
BROWN UNNERSITY

Department of Computer Science

Master's Thesis

CS-93-M12

"Design and Implementation of the Logging and

Recovery System for interAction - Multidatabase

Transaction Model"

by

Yashesh V. Bhatia

Design and Implementation of the Logging and Recovery

System for InterAction· Multidatabase Transaction Model.

by

Yashesh V. Bhatia

RE., Bombay University, 1991

Sc.M. Brown University, 1993

Project Report

Submitted in partial fulfillments of the requirements for the

Degree of Master of Science in the Department of Computer Science

at Brown University

March 1993

This project report by Yashesh V. Bhatia is accepted in its present fonn

by the Department of Computer Science as satisfying the project requirement

for the Degree of Master of Science.

Date 5/14/f:t3
~ , ~?ik.

Stanley B. Zdonik

Contents

1. Introduction

1.1 Multidatabases and Interactions
1.2 Planning Applications
1.3 Logging
1.4 Recovery

2. Mongrel . System Overview

3 Logging/Recovery. Design and Implementation

3.1 Global Level Logging
3.2 Local Level Logging
3.3 Recovery

4. Overview of Implementation

5. Further Work

Logging and Recovery in a MulticL.1.tabase System April 29, 1993

Abstract

This project report describes the working, design and implementation of a logging and recovery
system for Mongrel - heterogenous, multidatabase transaction manager prototype. The prototype
is based on the Interaction transaction model. Logging is primarily write ahead and follows a two
level logging architecture. A checkpoint file system is used to store the intermediate temporary
infonnation for the log. Interactions provide a unique recovery mechanism consisting of tradi
tional compensation and replacement recovery, an optimized compensation algorithm.

1 Introduction

1.1 Multidatabases and Interactions

A multidatabase is a collection of autonomous databases that are accessed to perfonn a specific
task. Many real world applications exist that need access to multiple data repositories such as

1. Travel Agent
2. Brokerage Firm - Real time stock analysis and trading
3. Transport and Delivery Firm.

These applications are long in duration and have an element of flexibility in them. By flexibility, I
mean the need to be able to change the flow of execution dynamically depending on the external
environment or the state of the underlying databases.

Conventional transaction models have restricted the efficient use of multidatabases by imposing
strict correctness criterion and strong recovery paradigms. These restrictions are referred to as the
ACID properties (Atomicity, Consistency, Isolation, Durability). In order to effectively access
multidatabase for a long duration planning task, one must relax some of the correctness criterion
and recovery paradigms

Interactions [Nod92] is a transaction model for multidatabase planning applications. Formally,
Interactions is an open nested, reactive and flexible transaction model for heterogenous multidata
base applications. The model provides a set of correctness criterion and recovery fundamentals
that suit the requirements of the planning applications. An Interaction consists of a set of atomic
subtasks called Global Transactions that have some user specified ordering amongst them. The
ordering represents the execution dependencies among the global transactions. The global trans
actions, in turn consist of a set of global subtransactions with the following constraints

1. A global sub transaction can run on a single local database
2. Each global transaction can have only one global subtransaction on a local database.

Yashesh Bhatia Page 1 of 17

Logging and Recovery in a Multidatabase System April 29, 1993

Interactions are defined in detail in [Nod92]

1.2 Planning Applications - Example

Let us consider a Purchase order processing example to study the characteristics of a planning

application.

A Purchase order is placed by a customer in order to obtain some goods from a manufacturer. The

life cycle of the process is as follows.

1. Validate credit and payment modes for the customer.
2. Check Inventory for the goods required.
3. Book reservations from transport company on the specified date
4. Update the Purchase Order database
5. Update the Inventory database
6. Notify the Accounting section of the transaction.

Graphically, the task is shown below. It represents the subtasks and the dependencies among
them.

ldate
Customer
Credit

Check Inventory Reserve
Transportation

Update P. O.
Database

Update
Inventory

Notify
Accounting

Figure I Planning Example - Purchase Order Processing

The application begins by validating the customer credit and ends when the goods are actually
delivered. Depending on the customer needs, inventory, back order, and transportation availability
the task would last anywhere from a day to a couple of months. Also during the execution, exter
nal circumstances may change resulting in a change of plans. For example, if the transport com
pany cancels the reservation, or the inventory cannot maintain the back orders, another
reservation would have to be made or the purchase order cancelled.

Yashesh Bhatia Page 2 of 17

Logging and Recovery in a Multidatabase System April 29, 1993

From the above example, some of the salient features of the application we inferred are

1. Long Duration Tasks - Typically weeks
2. Reactive - Must change if the external environment and the underlying database changes.
3. Interactive - Needs user intervention during malfunction.
4. Flexible - May change the course of execution dynamically.

1.3 Logging

Logging is used widely in database systems to maintain consistency of a database. In simple
terms, logging comprises of storing the database state and transaction execution history, both of
which are required to recover a database system in the event of a crash. According to [KS91] a
failure may be of the following types.

1. Logical Error - Semantic problem with the transaction execution.
2. System Error - Undesirable internal state.
3. System Crash - Computer Hardware breakdown.
4. Disk failure - Loss of data due to mechanical failure of devices.

\
I Additionally, if we consider a multidatabases, there could be failures due to

5. Conununication failure - Broken link or connection
6. Site failure - remote database system crash.

Lastly, if we consifer the reactive nature of planning applications we have to provide reactivity
when a conflict occurs. Conflicts occur when some actions render work done by another commit
ted transaction inconsistent. The recovery needed for such a failure is reactivity.

In the following implementation, I address recovery in case of conflict only. This is because we
are primarily interested in the semantic undo/redo of transactions and analysing recovery methods
that can be used for reactivity rather than the conventional ones.

1.4 Recovery

In the previous section we mentioned the logging concept and it's functionality. Recovery is the
actual procedure that brings a database in an inconsistent state to a consistent one. Log based
recovery consists of the following 2 rules

1. Redo all transactions that were committed before the crash.
2. Undo all transactions that were active before the crash.

Designing a recovery system for a stand-alone database system, one can abstract the undo and

Yashesh Bhatia Page 3 of 17

Logging and Recovery in a Multidatabase System April 29, 1993

redo in terms of the read and write operations on the database. This means given the functionality
to store the read and write values of all the data items, it is straightforward to recover from a crash
Now, in the case of designing a multidatabase system, one cannot ignore the semantics of the
planning tasks because of the nature of the applications. Specifically, in the previous example if
the transport company cancels the vehicle, we must undo the work done by updating the inventory
and cancelling the purchase order. These notions of semantic undo/redo are present because the
sub tasks are committed on the databases, but the task is yet to be accomplished.

2. Mongrel. System Overview

Mongrel is the multidatabase system that we have implemented to simulate Interactions. The
Mongrel architecture is based on the multidatabase architecture in [Nod92]. It consists of a Global
Interactions Manager and the individual local database managers. The different components of
the system are

1. TaSL· Task Specification Language

The TaSL is a language interface for specifying interactions, global transactions and the depen
dencies amongst them.

2. 1M • Interaction Manager

The 1M is responsible for the correct execution of the Interaction. It coordinates and executes the

Global Transactions.

3. IRS· Interaction Recovery System

The IRS is in charge of the logging and recovery of complete or partial Interactions.

4. Agent

An Agent is the interface to the local level transaction management It correctly executes the Glo
bal subtransactions. The Agent contains the Step Library which interfaces to the underlying local
database.

5. LRS • Local Recovery System

The LRS is responsible for the logging of GST's.

Yashesh Bhatia Page 4 of 17

Logging and Recovery in a Multidatabase System April 29, 1993

TaSL

1M

IRS

Global Log

GLOBAL LEVEL

LOCAL LEVEL

AGENT

Step Library

Local DB Manager

LRS

Local Log

Figure 2 - Mongrel's Two Level Architecture.

Yashesh Bhatia Page 5 of 17

Logging and Recovery in a Multidatabase System April 29, 1993

3. Logging - Design and Implementation

Logging, as explained earlier, stores information in a stable storage to recover from an inconsis
tent state in case of failures or as in our case, of external conflicts. External conflicts as described
earlier are those actions in a transaction that render work done by another committed transaction
inconsistent.

Logging in a distributed system usually consists of multilevel logging. Depending on the architec
ture of the system, each level maintains a log of relevant data to it's level. Multilevel logging has
certain distinct advantages as opposed to a single monolithic log storing data for all the levels. Its
advantages are

1. Autonomy of the Logs - Each level can use its own interfaces, formats and mechanisms of log
ging that are appropriate for it.

2. Reduced Network traffic - Since we are using the SDWMN (Store Data Where Most Needed)
paradigm, most of the operations at each level need to access only the local log, thereby reducing
the overhead of network data transfer.

In the Mongrel architecture (see Figure 2) we have a two layered architecture comprising of the
global and the local level. Each of the individual layers maintain their separate logs that store rel
evant data. Since Interaction is the transaction model used by Mongrel used by Mongrel, let us
study the model more carefully with respect to the architecture. Specifically, we are interested in
extracting information required to log at each level.

GLOBAL LEVEL

LOCAL LEVEL

Figure 3 - Interaction Breakup at the two levels

As seen from Figure 3, the Interaction and the component Global Transactions' comprise of the
Global level Transactions and the Global subtransactions (GST) are the local level transaction.
The following sections explain the logging of the Global and local level individually.

Yashesh Bhatia Page 6 of 17

Logging and Recovery in a MulticL'ltabase System April 29, 1993

Let us consider the POP in Figure -2 in order to have an example for the following sections. In
this example, the Interaction consists of processing a purchase order (PO) which begins when the
customer places the order and tenninates when the goods are delivered. Following are the compo
nents of the Interaction. The dependencies amongst the GT's are shown in Figure 2. In this exam
ple we assume the GT's are composed of s single GST and execute a single step.

IApOp - Purchase Order Processing
GTvcc - Validate Customer Credit
GTCI - Check Inventory
GTRT - Reserve Transportation
GTUPOD - Update Purchase order Database
GTill - Update Inventory
GTNA - Notify Accounting

The following sections explain the global and local level logging as implemented in the Mongrel
system.

3.1 Global Level Logging

The global level logging system is that entity of the Mongrel architecture which is responsible for
the logging and recovery of Interactions and the component Global Transactions. The system is
composed of the IRS (Interaction and recovery system) and the global log where the log entries
are maintained. The IRS and the global log reside on the same host as the 1M. In it's true form,
IRS is a process forked by the 1M each time the Mongrel system is started (It's like a bootup pro
cess for the system).

The main operations and the functionality of the IRS are

1. Store and maintain all the relevant data required by the conflict recovery algorithms.
2 Provide operations to read and write data to the logs
3. Invoke the recovery daemons during the rollback and recovery phase.

Referring to the Figure - 3 it can be seen that Interactions and the Global Transactions are the only
two entities that are executing at the Global Level. Hence, information pertaining to Interactions
and GT's is logged. Specifically the following actions and information are logged

1. Begin and Tennination of Interactions
2. Begin and Tennination of Global Transactions
3. Dependencies among the Global Transactions
4. For each Global Transaction, a list of all the global subtransactions and their corresponding
local database identifiers.

Yashesh Bhatia Page 7 of 17

Logging and Recovery in a Multidatabase System April 29, 1993

1M

fLD
IALog

GTLog

Global Log

Figure 4 -IRS (Interaction Recovery System)

As seen in Figure - 4 the IRS comprises of the following entities

1. ILD (Interaction Logging Daemon)

The ILD provides the main interface of the IRS to external processes. The ILD is responsible for
the complete access to the logs. At the same time, the ILD also invokes the recovery daemon in
case of a transaction abort or retry. The ILD consists of a iaLog and gtLog which are used for log
ging interactions and global transactions.

2. RRD (Rollback and Recovery Daemon)

The RRD is responsible for providing the rollback and recovery functionality. We shall see the
actual recovery process and algorithms in the next section. In it's physical form the RRD is a pro
cess forked by the ILD with the sole intention of performing recovery of the transactions specified
by the ILD. The actual processes and data structures used are explained later in the recovery sec
tion.

The RRD is one of the key components since the primary forces of the Mongrel architecture is to

Yashesh Bhatia Page 8 of 17

Logging and Recovery in a Multidatabase System April 29, 1993

study new algorithms for recovery. The RRD conununicates with the 1M and the TaSL to achieve
its goal of recovery. The RRD requests the 1M during compensation and the TaSL during reexecu
tion. The exact nature is defined in the next section. The RRD needs to read the Logs too for infor
mation of the dependencies and the GST items and has a reading interface with the ILD.

The logs are maintained at the same level as the 1M (and the IRS). We use the UNIX file system to
store the data in the log. Since our primary focus was on other issues rather than providing a com
pletely failure safe recovery, we choose to use the UNIX file as stable storage based log and a
hierarchical file system to store the temporary data pertaining to the Inter actions and the GT's.
Entries to log are accessed using the UNIX file I/O routines and hence is insulated from concur
rent usage.

During initialization, if the log is not present one is created and an initial "LOG STARTED"
record is entered into the log. Note, all the log entries are appended with timestamps. They do not
serve any purpose with the current implementation, but would be of a significant importance deal
ing with designing overall recovery. The logs are then updated as the interactions and GT's begin
to execute. Each time a new linteraction or Global Transaction begins, a record for IA Begin and
GT begin is entered.

In order to store temporary log data for the active lA's and GT's directories are created with the
interaction identifiers (Interactions and Global transactions are uniquely identified by lAID and.
GTID respectively). The hierarchical checkpoint structure looks like:

/IAID/IAID.depinfo
IAID.active
/GTID/

The temporary data is removed as soon as the global transactions or Interactions are committed.

The commit procedure therefore consists of the flushing of specified subdirectories and storing

the entries in the log. Finally the "IA Commit" or "GT Commit" are written to the log. Once the

interaction is committed, entire subdirectory is flushed into the log and then deleted. The check

point (hierarchical) file system is very convenient for the following reasons:

1) Provides Locality:

Since all the log records pertaining to a IA or GT are written to the log consecutively, they provide

an element of locality which can be exploited for optimizing log access.

2) Painless abort Mechanisms:

Since the data for active lA's and GT's is never entered into the log, aborting in active GT or IA is

simply reduced to removal of files from the hierarchical checkpoint file system which would oth

erwise be done by scanning entries in the log and undoing them.

Note - This method has a disadvantage in the sense that it can't be used for providing complete

Yashesh Bhatia Page 9 of 17

Logging and Recovery in a Multidatabase System April 29, 1993

failure recovery.

Log Format - Each entry in the log consists of the following fields

1) Time Stamp - time of logging
2) lAID
3) GTID
4) Record Type - type of operation
5) Log Entry - String of information

A typical log entry would look like

10432187 lAID GTID 1 "COMMITTED"

The above entry stores the commit of the GTID of lAID.

3.2 Local level logging

The local level logging system is that which is responsible for information required to maintain
local consistency. The system is comprised of the LRS and the local logs where entries are
logged. The LRS and local logs are maintained on the same host as the local database that is a part
of the multi-database system.

Agent

LRS

LLD

GST

Log
Figure 5 - LRS (Local Recovery System)

As seen from the figure 2 each local database is connected to the multi-database via an agent and
the step library. The agent creates the LRS during initialization. The LRS is essentially a server
and in order to communicate with it, a process needs a communication handle. The LRS sends its
handle to the agent during

Yashesh Bhatia Page 10 of 17

Logging and Recovery in a Multidatabase System April 29, 1993

initialization.

The agent distributes this handle to all the GSTs which are the primary interface to the LRS.

The LRS is comprised of the following modules:

1) LLD (Local Logging Daemon)

The LLD is the local level logging Daemon and presents the main interface for the LRS. It is

responsible for total access to the logs. The LLD calls the local level logging which does the

actual physical logging. The abstraction of local log is present in order to insulate the basic log

ging functionality from the optimization. By this I mean that the local log could provide an opti

mized logging strategy that would be insulated by the LLD.

Local Log

The local log provides the actual physical access to the logs. As stated above, it is provided to
insulate the physical access from the logical access of the logs.

The local logs are maintained at the same level as the agent. UNIX file system is used for the stor
age of the log entries as well as the temporary data.

The primary interface to the LRS is the GST. Right from the very begining to the end, the GST
logs its action and the information needed to restore the local database.

The communication between the GST and the LRS begins as soon as the GST is created and is via
the handle that it receives from the agent. It first requests the logging of a "Begin GST' record.
The LRS plays a crucial role here by assigning global sub-transaction identifier (LSN (log
sequence Number)) to each new GST. The LSN uniquely identifies a GST on a given host and is
used as the key field in further communications.

Steps

Steps are a sequence of operations that act upon the local database. Steps are connected to the host
database operations via a table called the step library.

As noted earlier a GST consists of a sequence of steps which it executes after it commences. As
soon as the steps are executed, they are logged by calling the LRS. Logging of the steps and its
corresponding compensating step are one of the essential actions of the local log. It is important
from the perpective of the recovery, because its the compensation of the transaction.

The following information is logged with all the steps

Step ID
argc
argv

Yashesh Bhatia Page 11 of 17

Logging and Recovery in a Multidatabase System April 29, 1993

Comp Step ID
argc
argv
Return Status
argc
argv

Note the field are delimited by "@". An example log entry would look like

"DECREMENT INVENTORY@2@SPARC 2@100@INCREMENT INVENTORY@2@S
PARC 2@ 100@OK@0"

The following step decrements the inventory for the Sparc 2 by 100 pieces and the compensating
step would increment the inventory of Sparc 2 by 100.

During compensation, the GSTs read the comp information from the logs through the LRS. After
reading the compensation step info, executes the step on the local databasae (in inverse order)

After executing all the GSTs participate in a 2 phase commit for the global transactions. During
the Ist phase of 2pc if the GST agrees to commit then the GST is commited to the local database
and enters a prepared state. During the prepared state the LRS commits the GST in a LDB. At this
stage, there are just two options for the GST:

1) Abort Commit Decision: may occur if all GST's cannot commit in which case the compensat
ing steps are fired to undo the effects of the step.

2) Commit GST -The GST is committed because all the other participating GSTs were ready to
commit.

Logging and Checkpoints

The local log is maintained at the same level as the LRS and the agent.

During initialization, an init record is written to the log. Success records are written to either the
log or files in the temporary checkpoints file system. The checkpoints file system maintains
temporary data for a specified LSN. The file is created when the LSN is assigned and destroyed
when the GS9 enters the prepared state. The files are stored as:

/LSN_files/1

Information in the log is stored as follows:

Yashesh Bhatia Page 12 of 17

2

Logging and Recovery in a Multidatabase System April 29, 1993

Timestamp - Timestamp of the operation
LSN - Log Sequence Number
Rec Type - Type of record
Log Entry - String of information

3.3 Recovery - Design and Implementation

The Interaction transaction model provides unique and optimized recovery mechanisms for
semantic UndolRedo of committed transactions. These transactions are of long durations, flexible,
reactive and interactive by nature and hence are difficult, and in some cases impossible to recover
from.

Compensation is the primary form of recovery in the interaction model. According to [KLS 90]
"A compensating transaction is one which undoes the effects of a transaction in a semantic man
ner, rather than by physically restoring to a prior state".

Using the example in figure 2, if the transaction GTUI consists of decrementing the quantity of
required goods then its corresponding compensating transaction would be the incrementing the
quantity of the required goods.

The semantic information needed to compensate a transaction can be acquired by either

I) Extracting compensating actions from the program of the compensated for transaction by
examining the database and the logs, or

2) Having the user predefine a compensating transaction for each transaction.

For applications such as the example in figure 2 pure compensation is not the peIfect method of
recovery.

For example, if the transport company cancels the deliveries of the vehicle then using the com
pensation based method we could have the following scenario

I CPOD I~ 1-.1 HCRT }.~CUI CNA

I Rpop I

Yashesh Bhatia Page 13 of 17

Logging and Recovery in a Multidatabase System April 29, 1993

Note all the transactions dependent on GTRT are compensated for in the reverse order and are
then redone in the forward order. This sequence of operations could cause undesirable results. For
example, after compensating for the reserve transportation, we redo the transaction by confirming
a new reservation from a new company. However, in the meantime since we have released control
over the inventory database, any other transaction could update the inventory (taking the goods)
thereby disabling the Redo of the update inventory transaction. Also, we can notice that unneces
sary work is being done in undoing and redoing the transactions when we get the reservation for a
new vehicle.

To overcome the above problems Interaction provides an alternate algorithm for recovery
Replacement recovery. The algorithm is described in detail in [NZ 92], however I shall present a
brief overview of it.

According to [NZ 92], the fundamental concept of replacement recovery algorithm is to replace
any work in an invalid transaction without modifying the work done by the dependents of the
invalid transaction.

Falling back to our example, since the cancellation and reservation of the transport vehicle has no
effect on the other transactions (if re-reserved on the same day), then the sequence shown below
would be equivalent to the one above.

I CPODI~

As seen from the diagram the compensate and redo transactions are moved up in the execution
sequence. Furthermore if the compensate and redo are inverse of each other then they could be
eliminated totally without execution.

Continuing with the example, the transaction notify accounting is moved up the sequence and
since CNA and RNA are inverse, they are eliminated. Same is the case with Cmand Cpo?

Yashesh Bhatia Page 14 of 17

Logging and Recovery in a Multida.ta.base System April 29, 1993

Implementation

In the current version of Mongrel, we have the compensation mode completely running. Initial
design has to be done for the replacement recovery mode, however, it has yet to be implemented.

The recovery process is initiated when the IM requests the abort a retry of a global transaction or
interaction. The request for the abort (or retry) may be for any of the following reasons:

1) The underlying state on which the transaction depends has been violated (note:- this is imple
mented in the form of events and weak. conflicts. For more details refer to [Nod 92])

2) User specifies an abort due to external malfunctions.

Upon getting the request for Abort (retry), the IRS creates a DAG (Directed Acyclic Graph) to
store the invalid transaction and its dependents. For example, the DAG would be like

The DAG is created using information stored in the dependency information file. The dependency
information is stored in the following format

TO-GT Dep-Type Num_Parents From-GT's .

where
TO-GT is the GTID of the dependent transaction
Dep-Type is the type of dependency (SIE)
Num-Parents is the number of parents
FROM-GT is the list of GT's "TO-GT" is dependent on.

where the dependency could be a state or execution dependency (SIB).

A typical entry would be

GTpOD E I GTRT
GTUI E I GTRT
GTNA E I GTRT

Yashesh Bhatia Page 15 of 17

Logging and Recovery in a Multidatabase System April 29, 1993

The DAG representing the complete set of transactions and their partial order is to be given to the
RRD (Rollback and Recovery Daemon) for recovery.

The RRD first topologically sorts the DAG to give a list of transactions. For example the list in
our case would be like

GTRTI OTroD HOWl H GTNA

The generated list of GT's now needs to be compensated for.

Compensation for any transaction conunences by requesting a begin of global transaction to the
IM. After the new GT has begun the list of global subtransactions (LSN) and their corresponding
host names are obtained. This information is obtained by reading their log and selecting the
desired entries.

Next compensating steps are fired at the IM for individual global subtransactions. The IM request
the individual agents to perform the compensating steps. The above procedure is repeateed for all
the transactions in the list. The compensating for the final transaction terminates the recovery pro
cess.

4. Overview of Imlementation

As is the case with all other projects, there were problems, solutions, and trade-off made to realize
it practically. Some of the problems I encountered are

1. Conununication with the IM

During the recovery of the committed transactions the RRD needs to conununicate with the IM to
accomplish compensation. Since the IM initiates the recovery, hence the IM process remains
blocked thereby preventing input requests. A complete solution here would have been to have an

Yashesh Bhatia Page 16 of 17

Logging and Recovery in a Multidatabase System April 29, 1993

asynchronous protocol between the IM and the RRD. However, due to the time constraints and an
already jeopardized communication problem, we simplified it by using synchronous protocols.
The solution is by no way incorrect because in the proposed model, it is the communication
between the TaSL and RRD that is significant. I would write this off as a trade-off rather than an
abnormality.

2. Creating the DAG

Another difficult problem was that of creating the DAG from the dependency information stored
in the global level. This is because the dependency graph is stored in an inverse format at the glo
ballevel. The format could have been reversed, but since the data is dynamic, storing it in the
form of "From_Egde To_Edge" seemed to be a viable solution. However, this causes multiple
scans of the files and hence a very inefficient algorithm. I could not find a suitable solution for
this.

Further Work

There are a couple of areas where, work needs to be done

1. Integrating the RRD with the TaSL - This would capture true reactivity
2. Integrating the 1M and IRS as a single process - This would reduce the RPC traffic and make
the system more robust due to lesser RPC communication.
3. Adding complete recovery features to enable total failure safe system.

Bibliography

[KLS90] - "A Formal Approach to Recovery by Compensating Transactions" - Henry Korth, Eli
zier Levy, Abraham Silberschatz. Proceedings of the 16th VLDB Conference - 1990.

[KL91] - "Database Systems Concepts" - Henry Korth and Abraham Silberschatz. Database Text
Book, 2nd Edition.

[Nod92] - "Supporting Long running tasks on an Evolving Multidatabase using Interactions and
Events" - Marian Nodine. PDIS 1992

[NZ92] - "Supporting Reactive Planning Tasks on An Evolving Multidatabase" - Marian Nodine
and Stan Zdonik. Tech Report 92-59, Department of Computer Science Brown University,

Yashesh Bhatia Page 17 of 17

Appendix I April 29, 1993

Appendix I

The following section describes in detail, the various data structures, modules and classes used by
the Logging and Recovery system. The Logging and Recovery System consists of 2 entities, Glo
bal and Loca11eve1 and are described in terms of their modules, data structures and classes.

Yashesh Bhatia Page 1of 42

Appendix I April 29, 1993

Global Level Logging

Modules
The are 2 modules associated with the global level logging.

1. IRS server

This module is invoked as a separate process by the 1M. The module acts as a server for global
level logging. It creates the communication sockets, performs the initialization/registration and
listens for requests from other entities of the system.

Upon getting a request, the server transfers control to the IRS dispatcher which unmarshals the
command using the system specified rpc routines. The dispatcher then makes the appropriate calls
to perform the desired action. The results of the actions are marshalled and returned to the calling
process.

Note - The server blocks the calling process and communication is via RPC using customized
routines. (A set of standardized routines are available for communicating with entities within the
Mongrel MDBS)

2. Recovery Daemon
The recovery daemon is invoked by the ILD if an Interaction or Global Transaction needs to be
retried or aborted. The daemon is spawned off as a separate process as it needs to communicate
with the 1M. The daemon essentially calls the right function in the RRD, which is in charge of the
recovery.

Arguments - lAID if an Interaction, and lAID + GTID if a Global Transaction, needs to be retried
or aborted

Yashesh Bhatia Page 2 of 42

Appendix I Apri129, 1993

Data Structures

The following data structures are used by the Global level.

1. Log_rec

It stores the all the log records of a Global Transaction.

struct Log_rec II Log record format
{
int recent; II Record Count
int record_time[MAXREC]; II Timestamps
int lAID;
int GTID;
int record_type[MAXREC];
char *log_entry[MAXREC]; II Log Entry
int count[MAXREC];
}

2. Active rec
Active_rec stores information of all the active records

struct Active_rec
{
int record_time;
int lAID;
int GTID;
char *text;
}

Yashesh Bhatia Page 3 of42

Appendix I April 29, 1993

Classes

The global1eve11ogging consists of the following relevant classes which are described in the
Appendix

1. i1d
2. iaLog
3. gtLog

4.RRD

5.RRDDAG

For each class, important instance variables and member functions are examined in detail. The
classes are examined on their functionality basis i.e. the member functions are grouped into logi
cal components.

Yashesh Bhatia Page 4 of 42

Appendix I April 29, 1993

1. Class i1d (Interaction Logging Daemon)

This class perfonns all the duties of Logging system. It's main functionality is

1. Provide an interface to the 1M (Interaction Manager) for logging the various phases of
Interaction execution.

2. Maintain the global log and the temporary data.
3. Invoke the recovery daemon when an Interaction (partial or complete) needs to be

recovered or retried.

Yashesh Bhatia Page 5 of 42

Appendix I April 29, 1993

1.1 Interface to the 1M.
The 1M has the maximum interaction with this class. Specifically, it requests logging and recovery

of the Interaction execution. The main functions through which it can access the ILD are

1.1.1 Status i1d :: abortIa(int lAID)

Semantics· This routine aborts an InterAction. It first generates a DAG, which is passed to the

RRD. The RRD aborts/compensates all the GT's present in the DAG. The result is then logged
into the MASTER_LOG and finally the subdirectory of the lAID is removed.

Called By- Routines in the 1M.

Calls - RRD::rollBckGtRrdO
iaLog: :loglAAbortO
ild: :deleteDirO
ild::getRRDDAGO

Parameters - lAID - InterAction ill

Returns - Status OK/NOT OK

Effects - Aborts an InterAction

1.1.2 Status i1d :: abortGt(int lAID, int GTID)
Semantics - This routine aborts the specified Global Transaction and all those that
are dependent on it.

Called By- Routines in the 1M.

Calls- RRD: :rollBckGtRrdO
ild::getRRDDAGO

Parameters - lAID - InterAction ID
GTID - Global Transaction ID

Returns - Status OK/NOT OK

Effects - Aborts aGT

Yashesh Bhatia Page 6 of 42

Appendix I April 29, 1993

1.1.3 Status i1d :: retryla(int lAID)
Semantics· This routine retries the specified IA. The DAG representing the Interaction in terms
of the GT's is first generated. The DAG is then passed to the RRD for retrying.

Called By. Routines in the 1M

Calls· ild: :getRRDDAGO
RRD: :rollBckGtRrdO

Returns· Status OK/NOT_OK

Effects· Retries the entire Interaction.

1.1.4 Status i1d :: retryGt(int lAID, int GTID)
Semantics· This routine retries the specified Global Transaction and all it's dependents. The

DAG representing the GT is first generated. The DAG is then passed to the RRD for retrying.

Called By· Routines in the 1M

Calls· ild::getRRDDAGO
RRD: :rollBckGtRrdO

Returns· Status OK/NOT OK

Effects· Retries the Global Transaction and it's dependents.

Yashesh Bhatia Page 7 of 42

Appendix I April 29, 1993

1.1.5 Status i1d :: loglMException (int, int, REC, Err_Code)
Semantics - This routine logs Exceptions to the MASTER LOG. Exceptions could be of various
types and are identified by an exception identifier.

Called By- Routines in the 1M, ild and the RRD.

Calls ild: :writeLogO

Parameters int lAID
intGTID
REC rec_type - Identifies the caller
Err_Code err_code - Identifies the exception

Returns Status OK/NOT_OK

Effects - Logs an exception record.

1.1.6 Status i1d :: logDEpendency (int lAID, int GTID, char*)

Semantics - This routine writes dependency information to the IAID.depinfo file.

To see the format of the IAID.depinfo file see the project report.

Called By- Routines in the 1M.

Calls - ild: :checkFileO

Parameters - lAID, GTID, Dependency Info

Returns - Status OK/NOT OK

Effects - Adds an entry in the /pro/mdb/ild/global_log/IAID/IAID.depinfo

Yashesh Bhatia Page 8 of 42

Appendix I April 29,]993

1.2 Interface to the RRD
The RRD (Rollback and Recovery Daemon) also has a high degree of communication with the
ILD. It needs to read the MASTER LOG and make log entries during the process of recovery and
retrying.

1.2.1 Log_rec* ild :: readLog(int lAID, int GTID)

Semantics· This routine reads all the records for the Global Transaction specified by the GTID. It

scans the entire log and filters those records that are required.

Called By. RRD::compTransO

Calls - File 10 routines to scan the log.

Parameters • lAID, GTID.

Returns - Log_rec* - Structure to store the log information.

(The structure is described in detail earlier)

Effects - Allocates memory for the Lo~rec and returns the pointer after reading the information.

1.2.2 TransStatus ild :: verifyGTstatus(int lAID, int GTID)
Semantics - This routine returns the current status of an Interaction or a Global Transaction. It
does by checking the temporary data storage structure.

Called By RRD: :rollBckGtRrdO

Calls Directory maintenance routines

Parameters lAID, GTID

Returns Transaction Status - TS_NOT_OK

TS_COMMITTED
TS_ACTIVE

Effects - Returns the status.

Yashesh Bhatia Page90f42

Appendix I April 29, 1993

1.2.3 Status ild :: deleteDir(int lAID, int GTID)

Semantics - This routine deletes the sub directory that stores the temporary data for a given Inter
action or a Global transaction.

Called By ild: :abortlaO
gtLog::logGTCommitO
iaLog: :loglACommitO

Calls File 10 routines

Parameters lAID, GTID

Returns - Status OK/NOT OK

Effects - deletes either of the following subdirectories
pro/mdb/ild/global_log/IAID or
/pro/mdb/ild/global_log/IAID/GTID

1.2.4 Status ild :: delActiveEntry(int lAID, int GTID)
Semantics - This routine removes the specified Global Transaction from the dependency informa
tion of the file of the Interaction.

Called By- RRD: :rollBckGtRrdO
gtLog: :logGTCommitO

Calls - File I/O routines

Parameters - lAID, GTID

Returns - Status OK/NOT_OK

Effects· Removes an entry corresponding to the GTID from the IAID.active file.

Yashesh Bhatia Page lOof42

Appendix I April 29, 1993

1.3 Protected Member Functions
The protected member functions are used only by the ild and it's derived classes (iaLog and the
gtLog).

1.3.1 Status ild :: writeLog(int, int, REC, char*)
Semantics - This routine writes a log record to the MASTER_LOG. The log record is described
below.

Called By- Logging routines in the iaLog, gtLog and the ild.

Calls File 10.

Parameters lAID, GTID,
Rec_Type - Identifies the type of record.
Log_entry - String of characters to store information

Returns Status OK/NOT OK

Effects - Adds an entry to the MASTER_LOG thereby updating it.

1.3.2 int ild :: checkFile(char*)
Semantics - This routine checks whether a file with the specified name exists. It does so by trying
to open the iostream with certain flags.

Called By- Routines in the iaLog, gtLog, and the ild.

Calls- File I/O

Parameters - char *name

Returns - TRUE if file exists
FALSE if it does not exist.

Effects - None

Yashesh Bhatia Page 11 of42

Appendix I April 29, 1993

1.3.3 Status ild :: createDir(int lAID, int GTID)
Semantics - This routine creates a directory for the specified Interaction or the Global Transac
tion. If the GTID is NULL we create an lAID directory. If the GT is a integer we create the direc
tory we always check to insure that there is an lAID directory before creating the GTID directory.

Called By gtLog::logGTBeginO
iaLog: :loglABeginO

Calls- File and directory routines

Parameters lAID, GTID

Returns- Status OK/NOT OK

Effects - A directory (lAID or GTID) is created at the path specified as
path for lAID =/pro/mdb/ild/globaClog/IAID
path for GTID = /pro/mdb/ild/global_log/IAID/GTID

Yashesh Bhatia Page 12 of 42

Appendix I April 29, 1993

1.4 Private Member Functions

The private member functions are used only by the ild and are generally helper or initialization
functions.

1.4.1 RRDDAG* ild :: getRRDDAG(int lAID, int GTID)

Semantics - This routine returns the RRDDAG for the specified Interaction or Global Transaction.
If the GTID is NULL then the entire Interaction is read into the DAG (Directed Acyclic Graph).
otherwise the specified Global Transaction and it's descendents are read into the DAG.

Called By ild::abortlaO
ild: :abortGtO
ild: :retrylaO
ild: :retryGtO

Calls ild: :readDeplnfoO
RRDDAG::insertNodeO
Set: :addlntO
Set: :getCurrentIntO

Parameters lAID, GTID

Returns- RRDDAG * - DAG corresponding to the GTID, lAID

Effects - Allocates memory for RRDDAG*. This memory is freed in * RRD::rollBckGtRrdO. In
case a GTID needs to be rolled back, the GTID node is added to the DAG.

Yashesh Bhatia Page 13 of42

Appendix I April 29, 1993

1.4.2 Status ild :: readDepInfo(int lAID, RRDDAG* dag_ptr)

Semantics - This routine reads the dependency information for the given Interaction. It reads the
"TO" field on each line and inserts it as a NODE in the DAG.

Called By ild::getRRDDAGO

Calls RRDDAG::insertNodeO

Parameters lAID - desired lAID
RRDDAG* - DAG to read the dep info

Returns Status OK/NOT OK

Effects - Modifies the DAG structure by adding nodes

1.4.3 Status ild :: readDepInfo(int lAID, int GTID, RRDDAG* dag ptr, Set*

set ptr)

Semantics - This routine reads the dependency information for the given Global transaction. It

first reads the "TO" field in each line. Then it scans through the "FROM" fields for the "TO" field.

If the "FROM" field matches the GTID then an edge from "FROM" to "TO" is added to the DAG
and "TO" is added to the set of NODES

Called By· ild: :getRRDDAGO

Calls - RRDDAG::insertEdgeO

Parameters - lAID, GTID - Desired GT's
RRDDAG * - DAG to read dependency info
Set * - Set of GTID's to examine

Returns - Status OK/NOT_OK

Effects - Modifies the DAG structure by adding Edges. Also, adds integers to the Set.

Yashesh Bhatia Page 14 of 42

Appendix I April 29, 1993

2. Class iaLog (Interaction Log)

The iaLog is responsible for logging actions pertaining to the Interaction. It is derived from the

class ild and an interface to the 1M only. The interface consists of the following functions

2.1 int iaLog :: loglABegin(int lAID)

Semantics - This routine first creates the directory for the lAID.

Called By- Routines in the 1M

Calls ild: :createDirO
ild::writeLogO

Parameters lAID

Returns Status OK/NOT_OK

Effects - Creates a new subdirectory GLOBAL_LOG_DIR/IAID. It then writes
a log record for the BEGIN operation.

2.2 int iaLog::logIACommit (int lAID)
Semantics - This routine 10gs a IA commit record. It first checks to see if the IA is still active. If
the IA is active, it then checks for active GT's. If all GT's have been committed, the lAID direc
tory is deleted and the record is logged.

Called By- Routines in the 1M

Calls- ild::deleteDirO
ild::writeLogO
ild::checkFileO

Parameters - lAID

Returns - Status OK/NOT_OK/BUG

Effects - Deletes the GLOBAL_LOG_DIR/IAID subdir, and adds a record to
the MASTER_LOG.

Yashesh Bhatia Page 15 of 42

Appendix I April 29, 1993

2.3 int iaLog :: loglAAbort (int lAID)
Semantics· This routine writes an Abort record to the MASTER_LOG.

Called By. Routines in the 1M

Calls· ild: :writeLogO

Parameters· lAID

Returns· Status OKjNOT OK

Effects· Adds a record to the MASTER_LOG

Yashesh Bhatia Page 16 of 42

- -

Appendix I April 29, 1993

3. Class gtLog (Global Transaction log)
The gtLog is responsible for logging actions pertaining to the Global Transactions. It is derived
from the class ild and an interface to the 1M only. The interface consists of the following functions

3.1 Status gtLog :: logGTBegin (int lAID, int GTID, char *depinfo)
Semantics - This routine logs a GT Begin Record. It first creates the GT directory and then
updates the IAID.active file. The IAID.depinfo file is updated to reflect the dependencies.

Called By- Routines in the 1M

Calls - ild: :writeLogO

Parameters - lAID, GTID
Depinfo - The depinfo is added to the file

GLOBAL_LOG_DIR/IAID/IAID.depinfo

Returns - Status OK/NOT OK

Effects - Modifies the following files
GLOBAL_LOG_DIR/IAID/IAID.active and

(GLOBAL_LOG_DIR/IAID/IAID.depinfo.

3.2 Status gtLog :: logGTCommit (int lAID, int GTID, char *gstJnfo)
Semantics - This routine logs a GT commit record. It first removes the entry from the IAID.active
file. It then deletes the directory of the GT.

Called By- Routines in the 1M

Calls - ild::writeLogO

ild: :deleteDirO

ild: :delActiveDirO

Parameters - lAID, GTID
gscinfo - Information regarding global sub transactions

Returns - Status OK/NOT OK

Effects - Modifies GLOBAL LOG DIR/IAID/IAID.active and removes the
GLOBAL_LOG_DIR/IAID/GTID subdirectory.

Yashesh Bhatia Page 17 of 42

Appendix I April 29, 1993

3.3 Status gtLog :: logGTAbort (int lAID, int GTID)
Semantics - This routine writes an ABORT record to the MASTER_LOG.

Called By- Routines in the 1M

Calls ild::writeLogO

Parameters lAID, GTID

Returns Status OK/NOT OK

Effects - Adds a record to the MASTER_LOG

Yashesh Bhatia Page 18 of 42

Appendix I April 29, 1993

4. Class RRD (Rollback and Recovery Daemon)
This class is responsible for the recovery of Interactions and Global Transactions. It is spawned as
a separate process by the ILD when it is required to abort/retry an Interaction/Global Transaction.
It communicates with 2 external entities, the ILD and the 1M. With the ILD it is an input commu
nication through the class interface. With the 1M it is via RPC calls as the 1M is a separate process.
It has a proposed interface with the TaSL.

4.1 Interface with the ILD
The ILD invokes the rollback and recovery procedure for an Interaction by calling the RRD
with the desired information.

4.1.1 Status RRD:: roIlBckGtRrd(RRDDAG *dag ptr)
Semantics - This routine is the critical one in the RRD and is the only interface to the RRD. The
roll back routine takes as input a DAG. The DAG represents the transactions that need to be
aborted/compensated. The DAG is first topologically sorted, then each transaction is checked its
current status.

The ACTIVE GT"s are aborted immediately by removing the sub directories for the given GT,
removing the entries from the IAID.active file and lastly logging the ABORT GT record.

The COMMITED transactions are more complicated to rollback. Essentially, they need to be
compensated for.

Called By- ild::abortIaO
ild::abortGtO
ild::retrylaO
ild: :retryGto

Calls RRD::toposortO
RRD: :compTransO
ild::verifyGTstatusO
ild::deleteDirO
ild: :delActiveEntryO
gtLog: :logGTAbortO

Parameters RRDDAG* - DAG corresponding to the IA or GT.

Returns Status OK/NOT OK

Effects - Deletes the RRDDAG* which was allocated in ild::getRRDDAG

Yashesh Bhatia Page 19 of 42

- -

Appendix I April 29, 1993

4.2 Connection to the 1M (Interaction Manager)
The RRD communicates to the 1M via RPC to compensate for a Global Transaction.

4.2.1 int RRD :: 1M beginGT(int lAID, int* pred list)
Semantics - This routine begins a new GT by making a RPC call to the IM. It first creates a client
handle for the 1M if it does not exist. This handle is later destroyed by the destructor.

Called By- RRD: :compTransO

Calls - RPC calls to the 1M to begin a new Global Transaction.

Parameters - int lAID,
int *predlist - Predecessor list of the GT.

Returns - GTID of the new transaction.

Effects - Initializes the data member IM_cl when called first time.

4.2.2 Status RRD :: 1M doCsStep(int GTID, char *hostname, iot LSN)
Semantics - This routine performs the compensating steps for a GT, by making RPC call to the
1M.

Called By- RRD: :compTransO

Calls- RPC calls to the 1M.

Parameters intGTID
char *hostname - Local Database Name
int LSN - Log Sequence Number on the ·Local Database

Returns Status OK/NOT_OK

Effects - None

Yashesh Bhatia Page 20 of 42

Appendix I April 29, 1993

4.2.3 Status RRD :: IM_commitGT(int lAID, int GTID)
This routine commits a GT by making a RPC call to the IM.

Called By- RRD::compTransO

Calls - RPC calls to the 1M to commit GT.

Parameters - intIAID
intGTID

Returns - Status OK/NOT_OK

Effects - None

4.3 Private Member Functions
The private member functions are used only by the ild and are generally helper or initialization
functions.

4.3.1 Status RRD :: compTrans(int lAID, int GTID)
Semantics - This routine compensates the specified Global Transaction. It first begins a new GT
by communicating with the 1M. Then it reads the MASTER_LOG for the GST information.
Lastly, the steps for each of the GST are executed to complete the compensation and the new GT
is then COMMITED.

Called By- RRD: :rollBckGtRrdO

Calls - RRD::IM_beginGTO
RRD: :IM_doCsStepO
RRD::IM_commitGTO
ild::readLogO

Parameters - lAID

GTID

Returns - Status OK/NOT_OK

Effects - None

Yashesh Bhatia Page 21 of 42

Appendix I April 29, 1993

4.3.2 CSTJnfo* RRD :: getCSTlnfo(char *str)
Semantics - This routine converts a string containing the GST information into the CST_info
structure. The fonnat of the string is "Num_oCGST LDB_Name LSN....."

Called By RRD: :compTransO

Calls RRD::parseStringO

Parameters char *str - GST infonnation

Returns CST_info structure (The last element is packed with an INVALID_LSN)

Effects - None

4.3.3 void RRD :: parse_string(char *str, int& count, char *arg_str)
Semantics - This is an internal routine which parses a string delimited by a blank character.

Called By RRD: :getCSTInfoO

Calls None

Parameters char *str - String to be parsed
int& count - Character to start counting at.
char *ar~str - Argument string to store the field

Returns None

Effects - Updates "count" and ar~str.

Yashesh Bhatia Page 22 of 42

- -

Appendix I April 29, 1993

5. Class RRDDAG

This class stores the DAG (Directed Acyclic Graph) and provides operations to modify it. The
DAG is internally stored as an adjacency list and is consists of other classes such as the vertices
and vertex list which are not described in depth. It interfaces with the ILD and the RRD Since
there is an overlap

5.1 Interface with the ILD

The ILD mainly builds the DAG and hence the interface consists of messages to insert edges and
vertices.

5.1.1 void RRDDAG :: insertEdge (int from vertex, int to vertex)

Semantics - This routine inserts an edge in the DAG. It first inserts the "TO" and "FROM" nodes
in the vertex list. It then inserts the "TO" node in the vertex list of the "FROM" node. * (The
DAG is represented internally by an adjacency list

(Called By- ild: :readDepInfoO

Calls - RRDvertexList::insertVertexO

RRDvertexList::getVertexO;

Parameters - from_vertex - "FROM" node

to_vertex - "TO" node

Returns - None

Effects - Adds elements to the vertex list of the DAG as well as the

"TO" vertex.

Yashesh Bhatia Page 23 of 42

Appendix I April 29, 1993

5.1.2 void RRDDAG :: insertNode(int node)
Semantics· This routine inserts a NODE in the DAG. It does so by inserting a node in it's vertex
list.

Called By· ild: :getRRDDAGO
ild: :readDeplnfoO

Calls· RRDvertexList: :insertVertexO

Parameters· Node - NODE to be inserted

Returns· None

Effects· Adds a NODE to the vertex list.

5.2 Interface to the RRD

The RRD uses the topologically sorted DAG for compensating transaction.

5.2.1 void RRDDAG :: toposort(int *GTID list)
Semantics· This routine sorts the DAG topologically and returns the elements as an integer list.
It uses the DFS to do the topologically sort.

Called By- RRD::rollBckGtRrdO

Calls· RRDDAG::initializeVerticesO
RRDDAG: :DFSvisitO

Parameters· int *GTID_list - List of integers to store the final set of elements.

Returns· None

Effects - Modifies the input GTID_list.

Yashesh Bhatia Page 24 of42

- -

Appendix I April 29, 1993

5.3 Private Member Functions
The private member functions are used only by the RRDDAG and are generally helper or initial
ization functions.

5.3.1 void RRDDAG :: DFSvisit(RRDvertex *vertex ptr, int *GTID list)
Semantics· This routine calls the DFS on the DAG and stores the elements in integer list in the
order of it's "FINISH TIME". It is a recursive routine and recurses on the members of the
GTID_list.

Called By· RRDDAG::toposortO

Calls· RRDDAG::DFSvisitO
RRDvertex: :startTimeO
RRDvertex: :finishTimeO
RRDvertex: :colorO

Parameters· RRDvertex *ptr - Node on which to recurse.

Returns· None

Effects· This routine updates the data members "time" and "topo_count". It also stores the
NODES in the GTID_list.

5.3.2 void RRDDAG :: initializeVerticesO
Semantics· This routine initializes all the NODES in the DAG for the DFSvisit.

Called By· RRDDAG::toposortO

Calls· RRDvertex::colorO
RRDvertex::startTimeO
RRDvertex: :finishTimeO
RRDvertex: :parentO

Parameters· None

Returns· None

Effects· Initializes some of the data members of the vertices. Also sets topo_count.

Yashesh Bhatia Page 25 of42

Appendix I April 29, 1993

Local Logging

Module

The Local Level contains a single module, the LRS server

LRS server

The LRS server is created as new process by the Agent Manager (AM). It accepts requests from
the GST (Global Sub Transaction) to perform the local level logging.

The server first creates a communication port using it's newly acquired program number from the
Pnum server. The details of the port (program number and name) are then passed to the Agent for
future communication. The Agent when creating the GST, gives the LRS server location in order
to communicate with the server.

Finally, the server is ready to accept requests from the GST. The requests are send to the dis
patcher. The dispatcher unmarshals the request, makes the desired function call, and returns the
results to the calling process.

Note - The server blocks the calling process and communication is via RPC using customized
routines. (A set of standardized routines are available for communicating with entities within the
Mongrel MDBS) i

\.

Yashesh Bhatia Page 26of42

Appendix I April 29, 1993

Data Structures

1. return info
It stores the return information of a function call.

typedef struct
{
int stat;
int argc;
char **argv;
} return_info;

2. stepJnfo

II Return value structure

It stores information about steps, their compensating steps and the return values.

typedef struct
{
int step_id;
int step_argc;
char **step_argv;

int cstep_id;

int cstep_argc;

char **cstep_argv;

return_info einfo;
} step_info;

3. cstep info

It stores details of a compensating step.

typedef struct
{
int cstep_id;
int cstep_argc;
char **cstep_argv;
return_info einfo;
} cstep_info;

Yashesh Bhatia

II Structure to store the step information

II Step Info

II CStep Info

II Ret Val Info

II Structure to store the compensation step
II information

II Return val

Page 27 of42

Appendix I April 29, 1993

4.log_ree
It is used to store all log entries of a specific LSN.

typedef struct II Log record structure
{
int LSN;
int num_rec;
int time_stamp[MAX_REC];
rec_type rec[MAX_REC];
char *log_entry[MAX_REC];
} log_rec;

5. eompJnfo
It is used to return the compensating information for a specified LSN.

typedef struct II Structure to return the compensation

{ II information

int LSN;

int num_rec;

int cstep_id[MAX_REC];

int argc[MAX_REC];

char *argv[MAX_REC][MAX_PARAM];

} comp_info;

Yashesh Bhatia Page 28 of42

Appendix I April 29, 1993

Classes

The local level logging consists of the following relevant classes which are described in the
Appendix

6.LRS
7. LocalLog

For each class, important instance variables and member functions are examined in detail. The
classes are examined on their functionality basis i.e. the member functions are grouped into logi
cal components.

Yashesh Bhatia Page 29 of 42

Appendix I April 29. 1993

6 Class LRS (Local Recovery System)

This class is responsible for the logging and recovery at the local level of the two level log.
It contains a reference to a LocalLog and routines read/write to/from the log. It's only external
interface is the GST (Global Sub Transaction).

6.1 Interface to the GST
The GST invokes the LRS for logging it's complete execution. During compensation it requires
the compensation information that it gets from the LRS.

6.1.1 LRS :: LRSO

Semantics - This is the constructor of the class LRS. It first creates instantiates the LocalLog, and
then checks for the following files

1. /pro/mdb/ildllocal_log/LOCAL_LOG.
2. /pro/mdb/ildllocal_log/LSN_FILE. \

If they do not exist, it creates them. It also, initializes the LSN to the initial count of 1.

Called By- The LRS dispatcher

Calls - LocalLog: :LocalLogO
LocalLog: :writelnitRecordO
File I/O routines

Parameters - None

Returns - None

Effects - Creates a new LocalLog and writes the initialization record if the LOCAL LOG does not
exist.

Yashesh Bhatia Page 30 of42

Appendix I April 29, 1993

6.1.2 Status LRS :: logGSTAbort(int LSN)

Semantics - This routine logs the abort GST record to the LOCAL_LOG. After logging it suc
cessfully, it deletes the temporary LSN file.

Called By- Routines in the GST

Calls unlinkO
LocalLog: :logGSTAbortO

Parameters LSN

Returns Status OK/NOT_OK

Effects - Adds an Abort record and then deletes the local LSN file if one is present.

6.1.3 int LRS :: logGSTBeginO

Semantics - This routine logs a GST Begin Record. First it assigns a LSN to the GST.

The LSN - Log Sequence Number is a unique identifier for the GST and is used for all the logging
purposes. Next the BEGIN record is entered into the LOCAL_LOG.

Called By- Routines in the GST

Calls - LRS::getLSNO
LocalLog: :logGSTBeginO

Parameters - None

Returns - LSN - Log Sequence Number
or INVALID_LSN if it fails.

Effects - Creates a file /pro/mdb/ild/local_log/LSN_files/LSN if successful.

Yashesh Bhatia Page 31 of 42

Appendix I April 29, 1993

6.1.4 Status LRS :: logGSTCommit(int LSN)

Semantics· This routine logs the GST commit record. It does so by delegating the call to the

Local Log.

Called By· Routines in the GST.

Calls· LocaILog::logGSTCommitO

Parameters· LSN.

Returns· Status OK/NOT OK

Effects· None

6.1.5 Status LRS :: logGSTPrepared(int LSN)
Semantics· This routine prepares the Local Database for the Two Phase Commit Algorithm. It
corresponds to the Phase I of the 2 phase commit.

(
It first commits the transaction locally by flushing the data in the checkpoint file system to the
LOCAL_LOG (on the stable storage).

It then adds the Log Entry for the PREPARED state. Lastly, it deletes the LSN file in the check
point file system.

Called By • Routines in the GST

Calls· unlinkO
LocalLog: :logGSTPreparedO

Parameters· LSN

Returns· Status OK/NOT OK

Effects· Copies the contents of the LSN file to LOG. Adds entry to the LOG and deletes the LSN
file.

Yashesh Bhatia Page 32 of42

Appendix I April 29, 1993

6.1.6 Status LRS :: logGSTAbortDecision(int LSN)

Semantics - This routine logs the ABORT DECISION in the LOCAL_LOG. After the 1st phase
of the 2PC GST is either Committed or Aborted. This message is used to signify the ABORT of
the GST.

Called By Routines in the GST

Calls LocaILog::logGSTAbortDecisionO

Parameters LSN

Returns Status OK/NOT OK

Effects - None

6.1.7 Status LRS :: logSteplnfo(LSN, step info)
Semantics - This function logs the step information. It does so by converting the Step information
to a log entry (a string) and then asks the Local Log to do the logging.

Called By- Routines in the GST

Calls LRS::stepInfoToLogEntryO
LocalLog::logStepInfoO

Parameters intLSN
struct step_info s_info

Returns Status OK/NOT OK

Effects - Deletes the char *lo~entry which is allocated in LRS::stepInfoToLogEntryO

Yashesh Bhatia Page 33 of 42

Appendix I April 29, 1993

6.1.8 Status LRS :: logCSteplnfo(LSN, cstep info)
Semantics- This function logs the CStep information. It does so by converting the Step informa
tion to a log entry (a string) and then asks the Local Log to do the logging.

Called By- Routines in the GST

Calls LRS: :cstepInfoToLogEntryO
LocalLog: :logCstepInfoO

Parameters int LSN
struct estep_info cs_info

Returns Status OK/NOT_OK

Effects - Deletes the char *log_entry which is allocated in LRS::cstepInfoToLogEntryO

6.1.9 compJnfo* LRS :: readComplnfo(int LSN)
Semantics - This routine get the compensating step information for the given LSN. It first reads
the local log and gets all the records for the LSN.
It then filters out the compensating information and returns to the calling function.

Note:- This routine allocates storage for the comp_info. The calling
function is responsible for deleting the storage

Called By. Routines in the GST

Calls· LocaILog::readLogO
LRS: :logEntrytoCompInfoO

Parameters· LSN

Returns· struct comp_info* if successful, NULL otherwise

Effects· Deletes the struct log_rec* allocated in the routine LocaILog::readLogO.

Yashesh Bhatia Page 34 of42

Appendix I April 29, 1993

6.2 Private Member Functions
The private member functions are used only by the LRS and are generally helper or initialization
functions.

6.2.1 int LRS :: getLSNO
Semantics - This routine generates a new LSN and returns it to the calling function. It reads in the
current LSN from the /pro/mdb/ild/local_log/LSN_FILE. and is later updated by incrementing the
currently stored LSN. If for any reason it is unsuccessful then an INVALID_LSN is returned to
the user.

Called By - LRS: :logGSTBeginO

Calls File 10 routines

Parameters None

Returns New LSN if successful, INVALID_LSN otherwise.

Effects - Updates the /pro/mdb/ild/local_log/LSN_FILE.

6.2.2 char* LRS :: steplnfoToLogEntry(step info)
Semantics - This function converts contents of a Step Information structure to a log entry (string
of characters). It allocates storage for the string, it then stores the individual fields of step_info in
the string using the DELIMITER and returns it to the calling function which is responsible for
clearing the string storage.

Called By- LRS: :logSteplnfoO

Calls - String Manipulation functions

Parameters - struct step_info

Returns - char *lo~entry if successful, NULL otherwise.

Effects - None

Yashesh Bhatia Page 35 of 42

Appendix I	 April 29, 1993

6.2.3 char* LRS :: csteplnfoToLogEntry(cstep_info)
Semantics· This function converts contents of a CStep Infonnation structure to a log entry
(string of characters). It allocates storage for the string, it then stores the individual fields of
cstep_info in the string using the DELIMITER and returns it to the calling function which is
responsible for
clearing the string storage.

Called By.	 LRS::logCStepInfoO

Calls·	 String Manipulation functions

Parameters·	 struct step_info

Returns·	 char *lo~entry if successful, NULL otherwise.

Effects· None

6.2.4 Boolean LRS :: logEntrytoComplnfo(char *log_entry, compJnfo* cinfo)
Semantics· This routine reads a log entry and extracts the compensation step information from

\

the log entry. This routine is tightly coupled with the format in which the STEP and the corre

sponding CSTEP information is stored in the LOG.

Called By.	 LRS::readCompInfoO

Calls·	 LRS::getFieldO

Parameters·	 char *log_entry
struct comp_info *cinfo

Returns·	 TRUE if successful, FALSE otherwise

Effects· This function modifies the following fields of the comp info structure
1. Num rec
2. cstep_id
3. argc - storage is allocated for this field and is hence

for the calling function to free the storage.

4. argv

It also deletes the temporary strings that are allocated by LRS::getFieldO;

Yashesh Bhatia	 Page 36 of 42

Appendix I April 29. 1993

6.2.5 char* LRS :: getField(char *log entry, int field)

Semantics - This routine returns the contents of specified field. It allocates storage for the string
and the calling function is responsible for freeing it.

Called By- LRS: :logEntrytoCompInfoO

Calls - None

Parameters - char *lo~entry

int field

Returns - char* - contents of the specified field

Effects - Allocates storage for the returning string

6.2.6 Boolean LRS :: checkFile(char *filename)
(Semantics - This routine checks for the existence of the specified file.

Called By - LRS::LRSO
LRS: :logGSTAbortO

Calls - File 10 routines

Parameters - char *filename

Returns - TRUE if file exists
FALSE if it does not exist

Effects - None

Yashesh Bhatia Page 37 of42

Appendix I April 29, 1993

7. Class LocalLog

This class does the actual physical read/write from/to the log. It's only interface is the LRS (of
which it is a component)

7.1 Interface to the LRS

The LRS communicates with the LocalLog for the physical read/write of the Logs.

7.1.1 Status LocalLog :: 10gGSTAbort(int LSN)

Semantics - This routine logs a GST Abort Message for the specified LSN.

Called By- LRS::logGSTAbort(int LSN)

Calls - LocalLog: :writeLogO

Parameters - LSN

Returns - Status OK/NOT OK

Effects - None

7.1.2 Status LocalLog :: 10gGSTPrepared(int LSN)

Semantics - This routine logs a GST Prepared Message for the specified LSN.

Called By- LRS::logGSTPrepared(int LSN)

Calls - LocalLog::writeLog0

Parameters - LSN

Returns - Status OK/NOT OK

Effects - None

Yashesh Bhatia Page 38 of 42

Appendix I Apri129, 1993

7.1.3 Status LocalLog :: logGSTAbortDecision(int LSN)

Semantics - This routine logs a GST Abort Decision Message for the specified LSN.

Called By- LRS::logGSTAbortDecision(int LSN)

Calls - LocalLog: :writeLogO

Parameters - LSN

Returns - Status OK/NOT OK

Effects - None

7.1.4 Status LocalLog :: logGSTCommit(int LSN)

Semantics - This routine logs a GST Commit Message for the specified LSN.

Called By- LRS::logGSTCommitO

Calls - LocalLog: :writeLogO

Parameters - LSN

Returns - Status OK/NOT_OK

Effects - None

Yashesh Bhatia Page 39 of 42

Appendix I April 29, 1993

7.1.5 Status LocalLog :: logGSTBegin(int LSN)

Semantics· This routine logs a GST Begin Message for the specified LSN.

Called By. LRS::logGSTBegin(int LSN)

Calls· LocalLog: :writeLogO

Parameters· LSN

Returns· Status OK/NOT OK

Effects· None

7.1.6 Status LocalLog :: logSteplnfo(LSN, log_entry)

Semantics· This routine logs the STEP info for the specified LSN.

Called By· LRS: :logSteplnfoO

Calls· LocalLog::writeLogO

Parameters· LSN
char *log_entry

Returns· Status OK/NOT_OK

Effects· None

Yashesh Bhatia Page40of42

Appendix I	 April 29. 1993

7.1.7 Status LocalLog :: logCsteplnfo(LSN, log_entry)

Semantics· This routine logs the CSTEP info for the specified LSN.

Called By. LRS: :logCsteplnfoO

Calls· LocalLog: :writeLogO

Parameters· LSN
char *log_entry

Returns· Status OK/NOT OK

Effects· None

7.1.8 log_rec* LocalLog :: readLog(int LSN)

(Semantics· This routine returns all the log records for a given LSN. Storage is first allocated for
the log record and the log entries it contains. The data fields are then initialized. The log entries
are scanned sequentially till all the records of the LSN have been read or the EOF is reached.
The log record structure is updated if the scanned LSN is the specified one.

Called By.	 LRS::readComplnfoO

Calls·	 File 10 and string manipulation routines.

Parameters·	 LSN

Returns·	 Log record structure if successful (see the file LRS~lobal.H for details
NULL otherwise.

Effects· Returns the pointer to a structure, so please delete the structure as soon as you are done
with. It is a memory intensive structure and hence can cause memory problems if left unattended.

Yashesh Bhatia	 Page 41 of42

- -

Appendix I	 April 29, 1993

7.2 Private member Functions
The private member functions are used only by the LocalLog and are generally helper or initial

ization functions.

7.2.1 Status LocalLog :: writeLog(LSN, rec_type, log_entry)

Semantics· This function writes a LOG entry to the LOCAL LOG. The entry consists 4 fields

I. Timestamp
2.LSN
3. Record Type
4. Log Entry - String

Called By. Other LocalLog functions

Calls· File 10 routines

Parameters· int LSN
enum Record Type
char *Io~entry

Returns· Status OK/NOT OK

Effects· Adds a Log Entry to the file /pro/mdb/ild/local_log/LOCAL_LOG.

7.2.2 Status LocalLog :: writeLSN(LSN, rec type, log entry)
Semantics· This function writes a log entry to the temporary LSN file. The entry
consists 4 fields

I. Timestamp
2.LSN
3. Record Type
4. Log Entry - String

Called By •	 Many LocalLog functions

Calls·	 File 10 routines

Parameters·	 int LSN
enum Record Type
char *Io~entry

Returns·	 Status OK/NOT_OK

Effects· Adds a Log Entry to the file /pro/mdb/ild/local_log/LSN_filesILSN.

Yashesh Bhatia	 Page 42 of42

