
BROWN UNNERSITY

Department of Computer Science

Master's Thesis

CS-93-M4

"Practical Prefetching via Data Compression"

by

Kenneth Marion Curewitz

Practical Prefetching via Data Compression1

Kenneth Marion Curewitz

Department of Computer Science

Brown University

Providence, Rhode Island 02912-1910

Submitted in partial fulfillment of the requirements for the

Degree of Master of Science in the Department of Computer Science

at Brown University

May 1993

1An extended abstract appears in Proceedings of the ACM SIGMOD, Washington, D. C., 1993.

This research project by Kenneth Curewitz is accepted in its present form

by the Department of Computer Science at Brown University

in partial fulfillment of the requirements for the Degree of Master of Science.

ofe or Je rey Scott Vltter
Advisor

Date

Contents

1 Introduction 1

1.1 Motivation and goals 1

1.2 History of the project. 2

1.3 Paper structure . . 3

2 System environment 5

2.1 The client-server model. 5

2.2 Slowdown associated with distribution 5

2.3 Database support for prefetching . . 6

3 System issues related to prefetching 7

3.1 Caching issues 7

3.2 Accounting for the space used by the prefetcher 8

3.3 Prefetching in a restricted memory environment 8

3.3.1 Paging the data structure 8

3.3.2 Sequence of fast accesses 9

4 Algorithms for Prefetching 10

4.1 Algorithm LZ . . 10

4.2 Algorithm PPM . . . 12

4.3 Algorithm FOM ... 13

4.4 Adaptive prefetching 13

4.5 Cold and warm startup . 13

4.6 Lazy addition of leaves in the tree . 14

4.7 Prefetching Heuristics . 14

4.7.1 Sequential Access . 14

4.7.2 Random access sequences 14

4.8 Scalability............. 15

5 Handling fast accesses in the algorithms 16

6 Simulation environment 19

6.1 Modeling run-time constraints 19

6.1.1 Paging the data structure 19

6.1.2 Sequence of fast accesses 19

6.2 Simplifying assumptions .. 19

6.3 Simulation method 20

6.3.1 Uniform prefetching .. 21

6.3.2 Prefetching with fast accesses 22

7 Experimental results 23

7.1 Description of the traces . 23

7.2 Prefetch results for uniform prefetching 24

7.3 Prefetch results with fast accesses 24

704 Prefetch overhead statistics 24

704.1 Algorithm LZ .. 30

704.2 Algorithm PPM . 30

704.3 Algorithm FOM . 30

7.5 Analyzing the results . . 30

7.5.1 Improvement over LRD . 32

7.5.2 Relationship to data compression performance 32

7.5.3 Benefit realized with few prefetches . 32

7.504 Cache size less significant in decreasing fault rate 32

7.5.5 Simple cache replacement performs well. . . . 32

7.5.6 Comparing results with Fido 32

7.5.7 Comparing results with sequential prefetching . 33

7.5.8 Comparing results with the optimal prefetcher . 33

8 Related work in prefetching 34

9 Conclusions 35

A Implementation details 38

A.1 Algorithm LZ .. 38

A.2 Algorithm PPM . 38

A.3 Algorithm FOM . 39

AA Cache . 39

AA.l Cache data structures 39

AA.2 Cache management routines 40

References 41

1 Introduction

The basic operations performed by a computer system comprise processing, storing,
and transferring data. Recent increases in processor speed have outpaced those in
communication speed, making latency between the processor and the storage element
a system bottleneck. A method of improving the overall response time of a computer
system is to anticipate a request for data by the processor and prefetch data that
is likely to be accessed by the application in the near future. This report describes
three deterministic, adaptive algorithms based on theoretically optimal algorithms
and presents results of applying these techniques to actual program access traces.

1.1 Motivation and goals

In most computer systems, memory is hierarchical in nature, with a fast memory, or
cache, at the top and slow memory such as disk storage below it in the hierarchy.
An application requires that the pages it accesses be in cache. In the event that it
is in cache a page hit occurs; otherwise a page fault occurs and the page is fetched
from slow memory to cache. The application has to wait until this fetch is completed.
The time that it takes to complete this task is called the I/O latency. The method
of fetching pages into cache only when a fault occurs is called demand fetching. The
problem of caching is to decide which pages to remove from cache to accommodate
the incoming pages.

In many OODB applications and hypertext systems, users spend a significant
amount of time processing a page, and the computer and I/O system are essentially
idle during that period. If the computer system can predict the page the user will
access next, it can fetch that page into cache (if it is not already in cache) before the
user asks for it. Thus, when the user actually asks for the page, it is available instan
taneously, and the user perceives a faster response time. This method of anticipating
and getting pages into cache in the background is called prefetching.

Current database systems perform prefetching using techniques derived from older
virtual memory systems. The I/O bottleneck is a limiting factor for the performance
of large-scale databases, and the demand for improving response time performance
is growing [Bra]. This has stimulated renewed interest in developing improved algo
rithms for prefetching [ChB, Lai, MLG, PaZb, RoL]. Independent to our approach,
there has been recent work by Palmer and Zdonik, who use a pattern matching ap
proach for prediction [PaZb], by Salem, who computes various first-order statistics
for prediction [Sal], and by Laird, who uses a growing order Markov predictor [Lai].
Prefetching in a parallel environment is studied in [KoE].

The idea of using data compression techniques for prefetching was advocated by
Vitter and Krishnan [ViK]. The intuition is that data compressors typically operate
by postulating (either implicitly or explicitly) a probability distribution on the data to
be compressed. Data expected with high probability are encoded with few bits, and

1

unexpected data with many bits. Thus, if a data compressor successfully compresses
the data, then its probability distribution on the data must be realistic and can be
used for effective prediction.

Assuming that as many pages as desired can be prefetched limited only by the
cache size k (the pure pre/etching assumption), it is shown in [KrV] [ViK] that any
theoretically optimal character-by-character data compressor (for example, one ob
tained from the Lempel-Ziv compressor) can be converted to a prefetcher that has
an optimal hit rate. In [ViK], one prefetcher is shown to be optimal in the limit for
sequences of page accesses generated by a Markov source (where the page accesses
correspond to the arcs not the states). The result was generalized in [KrV] to show
that a modified prefetcher was optimal among finite-state prefetchers for arbitrary
worst-case sequences of page accesses.

The pure prefetching assumption is not valid in many real-world applications. In
this report, we consider non-pure prefetching in which only limited and varying time
is allowed for the prefetching.

We consider three data compressors that perform well in practice, and we build
simple, deterministic, universal2 prefetchers based on them. We run our simulations
on page access sequences derived from the DEC 007 benchmark [CDN], the Object
Operations (001) benchmark [CaS], and from CAD applications used at Digital
Equipment Corporation. We find that the fault rate (the ratio of number of page
faults to the number of page accesses) decreases significantly in relationship to a
paging scheme using just the least-recently-used (LRU) heuristic. The reduction in
fault rate is also better than that of recent proposed schemes for prefetching [PaZb].

1.2 History of the project

My introduction to this area of research began in December of 1991 at meeting with
Professor Jeff Vitter to discuss working with him on a master's project. He suggested
looking at applying algorithms for prefetching based on data compression that he and
P. Krishnan, a Ph.D. candidate, had devised. My previous experience with prefetching
came from an operating systems course where we learned that some operating systems
perform sequential prefetch of pages to improve system performance. This method
of prefetching relies on the fact that sequential access is fairly common. For some
applications like reading a file for sequential processing, data at location i + 1 will be
accessed directly after data at location i, but, in general, this is not always the case.
The more general scheme proposed by Vitter and Krishnan [ViK] seemed to be quite
elegant and intuitively sound, especially for database systems with access patterns
generated by user's requests.

2A universal prefetcher makes no assumptions about the application or data representation. Older
virtual memory prefetchers that prefetch pages in sequence, that is, prefetch page i + 1 when page
i was being accessed, are not universal. The usefulness of universality is extremely significant in
current databases [Sal]. Any specific knowledge about the sequence of page accesses can be utilized
to improve the performance further using the techniques of [FKL].

2

To form a solid basis in this area of research, I began learning about lossless data
compression algorithms, looking at database systems that might benefit from prefetch
ing, and by collecting page fault traces from database systems and applications that
use a database (such as CAD applications). I then developed a simulation environ
ment to gain some experience with the algorithms and data structures involved. The
results were encouraging and are presented in Section 7.

There are a number of data compression algorithms ranging from simple to com
plicated. Their performance for compression is generally related to their complexity.
We decided first to implement a prefetcher based on the well known Lempel-Ziv dic
tionary scheme devised in the late 1970s. Results of prefetching using this algorithm
were quite positive and suggested promise for prefetching in a real-world environ
ment. The next algorithm we simulated was based on one of the best compression
schemes, prediction by partial match (PPM), a context-based scheme. Just as in data
compression, PPM gave better results than the Lempel-Ziv approach.

After simulating prefetching in an "ideal" environment, it was time to think about
system issues like the amount of time needed to make a prediction, how many pre
dictions should be made at any point in time, and how much space the prediction
model occupied. Up to this point, we had made the assumption that we had all of the
time and space that we needed and that we could prefetch as much data as would fit
in cache. As a basis for comparison to a relatively simple and compact prefetcher, I
implemented a model of the access pattern based on a first order Markov model with
a fixed size, sliding window passing over the access sequence.

We obtained traces from a CAD application and two sets of database benchmark
suites. The CAD traces were used by Mark Palmer for evaluation of his prefetcher
and give an indication of the relative performance of his scheme compared to ours.
Results of prefetching based on the three algorithms were good and we submitted a
paper to the ACM SIGMOD '93 conference which will be presented in Washington,
D.C. May 1993 and which will be included in the conference proceedings.

The final feature added to the simulator was the ability to limit the number of
pages prefetched at anyone time by using the toss of two biased coins to determine
if there was time to prefetch, and if so, how many pages could be prefetched. By
biasing the coins appropriately, we could model several light, moderate, and heavy
workloads in a system environment and study its effects on our prefetching scheme.

1.3 Paper structure

In Section 2 we describe the system environment. In Section 3 we look more closely
at problems stemming from memory and time restrictions unique to prefetching.
We propose solutions to these problems and bound their worst-case behavior. We
describe our three prefetchers in Section 4. Our method of keeping the prefetcher's
model intact when there is not time to prefetch is described in Section 5. In Section 6
we present our simulation environment. In Section 7 we give a brief description of

3

the page access traces and present our simulation results. We discuss related work in
Section 8, and present our conclusions in Section 9.

4

2 System environment

2.1 The client-server model

The familiar client-server model of computing has become quite popular with the
advent of relatively inexpensive desktop workstations. Practical aspects of managing
data accessed by workstations are resolved by having a centralized server responsible
for and capable of this task. When the common data is a database and the clients
are running a database application, the database system is made up of a server that
manages the database and clients that access and modify the database. Clients and
servers pass messages and data back and forth. A client can use local memory to
cache data that it has requested and send modified data or log entries back to the
server. Both the client and server are distinct processes that can either coexist on
one computer system or can exist on separate systems. Typically, in large database
systems the server runs on a dedicated machine equipped with a large amount of
secondary storage and network connections to a number of client machines in a dis
tributed database system. The client-server architecture is shown in Figure 1.

CI~nt Server

cache

\
Preletcher

Figure 1: The client-server model

2.2 Slowdown associated with distribution

One limiting factor in the performance of a distributed database is the network
bandwidth-the amount of data per unit time a network can handle [GrR]. Another
important factor to consider is the load on the network-the number of messages and
data being sent and received at anyone time. Together, the bandwidth and load
determine the latency associated with client-server communication. The benefits of
distributed databases are easily understood. A drawback to the distributed approach
is the relatively high cost of transferring data over a network connection. Prefetching

5

reduces the effect of network latency by anticipating the client's future requests and
making such requests when the network is idle.

2.3 Database support for prefetching

The server has the ability to handle demand read requests from the application and
prefetch read requests from the prefetcher. The server gives priority to the applica
tion's requests, flushing prefetch requests in its queue when a demand request comes
in. Such provisions are generally available in prefetching systems [GrR, PaZa].

The prefetcher can be either part of the application or an entity distinct from the
application. It works by listening to the application's request sequence and making
requests for data from the server.

Due to the diverse nature of a user's access patterns, the improvement in fault rate
is best when each instance of an application (i.e., each user) on the client runs a copy
of the prefetcher that takes into account only its access sequence.

6

3 System issues related to prefetching

Independent of the prefetching algorithm used to decide which pages to prefetch, a
number of system issues must be considered when devising a prefetching engine for
a database system. We consider those aspects closely related to the prefetcher and
its associated data, and the management of the prefetched data itself. We describe
our caching scheme in Section 3.1 and then look at some constraints placed on the
prefetcher by the run-time environment.

The purpose of prefetching is to increase the system performance by submitting
read requests to the server when it is otherwise idle, thus spreading out the I/O
activity in the computer system. The most important property of a good prefetcher
is that it not degrade the system performance. A prefetcher can degrade system
performance by making incorrect predictions and requests that replace relevant data
in cache with data that will not be accessed in the near future.

The prefetcher makes processor (time) and data (space) requirements of the
database system. It can degrade performance of the application when it takes too
much time to make predictions, preempting processing of data by the application.
The space used by the prefetcher effectively reduces the amount of cache space avail
able to the database application. We would expect the prefetcher to make better use
of system resources than the application would if these resources were dedicated to
the application as cache space. We address a way to reduce the space requirements
of a prefetcher in Section 3.3.1 and a way to model the application's temporal nature
in Section 3.3.2.

Higher level considerations, such as the ACID3 properties, logging, recovery, repli
cation, authentication, authorization, and naming [GrR] are essential elements of a
distributed database system and are assumed to be managed by the database system.

3.1 Caching issues

Caching issues automatically arise when we prefetch less data than fits in the cache; we
need to decide which pages to evict from cache to make space for incoming pages. Any
caching scheme is considered independently of the prefetching algorithm employed by
the system. We can use the probabilities of the prefetcher to determine those pages to
evict from cache, or adapt strategies like the MLP replacement strategy from [PaZb]'
or adapt well-known cachers like FIFO or LRU. In our simulations, we use a version
of LRU suitably modified to handle prefetched pages. An important motivation for
this scheme is simplicity.

The scheme we use works as follows: Prefetched items are put into cache as if
they were demand-fetched. They are marked as most recently used items, with more
probable pages marked as more recently used. Prefetched data replace the least

3 Atomicity, Consistency, Isolation, and Durability

7

recently used pages which, if modified, are written back to disk by the database
management system.

A number of additional issues related to caching arise in distributed database de
sign and implementation. These include data sharing, replication, and transparency.
While these are important to maintaining the integrity of the database they are the
subject of current research and implemented in existing database systems. We are
aware, but do not address these issues in this report.

3.2 Accounting for the space used by the prefetcher

In order to form a fair basis of comparison between a system with prefetching and a
system without prefetching, we will run our system without prefetching with a larger
data cache. The added space is made available by the absence of the prefetch data
structure and is used to cache database pages.

3.3 Prefetching in a restricted memory environment

For some applications and system environments, it is reasonable to assume that re
sources required by the prefetcher do not exceed the capacity of the computer system,
but we cannot expect all systems to exhibit such nice characteristics.

Similar problems arise in data compression, and several techniques are known for
limiting data structure size in data compressors [Sto]. An explicit upper bound M
is placed on the size of the data structure. The data structure is either frozen when
its size reaches M, flushed and rebuilt when its size reaches M, or frozen when its
size reaches M /2 (and a new data structure is built while the old one is used for
prefetching). There are also more sophisticated techniques that use an LRD strategy
on the data structure to maintain its size [BuB]. Our ongoing work studies these
techniques in the prefetching context. However, explicit bounds on the data structure
size degrade performance as is evidenced by a look at the results from Section 7 and
comparing order 1 PPM with FOM.

Motivated by the above observation, we present the following new scheme to
prefetch in a restricted memory environment.

3.3.1 Paging the data structure

The data structures used by our prefetchers are modified trees (see Figures 2 and 3).
Each node of the tree maintains information about its children (their counts, ad
dresses, etc.). This information is required to make predictions for the next access.
It is reasonable to assume that every node of the tree (except maybe the root) fits in
at most one page of memory. (This can be ensured by simple schemes.)

We maintain some nodes of the tree in cache using one of many heuristics (like LRD)
to decide what to evict from cache. In particular, the root is always maintained in
cache. We page in a node of the tree when it is required. This scheme works smoothly

8

if each node is given its own page and at least two extra I/Os can be performed
between two accesses (to write out the evicted node and read in the desired node).

It is more space-efficient to compact "small" nodes together into one page. In such
cases, nodes may have to be moved when they threaten to overflow a page. For a
pure tree data structure as in LZ (Figure 2), it can be verified that nodes can be
reallocated to "less crowded" pages in a lazy fashion using one extra I/O for the
movement, and no subsequent extra I/Os. In PPM, the node of the data structure
can have many (vine) pointers into it. In this case, when a node moves, it leaves a
"forwarding address", and when a vine pointer is traversed, this forwarding address
pointer is "short-circuited", that is the pointer is updated in the predecessor so that
the next time this path is traversed, the old node will have been eliminated from the
path. In the worst case there may be one extra I/O per vine pointer per reallocation
(although in practice our simulators show few reallocations and few short-circuitings
of pointers).

3.3.2 Sequence of fast accesses

The scheme explained in Section 3.3.1 solves the limited memory problem by us
ing disk space efficiently but creates a new "timing" problem of fast accesses (some
number of page requests that occur so close to one another that they allow no data
structure or prefetching I/O to be performed between them). When the data struc
ture is always in cache, it can be updated every time even when there is no time to
prefetch between page requests. If the data structure is paged, a sequence of fast
accesses can force us to disregard important sequence information.

We propose the following strategy to cope with the problem of updating the data
structure during fast accesses: In both LZ and PPM, the pages in the fast access
sequence are used to increment the counts/probabilities of the current node (that
is, the node used for prediction just before the fast access started). The intuition
behind this scheme is that if the sequence of fast accesses is context-dependent then
accumulating statistics at the current node will ensure the prefetching of the correct
pages in the future before the start of the fast access subsequence. This is explored
further in Section 5.

9

4 Algorithms for Prefetching

Let a be the alphabet size (total number of pages in the database) and k be the cache
size in pages. In typical databases, a is large and k ~ a.

In this section, we describe our three simple, deterministic prefetching algorithms
based on practical data compressors. (An elegant discussion of the data compres
sors appears in [BCW].) We describe our prefetchers in Sections 4.1- 4.3 in their
"generic" form: as prefetchers that can store their entire data structure in cache.
These prefetchers make k suggestions for prefetch ordered by their relative merit. To
make these suggestions the algorithms use O(k) time. Sometimes the algorithms may
have information to make kl < k suggestions. In such cases, the remaining k - kl

locations of cache are left undisturbed.
In Section 3.1 we look at the modification to the "generic" algorithm when we can

prefetch less than k pages at each time instant. This occurs because the time between
accesses is small (or as mentioned earlier, the prefetcher makes only k1 < k educated
choices). This automatically introduces the problem of caching; our decision strategy
on what is evicted from cache becomes important. It is implicit in our discussion that
the page the application is working on is left undisturbed; hence the actual number
of pages in cache is k + 1. Other changes to the "generic" algorithms in situations
that arise in practice (for example, when the data structure cannot be stored entirely
in cache) are discussed in Section 3.

4.1 Algorithm LZ

We denote the empty string by A. Algorithm LZ of [ViK] is based on the character
based version of the Lempel-Ziv algorithm for data compression. The original Lempel
Ziv algorithm [ZiL] is a word-based data compression algorithm. The Lempel-Ziv
encoder breaks the input string into blocks of relatively large length n, and it encodes
these blocks using a block-to-variable code in the following way: It parses each block
of size n into distinct substrings Xo = A, Xl, X2, ••• , Xc such that for all j 2 1
substring X j withoutits last character is equal to some Xi, for 0 $ i < j. It encodes
the substring Xj by the value i, using fIgjl bits, followed by the ascii encoding of the
last character of Xj, using fIg a1 bits.

The equivalent character-based algorithm builds in an online fashion a probabilistic
model that feeds probability information to an arithmetic coder [HoV, Lan, WNC].
(The exact compression method is irrelevant for our current discussion and is omit
ted.) We show by an example how the probabilistic model is built.

Example 1 Assume for simplicity that our alphabet is {a, b}. We consider the page
access sequence "aaaababaabbbabaa ". The Lempel-Ziv encoder parses this string
as "(a)(aa)(ab)(aba)(abb)(b)(abaa) ".

In the character-based version £ of the Lempel-Ziv encoder, a probabilistic model
(or parse tree) is built for each substring when the previous substring ends. The

10

0

parse tree at the start of the seventh substring is pictured in Figure 2. There are
five previous substrings beginning with an "a" and one beginning with a "b." The
page "a" is therefore assigned a probability of 5/6 at the root, and "b" is assigned a
probability of 1/6 at the root. Similarly, of the 5 substrings that begin with an "a,"
one begins with an "aa" and three begin with an "ab," accounting for the probabilities
of 1/5 for "a" and 3/5 for "b" at node x, and so on.

RootD Leaf

Figure 2: The parse tree constructed by the character-based encoder £ for Example 1.
Notice that since the substrings are prefix-closed, they can be represented by a tree
in a natural way.

Our prefetcher LZ uses the probabilistic model built by the encoder £ as follows:
At the start of each substring, LZ's current node is set to be the root of £'s parse
tree. (See Figure 2.) Before each page access, LZ prefetches the pages with the top
k estimated probabilities as specified by the transitions out of its current node. On
seeing the actual page requested, LZ resets its current node by walking down the
transition labeled by that page and gets ready to prefetch again. In addition, if the
page is not in memory, a page fault is generated. When LZ reaches a leaf, it fetches
in k pages at random. The next page request ends the substring, and LZ resets its
current node to be the root. Updating the model can be done dynamically while LZ
traverses it. At the end of n page accesses, for some appropriately large n, LZ throws
away its model and starts afresh.

In our simulations, we use a heuristic in LZ (that parallels the Welsh implemen
tation [BCW] of the Lempel-Ziv data compressor). While LZ is at a leaf .e, instead
of fetching in k pages at random, it resets its current node to be the root (that is, it
goes to the root one step early). However, it updates the node.e and the root based
on the next access.

11

The data structure used for prediction is a tree with at most one pointer into each
node.

4.2 Algorithm PPM

Although the LZ prefetcher is optimal in the limit against the class of finite state
prefetchers [KrV, ViK], convergence to optimality is slow. This motivates us to adapt
the prediction by partial match data compressor (that performs better in practice for
compression of text than the Lempel-Ziv algorithm) for prefetching.

A jth-order Markov predictor on page access sequence u uses statistics of contexts
of length j from the sequence to make its predictions for the next character.

Example 2 Let j = 2, and let the page access sequence u be "abbababab." The
next character is predicted based on the current context, that is on the last j = 2
characters "ab" of u. In u, an "a" follows an "ab" twice, and a "b" follows an "ab"
once. Hence "a" is predicted with a probability of 2/3, and "b" is predicted with a
probability of 1/3. If j = 0 (no context) , each character is predicted based on the
relative number of times it appears in the access sequence. 0

--o:J"~ pointers to
children

- -;- vine pointers

A empty string

Figure 3: Snapshot of the data structure for PPM of order 2 when the access sequence
is "abbababab." The vine pointer from node "ab" to node "b" indicates that if the
current 2-character context is "ab," then the current one-character context is "b."

The PPM prefetcher has an order parameter m associated with it. A PPM
prefetcher of order m maintains jth-order Markov predictors (on the page access
sequence seen till now) for all 0 ~ j ~ m. Let nj be the number of pages predicted
by the jth-order Markov predictor4 (for the current context) that is not predicted by

4 nj can be less than k if, for example, the current context occurs rarely in the past.

12

any rth-order Markov predictor, r > j. Intuitively, PPM prefetches the k pages with
the maximum k probabilities giving preference to pages predicted by higher order
contexts. Formally, it executes the following loop:

for j = m downto 0 do
begin

tj := min(nj, k - n m - nm-l - ... - nj+t};
tj := max(tj, 0);
prefetch the pages with the maximum tj probabilities

as given by the jth-order Markov predictor;
end

The above technique is based on the prediction by partial match algorithm for data
compression using exclusion [BCW].

The various jth-order Markov predictors, j = 0,1, ... , m, can be represented and
updated simultaneously in an efficient manner using a forward tree with vine pointers
[BCW]. An example of a forward tree with vine pointers is given in Figure 3. The
data structure is "almost" a tree; there can be more than one edge into a node because
of vine pointers. In our simulations we use PPM of order 3 and order 1.

4.3 Algorithm FOM

Algorithm FOM is a limited memory prefetcher designed so it can always fit in a small
cache. It takes as parameter a quantity w, the window size. Algorithm FOM with
window size w maintains a 1st-order Markov predictor on the page access sequence
formed by the last w page accesses. (The 1st-order Markov predictor is explained in
Section 4.2.) It prefetches the k pages with the maximum k probabilities as given by
this 1st-order Markov predictor. We use w = 1,000 in our experiments reported in
Section 7.2. We would expect FOM with w == 00 to be "close to" PPM of order 1 in
performance. (Note that unlike FOM, algorithm PPM of order 1 uses an additional
order 0 context for prediction.)

4.4 Adaptive prefetching

Our prefetcher is adaptive meaning that after each demand request made by the
application, the prefetcher updates its model to reflect the new state of the access
sequence. Adaptive techniques are commonly used in practice for data compression
[BCW]. Our prefetcher continuously adapts its model of the access sequence and
predicts whenever possible.

4.5 Cold and warm startup

For simplicity, our implementation begins each simulation in cold startup mode, that
is, the data structure for prefetching is empty. A warm startup should be consid

13

ered for applications that would benefit by using information from previous runs to
generate predictions for the current run. A warm startup would only require saving
the prefetch data structure at the end of a database session and restoring it at the
beginning of the next session. The data structures used by the algorithms described
in this section can easily be saved and restored with little processing overhead.

4.6 Lazy addition of leaves in the tree

The sizes of the data structures for LZ and PPM tend to grow as the application
runs. In Section 3.3.1 we discussed paging the prefetch data structure. In addition
to employing this technique for managing a fairly large data structure, we use lazy
addition of nodes in the tree to reduce the amount of space used by the prefetch
data structure. Each internal node of the tree contains a pointer and reference count
for each of its children. Until a leaf becomes an internal node, it contains no useful
information and, as such, it is not allocated any space until a subsequent access
through which it becomes an internal node. It is at this point we allocate space for
it in a lazy fashion.

4.7 Prefetching Heuristics

Our prefetching algorithms are deterministic and make predictions based only upon
past history. In some cases, it is desirable to stray from the predictions that the
unmodified algorithm makes and make others based upon specific knowledge of the
application program or simple observations about the access sequence or the predic
tion accuracy.

4.7.1 Sequential Access

It is possible that an access sequence exhibits a simple access pattern such as purely
sequential or a slight variation that walks through the database with a "stride" of i.
If this sequence does not repeat itself, the algorithms in this section will recognize
the pattern and make correct predictions. In an application that is likely to exhibit
sequential access patterns, it would be fairly simple to add a heuristic approach that
recognizes the pattern and replaces the least likely page predicted by the prefetcher
with the next page in the sequence. With such a heuristic and a sequential access
pattern, the application will enjoy a decrease in fault rate.

4.7.2 Random access sequences

Unfortunately, our algorithms are not a panacea for prefetching in an arbitrary en
vironment. It is possible to devise a nemesis sequence that causes the prefetcher to
degrade the system's performance by having it prefetch pages that will not be used
in the near future and having it evict pages that will be used in the near future. An

14

approach to limit the degradation of such a sequence would be to monitor the number
of hits associated with prefetched pages and to reduce or completely stop prefetching
when this hit rate goes below some threshold.

4.8 Scalability

Vitter and Krishnan report that their algorithms are theoretically optimal in the limit
for almost all sequences of page accesses against the class of finite state prefetchers
[KrV, ViK]. The consequence of this property is that we expect the algorithms to
perform better on longer access sequences such as we would find in an online en
vironment. Given that the algorithm's performance improves as it becomes more
experienced with an access pattern, we have to account for the increased size of the
data structure and time to make predictions. Our paging scheme described in Sec
tion 3.3.1 proposes a way to manage a large prefetching model with a minimum of
overhead.

15

5 Handling fast accesses in the algorithms

We described the notion of fast accesses in Section 3.3.2. A fast access occurs at
the point when two or more pages are requested by the application without leaving
time to perform prefetching. The implication for the action of the prefetcher is clear;
no prefetching is done in order to stay out of the way of the application making
demand requests for data. What happens to the model is not so obvious. Since the
FOM model fits completely in memory, we must only worry about how the model is
updated. On the other hand, if the relevant nodes of the data structures for LZ and
PPM are not in cache, our model could become out of sync with the actual access
pattern and degrade performance by making bad predictions.

When there is enough time to prefetch, the model is updated and the node cor
responding to the demand requested page is made current (or nodes, in the case of
PPM). The approach of Section 3.3.2 proposes making updates to that part of the
model resident in cache, effectively modifying the data structure without moving to
a new current node. The effect of not moving to the new node is that it removes the
need for paging in a node of the prefetch data structure and takes the temporal prop
erty of the access sequence into account. It is our expectation that an application will
display a consistent relationship between a set of pages accessed and the time used
to process those pages. If that is the case, then our scheme should work especially
well. This conclusion is further supported by the good prefetching performance of
our scheme under an independent scenario, in which the locations and durations of
the fast accesses are independent of the page accesses.

Each node of the LZ tree contains all of the information necessary to make pre
dictions and updates based upon demand requests. The significance of keeping this
information in the current node is seen in the case of fast accesses. At any point
during processing, the "current node" of the prefetch data structure is by definition
in cache; it is only when we move forward in the model that we may have to cause a
page fault to bring in a new node.

Example 3 Consider the subsequence "... abba ..." of an access sequence. In one
extreme, the three requests following the first a can all be normal accesses that allow
time to prefetch and update the prefetch data structure. At the other extreme,
the requests could all come at once, leaving time neither to prefetch nor to page
nodes in the data structure. We will show what happens in both of these cases by
showing the state of the prefetch data structure before and after processing the access
sequence as all fast or all normal accesses. Any combination of slow or fast accesses is
accommodated by making the appropriate updates to the data structure and current
node in a straightforward manner.

Assume that we are at the current node in the data structure after the page access
a is processed. For clarity, we will only show the relevant nodes in the subtree of the
data structure for LZ. The starting state for our data structure is shown in Figure 4a.
The arc between nodes is labeled with the page identifier and reference count.

16

The model of the normal access pattern updates the reference count for page b as
a child of the current node and we move to the appropriate new current node. Then
we update the count for b as the child of the node b and move to the appropriate
current node. Finally, update the count for a and move to the new current node. The
updated data structure is shown in Figure 4b.

The model of the fast access pattern behaves in a completely different manner.
The current node never changes during a sequence of fast accesses. The reference
counts for a and b are incremented in the same current node. The current node, by
definition, is always accessible to the prefetcher in cache. Since a node fits on a page,
no page faults are required to update the data structure and our model is in step with
the access sequence. The updated data structure is shown in Figure 4c. 0

17

b.1

'V

~

o
~ Current node

Internal node
'v (a)

a,5 b,1 a,6 b,3

'v 'v

'V 'V
(b) (c)

Figure 4: Effect of updating the data structure for LZ for the subsequence
", , , abba . .." . Figure (a) shows a subset of the inital data structure. Figure (b)
shows the same data structure updated after a series of normal accesses. Figure (c)
shows the data structure updated after a series of fast accesses. The arc between
nodes is labeled with the page identifier and reference count.

18

6 Simulation environment

In this section we describe the simulation environment we developed to evaluate each
of our prefetching algorithms. We first look at the assumptions we make for simulation
and then describe the method used for simulations.

6.1 Modeling run-time constraints

6.1.1	 Paging the data structure

Associated with each node of the data structure is a logical page number used for
caching the nodes of the tree. We page the data structure just as we page the actual
database, evicting (and writing out) the least-recently-used page and replacing it with
the page containing the node needed by the prefetcher.

6.1.2	 Sequence of fast accesses

Fast access sequences preclude any paging activity by the prefetcher. While we cannot
prefetch any pages or page the prefetch data structure, we do update the prefetcher's
model as described in Section 5.

In order to simulate with fast accesses, we need either traces with detailed timing
information and system timing information or, alternatively, a probabilistic approach

':	 to decide when and if prefetching can occur, and if it can occur, how much data can be
prefetched. The former approach is difficult to obtain with reliable timing information
for purposes of prefetching. The latter approach is far simpler and more widely
applicable and was our method of choice, although it removes the relationship between
the previous context and the occurrence of fast accesses we expect in practice. As a
result, the simulations can be expected to offer a conservative estimate of prefetching
performance.

6.2 Simplifying assumptions

We bound the complexity of the simulator with the following assumptions about the
application being analyzed 5 :

•	 Data items can either be pages or objects and are generically referred to as
pages for purposes of discussion.

•	 Pages have a name, address, and a location. We make the assumption that this
information remains fixed during a run of prefetcher. This restriction obviates
the requirement to resolve an objects location with the use of a naJ;Ile server.

•	 Pages are assumed to be of a fixed size to allow uniform fetching.

5Similar assumptions are common and have been made by others doing related work [PaZb].

19

•	 Our simulator uses a parameter d, that determines the maximum number of
pages to prefetch at each step. When the prefetcher makes d1 < d predictions,
up to d1 pages are prefetched. We refer to simulation results using this constraint
as uniform prefetching results.

•	 In order to experiment with our methods of handling fast accesses, we implement
a probablistic model to determine the maximum number of I/O transactions, r,
that can occur between any two demand fetches. One step of our algorithm com
prises prefetching up to r pages and fetching (if necessary) the page requested
by the application and updating the requested page's LRU rank in the cache.
Two probabilities6 p and q, (0 ::; p, q ::; 1) which a user specifies, simulate a
workload in the computer system on which the application is running. Setting
p and q to a real number close to zero simulates a heavily loaded system while
setting p and q to a real number close to one simulates a lightly loaded system.
The load on the system is inversely proportional to the amount of prefetching
that can occur in the system.

The first probability, p, determines the likelihood of a "head" for the toss of one
coin.7 The second probability, q, gives the likelihood of a "head" for the toss
of the other coin. The first coin is flipped, and with probability p, at least one
page is prefetched at this time instant; the second coin is then flipped repeatedly
until a "tail" occurs. The number of "heads" determines how many additional
pages can be prefetched up to the limit d. Given that the first coin is a "head,"
the expected number of pages to be prefetched is 1/(1 - q), assuming we can
prefetch any number of pages. Since we can only prefetch a number of pages
equal to the cache size k minus 1 (assuming that the application is working with
one page of cache), we can express the expected number of pages prefetched,
given that the first coin is a "head" as

L:: min{t,k-1}qt-l(1-q)
19$k-l

6.3 Simulation method

Three simulators are used to perform prefetching. In each simulator, we have the
ability to perform uniform prefetching or prefetching with fast accesses.

The prefetcher's model contains information necessary for monitoring its paging
behavior. For both LZ and PPM, the root is always kept in cache and the rest of the
structure can be paged in and out on demand. In the FOM algorithm, the whole data
structure is assumed to fit in memory and is therefore not paged. It is instructive
to know the amount of paging activity needed by the prefetch data structure for

6We use the C library pseudo-random number generator, "drand480", to realize our probabilistic
model.

7We know that when the probability of a head is not 50% then the coin is said to be biased.

20

processing prefetch requests and updating the model to get an idea of the overhead
associated with the prefetch engine. We assume that the prefetch data structure can
be paged to local disk as opposed to a disk on the server to reduce the paging cost
but we realize that paging may reduce the benefit of prefetching. Our results show
us that the number of page faults incurred by the prefetcher for its data structure is
very small compared to the size of the access trace.

Common to the simulators are the cache routines that implement our modified
LRU cache described in Section 3.1. Specific to each simulator is the code that
implements the prefetcher and its associated model (or data structure). From least
to most complex, the predictors rank: FOM, LZ, and PPM. Not surprisingly, their
performance corresponds directly to their complexity.

The simulator measures the cache fault rate for an access sequence using each of
the prediction algorithms and for any value of d from 0 up to k. The number d1 is
computed on-the-fly by using the two probabilities specified for a given run of the
simulator and the random number generator provided by the system. Statistics about
the number of faults, the size of the prefetch data structure, and the average number
of predictions at each step are reported. Such information will be useful in designing
an efficient online prefetcher.

For each page access sequence (j, we simulate each of our prefetchers from Section 4
on (j, prefetching d1 , 0 :S d1 :S d pages at each step.

6.3.1 Uniform prefetching

The simulator reads a sequence of numbers. A number specifies the page (or object)
identifier requested by the application. The prefetcher's job is to make predictions
based upon previous page requests using one of the algorithms described in Section 4.
The simulator requires a parameter that specifies the maximum number of prefetches
that occur between any two demand fetches.

The number of pages prefetched, dl , is the larger of d and the number of predictions
available in the model.

The prefetcher executes the following loop:

for each time step do
begin

prefetch up to d most probable pages
get the actual page requested by the user into cache (if not in cache)
update the LRU rank of the actual page requested by the user
update and advance the data structure to reflect the actual request
update the prefetcher's statistics

end

21

6.3.2 Prefetching with fast accesses

The simulator reads a sequence of pairs of numbers. The first number is the page (or
object) identifier requested by the application and the second is the number of pages
we can prefetch before fulfilling this demand request. The prefetcher's job is to make
predictions based upon previous page requests using one of the algorithms described
in Section 4. If the number of pages allowed to be prefetched at any point is zero,
then there are no pages prefetched and the model is updated based upon the demand
request. The model is not advanced, that is, the current substring (in the case of
Lempel-Ziv, or context for PPM) is kept current. By not advancing our model, we
distinguish between normal and fast accesses.

The number of pages prefetched, d1 , is determined by flipping two biased coins
as described above and by the prefetch data structure. From Section 3.1 it follows
that when d = 0 the prefetcher works as an LRU cache. This provides a basis for
comparison against our prefetcher.

The prefetcher executes the following loop:

for each time step do
begin

prefetch up to r most probable pages
get the actual page requested by the user into cache (if not in cache)
update the LRU rank of the actual page requested by the user
update the data structure to reflect the actual request
advance the data structure's current pointer if r > 0
update the prefetcher's statistics

end

22

7 Experimental results

This section presents the results of simulating our prefetcher on access traces gener
ated by a CAD application, the Object Operations Benchmark (001), and the DEC
007 benchmark written at the University of Wisconsin [CDN]. We first describe the
access traces and then present our results.

7.1 Description of the traces

The following characterizes the traces that were used to test our prefetching
algorithms8

:

CADI, CAD2: These are object ID (UID) traces from a CAD tool written at Dig
ital's CAD/CAM Technology Center in Chelmsford MA. We include them here
as a comparison to the Fido [PaZb] algorithm that analyzed prefetching on the
same traces.

The references represent UIDs requested by the application using tool func
tions: invocation, zoom in and out, select ICs, and setting filters that remove
certain parts of the board display (e.g. runs and junctions). The circuit design
data contained 100,000 objects, but only 10,000 or so could fit in the "usable
window" at once. The first trace, CADI, has 73,767 accesses and the second,
CAD2, has 147,345 accesses.

Database benchmarks: The 001 database benchmark, also known as the "Sun
Benchmark", was run on the DEC Object/DB9 product to generate page fault
information for all phases of the benchmark. The more interesting phases in
clude traversal of the structure in both the forward and reverse directions. The
001 benchmark tests aspects of a DBMS that are critical in computer-aided
software engineering (CASE) and computer-aided design (CAD) applications
[CaS] engineering applications.

The DEC 007 benchmark, developed at the University of Wisconsin [CDN],
tests critical aspects of object-oriented database systems not covered by other
benchmarks. This suite of tests was also run on the DEC Object/DB prod
uct used for the 001 tests. This benchmark includes tests and reports the
performance of an object oriented database in the following key areas:

1. Pointer traversal.

2. Application-DBMS coupling.

3. Complex object support and long data items.

4. Updates and Recovery.

8The traces were provided as part of the DEC-ERP grant 1139.

9DEC Object/DB is a trademark of Digital Equipment Corporation, Maynard MA.

23

5. Path indexing.

6. Caching and clustering.

7. Queries and optimization.

8. Concurrency control.

9. Relationships and versioning.

The benchmark performs traversals, associative queries, insert/delete opera
tions, and multiuser tests [CDN]. We tested our prefetcher running with traces
from the traversal and associative query portions of the benchmark.

7.2 Prefetch results for uniform prefetching

For every access sequence, we simulate for a fixed cache size k each of our algorithms
and represent the results in easy-to-read graphical form. The y-axis denotes the fault
rate10 and the x-axis denotes the parameter d (the number of pages prefetched at each
time step) that varies from a to k. When d = 0, the fault rate generated is exactly
the fault rate of an LRD cache and is a basis for comparison with our prefetcher.
Representative graphs of the results are shown in Figures 5, 6, 7, 8, 9, and 10.

7.3 Prefetch results with fast accesses

This section contains the results of prefetching using our probabilistic model for deter
mining the amount of I/O activity between any two demand fetches by the database
system (as described in Section 5).

Multiple simulation runs, using different seeds in the random number generator,
produced little variation in the results. We present our results of running Algorithm
PPM order 3 on the traces CADI and 007_T1 in Figures 11 and 12. The cache size
used is 10 pages, the probability, p, is fixed for each graph and displayed in the title.
The value of the probability q ranges from 0.0 to 1.0 on the x-axis and the fault rate
is shown on the y-axis . Two curves are shown, "Prefetch" for PPM order 3, and
"LRD" for caching without prefetching.

The results suggest that the load on the system is inversely proportional to the
improvement gained by prefetching and that, even under heavy load, a system with
prefetching outperforms one without. Our results confirm the validity of our methods
for modeling fast accesses in the algorithms.

7.4 Prefetch overhead statistics

We present statistics of the data structure size and the total number of page faults
incurred during the simulation run.

laThe fault rate f, is ratio of page faults to the total number of pages accessed in the trace,
o~ f ~ 100.

24

100.

Figure 5: The fault rate for prefetching d objects (0 :s; d :s; k) for a fixed cache size.
(a) k = 10. (b) k = 50 for the trace CADI. There are 73768 object references and
15430 distinct objects in trace CADI.

"CADZ" "CADZ"
Caen.- 10 Caene.50

r-r---,-----,.----.,...---..,-----=-~3 r-.-1---'-1---""'-I---""'-I---r----'1'mOnICi'-3

Figure 6: The fault rate for prefetching d objects (0 :s; d:S; k) for a fixed cache size.
(a) k = 10. (b) k = 50 for the trace CAD2. There are 147344 object references and
15430 distinct objects in trace CAD2.

25

60.00

~O.OO

40.00

30.00

20.00

10.00

0.00

70.00

60.00

~0.00

40.00

\
;,'1.1111 •• 1, ,111 •••• " " 11°" ,,,, ,UtI"""'

30.00

20.00

~ "'"I""-UIII_III_.III_IIIO_II.._IIII_IIM_"1..
...

10.00

0.00

"CADt"
r-r---,-----r---,---..,-.;....:...--:......,JlIlI:l"OnICr-3

··-..,_ _ ..._ _.11_ _ _.....-..'
··,··"JI," •... I UII •••••UI ,I II •••• , IIIIUI"U,"II1"

...

100.011- I
~PU"oi&i-1 rz-....
~tl!>!······· 90.001

10.00f

70.00f

40.00_

JO.OOf--

20.00f-

10.001

0.001
I I I I I

0.00 10.00 20.00 30.00 40.00
Prd'ddl Size

(b)

I
~PU"oi&i-1 100.0lf- - ~PU"oi&i-1
rz
I'tl!>!·

-
..

rz -
_I'll);!.. • ..

10.001 -
-

~0.00f-- _

1....IIIII.I"" ••" ..IIII .." ,.IIII.lIlln....I •• IIIIII.I 11,.1.... ""'.1111.1""

-
30.001-

20.001

~_I"_I"-""-'III_IIII_II'_IIII_IIII-'III__

. .'loo.,;;.:::~~~__........ ••••• _

-
0.001

I
0.00
_Si:

I
10.00

I
20.00

(b)

I
30.00

I
40.00

-

"CADt"
1'mOnICi'-3

-
I I I I

~~U"oi&i-I rz-....
_I'O!>!·······

-
-

-

-

t':::::::-"'II_ _ _ ..II_.I._...._...._..H_...._
.'''•• ,I.,.III· IIIIIII..'''' ''••• III'''"I'UIlII ""11"'"

•••

PIll1tR.... 001_F Coell•• l0 PIll1tRlf.e 001_F Coell•• 50
r-T----.-------.---.--------,-------,~-3 r"""""T----.-------.----.-------,-.:..:.....:.----=..:..,~3

90.00

10.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

~-"",."",.....",,....
'"_'"_1,"_.1._.,,
I

f>f>Wo'iJei-1 100.
~....
~oKC"" 90.00

10.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

f>PWo'iJei-1
~....

"\ ~tll'l""'"

l"=:::::==,_.._ ,._,,,_.." "" "::::
E:rn

(b)

Figure 7: The fault rate for prefetching d objects (0 ~ d ~ k) for a fixed cache size.
(a) k = 10. (b) k = 50 for the trace OOLF. There are 11719 page references and 526
distinct pages in trace OOLF.

001 R

60.00

50.00

40.00

30.00

20.00

10.00

0.00

(a)

~-3

f>PWo'iJei-l
rz-"'
~tll'l"'"''

50.00

40.00

30.00

20.00

10.00

0.00

Cadla.50
rT---.------,----.--------,-.:..:.....:.---'-:.,~3

f>PWo'iJei-1
r:z--'
roKl·

PIIl1tRlf.e

100.

10.00

70.00

60.00

Figure 8: The fault rate for prefetching d objects (0 ~ d ~ k) for a fixed cache size.
(a) k = 10. (b) k = 50 for the trace OOLR. There are 11700 page references and 534
distinct pages in OOLR.

26

FIlI!lR... PIIIIlR... Cacho. 50Cacho .10
rT---r----.--------,----.----,1'I'li'I"iitIO-3 ,...-1---.-'---,',-----'1---,.--1----,1'I'!ToiiICf-3

100.

60.00

70.00

40.00

50.00

10.00

.
\......

'.

\
~ , , ..

.......I.I_I.I_IIII_I••_III_•••_.--~

30.00

20.00

10.00

0.00

~~4

Z::Z--.
1'0111·······

100.001

70.001-

60.001-

90.001

50.001

40.001

10.00f

30.001

0.001

- p~oma-I
~...

_l'OI'l" •••••

-

'•• 111 ,.11111 ' •• """', 1111''''"'''''11'''''1111

,L.._."_.._.'_._II._..._.._I._..._..._.... _
-

~ _

~----------
-
-

-

-

Cacho. 10FIIIIlR'"

I I I I 1
0.00 10.00 20.00 30.00 40.00

PJofeldI Si2le
(b)

Figure 9: The fault rate for prefetching d pages (0 ~ d ~ k) for a fixed cache size.
(a) k = 10. (b) k = 50 for the trace 007_Tl. There are 28103 page references and
6033 distinct pages in trace 007_T1.

PIIIIlR'"
Cacho. 50

1'I'!ToiiICf-3I I I I
100.0(\- I

- pp~oma-3
~ -

_ l'OI'l" ..

-
70.001 , _

6O.00f-- '\..•• _11_..._111-..•• _ ••• _ ••• _ •••_111._•••_ ••• _ ••_._

50.001 .
40.001- \;0

30.00 -
20.00 -
10.00 10.00_ -

0.00_0.00 -
I 1 1 1 I

0.00 10.00 20.00 30.00 40.00
_Size

(b)

Figure 10: The fault rate for prefetching d pages (0 ~ d ~ k) for a fixed cache size.
(a) k = 10. (b) k = 50 for the trace 007_T3A. There are 30127 page references and
6260 distinct pages in trace 007_T3A.

27

100.00

CADI with Fast Accesses, P =.25 CADI with Fast Accesses, p =.50

Paull Ra&e PaahRalC

90.00

80.00

70.00

60.00

so.oo

40.00

30.00

20.00

10.00

0.00

,.......,---..,.--------.----r-----,---,-,tJrn""'""

Nele"ii1i

0.00 0.20 0.40 0.60 0.80 1.00
Heads probability: q

(a)

CADI with Fast Accesses, p =.75
F.wJt R.ale

100.0

90.00

80.00

70.00

60.00

50.00

40.00

30.00

,.......,---..,.--------,.----r-----,-----,-,I:'Im""""""
f>i01eiai

•••.••...•.............•......•••••••.••••••.

20.00

10.00

0.00

0.00 0.20 0.40 0.60 0.80 1.00
Heacb probability: q

(e)

,.......,r---..,.--------.----r-----,---,--,I:'Im""""""

100.00

90.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

J>i"ele"ii1i

......•...........................•...•..... ,

0.40

(b)

CADI with Fast Accesses, p = 1.0

Faull R.tJe

100.00

90.00

80.00

70.00

60.00

50.00

40.00

30.00

,.......,-----.-------.----r-----,-----,-tJrn""'""

NeT..."

20.00

10.00

0.00

(el)

Figure 11: The fault rate for prefetching with the fast access model for a cache size of
10 on the trace CADI using Algorithm PPM order 3. The probability q is shown on
the x-axis and the fault rate is shown on the y-axis. There are 73768 object references
and 15430 distinct objects in trace CADI.

28

http:�...........................�...�
http:���.��...�.............�......�������.������

Fault RateFaaltRate
r-r---,-----.,----,-----r---.-,t:Irn'""""" r-r---,-----.,----,-----r---.-,I:Ru

loo.oel- I ~ _

90.001-•....•...........••.....•..•.••.

80.001--

70.001-

60.001-

'0.001--

40.001--

30.001--

20.001-

10.001-

0.001 ,I I 1 1
0.00 0.20 0.40 0.60 0.80 1.00

Heads probability: q
Ca)

007_Tl, P = .75
PaWl Rale

Wef.ic1, 100.OC I-- 1 I

90.001-

.................

70.00_

60.00_

'0.00_

40.001

30.001

0.00 I-- I

1 I 1 , _

-

-

•••••••••••••••••••••••••••• _

-
-

-

-

-

-

0.00 0.20 0.40 0.60 0.80
Heads probabilicy: q

(b)

007_Tl, P = 1.0
Paull Rate

WefeUib

100'0CI-- 1 I '--j~' 100.oorl--r-l---r-I---'--I---'--I---"-I---r-,~
' ' '

90.001 90.001-- -

80.001-- -

70.00r- 70.001--

60.00~ •••••••••••••••••••• _ -
..•....•.•.•...••..•..•..

'0.001- SO.OOf-- •••••••

40.00 r-- .40.00_ -

30.00_ --

20.00r20.00_ --

10.00_ --

0.00_ 0.00 I-- 1 1,- 11 1 1I 1 I I I
0.00 0.20 0.40 0.60 0.80 1.00

Heads probabilicy: q
0.00 0.20 0.40 0.60 0.80 1.00

Head> probability: q(c) (d)

Figure 12: The fault rate for prefetcmng with the fast access model for a cache size of
10 on the trace 007_T1 using algorithm PPM order 3. The probability q is shown on
the x-axis and the fault rate is shown on the y-axis. There are 28103 page references
and 6033 distinct pages in trace 007_Tl.

29

http:�....�.�.�...��..�..�
http:�....�...........��.....�..�.��

7.4.1 Algorithm LZ

The tree (or more correctly, trie) data structure used by the LZ algorithm grows as
the access pattern is processed. In our simulations, we allow this data to grow as
large as necessary and control its resource utilization by paging nodes on secondary
storage. We found that even with a modest amount of space dedicated in cache to
this data structure, its paging activity was small compared to the length of the access
sequence. Some typical overall data structure sizes are contained in Table 1.

7.4.2 Algorithm PPM

As a fair basis of comparison to LZ, we used the raw size (number of bytes needed
to represent the model) of the data structure built by LZ for a given trace and
bounded the raw size of the PPM data structure by that amount. When the PPM
model exceeded that amount, it was flushed and restarted. This method was used for
simplicity and is only one of the many available (see Section 3.3). Directly after the
model is flushed we expect the predictor to perform poorly but that it will resume
making good predictions fairly quickly (in relation to the length of the trace). The
following table contains the memory usage, page fault statistics and number of times
the prefetch data structure was restarted for the sample traces. The memory limit
was set equal to the memory used by LZ in as shown in Section 7.4.1. Ten pages of
cache were reserved for paging the prefetch data structure. The page size is 8,192
bytes. The results are shown in Table 1.

7.4.3 Algorithm FOM

The data structure for the first order Markov predictor is bounded by the window
size, w. It will occupy the maximum amount of space when the window contains w
distinct pages, requiring one state node for each page. In the other extreme, if all of
the references contained in the window refer to the same page, there will only be one
stat node in the graph.

7.5 Analyzing the results

The results of the simulations are analyzed in detail in this section. The global goal of
prefetching is to reduce the overall fault rate obtained by running without prefetching
as seen by the application. A more subtle point is to assure that the prefetcher's
activities do not incur undue delay at anyone point during the application. This
information is more difficult to discern from our simulation runs but we will report
the results we do have in this area.

30

LZ

Trace name Number of nodes in Data structure
(total accesses) the data structure page faults
CADI (73,768) 28,513 27,961
CAD2 (147,344) 44,000 43,448
OOLF (11,719) 1,792 1,240
OOLR (11,700) 1,902 1,350
007_Tl (28,103) 13,479 12,927
007_T3A (30,127) 14,161 13,609
007_T4 (1,529) 1,525 973

PPM Order 1
Trace name Number of nodes in Data structure Data structure
(total accesses) the data structure page faults restarts

at end of run
CADI (73,768) 32,871 42,050 0
CAD2 (147,344) 35,886 68,215 0
OOLF (11,719) 8,807 14,894 0
OOLR (11,700) 8,842 15,540 0
007_Tl (28,103) 17,462 23,251 0
007_T3A (30,127) 18,695 25,768 0
007_T4 (1,529) 3,048 131 0

PPM Order 3
Trace name Number of nodes in Data structure Data structure
(total accesses) the data structure page faults restarts

at end of run
CADI (73,768) 69,986 69,478 0
CAD2 (147,344) 40,664 92,139 0
OOLF (11,719) 28,127 35,048 1
OOLR (11,700) 28,837 36,144 1
007_Tl (28,103) 45,486 1,272 0
007_T3A (30,127) 49,650 1,170 0
007_T4 (1,529) 6,108 12 0

Table 1: Uniform prefetching memory use and page fault statistics for Algorithms LZ
and PPM

31

7.5.1 Improvement over LRU

For each of our traces, our prefetchers achieve a significantly reduced fault rate than
that of a pure LRU cache. (The fault rates reduce by about 60% for the CAD ap
plication traces and by about 20%-30% for the 001 traces.) The number of faults
is related directly to the number of I/Os, and hence good prefetching is extremely
significant in reducing the time taken by the application to complete its task. Im
provements in fault rate of x% translate to speedups of roughly x%.

7.5.2 Relationship to data compression performance

One algorithm's prefetching performance relative to the others parallels their relative
performance for data compression: FpPM < FLZ < FpOM (where FA is the fault rate
for algorithm A).

7.5.3 Benefit realized with few prefetches

In most cases it takes only a small number of predictions (one or two) to greatly
reduce the fault rate of the application.

7.5.4 Cache size less significant in decreasing fault rate

Increasing the cache size by a significant factor of 5 (from 10 to 50 in the figures in
this section) does not lower the fault rate much. Hence LRU with a larger cache can
be compared to our prefetcher with a smaller cache (with the remaining cache space
used for storing the in-core prefetch data structures), and the gains in fault rate seen
in the above figures still hold.

The true test of a prefetcher is when the cache size is small. We have simulated
using a cache size that is roughly 1/100-1/1000 of the number of distinct pages in
the trace.

7.5.5 Simple cache replacement performs well

The caching strategy used in conjunction with the uniform prefetcher is extremely
relevant. (This is also suggested by the slight increase in fault rate with increasing
d in Figures 7b, 8b.) Our caching scheme performs very well as seen. Some other
caching strategy may give even better improvements.

7.5.6 Comparing results with Fido

For comparison with Fido [PaZb], we simulated our algorithms on the same trace
(CAD2) with the same cache sizes for LRU (2,000) and the prefetcher (1,500) as
used in [PaZb]. Fido decreased the fault rate from 45.8% to about 23.5%. Our
improvement (for PPM of order 1) was from 45.8% to 18.2%.

32

7.5.7 Comparing results with sequential prefetching

For comparison with popular heuristics, we analyzed the 001 traces using sequential
prefetching (that is prefetching page i +1 after a request to page i). We found that
such an approach decreases the cache fault rate only minimally (by 5%).

7.5.8 Comparing results with the optimal prefetcher

There are 73, 768 object references and 15,430 distinct objects in trace CADI, yielding
a lower bound of 15,430/73,768 = 20.8% on the fault rate of any universal prefetcher
that does not prefetch pages not previously accessed. The 26.7% fault rate of the
PPM algorithm of order 3 is close to this lower bound.

33

8 Related work in prefetching

Fido was developed by Palmer and Zdonik [PaZb] as a prefetcher for databases. It
uses a pattern matching approach to prediction. The predictor is trained on an access
sequence, the model is frozen, and it is used for prefetching on access traces from
similar applications. (This is in contrast to our adaptive approach which continuously
learns and predicts for each access sequence.) The MLP caching strategy in Fido ranks
prefetched data differently from demand fetched data; this idea can be used in our
approach too. Simulations performed on object traces (the CADI and CAD2 traces
from Section 7) using a cache size of 1500 objects gave impressive improvements in
fault rate of almost 22.3% for Fido. Our prefetcher on the same traces and for the
same cache size gives improvements of 27.6%.

Work at the NASA Ames Research Center by Philip Laird [Lai] uses a transi
tion directed acyclic graph (TDAG) as a sequence-learning tool for discrete sequence
prediction. The TDAG can be applied to dynamically optimize Prolog programs or
for maintaining a cache for a database on mass storage. TDAG approximates an
unbounded-order PPM model with limited data structure. The TDAG algorithm
when used for compression performs comparably to the Lempel-Ziv data compressor
(the Unix compress program). In practice, the prediction by partial match algo
rithm compresses better than Lempel-Ziv [BCW]. Since better compressors typically
yield better prefetchers as we report in Section 7.5 (Observation 7.5.2), we expect
that the PPM prefetcher should compare favorably to TDAG. We are in touch with
Dr. Laird to compare our implementation with his under similar conditions and access
sequences.

Other interesting work in prefetching done by Salem uses various first order statis
tics of the access frequency of database objects to discover "hot spots" in a database.
Objects that are found to be hot are kept close at hand with the expectation that
they will be referenced frequently. We expect such an approach to perform similar to
FOM given its similarity.

Research projects in prefetching at a much lower level of abstraction include a
software approach in which the compiler reorders instructions to reduce the effect of
cache misses [MLG], a hardware scheme of non-blocking and prefetching caches that
let processing continue when a cache miss occurs, blocking only when the missed data
is actually needed [ChB], and a combined hardware and software approach which uses
an optimizing compiler and speculative loads to issue read requests in anticipation of
a demand request [RoL].

34

9 Conclusions

We started with the theoretical result from [KrV, ViK] that using data compression
for prefetching is a promising technique. We observed that the practical issues in
prefetching in databases are much different from the practical issues in data com
pression, and the pure prefetching assumption made in [KrV, ViK], although valid
for hypertext systems needs to be relaxed while looking at general databases. Mo
tivated by this, we converted three practical data compressors to get three practical
prefetchers. We simulated our prefetchers on page access traces generated from the
DEC 007 benchmark, the 001 benchmark and from CAD applications at DEC. We
observed a significant decrease in fault rate in comparison to using an LRU cache,
and in comparison to other good prefetchers.

General predictors (except the simplest ones) can be expected to require nontrivial
data structures, and these may not fit in cache for some applications. We looked
at the data structures used by our algorithms, and suggested techniques for paging
in the data structures efficiently with a minimum number of I/Os. We have also
proposed a solution to the problem of fast accesses and found that our method for
dealing with this system constraint was valid and produced good prefetching results.

An interesting result of our simulations is that the prefetching performance of our
prefetchers is directly related to the compression ability of the data compressors they
are derived from; in particular, algorithm PPM performs better than LZ for both
compression and for prefetching. This suggests strongly that the vast research being
done in developing good data compressors can be used to develop good prefetchers.
The importance of the current report also lies in its attempt to unite two seemingly
different practical fields of research. There is a note of caution required since the
issues in data compression are different from the ones in prefetching; significant work
is required to convert a data compressor to a prefetcher or vice-versa. We expect that
the problems encountered in this task are similar to the ones addressed in the current
report.

Another interesting result of our simulations is that the biggest benefit of prefetch
ing usually comes from the first page prefetched, and that subsequent pages prefetched
do not appreciably reduce the fault rate.

Another important way to achieve better response time is to use clustering. Clus
tering is in a way dual to prefetching. Clustering algorithms attempt to improve the
performance of database systems by placing related sets of objects on the same page
in the hopes of reducing the number of average I/Os needed to retrieve objects. There
has been extensive work in clustering [BeD, Sta, TsNa, TsNb]. It would be interesting
to see the combination of clustering and prefetching on response-time performance.
Using prefetch data structures for clustering could also be considered.

There are many open problems that this work motivates, both theoretical and
practical. Can our strategy of using LRU with prefetching be shown to be optimal
in some reasonable models? Otherwise, is there some other provably optimal caching

35

strategy that can be blended with prefetchers? We expect that recent work on caching
models in [KPR] may be relevant. Can our techniques be extended for prefetching in
parallel environments?

36

Acknowledgements

Thanks to Digital Equipment Corporation's GEEP program for making it possible
for me to attend Brown University.

On the technical side, I'd like to extend thanks to my advisor Professor Jeff Vitter,
Ph. D. candidate P. Krishnan and former GEEP participant and current member
of Digital's Database Group, Mark Palmer. I would also like to thank my technical
advisor at Digital, John Kirk, for providing much needed advice and assistance and
a even few free lunches during my stay at Brown.

Thanks to my father, Ken Curewitz (Sr.), for helping me make this document
readable and as error free as possible.

Finally and most importantly, thanks to my wife Shawn for all of her support
and endurance and to my two daughters, Danielle and Alexandra, for keeping life in
perspective (and keeping me from sleeping too late!).

37

A Implementation details

We implemented our simulator in ANSI C on a SUN Sparcstation 1 running SunOS
Release 4.1. The simulator also runs without modification (after recompilation) on a
DECstation 5000/20 under Ultrix V4.2.

We present the actual C code that defines the data structures used by the prefetch
ers in the following sections and finally include the code used to define the cache and
its management.

A.l Algorithm LZ

The LZ data structure is a trie. Each node in the data structure contains in it all of
the information necessary to make predictions. The fixed size part of the node is the
below defined "tnode" and the variable size part is an array of "childinfo" elements.
The root is allocated a large number of "childinfo" elements and other nodes of the
tree are allocated a small number. When the "childinfo" arrays become full, they
are reallocated to larger sizes and moved to another page if necessary.

typedef unsigned int event; 1* distinguish what an event is *1

typedef struct tnode { 1* a node in the tree *1
struct tnode *parent; 1* this node's parent *1
unsigned int max_children; 1* maximum number of children *1
unsigned int num_children; 1* current number of children *1
unsigned int ds_page; 1* data structure page allocated on *1
struct child_info *child_info; 1* the array of children *1

} t_node;

typedef struct child_info {
event pageno; 1* the page number *1
int event_num; 1* when this page last occurred *1
unsigned int refcnt; 1* number of times it's been referenced *1
t_node *child; 1* pointer to child with this info *1

} c_info;

A.2 Algorithm PPM

The PPM data structure is a slight modification of that used by data compression.
Each node in the tree is an "eventnode", its children are pointed to by the "eventset"
structure. Vine pointers are realized by the "prev" pointer in "eventnode".

38

typedef struct {
uns totalcnt; 1* the number of events which follow *1
point list; 1* list storing the event records *1

} event set ;

typedef struct {

event eventnum; 1* the "event" is the page or object *1
uns count; 1* count is its frequency count *1
point next; 1* the right sibling in tree *1
point prev; 1* the left sibling in tree *1
eventset foIl; 1* list of following events *1
unsigned int ds_page; 1* "data structure" page we're on *1

} eventnode, *eventptr;

A.3 Algorithm FOM

The FOM data structure consists of "window_elements" and "state-nodes". There is a
circular array of "window_elements" that points to the "state-nodes". "State-nodes"
point to other "state_nodes" (or themselves) to realize a first order Markov model.

typedef struct state_node { 1* model a state node *1
event pagenum; 1* the page number of this state *1
int in_degree; 1* the count of pointers to state *1
int out_degree; 1* number of next states *1
int max_out_degree; 1* maximum of above *1
struct state_node **next_states;
int *next_count; 1* freq counts for next states *1

} state;

typedef struct window_element { 1* an element in the window *1
event pagenum; 1* the page number of this event *1
state *node; 1* the corresponding state node *1
int next_occur; 1* next occurrence of this event *1

} w_element;

A.4 Cache

A.4.1 Cache data structures

The cache is organized as an array of integers with one slot for each page in the cache.
The number of cache entries is kept in the variable "d_cache..size". To implement LRU,

39

another array, "dJruJank" is used to hold the LRU rank of each page in cache. The
variable "d_acc-seq" contains one greater than the highest LRU rank of any cache
entry.

int *d_cache; /* the cache */
unsigned int d_cache_size; /* a default size for the cache */
unsigned int *d_lru_rank; /* the sequence of a cache entry for LRU */
unsigned int d_acc_seq; /* access sequence for LRU */

A.4.2 Cache management routines

The following routine headers are included to give the reader an idea how the cache
is managed. The header comments describe the interface.

/*
Check to see if t1pageno" is in cache.
If it is, do nothing, otherwise, put it in the cache.
if it was already in cache, return 0 : cache hit
if a the page is put into cache, return 1 : i.e. it faulted

*/
int check_update_cache(event pageno, int *cache,

int cache_size, uint *lru_rank,
\ uint *acc_seq)
}

/*
in_cache() returns the index of an entry in the cache if it's found,
otherwise it returns NOTFOUND
the implementation is a linear search through the array.

*/
int in_cache(int pageno, int *cache, int cache_size)

/*
return the value of the next slot in the cache to insert an entry

*/
int next_cache_slot(int cache_size, uint *lru_rank)

40

[Lan]	 G. G. Langdon, "An Introduction to Arithmetic Coding," IBM J. Res. Develop.
28 (March 1984), 135-149.

[MLG]	 T. C. Mowry, M. S. Lam, and A. Gupta, "Design and Evaluation of a Compiler
Algorithm for Prefetching," Proceedings of the Fifth International Conference on
A rchiteetural Support for Programming Languages and Operating Systems (Octo
ber 1992).

[PaZa] M. Palmer and S. Zdonik, "Predictive Caching," Brown University, CS-90-29,
November 1990.

[PaZb] M. Palmer and S. Zdonik, "Fido: A Cache that Learns to Fetch," Proceedings of
the 1991 International Conference on Very Large Databases (September 1991).

[RoL]	 A. Rogers and K. Li, "Software Support for Speculative Loads," Proceedings of the
Fifth International Conference on Architectural Support for Programming Lan
guages and Operating Systems (October 1992).

[Sal] K. Salem, "Adaptive Prefetching for Disk Buffers," CESDIS, Goddard Space Flight
Center, TR-91-64, January 1991.

[Sta] J. W. Stamos, "Static grouping of small objects to enhance performance of a paged
virtual memory," A CM Transactions on Computer Systems 2 (May 1984), 155-180.

[Sto] J. A. Storer, Data Compression Methods and Theory, Computer Science Press,
1988.

[TsNa]	 M. M. Tsangaris and J. F. Naughton, "On the Performance of Object Clustering
Techniques," Proceedings of the 1992 ACM SIGMOD International Conference
on Management of Data (June 1992), 144-153, Also appears as University of
Wisconsin Madison Technical Report number 1090-1992.

[TsNb]	 M. M. Tsangaris and J. F. Naughton, "A stochastic aproach for clustering in
object stores," Proceedings of the 1991 ACM SIGMOD International Conference
on Management of Data (May 1991), 12-21.

[ViK]	 J. S. Vitter and P. Krishnan, "Optimal Prefetching via Data Compression," Pro
ceedings of the 32nd Annual IEEE Symposium on Foundations of Computer Sci
ence (October 1991), 121-130, Also appears as Brown University Technical Report
No. CS-91-46.

[WNC] 1. H. Witten, R. M. Neal, and J. G. Cleary, "Arithmetic Coding for Data Com
pression," Communications of the ACM30(June 1987), 520-540.

[ZiL] J. Ziv and A. Lempel, "Compression of Individual Sequences via Variable-Rate
Coding," IEEE Transactions on Information Theory 24 (September 1978), 530
536.

42

