
circular array of "window_elements" that points to the "state-nodes". "State-nodes" 
point to other "state_nodes" (or themselves) to realize a first order Markov model. 

typedef struct state_node { 1* model a state node *1 
event pagenum; 1* the page number of this state *1 
int in_degree; 1* the count of pointers to state *1 
int out_degree; 1* number of next states *1 
int max_out_degree; 1* maximum of above *1 
struct state_node **next_states; 
int *next_count; 1* freq counts for next states *1 

} state; 

typedef struct window_element { 1* an element in the window *1 
event pagenum; 1* the page number of this event *1 
state *node; 1* the corresponding state node *1 
int next_occur; 1* next occurrence of this event *1 

} w_element; 

A.4 Cache 

A.4.1 Cache data structures 

The cache is organized as an array of integers with one slot for each page in the cache. 
The number of cache entries is kept in the variable "d_cache..size". To implement LRU, 
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another array, "dJruJank" is used to hold the LRU rank of each page in cache. The 
variable "d_acc-seq" contains one greater than the highest LRU rank of any cache 
entry. 

int *d_cache; /* the cache */ 
unsigned int d_cache_size; /* a default size for the cache */ 
unsigned int *d_lru_rank; /* the sequence of a cache entry for LRU */ 
unsigned int d_acc_seq; /* access sequence for LRU */ 

A.4.2 Cache management routines 

The following routine headers are included to give the reader an idea how the cache 
is managed. The header comments describe the interface. 

/* 
Check to see if t1pageno" is in cache. 
If it is, do nothing, otherwise, put it in the cache. 
if it was already in cache, return 0 : cache hit 
if a the page is put into cache, return 1 : i.e. it faulted 

*/ 
int check_update_cache(event pageno, int *cache, 

int cache_size, uint *lru_rank, 
\ uint *acc_seq) 
} 

/* 
in_cache() returns the index of an entry in the cache if it's found, 
otherwise it returns NOTFOUND 
the implementation is a linear search through the array. 

*/ 
int in_cache(int pageno, int *cache, int cache_size) 

/* 
return the value of the next slot in the cache to insert an entry 

*/ 
int next_cache_slot(int cache_size, uint *lru_rank) 
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