
BROWN UNIVERSITY

Department of Computer Science

Master's Thesis

CS-92-M9

"Interactive Collision Detection"

by

Stephan J. Zachwieja

Interactive Collision Detection
Stephan J. Zachwieja

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements

for the Degree of Master of Science in the

Department of Computer Science at Brown University

27 April 1992

This research project by Stephan J. Zachwieja is accepted in
its present form by the Department of Computer Science at

Brown University in partial fulfillment of the requirements for
the Degree of Master of Science.

Professor Andries van Dam

Advisor

Date

Interactive Collision Detection

Stephan J. Zachwieja

Brown University, Providence, RI 02912

Digital Equipment Corporation, Rocky Hill, CT 06067

Abstract

When simulating motion, it is considered both undesirable and visually dis
turbing for objects to inter-penetrate one another. Such an effect jars one's
sense of reality. In order to avoid this we add non-penetration constraints to
those objects which we do not want to inter-penetrate.

The two problems involved in simulating non-penetration constraints be
tween objects are (1) collision detection - detecting and describing contact
between pairs of objects, and 2) collision response - calculating the forces
present between colliding objects. This paper discusses the first problem of
detecting collisions and presents an algorithm for detecting and describing
collisions in an efficient manner. This algorithm is both hierarchical and
adaptive and works for arbitrary closed polyhedra. Also discussed are a
number of heuristics that can be used to help speed up collision detection.

1 Introduction

Traditional computer graphics and modeling systems look at objects as lit
tle more than a collection of geometric shapes. Objects are often devoid of
physical properties such as mass and velocity. A user may move an object
from point Po to point PI, but the change is kinematic. The object moves
instantaneously, or the movement is interpolated over time, but the object
never has a velocity. As faster processors and more capable graphics engines
become available, users become more ambitious, scenes become more com
plex, and more objects are set into motion. Each object has its own point Po
and its own point PI, and each object is told how it should move between the
two points. However, each object generally only knows about itself. That
is, object A knows where it is and where it is going, but object A has no
knowledge of what object B might be doing. This means any interaction
between object A and object B must be addressed by the user.

A simple collision between two objects such as a ball and the ground
might be easy for a user to simulate. The ball accelerates downward toward
the ground. The user calculates the time when the ball hits the ground and
then negates the velocity of the ball causing it to bounce, except the object
has no velocity as such; it moves kinematically. The user may also want to
delay the bounce, and decrease the "velocity" to make the collision look less
elastic and more realistic. Maybe the ball has some horizontal motion and
should now spin as a result of friction acting on the ball when it hits the
ground. The user has to determine how much spin. Just a little more; no,
too much - and this is supposed to be a simple collision. The amount of
work involved goes up as a function of the square of the number of objects
in the scene. Each collision needs to be tweaked to perfection, and the user
is forced to spend many hours watching the simulation over and over again.

Recent work has focused on the simulation of rigid bodies using New
tonian dynamics. Objects have velocity and acceleration as well as mass,
moments of inertia and coefficients of friction and elasticity. Users no longer
have to guess at how an object will behave when a gravitational force is
applied to an object, or when a torque is applied to make an object rotate.
In order for the dynamic simulation to be accurate, the interaction between
objects must also be modeled. That is, when object A hits object B, how
do the two objects respond? This problem is most easily solved when it is

1

broken into two parts. The first part is that of detecting interaction between
objects. The second part is determining how to respond to the interaction.
This paper discusses the first of the two problems - detecting object interac
tion, or collision detection.

The test for object interaction is actually a test for object intersection.
Detecting that there is an intersection between two objects is relatively sim
ple. If the objects are closed polyhedra, then simple ray intersection tech
niques are used. The two difficult aspects of detecting collisions are 1) cal
culating and describing the initial point of contact so that a proper response
may be effected, and 2) making the calculation of that contact point efficient
enough for the algorithm to be used in interactive simulations. The collision

2detection problem is inherently an O(n) algorithm. Every edge of every
object needs to be tested against every face of every other object, and vice
versa. A naive approach can result in an unusable implementation. Special
care needs to be taken to avoid unnecessary tests and duplication of effort.
As usual, there are tradeoffs, and one needs to weigh the assumptions made
and shortcuts taken against the loss in realism and gains in interactive speed.

2 Previous Work

There are many strong algorithms for collision detection and collision re
sponse. Their origins are mostly rooted in robotics, computational geometry,
and manufacturing, although there has been a recent flurry of algorithms for
doing dynamic simulations in computer graphics. Most of the algorithms are
presented in the form of a dedicated simulator. That is, the simulator does
one specific task; it detects collisions and responds to them. Each algorithm
makes various assumptions about the motion or surface of the objects being
simulated.

2.1 Motion Planning

Methods for detecting collisions are presented by Canny [4] and Gilbert, et.
al. [8]. Both methods address the general case of intersections between
multiple polyhedra and limit movement in the system to a single object in
an otherwise static world.

2

Canny [4] presents an algorithm for detecting the exact point of collision
between stationary obstacles and an object that is moving with constant lin
ear and angular velocity. While this algorithm is designed specifically for
dealing with motion and path planning problems, it also is suited to the
generic collision detection problem because it is extensible to multiple mov
ing objects. Specifically, a moving object is tested against a set of obstacles
to determine if they intersect. If they do intersect then the exact point of
intersection is derived using a root-finding procedure on equations of mo
tion which are represented using quaternions. Since rotation of a vector by
a quaternion requires only addition and multiplication, the constraints on
movement will be algebraic. This algebraic form of the constraints greatly
simplifies computation of collision points and allows the calculation of an
exact collision point using a root-finding procedure.

The best feature of Canny's algorithm is that it finds an exact point of
collision. No bounds for the initial intersection test are given, but it seems
clear from the presentation that the algorithm is O(n 2

) in the number of faces
and edges in the polyhedra being tested. Given that two polyhedra intersect,
the algorithm proceeds to search for roots to a twelfth order polynomial using
an iterative search technique. The convergence can be very slow, and each
iteration increases the amount of floating point error. This tends to make
the exact collision points somewhat less exact.

Gilbert, et. al. [8] present a fast procedure for computing Euclidean dis
tance between convex polytopes. Their algorithm measures distance between
two objects as the distance between the two closest points in each of the ob
jects. A collision between objects is reported when the distance between
two objects is less than or equal to zero. Their paper makes no mention
whatsoever about edge detection and is limited to problems where only one
object is moving through an otherwise static world. Some effort is made to
describe the collision by using the negative distance as a measure of collision
depth, but nothing more is offered that would provide enough information
to accurately respond to a collision.

The attraction in the algorithm presented by Gilbert, et. al., is the possi
bility of using the convex hull of an object as the bounding box. Both spheres
and rectilinear bounding boxes tend to encompass a large amount of empty
space which can result in much unnecessary work. However, it is not clear
whether the algorithm is fast enough to remove simple bounding box tests

3

as a means of trivially rejecting non-colliding objects. No explicit mention
is made of the bounds on the running time for this algorithm, but it is said
to have a computational cost that is approximately linear in the number of
points defining the polytopes. The linear cost is achieved by caching some
initial computations on the static objects as a function of a known path the
single moving object will take. In short, the algorithm is designed to look
at a static scene and determine where collisions may occur so they may be
avoided, as opposed to the more interesting case of a dynamic environment
where collisions are detected and then responded to in a physically correct
manner.

2.2 Interference Detection

A method for interference detection in manufacturing and industrial envi
ronments is presented by Boyse [3]. As factories become increasingly au
tomated the use of machinery and robots also increases. Such machinery
requires careful orchestration to work properly with other machinery. When
designing components for product manufacturing and testing facilities it is
important to take into consideration possible interference between moving
objects. Unfortunately, a two-dimensional drafting medium does not always
show interference among three-dimensional objects, especially when one or
more of the objects is moving. If interference is not detected at the design
phase then it may not be caught until a prototype is built or, worse yet,
when production begins, which means lost time and money.

Boyse defines an algorithm for both static and dynamic interference check
ing. The static interference checking is much the same as every other algo
rithm discussed in this paper. That is, objects are represented as a series of
planar faces defined by edges connecting vertices. The edges of one object
are tested against the faces of another object using standard ray intersection
techniques. Boyse then goes on to discuss techniques for dynamic interfer
ence checking. Specifically, an algorithm is offered for detecting collisions
between a moving edge and a stationary face. Two types of collisions are
defined. The first is when an endpoint of the edge pierces the face. The sec
ond involves the edge sweeping across and intersecting the boundary or edge
of the face. The first is solved using trigonometric functions to determine if
an endpoint of the moving edge pierces the face after rotating through some

4

angle (). The second involves sweeping the edge over time, generating a hy
perboloid of revolution and then testing for intersections between the surface
and each of the edges in the face by solving quadratics.

Boyse's algorithm is limited to tests where only one object is moving.
The motion of a given point or edge being tested can be made relative to the
opposing face effectively making the face stationary, but the surface swept
by the edge will no longer be quadratic. Additional translational and ro
tational components yield higher order polynomials which cannot be solved
analytically, thus requiring the use of a root-finding procedure.

2.3 Implicit Representation

Any object or surface can be modeled with a sufficient number of poly
gons. However, sometimes it is more convenient to represent object using an
implicit representation - for example, a sphere. Some objects may be repre
sented by bicubic patches and still others are better defined by higher-level
parametric functions of u and v, as in f(u, v). Existing algorithms are not
guaranteed to find the earliest collision unless the functions used to define the
surfaces are restricted. Von Herzen, et. al. [18] present such an algorithm,
limiting functions to those having computable bounds on their regional rates
of change. These bounds on the rates of change are called Lipschitz values.
Additionally, Von Herzen, et. al., use Jacobian bounding boxes to reduce
the number of computations required to detect interference. A constraint
is also placed on the maximum velocity of any point on the surface of an
object. Baraff [2] presents a paper on simulating non-penetration constraints
for curved surfaces. Surfaces are limited to those that are twice-differentiable
without boundary. The bulk of Baraff's paper focuses on the forces present
between contacting curved surfaces rather than the detection of contact be
tween such surfaces.

2.4 Polyhedral Representations

Hahn [9], Moore and Wilhelms [10] and Baraff [1] discuss methods for mod
eling contact and the forces required to prevent inter-penetration between
polyhedral objects. All three of the papers concentrate on the response be

5

tween colliding or contacting objects.

Hahn's paper specifically mentions testing of edges against faces and a
hierarchical algorithm involving bounding boxes, both which have been pre
sented before and are incorporated into the UGA collision detection algo
rithm. Hahn also discusses the various types of collisions but leaves out
some of the most difficult types including collisions between coplanar faces
and collisions between a face and an edge parallel to that face. Hahn uses
a standard backtracking technique for finding an exact point and time of
collision. The backtracking technique only takes into account linear velocity.
It does not account for linear acceleration, or angular components. The bulk
of Hahn's paper is dedicated to collision response, including modeling the
forces necessary to prevent inter-penetration and the building of graphs to
model simultaneous contact between objects. This allows modeling of force
propagation through a series of objects such as in the break in a game of
billiards.

Moore and Wilhelms [10] focus their paper on collision response. Early
portions of the paper discuss collision detection, but all discussion is limited
to intersections between convex polyhedra. Equations are offered for solving
vertex face intersections resulting in fifth order polynomials. These cannot
be solved analytically and a binary search is used to converge on an exact
time and point of collision. The remainder of the paper focuses on collision
response. This includes solutions using springs and analytical solutions using
large sparse matrices, the later of which can be used to respond to collisions
of an arbitrary number of objects in simultaneous contact. This use of sparse
matrices is the basis for collision response within UGA. However the UGA
implementation is hardcoded for collisions between only two objects.

The Baraff [1] paper is dedicated almost entirely to collision response with
little mention of collision detection. There is, however, a useful discussion on
restricting contact points. Specifically, if an edge is in contact and parallel
to a face, the contact can be modeled by just looking at the endpoints of
the edge. Similarly when there is a coplanar collision between two faces, the
collision can be properly modeled by applying forces only to those points
which are endpoints of the edges on the faces, and those points where the
edges of the two opposing faces cross. It is not necessary to integrate the
collision force across the entire region of contact.

6

2.5 Previous Work Summary

Most of the papers discussed above, concentrate on collision response. That
is, there is an emphasis on producing an accurate and realistic physical
response between contacting objects. Each of the implementations exists
within a dedicated simulator, thus limiting their general usefulness in a larger
integrated graphics simulation environment. Some limit motion to a single
object through an otherwise static scene, and none allow interaction by the
user after the simulation begins. Simulation times are given in minutes.
However, users want to see the simulation as it happens, and they want to
see smooth continuous motion. They want to see multiple moving objects,
and they want to be able to change the motion of object on a whim while the
simulation is in progress. The algorithm within this environment should not
only produce a correct physical simulation, but it should be efficient enough
for it to be interactive and useful as a tool for creating complex dynamic
simulations. Furthermore, the entire package should be integrated into a
complete graphics modeling environment. Toward that end, my focus was
on creating an efficient, practical, and useful algorithm that would integrate
into the rich graphics modeling environment that is UGA.

3 Collision Detection within UGA

My goal for collision detection within UGA was to implement a general pur
pose collision detection algorithm. That is, an algorithm that would fit into
a general purpose simulator. Most of the previous work in collision detection
and response involves a dedicated simulator. Such simulators have knowl
edge about object shapes and collision dynamics, but little else. The UGA
environment encompasses a large number of different packages that allow
multiple simulation processes to run concurrently affecting the same set of
objects. It was important that my collision detection algorithm fit into this
framework. Another goal was to make the collision detection algorithm fast
enough for the user to interact with it. If the simulation is too slow and
motion is jerky, then it is difficult for the user to interact with the objects.
Algorithms involving dedicated simulators don't give users the privilege of
interaction. The objects are defined and set into motion, and the simulation
runs to completion - by itself. When two objects intersect the simulation

7

starts backtracking to find the initial point of intersection. Typically this
involves moving the intersecting objects back in time until just before initial
contact is made. Existing algorithms use a number of binary search tech
niques, moving the objects to their positions at a previous time, and then
checking to see if they intersect at that time. This means another complete
intersection test, and the transformation of the entire object at each iteration
in the binary search.

In contrast, the UGA collision detection algorithm does extent checking
on all faces and edges to reduce the number of complete edge and face tests.
When testing a face against the edges of another object, the face is tested first
against the extent of the other object. This can eliminate all the edge tests
for the face with one simple extent check. The extent checks are essentially
free. Furthermore, if the time step is sufficiently small, then only two or three
faces of the first object will intersect the opposing object making the lower
bound O(n) in the number of edges in the opposing object. Furthermore, the
UGA collision detection algorithm does not transform the entire object at
each iteration of the binary search. Only those components which are known
to be intersecting are moved backward in time, and additional components
may be eliminated from the search at each subsequent iteration. In practice,
this makes the time complexity for intersecting objects near constant.

At the higher level, the collision detection algorithm does pairwise testing
of every object being simulated. Tests begin simply using rectilinear extents.
If the extents of two objects intersect then additional tests are performed.
All the faces of one object are tested against the edges of the opposing object
and vice versa. All edges and faces found to be intersecting are then placed
on a list. The list is then processed using a backtracking technique to find
the initial point or points of contact. All points of contact are then coalesced
into a single point of contact and passed along with information describing
the plane of collision which is used to respond to the collision.

3.1 Discrete Simulation

The simulation process models time discretely. That is, the user defines the
interval or granularity at which the system will be updated. If an object is
moving at a speed of two, that means it is moving two units of distance per
one unit of time. If the user defines the interval to be 0.1, then the system is

8

updated ten times per unit of time and the object moves 0.2 units of distance
during each interval or time step.

Modeling time discretely creates aliasing problems. If the system is not
updated at a high enough frequency some events may be lost. For instance,
figure 1 shows two balls of radius one; the distance between the two balls
is also one. If the ball on the left moves two units to the right in a single
time step, and the ball on the right moves two units to left in that same
time step, the balls will exchange positions and will not be penetrating at
the end of the time step. No collision will be detected. This can be overcome
by extruding the moving object volumes and then testing the volumes for
a collision, but this can be very expensive. The alternative is to increase
the sampling rate by reducing the time interval. This effectively limits the
displacement of objects within a time step thus reducing the possibility that
two objects will pass completely through each other in a single time step.

Figure 1: two balls passing through each other

Another problem with discrete time modeling is that collisions are not
detected until the end of the time step in which they occur. Consider a
simulation proceeding from time 0.0 to time 1.0 with a collision occurring at
time 0.75. If the interval is 0.1, then the simulation will run from time 0.0
to time 0.7 with no collisions detected. The next time step occurs at time
0.8. By this time the objects that would otherwise collide and bounce off
each other at time 0.75 are now penetrating each other. If the collision is to
be modeled properly then it is necessary to move backward in time and find
the point of initial contact. This process is called backtracking.

9

3.2 Objects and Controllers

The implementation of collision detection is based on the notion of objects
and controllers within the UGA architecture. Objects are a combination of
data structures and methods. The data structures contain state information
for some small portion of the system, such as graphical objects, logical tools,
and physical devices. Methods are procedures having inherent knowledge
about the objects to which they belong, allowing them to manage, maintain
and retrieve information on objects. A controller is a special class of object
that observes other objects and modifies those objects as a function of ob
served interaction between those objects. For instance, an electron passing
between two oppositely charged plates will turn toward the positive plate.
The electron object knows only about the electron object. The plate objects
know only about charged plates. It is the controller that knows how electrons
interact with charged plates and observes all three objects to make sure that
the interaction between the electron and the charged plates is correct.

There are two controller objects within UGA for detecting and responding
to collisions. The collision detection controller, or detection object, observes
other objects and reports when objects have collided. The collision response
controller, or response object, applies forces to objects based on the informa
tion returned by the detection object. At each time step in a simulation the
response object is queried once for each object it is observing. If it is asked
about object A, it then asks the detection object if object A has collided
with any other object. If object A has collided with another object, then the
detection object reports that collision to the response object. The response
object, knowing how colliding objects interact with one another, then applies
changes to object A to effect the correct response. Note that no changes are
applied to the object with which object A collided. If object A collided with
object B, changes to object B will be applied at such time that the response
object is explicitly asked about object B.

3.3 Object Representation

The current implementation of collision detection within UGA is limited to
tests between closed polyhedra. The polyhedra can be both regular and non
regular and need not be convex. The boundary representation for all such

10

polyhedra is a triangle mesh composed of information on individual vertices,
edges and faces. Additional connectivity information is available as are face
and vertex normals for the polyhedra. Extent information is maintained for
the object as a whole and may also be present for individual faces and edges.
The collision detection object uses a lazy evaluation technique for gather
ing data. If an object is not involved in a collision or a near collision, then
the object data will include only the object extent. When the extents of
two objects intersect additional inquiries are made to retrieve the bound
ary representations of the objects, and additional edge and face extents are
computed.

If it is determined that two objects intersect, then physical data is added
to the object as well. Specifically, the detection object makes inquiries about
velocities and accelerations so that it may begin backtracking to determine
the initial time and point of intersection. Additional physical data, such
as mass, moments of inertia, and coefficients of friction and elasticity are
available but are used only by the response object.

3.4 Intersection Detection

The first step in detecting a collision is determining whether two objects
intersect. At each time step the response object makes multiple inquiries
of the detection object as to which objects have collided with which other
objects. When queried about a particular object A, and a set of objects
B, the detection object makes inquiries of object A and each object in the
set B to obtain their rectilinear extents. The extent of object A is tested
against the extent of each object in the set B. If the extents of two objects
do not intersect then the objects themselves cannot intersect, and that pair
of objects is trivially rejected as not intersecting.

If the extents of any two objects intersect then it is necessary to do ad
ditional testing between the boundary representations of those objects. The
following set of necessary and sufficient conditions are defined for detecting
intersections between two objects, A and B, where both objects are closed
polyhedra represented by a triangle mesh as described in section 3.3.

1. a vertex of A lies inside B, or

2. a vertex of B lies inside A, or

11

3. an edge of A intersects a face of B, or

4. an edge of B intersects a face of A.

An informal proof of these conditions is discussed in [4]. Conditions 3 and
4 both require O(nm) ray intersection tests were nand m are the number
of faces and edges in each object. Conditions 1 and 2 require an additional
O(nm) ray intersection tests, where n is the number of faces and m is the
number of vertices, to perform an odd-even rule test to determine if each
vertex is inside or outside of an object. The number of vertex tests can be
significantly reduced if one assumes the time step is sufficiently small such
that no vertex passes so far into an object that it has no connecting edges
which intersect a face of the object. Conversely, this means that all vertices
inside of an object have at least one connected edge that intersects a face of
that same object.

If conditions 3 and 4 are tested for first, and a list of edges is constructed,
then conditions 1 and 2 can be eliminated. This is true because every vertex
on the inside of the object will by definition be connected to an edge that
intersects a face of the opposing object. Since all such edges are kept in a
list, all vertices inside of an object can be obtained from that list without
additional testing.

For instance, figure 2.a shows a cube penetrating the surface of a plane.
There are two vertices beneath the plane. Both vertices can be found by
looking at the endpoints of the two edges piercing the plane. Figure 2.b
shows a cube with beveled edges penetrating the same plane. Four of the
vertices of the cube are beneath the plane. The two lower vertices are not
connected to any edge that intersects the face of the plane. This conflicts
with the above assumption requiring all vertices inside of an object have at
least one connected edge intersecting a face of that same object.

When testing for intersections between the boundary representation of
two objects all faces of the first object are tested against all edges of the
second object, and vice versa. Initial testing is done between face and edge
extents. If the extent of a face does not intersect the opposing object extent,
fhen there is no need to test that face against every edge in the opposing
object. All faces and edges that are not eliminated by the extent testing are
tested pairwise using a ray intersection technique. Each intersecting edge
and face pair is recorded and added to a list of intersections. The vertex

12

ba

Figure 2:

of the intersecting edge that is behind the face is also placed on the list of
intersections. Recording both the edge and face pair as well as the vertex
provides enough information to determine how the intersection developed.
That is, how did the edge first come in contact with the face? There are two
possibilities. Either an endpoint of the edge pierced the face, or the edge
crossed one of the edges that defines the boundary of the face.

3.5 Micro Backtracking

If two objects intersect, then two lists are constructed during the initial
intersection testing that describe all the points of intersection. The first list
contains all pairs of intersecting faces and edges. The second list is derived
from the first and contains those vertices on the edges in the first list that lie
behind the faces those edges intersect. There is a one-to-one correspondence
between the items on each of the lists. The lists represent many points of
contact, but the response object is only interested in the initial point of
contact.

Like many of the papers discussed in section 2, the UGA collision detec
tion implementation uses a backtracking technique to find the initial time
and point of intersection. Specifically, the detection object moves backward
in time and then checks to see if the two objects being tested are still inter
secting. If the detection object moves back in time, and the objects are no
longer intersecting, then the time chosen is too far back and the detection
objects moves forward in time. The detection object continues this process
moving backward and forward as necessary until it converges on the initial

13

time and point of intersection. Most algorithms transform both objects in
volved at each intermediate time step in the backtracking process. The UCA
collision detection algorithm uses the lists of faces, edges and vertices that
were constructed in the initial intersection tests to isolate those components
of the objects that are involved in the collision. Transforming two faces indi
vidually may result in duplication of effort because the two faces may share
vertices vertices. If it is determined which vertices are involved in the testing,
then those vertices are transformed once and only once at each step in the
backtracking process.

At each step in the backtracking process additional faces, edges, and
vertices are eliminated from testing. This reduces the amount of work which
will have to be done for future iterations in the backtracking process. For
instance, edge A and face A first intersect each other at time 0.12, and edge
B and face B first intersect each other at time 0.13. Both intersections occur
in the current time step which goes from 0.0 to 1.0. The initial binary search
begins at time 0.5. The initial intersection time for both edge face pairs
occured before that time. The second iteration in the binary search is done
at time 0.25. Again both intersections occured before that time and the third
iteration is done at time 0.125. The intersection between edge A and face A
occurs before the time 0.125 and the intersection between edge B and face
B occurs after.

At this point there are two things to note. First, the goal is to find
the first point of intersection. This means when doing backtracking the
precedence for the search is to test for those intersections that occured earliest
in time. So when given the choice above, the next iteration in the binary
search sets the time to 0.0625 so that the search converges on the intersection
between edge A and face A. The second thing to note is that the faces,
edges, and vertices in the list are only potential intersection points. That
is, following edge A and face A backward in time may produce no valid
intersection point. It may in fact be determined that edge A and face A
have an initial intersection time of 0.12, but it may also be the case that the
face was penetrated from the rear which is an uninteresting case (see section
3.6.1 for an explanation). This means work on edge B and face B can only
be suspended, not abandoned. Each time the backtracking process moves
backward in time, all of the edges and faces going backward in time are placed
on a list, all of the edges and faces forward in time are placed on a second

14

list which is in turn pushed on a stack structure. The stack can be accessed
later if the current backtracking path fails to yield an intersection point. If
edge A and face A yield a valid intersection point, then all lists on the stack
are popped off the stack and discarded, because it is clear that the unfinished
searches remaining on the the stack will converge on a time that is later than
the intersection between edge A and face A. However, it is not really known
in advance that one intersection occurs at time 0.12 and the other at time
0.13. When the backtracking process splits the components at time 0.125, it
may be the case that the intersection of edge A and face A occurs between
time 0.125 and time 0.125 - E and that the intersection between edge Band
face B occurs between time 0.125 and time 0.125 + E. If two intersections
occur within some epsilon of each other, then those intersections are treated
as a single intersection, and both intersections are needed. This means when
an intersection is found at some time, the contents of the stack can only be
discarded when the time for the last iteration on the top of the stack is at
least one epsilon greater than the intersection time.

Micro-backtracking takes place for all edge and face pairs as well as the
list of vertices derived from the list of edge and face pairs. Sections 3.7
and 3.6 discuss this in greater detail. The discussion is treated outside the
scope of micro-backtracking to make it easier to understand. All such binary
searches are done in parallel using lists and stacks to reduce the number of
transformations and eliminate unnecessary tests.

3.6 Vertex Detection

As mentioned in section 3.4, a list of vertices is constructed during the initial
intersection test. Each vertex in the list is an endpoint of an edge intersecting
a face of the opposing object. Each vertex has potentially intersected a face
of the opposing object. The face that the vertex intersects may not be the
same face the corresponding edge intersects. For this reason each vertex in
the list is tested against every face of the opposing object.

3.6.1 Backface Culling

Given a vertex and a face, it is necessary to determine if the vertex passed
through the face in the previous time step. This is done by first determining

15

if the vertex has passed through the plane defined by the face. A vector is
constructed from the vertex to a point on the plane, and then the scalar dot
product of that vector and a normal to the plane is taken.

If the scalar dot product is negative, then the vertex is in front of the
face and the vertex face pair can be trivially rejected. Specifically, if the
time step is small relative to the size and velocity of the objects being tested
then movement within that time step is essentially linear. This means that
in order for the vertex to intersect the face and finish in front of the face it
would have to have passed through the face from behind. Since all of the
objects are closed polyhedra, the only way the vertex could pass through the
face from behind is if it was inside the object just before intersecting the face
from behind. Furthermore, the only way the vertex could be inside the object
is if it first passed through the front of some other face of the object to get
inside. Since the goal is to find the first intersection or set of intersections,
all intersections where the vertex passes through a face from behind can be
ignored.

3.6.2 Binary Search

If the scalar dot product is positive, then the vertex is behind the face and
backtracking begins using a binary search. At each iteration of the binary
search a vector is constructed from the vertex to the plane defined by the
face. The vertex is known to be behind the face at the end of the current time
step so the binary search begins at the beginning of the time step. In the first
iteration, if the scalar dot product of the constructed vector and the normal
to the face is positive, then the vertex is behind the plane at the beginning
of the time step as well. Since motion is assumed to be linear within a given
time step this means the vertex does not cross the plane within the time
step and therefore cannot intersect the face. The binary search can then be
terminated after only one iteration.

If the scalar dot product of the constructed vector and normal to the face
is negative then the vertex has moved across the plane in front of the face.
This means the vertex has crossed the plane in the time step and the binary
search continues to determine the initial time and point that it crosses the
plane. At each iteration a new vector is constructed. Each time the scalar
dot product with the normal to the face is negative the point is in front of

16

the plane and the search interval is moved forward in time toward the end
of the time step. Each time the scalar dot product is positive the search
interval is moved backward in time toward the beginning of the time step.
This process continues until a point is converged on.

In practice it is impossible to determine the exact point of collision, and
the binary search is stopped at such time that some level of precision has
been reached and the last iteration placed the vertex in front of the plane
defining the face. It is important to continue the binary search if the point
is still behind the face, even after reaching the desired level of precision. If
the binary search is terminated with the point still behind the face then the
objects are still intersecting and the collision cannot be properly resolved.

Once the point at which the vertex crosses the plane has been calculated
it is necessary to determine if the point lies within the face itself. Since all of
the faces are triangles, a standard technique is used for determining whether
the point is in the interior of the face. If the point is inside the face then a
record of the intersection is made and inserted into a list of collisions which
will be used to describe the final point of collision.

3.7 Edge Detection

After doing the initial object intersection test as described above in section
3.4, there exists a list of edges and the faces they intersect. Given an edge and
the face it intersects from that list, one of two things must have transpired
for the intersection to have occurred. Either an endpoint of the edge pierced
the face, or the edge crossed one of the edges defining the boundary of the
face. If an endpoint of the edge pierced the face it will be detected during
the vertex detection phase as described in section 3.6. This means only the
latter case needs to be tested. Once again a binary search is used to find the
edge of the face, if any, that the intersecting edge has crossed to enter the
face.

3.7.1 More Binary Search

As mentioned before, the time step is assumed to be sufficiently small such
that the motion is linear within a time step. The list of edge and face

17

intersections was constructed at the end of the time step, so the binary
search to determine the initial point of contact starts at the beginning of the
time step. If an edge and face still intersect at the beginning of the time
step then the edge never crosses the boundary of the face. If the edge no
longer intersects the face then the edge has crossed one of the edges on the
boundary of the face. The edge that was crossed is recorded and the binary
search continues until convergence on the point where the intersecting edge
crossed the boundary of the face.

3.7.2 Polygon Traversal

Because the boundary representation of the objects is defined using triangles
and not arbitrary polygons, each face of an object may actually be composed
of multiple triangles. The list of edge and face intersections are really edge
and triangle intersections. Some edges of these triangle are interior to a larger
polygon that defines a face. Such is the case for the diagonal edge across the
face of a cube. Given an edge and the triangle it intersects, it is necessary to
determine if that edge crosses the edge boundary of that triangle. If the edge
crosses the boundary of the triangle and the edge defining that boundary
is an interior edge to a larger polygon defining the face, then the search
continues backward in time with the triangle on the other side of that edge.
In this manner the it can be determined which edge of the larger polygon
defining the face is crossed rather than one of the interior edges of a single
triangle in the face.

Figure 3: one face, but three triangles

Figure 3 shows the top face of a trapezoidal cylinder defined by the three

18

triangles a, band c. In the same figure there is a point, PI showing where
an edge normal to the face intersects the triangle a. At the beginning of
the time step, the edge normal to the face was at the point Po. Since linear
motion is assumed, the edge would have to move across triangles c and b
before entering triangle a. As the binary search continues backward in time,
the edge normal to the face crosses the edge separating triangles a and b.
If the triangle on the other side of the edge is coplanar with the triangle
currently being traversed, triangle a, then the search continues through that
adjacent coplanar triangle, b. The search then moves across triangle band
then into triangle c. Triangle c is traversed until the edge normal to the face
exits at the rightmost edge of triangle c. The triangle on the other side of the
rightmost edge in triangle c is not coplanar with triangle c and the traversal
is complete. This is the initial point of contact which is recorded in a list of
collisions used to describe the final point of collision.

3.7.3 Interior Edges

For the same reasons as described in the section on polygon traversal, 3.7.2,
if there is an edge in the list of edges and faces which is an interior edge,
then that edge can be ignored.

Figure 4: edge crossing an interior edge of a face

In the case where an edge falls onto a face and is coplanar with that
face producing a series of intersections all at the same time, it is necessary to
eliminate intersections with interior edges. Consider figure 4 showing the top
face of a cube with an edge lying across the face. The edge intersects three
other edges producing three separate intersections. Clearly the resulting

19

collision force between the edge and the face should be halfway between the
rightmost and leftmost intersection point. If an averaging technique is used,
the collision point would be weighted toward one end because of the extra
intersection with the interior edge making the collision response incorrect.
By eliminating this type of intersection early, the job becomes easier in the
later stages when there may be a large list of collision points to sort through
in an effort to find a single point and a collision plane that accurately describe
the contact between two objects.

3.8 Data Reduction

The response object expects one collision event to be returned for each pair of
colliding objects. If object A collides with objects Band C then two events
are returned for object A, and one event is returned for each of objects B
and C. There are several different types of contact that can occur between
colliding objects, and it may be the case that a pair of objects collide at
multiple points simultaneously. Each type of contact has its own footprint
and generates a different set of contact points. For instance, a collision
between a vertex and a face generates one contact point. Contact between
an edge and a face may generate several collinear points. A collision between
two faces generates a coplanar set of contact points lying on the convex hull
of the intersection between the two faces. If there is a single contact point,
then the job is easy and that single point is passed straight through to the
response object. If the list contains two unique contact points then the two
points are averaged together and the result is passed to the response object.
Collisions involving three or more points of contact require additional work.

The UGA collision detection algorithm looks for two things in a large set
of contact points. The first is to see if the points are collinear. The second
is to see if the points are coplanar. If a set of points is collinear then the two
endpoints or extrema on the line are averaged together to yield a single point
of collision. All other intermediate points are discarded. If a set of points
is coplanar, but not collinear, then all of the points are averaged together
to yield a single point of contact. A better algorithm for a set of non-linear
coplanar points would be to determine the center of the convex hull and use
that as the contact point. However, one of the main goals of the collision
detection algorithm is that it be interactive. Taking the average is much

20

faster.

The last type of multi-contact collision set is when there are four or more
non-coplanar points. This only happens when non-convex objects intersect.
In this case all of the points are simply averaged together. A better algorithm
would be to divide the points into sets of coplanar points as a function of
which edges and faces they lie on. However, such an algorithm would have an
exponential time complexity. Taking the average produces reasonable results
for most such intersections. Once again the need for speed wins out.

After reducing the data to a single collision point, and constructing the
plane of collision about that point, the collision is reported to the response
object and collision detection for the particular object pair is complete.

3.9 Restrictions

The current detection algorithm makes some assumptions about objects and
their motion. The following restrictions apply to the collision detection im
plementation within UGA.

•	 The boundary representation of all objects must be polyhedra com
posed of triangle faces. The current collision detection implementation
does all of its work on triangles faces, edges and vertices. This is the
representation used in the modeler within UGA.

•	 No pair of objects may be intersecting at the beginning of a time step. If
objects are intersecting at the beginning of a time step their intersection
will not be detected until the end of the time step. The detection object
then works backward toward the beginning of the time step trying
to undo the intersection. If a pair of objects intersects at both the
beginning and the end of a time step, the initial point of intersection
cannot be determined because it does not occur within the current time
step.

•	 All polyhedra must be closed. The implementation assumes that this
is true and makes decisions based on this assumption. If objects are
not closed then some intersections and hence some collisions may be
missed as a result of the back-face culling optimizations.

21

•	 The time step must be sufficiently small so that all vertices inside an
opposing object are connected to at least one edge that intersects a
face of that opposing object (see section 3.4).

4 Future Work

The implementation of collision detection within UGA is complete for both
convex and non-convex polyhedra. Extensive testing has been done using
convex polyhedra. Testing of non-convex polyhedra has not been as rigorous.
The algorithm should work well for most situations. However, there are a
number of improvements that could be made to make the algorithm more
robust, more realistic and more interactive in terms of speed.

4.1 Macro Backtracking

As mentioned in section 3.1, the simulation of time is discrete. That is the
system is updated at some discrete interval of time. The detection object is
called once per time step for each pair of objects in the system. If multiple
collisions are detected in a single time step, then only the earliest is reported.
The later collisions must be ignored because the first collision causes a dis
continuity in the system. Any work done after that discontinuity is invalid.

For instance, objects A, B, and C are being simulated from time 0.0 to
time 1.0 at an interval of 0.1. At the end of each time step, object A is tested
against objects Band C, and object B is tested against object C. At times
0.1 and 0.2 there are no intersections and, therefore, no collisions. At time
0.3 inquiries are made for the positions of all three objects. Objects Band
C are detected as intersecting and backtracking determines the initial point
of contact to be at time 0.25. The test done between object A and B is now
invalid because the inquiry for the position of object B at time 0.3 did not
take into account the collision with object C. The test between object A and
object C is also invalid. The response object could integrate the velocities
and accelerations for objects Band C over the remainder of the time step,
and then call the detection object again. However, the response object does
not know how to integrate velocities and accelerations. The response object
only knows how to respond to collisions. In the current implementation,

22

if there are additional events that occur between time 0.25 and 0.30 as a
result of the the collision at time 0.25, then they are discarded and lost.
This includes a second collision that might occur between objects Band C.
The end result can be incorrect response and in some case unrecoverable
penetration of objects.

The solution to this problem is macro-backtracking - backtracking of the
entire simulation to handle a discontinuity in the system. Specifically, if a
simulation goes from time 0.0 to time 1.0 and an event changes the system
at time 0.5, then that event should be processed at the time it occurs, not
at the end of the time step. The simulation should then be restarted at the
time of the event. Such support would need to be added at the system level,
so that it may be used by all controllers in a consistent and uniform manner.
Note also that special care needs to be taken to avoid needless resimulation
of objects that would not otherwise be affected by the event.

4.2 Contact Collisions

The UGA collision detection algorithm is capable of detecting contact colli
sions, but the collision response model does not handle such collisions. For
instance, if a block is lying on a table with downward acceleration due to
gravity the block collides with the table at the beginning of the time step.
The collision will not be detected until the end of the time step. By that
time the block has fallen through the table. At the beginning of the time step
the objects have no velocity and therefore no momentum. The response al
gorithm uses momentum transfer and kinematic changes to effect responses;
no forces are involved. In this particular case the block is translated back
to the top of the table based on the time of initial contact and the depth of
penetration. The correct response would be for the table to apply a normal
force to the block so that the effects of gravity are negated.

4.3 Multiple simultaneous collisions

Multiple simultaneous collisions are detected by the current UGA collision
detection algorithm. Such collisions are passed as a list back to the response
object. However, the collision response object does not handle the multiple

23

collisions. Specifically, it looks for the earliest collision in the list and re
sponds to that single collision and no others. The detection object always
returns the earliest collision. When the detection object returns multiple
collisions, they all occur at the same time. This means that the single col
lision chosen by the response object is a function of the list ordering, which
is essentially random based on the order in which inquiries are made in the
user script.

A simple enhancement to the response algorithm would be to process
the entire list of collisions returned by the detection object, and sum the
responses. The sum would then applied to the object of which is being in
quired. This would handle most instances of multiple simultaneous collisions.
However, this would not handle propagation of collisions through a series of
contacting objects. In order to handle propagation forces a model using de
pendency graphs would have to be constructed to apply forces properly to
all objects involved. This is discussed in the papers by Baraff [1] and Hahn
[9].

4.4 Interframe Coherence

Collision detection in a simulation environment is a series of geometric inter
section problems - one at each time step. Each problem is very similar to the
one before. However, most collision detection algorithms restrict themselves
to static configurations. Information computed in a previous time step is
ignored at the current or next time step. If a collision detection algorithm
can structure itself to take advantage of the geometric coherence between
time steps, the running time may be substantially reduced.

Little work has been done in the area of coherence. This is true not only
for dynamic simulations but in robotics and computational geometry as well.
I had investigated a number of methods including spatial subdivision using
dynamic d-rectangle trees [13] [6] [7] to reduce the number of object tests to
O(nlog n), and the use of BSP trees to reduce the number of edge and face
intersections [16] [15] [11]. However, the caching mechanism within UGA
makes it difficult to create a persistent dynamic data structure. If a data
structure is created and cached at time t and then a change is made to that
structure at time t + 1.0, then the entire data structure needs to be copied
before it can be changed. In this case the amount of work required to change

24

current system exceeded the amount of available time.

4.5 Implicit Representations

The current collision detection algorithm expects a triangle mesh boundary
representation. Spheres, quadrics and other implicitly defined surfaces need
to be tessellated if they are to interact with other objects. The tessellated
approximations will yield approximate results which can vary as a function
of the tessellation granularity. It would not be unreasonable to have sev
eral detection objects each capable of dealing with collisions between certain
classes of objects. The only detection object in UGA today detects collisions
between two closed polyhedra. The next two obvious choices for detection
objects would detect collisions between two parametric surfaces and between
a parametric surface and a closed polyhedra.

5 Conclusion

This paper presents an algorithm for detection collision between closed poly
hedralobjects. While the algorithm is O(n2) in the number of edges and faces
being simulated, heuristics are presented for reducing the time complexity
to a near constant time for non-intersecting objects. Additionally, the com
putational cost of tests between intersecting objects is significantly reduced
using micro-backtracking techniques. All of this work has been incorporated
into UGA.

References

[1]	 DAVID BARAFF, "Analytical Methods for Dynamic Simulation of Non
penetrating Rigid Bodies", Computer Graphics, Volume 23, Number 3,
July 1989, pp. 223-231

[2]	 DAVID BARAFF, "Curved Surfaces and Coherence for Non-penetrating
Rigid Body Simulation", Computer Graphics, Volume 24, Number 4,
August 1990, pp. 19-28

25

[3]	 JOHN W. BOYSE, "Interference Detection Among Solids and Surfaces",
Communications of the ACM, Volume 22, Number 1, January 1979, pp.
3-9,

[4]	 JOHN CANNY, "Collision Detection for Moving Polyhedra", IEEE Trans
actions on Pattern Analysis and Machine Intelligence, Volume 8, Number
2, March 1986, pp. 200-209.

[5]	 R.K. CULLEY AND K.G. KEMPF, "A Collision Detection Algorithm
Based on Velocity and Distance Bounds" Proceedings 1986 IEEE Inter
national Conference on Robotics Automation, Volume 2, pp 1064-1069.

[6]	 HERBERT EDELSBRUNNER, "A New Approach to Rectangle Intersec
tions, Part I", International Journal of Computer Mathematics, Volume
13, 1983, pp. 209-219.

[7]	 HERBERT EDELSBRUNNER, "A New Approach to Rectangle Intersec
tions, Part II", International Journal of Computer Mathematics, Volume
13, 1983, pp. 221-229.

[8]	 ELMER GILBERT, DANIEL JOHNSON AND S. SATHIYA KEERTHI, "A
Fast Procedure for Computing the Distance Between Objects in Three
Dimensional Space", IEEE Journal of Robotics and Automation, Volume
4, No.2, April 1988, pp. 193-203.

[9]	 JAMES K. HAHN, "Realistic Animation of Rigid Bodies", Computer
Graphics, Volume 22, Number 4, August 1988, pp. 299-308.

[10]	 MATTHEW MOORE AND JANE WILHELMS, "Collision Detection and
Response for Computer Animation", Computer Graphics, Volume 22,
Number 4, August 1988, pp. 289-298.

[11] BRUCE F. NAYLOR, JOHN AMANATIDES, AND WILLIAM
C. THIBAULT, "Merging BSP Trees Yields Polyhedral Set Operations"
Computer Graphics, Volume 22, Number 4, August 1988, pp. 289-298.

[12]	 JOHN C. PLATT AND ALAN H. BARR, "Constraint Methods for Flex
ible Models", Computer Graphics, Volume 24, Number 4, August 1990,
pp. 115-124.

26

[13]	 HANS W. SIX AND DERICK WOOD "Counting and Reporting Inter
sections of d-Ranges" IEEE Transactions on Computers, Volume C-31,
Number 3, March 1982, pp. 181-187.

[14]	 DEMETRI TERZOPOULUS, JOHN C. PLATT, AND ALAN H. BARR,
"Elastically Deformable Models", Computer Graphics, Volume 21, Num
ber 4, July 1987, pp. 205-214.

[15]	 WILLIAM C. THIBAULT AND BRUCE F. NAYLOR, "Set Operations on
Polyhedra Using Binary Space Partitioning Trees", Computer Graphics,
Volume 21, Number 4, July 1987, pp. 153-162.

[16]	 ROBERT B. TILOVE "A Null-Object Detection Algorithm for Construc
tive Solid Geometry", Communications of the ACM, Volume 27, Number
7, July 1984, pp. 684-694.

[17]	 TETSUYA UCHICKI, TOSHIAKA OHASHI, AND MARIO TOKORO, "Col
lision Detection in Motion Simulation", Computers & Graphics, Volume
7, Number 3-4, 1983, pp. 285-293.

[18]	 BRIAN VON HERZEN, ALAN H. BARR, AND HAROLD R. ZATZ, "Ge
ometric Collisions for Time-Dependent Parametric Surfaces", Computer
Graphics, Volume 24, Number 4, August 1990, pp. 39-48.

27

