
BROWN UNlVERSITY

Department of Computer Science

Master's Thesis

CS-92-M16

"A Three Dimensional Browser for Visualizing Orthogonal Hierarchies"

(Using Only Two-and-a-Half Dimensions)

by

James Wen

..

A Three Dimensional Browser

For Visualizing Orthogonal Hierarchies

(Dsing Only Two-and-a-Half Dimensions)

James Wen

Department of Computer Science

Brown University

\

Submitted in partial fulfillment of the requirements for the

Degree of Master of Science in the Department of Computer Science

at Brown University

June 1992

This research project by James Wen is accepted in its present form

by the Department of Computer Science at Brown University

in partial fulfillment of the requirements for the Degree of Master of Science.

~
Advisor

Da1

This paper is accompanied by a lO-minute video which demostrates
the applications described.

Abstract

Using three dimensional graphics to visualize abstract data presents an
interesting challenge because, by definition, there is no physical counterpart
to abstract data; its extension into three-space is not due to the fact that it
is the natural thing to do. Prior work in using three dimensional graphics to
aid abstract data visualization has concentrated on increasing the quantity
of data visualized, using the third dimension as a natural but symmetrical
extension to the world of two dimensional layouts. Little has been done,
however, to actually use it to capture the semantics of abstract data. This
paper presents the notion of using the third dimension asymmetrically so that
our familiarity with two dimensional layouts and our abilities to mentally
group things confined to a plane are exploited, leaving the third dimension
as a means to encode semantic information. A design principle is forwarded
whereby the notion of orthogonality in an analytic sense (independence) is
captured by using orthogonality in a geometric-and hence, visual-sense.
Two systems that illustrate the design principle applied to two very useful
areas are described: a visualizer for a set of data with multiple relationships
defined over it and a visualizer for program structure and control flow in an
object-oriented environment.

1 Introduction

With the ever increasing potential of computer hardware and specialized pro
cessors, technologies once considered too expensive computationally to be
used as tools for interactive visualizations are becoming available for more
general uses. One such technology is interactive three dimensional graphics.
Even though it is more readily accessible now, its inclusion into the design
stage of various visualization tools still needs to be more fully integrated.
While some visualizations, like that of gaseous phenomena, say, almost re
quire three dimensional graphics, others have no natural-with natural in
this instance meaning physical-counterpart. The visualization of program
structure, for example, is based upon the need to see things that are fun
damentally abstract. There is no natural way they should exist. Because
most of these things were proposed through books and papers and because
people are more apt to write than to sculpt, we have become accustomed to
visualizing such things as two dimensional entities.

This familiarity with two dimensional visualizations should not be disre
garded as irrelevant, however, now that we can use three dimensional graph
ics. Instead, it can be exploited to allow the visualization of a semantically
richer set of data. Rather than simply using the new dimension as extra
room to stuff more of the same information, we can constrain information
of one nature to lie in one plane and allow information of another nature
that may share common data to break the plane. Thus, instead of destroy
ing an approach to visualization we are already familiar with in order to use
the third dimension as a new but symmetrical dimension, we can reuse the
methodologies of two dimensional visualization saving the third dimension
as something that depicts new semantic information.

1.1 Organization of the Paper

After a review of prior work in the area in section 2, section 3 presents the
principle that underlies this paper along with specific ideas that embody the
principle. Section 4 describes two systems implemented based upon the ideas
outlined demonstrating the validity and applicability of the ideas in two very
different areas: a three dimensional graph browser with multiple relation
ships defined, and a three dimensional program flow visualizer for object
oriented languages. Section 5 comments on future directions and possible

1

2

future work on the project, and section 6 offers some concluding remarks.
A user's reference guide for using the applications implemented is found in
appendix A. Appendix B examines and explores the possibilities of other or
thogonal channels of information. Comments regarding the implementation
and architecture of the system are given in appendix C. A video accompanies
this paper and demonstrates the applications in use.

Prior Work

Work in the area of three dimensional visualization has been fairly extensive
in the domains of natural phenomena and physically based modeling. How
ever, using three dimensional graphics in the context of visualizing purely
abstract data has not been as extensive. This is due primarily to the lack
of a natural three dimensional counterpart for such things. There have been
successful attempts at creating natural settings for abstract data: the two di
mensional desk top metaphor becoming a three dimensional office metaphor
is one such example [7, 10]. Though the virtues of using three dimensional
graphics for aiding in visualization of non-physical information has long been
realized, even before the advent of computers [13], the study of actually ex
ploiting interactive three dimensional graphics for visualizing pure abstract
data is still very limited.

Three dimensional graphics offers two areas from which techniques can be
extracted: those arising from image space (projective geometry) and those
arising from object space (three dimensional modeling). As for the former,
techniques of projections that are based upon fisheye lenses have been in
vestigated as ways of focusing on various interesting parts of a given data
set [4, 12]. But, because they only work in image space, the data itself cannot
be manipulated as a three dimensional object that allows the user to gain an
intuition for the relationships as they exist spatially.

The manifestation of abstract data in three-space as actual objects are
explored in the cone tree [9] and the perspective wall [11]. Both systems are
capable of capturing a tremendous amount of information and conveying it
through static images. But both systems are dependent on the user's focused
attention because they both rely upon the actual movement of the data to
convey the origin of the information viewed. As well, both systems use the
third dimension simply as a means to increase the quantity of data visualized.

2

3

The nature of the data is not addressed as an issue. The third dimension is
just a symmetrical generalization of its lower dimensional counterpart, the
two dimensional paradigm, and little has been done to allow the existence
of a more heterogeneous set of data relationships in a three dimensional
environment. So far, only when a very different channel of information is
explored does orthogonal information get represented. The use of audio
capabilities is one such example, and appendix B briefly examines that in
the context of this paper.

The Principle

Central to the principle of this paper is the argument that, when moving
into the third dimension, keeping around some of the more traditional two
dimensional methodologies for visualizations may have its rewards. The fa
miliarity we already have with two dimensional layouts is advantageous to
such an approach. But it is not for the sake of such psychological downwards
compatibility that the idea is forwarded. Rather, it is the fact that the famil
iarity with things two dimensional makes it conducive to mentally group all
things constrained on a plane to share something in common, e.g. they are
related to each other under one relationship. The ease with which things can
be grouped into macro structures becomes more important as the complexity
or volume of data increases. Just as it is fairly easy for us to accept that
things in a two dimensional plane all conform to some particular constraint,
it is also easy for us to accept without having to focus our attention that
things off the plane may be semantically different. The less we have to focus
our attention, the freer we are to concentrate on the actual semantics of the
situation.

The principle, then, is to attempt to extend rather than to replace two
dimensional methodologies when exploring visualization techniques in three
dimensions. An effort should be made, in a system following this principle,
to maintain as much of the two dimensionality of the original structure as
possible. The reuse of two dimensional techniques in three space imposes
an asymmetry that could be used to encode information whereby things
that break the symmetry are seen to break it for a reason and so are easily
accepted as being semantically different.

3

3.1 A Comparison of Browsers

The Cone Tree

An example of a generalization of traditional two dimensional visualization
techniques into three dimensions that does not observe this principle is found
in the cone tree [9]. The cone tree is a clever way of encapsulating the tri
angular two dimensional tree structure into a conical three dimensional tree
structure. Navigating through the tree is accomplished by rotating the var
ious cones until the node of interest is visible. In this system, the actual
locale of a particular node has no semantic meaning, much like its two di
mensional counterpart. In fact, the system is essentially a two dimensional
triangular tree topologically warped into a three dimensional cone tree. All
three dimensions are treated symmetrically. So while such a system is ideal
for visualizing a tremendous quantity of information, the third dimension,
in this case, is used simply to extend the storage capacity of the same data
structure as its two dimensional counterpart-nothing of a different data
type is allowed.

The Orthogonal Graph Browser

This paper presents a three dimensional browser that, when started, appears
and acts like a typical two dimensional graph browser with all its function
alities. The browser has a three dimensional structure but, unlike the cone
tree, the user never has to know that. Additional information-beyond what
is possible with a typical two dimensional browser-is gained when the user
changes the viewpoint. Various additional information, stored in the direc
tion parallel to the line of sight-or orthogonal to the viewing plane-reveal
themselves as the viewpoint is changed. The orthogonal graph will be exam
ined in more detail in the later sections.

3.2 The Principle Applied

By reusing two dimensional technologies, part of the task of this study be
comes recognizing notions that are already well encoded in the two dimen
sional plane as well as those that may require an aid in visualization. The
problem is then transformed into finding clever ways to exploit the third di
mension in order to convey and capture those things that require more than

4

what is available in two dimensions. The following are three examples of ap
proaches based upon the given principle. They are by no means exhaustive
but they do represent ways of using an orthogonal channel of information for
extending the traditional planar techniques of visualization.

3.2.1 Orthogonal Planes

Consider a binary relation, R1 , defined over a data set Sl where R1 = {<
s, t > Is, tESd. A traditional two dimensional layout may suffice in visual
izing such a structure where Sl becomes the set of nodes and R1 becomes
the set of edges, say. Now consider another relation, R2 , defined over the set
Sl US2. The sharing of data makes it useful to view the two relations simul
taneously but putting everything on one two dimensional graph can become
too dense and confusing.

To illustrate this point, we turn to the world of abstract algebra which
provides a natural setting for the point to be made. First, we define a no
tion of something we shall call category. A category is essentially a list of
properties. All things that belong to a particular category must have all the
properties of the category. A Ring, for instance, is a category that requires
its members to have the properties of closure under addition, closure under
multiplication, and the notion of an additive inverse. Members of a Ring-or
things that satisfy those properties-include integers and matrices. A Field
is a category that requires its members to have all the properties of a Ring
with the added requirement that there exists a multiplicative inverse. Notice
that the Field category inherits its properties from the Ring category. The
set of algebraic categories defines a hierarchy of such inheritance with each
child requiring more properties to satisfy for its members [2]. The hierarchy
that results is a directed acyclic graph. Figure 1 shows a small example.

The members of categories-those things that have all the required prop
erties of the categories-we shall call domains and they correspond to the
familiar domains of computation, e.g. integers, reals, etc. Domains them
selves define hierarchies, but in a different manner. Positive Integers, Even
Integers and Integers mod p are all Integers. See Figure 2.

What we may typically like to do is to scan the graph of categories until
we find one we want to inspect and then to examine the domains that belong
to that category. As can be seen in Figure 3, this would not be convenient
using the traditional two dimensional layout. In an example with just slightly

5

Categories
Set

Ii?jn.~'B Ylggregate

~I
Qy.otient

~ie[a

Figure 1: Category hierarchy

Domains
Integer

~on

Negative Negative
Integer Integer

/
Positive
Integer

Figure 2: Domain hierarchy

more data, such a mixing of heterogeneous relationships on a planar graph
will be very confusing and difficult to read.

There are, in this example, two sets of relationships that overlap in data.
We would like to somehow see them together because of the shared data but
we do not want to confuse the two relationships. Figure 4 shows how we can,
in three space, come up with a fairly compact and elegant way of visualizing
both simultaneously. Information orthogonal to one abstraction are placed
literally in an orthogonal plane. Illustrations of the concept in an actual
application are given in section 4.1.1.

6

Categories & Domains

~i£U

Quotient Real
~i£U Number

Figure 3: Category/domain relationship

.-¢>~ y"'-9-~fS~"""
f?'~~1\ ~~~o
I . ~-
I ~~I II ~Q~

~ !
j'U~ i

Figure 4: Using orthogonal planes

7

3.2.2 Depth Cues

Systems that provide a visualization of the flow of control in a program can
run into a problem with recursive functions. Consider two mutually recursive
functions, A and B. Figure 5 illustrates how simply visualizing the flow of
control does not reveal whether the flow is descending a recursion or returning
from one. The figure shows a situation where A invokes B which invokes A

fi'",:<%tWM current function
I::::::::::::::::::::: ::::::::: :::::1 function on stack11+01

mainO funcAO funcBO , , not executing

mainO -> funcAO funcAO -> funcBO funcBO -> funcAO

funcAO -> funcBO funcBO -> funcAO funcAO -> funcBO

- or
funcBO returns funcAO returns

Figure 5: Recursive control flow

which once again invokes B. If, in the next step, the flow of control goes

to A, it may be difficult to tell if B returned to A or whether B is invoking

8

A. Having the layout fixed in two dimensions makes it hard to encode any
information in the nodes themselves except with colors. As seen in the figure,
colors do not suffice. What is needed is some indication of whether a routine
is being pushed onto the run stack or it's being popped off the run stack.

Such information can be hidden in the third dimension. A straight on
view of the system shows a two dimensional graph. But we can encode
the number of times a node is invoked by changing the thickness, say, of
a node. Again, the two dimensional appearance remains undisturbed but,
if the graph is rotated, one can get an instant profile of each node. The
thickness of the node can encode any scalar function of the node and, in a
programming environment, encoding the number of invocations is a useful
notion. An instantaneous indication of a program descending recursions or
returning from recursions can be had by simply rotating the graph so that
the thickness of the nodes could be seen, as show in Figure 6.

1([~ Gd@
~ 'I
 ~ JI f3 I

function calls function calls

Figure 6: Encoding function calls in node thickness

3.2.3 Grouping by Height

In a browsing environment, we typically work our way from one node to
another via the edges. In a graph with many edges, however, extracting even
simple parent-child relationships could be somewhat difficult. Extracting
all the grandparents/grandchildren is even more difficult. We would like to
group nodes related to each other visually but this may be very difficult to
do in a complicated graph already laid out in a plane.

9

with attenuation

Here, we examine how we can use the third dimension to group nodes
together. If we define the initial viewer's position as being a some point
(0,0, z) with the initial two dimensional layout constrained to the XV-plane,
information can be hidden in the node's position along the Z direction. Nodes
of interest could be raised or lowered slightly so that a straight on view is
not altered noticeably but a rotated view yields a picture of the grouping.
Or, nodes can be raised to various exaggerated heights so that a direct view
would, with perspective, make the more interesting and higher nodes closer
and hence, bigger, and the less interesting nodes farther away and hence, less
prominent. That is, we can pinch the node of interest and have its neighbors
rise up with it, but to a lesser extent, much like the skin which grows on old
milk that's been sitting in the refrigerator for too long. (See Figure 7). This
concept will be further explored in section 4.1.2 of the application section.

Node of Interest

/

Neighbors pinched up

Figure 7: Pinching a node and its neighbors

3.3 The Importance of Interactiveness

It should be pointed out that it is very crucial for such a visualizer to be
interactive. By the stated principle, it follows that the three dimensional

10

4

ity of the structure can only become apparent after the user has interacted
with it. Otherwise, it appears and functions just like a traditional two di
mensional browser. Furthermore, by allowing the user to interact with the
system-rotating and moving the three dimensional object around-spatial
orientation could be gained. This orientation is not found in two dimensional
systems but is part of our innate intuition developed from our natural spatial
surroundings. We develop, at a very early age, the ability to perceive the
existence of objects even if they are not visible or sensed otherwise [6]. This
perception of object permanence is based upon the mental facility to account
for the object's present state based upon its history and environment. Thus,
if we move a structure so that part of it is behind us, we do not need a
visual cue to actually visualize the part of the structure we cannot see. In
the cone tree, for example, it is possible to see an entire file system in one
entity-albeit most of the information is not actually visible most of the time
as they are rotated out of view. The invisibility is not such a problem, how
ever, due to our ability to perceive existence spatially for things even if we
do not actually see them. This notion is critical in designing three dimen
sional interfaces because it frees up the boundaries imposed by a viewport
window: we can mentally account for things we cannot visually account for
much easier in the natural setting of three-space than in the more artificial
plane of two-space.

The Applications

This section presents two applications that demonstrate how the above for
warded principle can be used in visualizing data and program structure. It
is in this section that the ideas of section 3 are actually tested for their use
fulness as well as usability on a user-interface level. The reader is referred to
the accompanying video for a demonstration of the applications. Both ap
plications are implemented on top of a common base system. A description
of the available functionalities is given in appendix A. Comments about the
base system and its implementation can be found in appendix C.

11

4.1 A 3D Browser for Multiple Relationships

The browser implemented for this project acts, upon first view, much like
a traditional two dimensional browser with the functionalities of the typical
planar browser. That, of course, is the intent. It is only after the displayed
graph has been rotated does its existence as a three dimensional browsing
facility with additional functionalities become revealed. Rere we examine
some of the additional features it provides as a three dimensional browser.

4.1.1 Use of Orthogonal Planes

If the user clicks on the middle mouse button with the pointer positioned over
a node, the subgraph rooted there is expanded if it is hidden or collapsed
if it is visible. In this way, the browser acts like a typical two dimensional
system. If the node has an asterisk at the end of its name, then there is a
collapsed orthogonal graph rooted there. Clicking on the right mouse button
expands it. The user can then rotate the graph to a position where it is easy
to view how the two relationships relate to each other through the node they
share in common. This is illustrated in Plate f.

Raving the orthogonal subgraph actually be exactly 90 degrees from the
plane of the main graph may make a simultaneous view of both somewhat
difficult since viewing one plane directly causes the other plane to be edge on.
The planes are thus made rotatable about an axis lying along the breadth of
the graph and passing through the node that roots the orthogonal subgraph.
The user can change the angle the orthogonal plane actually makes with the
main plane so that viewing both relationships is made easier. Additionally,
the hue of the orthogonal plane is a function of the angle it makes with the
main plane so that,when the orthogonal plane is rotated into the main plane,
it takes on the color of the nodes on the main plane (this may be modified
by the user). See Plate II.

4.1.2 Use of Grouping By Height

Traversing a graph entails visiting a node and moving on to its neighbors
either its parents or its children. As mentioned earlier, with a dense graph,
this could be somewhat tedious. Two means of grouping by height are given.

In one interface, the parents and the children of the selected node(s) can
be raised or lowered by pressing the appropriate keys on the keyboard.

12

The other interface addresses the fact that, when studying in a graph, we
may often find ourselves focusing on a node of interest anchoring our interest
relative to that node and then expanding our interest away from it. An
interface that addresses that mode of thinking is one where the selected node
can be raised dragging its neighbors with it. The further away a neighbor is
to the node of interest, the less it is dragged. In this way, we can instantly
create a "mountain of locality" where the node of interest is on top and things
further and further away are placed further and further down the sides of the
mountain. This strategy of focusing on a particular node of interest and
having its neighbors recede in prominence creates an effect not unlike that of
the work done in information visualization with fisheye perspectives [4, 12].
However, it should be pointed out that this approach is, in fact, very different.
The cited papers proposed altering the projected image so as to skew the
perspective bringing some nodes forward and making other nodes recede.
Such an approach does not allow the user to alter the viewpoint to afford
another view of the data since the data does not truly exist in three-space but
is only distorted with three dimensional techniques. The ability to interact
with the data object as a three dimensional entity, however, provides the user
with an intuition of the data and its structure not possible by more passive
means. The system presented here creates the focusing effect by actually
moving the nodes in object space. The user is then free to rotate the object
freely in space to gain a better grasp of the data. This is illustrated in the
Plates III and IV.

4.1.3 Use of User Interactions

A layout program can never hope to always choose the perfect layout for a
user simply because the user may be tracking down some very specific thing
and sees the data in a way, semantically, that is not inherent in the data
itself. It is thus very important to allow the user to group things that are
meaningful for whatever particular situation may exist at the time. Such a
grouping should be something that could be saved for later retrieval for a
given graph.

Nodes can be selected and moved to create a more meaningful layout for
the particular session. Selection of nodes can be done on an individual basis
or into a group. Subsequent operations (e.g. moving the node) act on all the
selected nodes. Selections can also be done on a generation basis: pressing

13

the key c will cause all the children of all the selected nodes to be selected.
Parents can be selected by pressing the key p.

This system allows interactive manipulation of the graph. Nodes can
be selected individually or in groups and then moved with the mouse. The
move can affect only the selected nodes or the selected nodes as well as their
subgraphs.

Allowing such re-organization of the default layout gives the user the
ability to customize the visualization of abstract entities that, in themselves,
are not able to capture all the information the user may associate with them.

4.2 A 3D Object-Oriented Program Flow Visualizer

The system described in this paper lends itself well to be used as a visual
izer for object-oriented languages. The reason for this is as follows: object
oriented languages inherently embody multiple relationships over overlapping
data. Abstract classes in C++, for instance, form a hierarchy describable by a
two dimensional graph. Concrete classes derived from abstract classes have·
the exact relationship as domains have to categories, as described above.
Each concrete class can form a hierarchy on its own but may also have its
root in an abstract class. Furthermore, methods of these classes form yet an
other relationship: they are related to their parent classes as well as to each
other (if viewing by caller/ callee relationships). The application presented
here shows the class hierarchy on one plane and the methods of the classes
on orthogonal planes.

4.2.1 Current Visualization Tools

Flowview and cbrowse are two visualization systems that exists in a general
program and data visualization environment FIELD [8]. Flowview allows the
user to visualize the flow of control in a program. In the objected oriented
environment of C++, a call graph is presented with the nodes representing
the methods and the edges representing the caller/ callee relationship. What
is also desirable is to be able to see the relationship of the parent classes.
Cbrowse provides this service but it does not show the flow of control. The
two systems share some data but are defined over different relationships.
Taken together they make a good candidate for being captured by an or
thogonal graph.

14

5

4.2.2 Using The Orthogonal Browser

The system proposed in this paper is ideally suited for visualizing the pro
gram structure of object-oriented languages. The notion of orthogonal planes
is used to show the class hierarchy and method call graph simultaneously.
Classes are put on the "main" plane and the methods for each class are laid
out on an orthogonal plane emanating from the class. Nodes can be moved
to afford a more desirable layout if the user is interested in some specific
thing. This is illustrated in Plate V.

4.2.3 Features and Functionalities

The browser is enhanced to be able to read in compiled C++ programs and
to extract and display the hierarchical relationships between the classes as
well as the call graph between the methods. It can also keep track of the
progress of the execution of the programs changing the intensity of the nodes
representing the methods and classes to indicate which nodes are active,
which nodes are lower on the runstack and which nodes are not active. And,
finally, as proposed in section 3 the thickness of the nodes profile the number
of times the methods they represent are invoked. Refer to Plate VI for an
example. The video that accompanies this paper demostrates the ideas of
this section in practice.

Future Work

On the implementation level, the applications are meant to be demonstra
tions of the principle and concepts of section 3: their validity, range of ap
plicability, usefulness and usability. They were not meant to be full-fledged,
stand-alone systems and a logical next step would be to make them in ro
bust working systems. The appropriate thing to do, in this case, would be
to study the design direction of FIELD, and to try to integrate the system
into the FIELD environment. FIELD is a very large system with many tools
available. The layout algorithm, for instance, should use the already existing
one in FIELD that is much more robust. A strategy whereby all the methods
can be snapped on to one plane easily (recall each method lies on a plane
that emanates from its parent class) can be a useful tool.

15

6

For object-oriented languages that are used in an environment where
hierarchical structures are more prevelant, allowing recursively defined or
thogonal planes (orthogonal planes of orthogonal planes) is desirable. Using
the example of section 3.2 we can extend the category-domain structure to
include, also, the actual operations each domain exports. Integers, for in
stance, would export addition but not division (since integers are not closed
under division). The operations could be laid out on a plane orthogonal to
their parent domain which lies in a plane orthogonal to its parent category.

What is forwarded in this paper is more of a design strategy that may
have many applications rather than simply an application, by itself. Exten
sions is thus used rather loosely, here. Almost anything that serves to apply
the proposed principle and searches for new ways of infusing semantic infor
mation into an environment by using orthogonal channels of information is of
interest. Orthogonal channels, in this context, appeal to a much more general
notion. The use of audio capabilities, briefly demonstrated in appendix B, is
one example.

Conclusion

This paper presented a design strategy of using three dimensional graph
ics in a way that extends rather than replaces two dimensional technologies
in information visualizations. By treating the orthogonal third dimension
asymmetrically from the other two dimensions, we can use it to convey se
mantic information that would otherwise be difficult to convey clearly in two
dimensions. Planar techniques developed for two dimensional visualizations
are retained but the planes now reside in a more general three dimensional
space. The advantage is that there are an infinite number of two-dimensional
planes in three-space and each plane can potentially group data together un
der a common semantic relation. Additional information not captured by
the planar layout can be encoded in a direction orthogonal to the plane
of definition so as to, at once, preserve the original two dimensional lay
out as well as convey new information. Perhaps the approach can be best
characterized as a two-and-a-half-dimensional approach to visualization. By
recognizing the advantages of, and exploiting our wealth of knowledge in uti
lizing two dimensional space for visualization, it may be possible to use three
dimensional graphics to go beyond just visualizing more abstract data but

16

to visualize more complex data and data that is much richer in semantics.

Appendices

A The Browser: A User's Reference

A.I Starting the System

The name of the system is 3dflat-referring to flat two dimensional planes
existing in three-space. A small menu box pops up along with the main
viewing window and a camera control slider box. The FILE option allows the
loading and saving of files, quitting the program, etc. The CAMERA option
sets the camera to some preset positions in case the interactive movements
has gotten out of hand and the graph is nowhere to be seen.

Various options are available as command line arguments as seen in the
table on page 17.

-option argument effect
-g
-c
-f
-N
-A
-5
-M
-L
-t

filename
filename

read in graph data file
c++ flow debugger mode
use with FIELD
profile nodes in c++ mode
run with audio server on
default with speaker turned on
monochrome mode (white background)
suppress layout recalculations
put up default test graph

If the system is be used as a program flow visualizer, as described in
section 4.2 then, in addition to using the -f -c program options, flowview
program and gddt -f program should also be running. Refer to their respective
man pages for available options.

A.2 Mouse Bindings

Figure 8 gives the mouse bindings for the browser.

17

I!i!i

(pla.in)
node
select

children II orthogonal
collaps~expalKi colla~e/expand

Mouse Bindings

Figure 8: Mouse button bindings

18

No keys depressed

With no keys held down, the mouse has the following functionalities: The
LEFT button selects a node (see SHIFT mode for the moving of selected
nodes, and section A.3 for key binds that act on selected nodes). Selecting a
selected node deselects it. The MIDDLE button expands and collapses the
children nodes. The RIGHT button expands and collapses the orthogonal
nodes.

Shift key depressed

Holding down the SHIFT key puts the mouse in node move mode. The
LEFT button moves the selected node to the projected point directly under
the mouse; if multiple nodes are selected, their average position is moved.
The MIDDLE button moves the selected node(s) and its/their subgraphs
relatively-that is, the mouse must be moved to create a displacement. The
node(s) will not snap to the mouse position, as above, but will be displaced
by the amount the mouse moves. The RIGHT button moves the selected
node(s) relatively as well. The neighbors (parents and children) are also
dragged along. Neighbors further and further away are a dragged less and
less. This is the "pinching" mode as described in sections 3.2.3 and 4.1.2
that facilitates in the visualization of neighborhoods.

Absolute movement provides for precise fine-tuning but relative move
ment was chosen for the latter two modes because those two modes both
move nodes that are not explicitly selected. By using the displacement re
sulting from a change in the mouse position, the relative mode allows for the
movement of all the nodes even if the selected node to be out of view.

Control key depressed

Holding down the CONTROL key puts the mouse in camera mode. By
camera, we refer to the user's view of the scene. The viewpoint can be
interactively changed: the LEFT button rotates the camera, the MIDDLE
button translates the camera and the RIGHT button zooms the camera in
and out.

19

A.3 Keyboard Bindings

The following table, on page 20, gives the key bindings available. Those that
expect a node to be selected have an asterisk (*) in the middle column.

r Reset camera
I Recalculate layout
t Show/Hide Text (text is slow)

* Raise node in Z direction
, * Lower node in Z direction
- * Pinch node up in Z direction
- * Pinch node down in Z direction

> * Raise all children in Z direction

< * Lower all children in Z direction
c * Select all children
p * Select all parents

0 Show all orthogonal planes
q * Rotate orthogonal plane clockwise

Q * Rotate orthogonal plane counterclockwise

+- Rotate camera left
-t Rotate camera right

i Rotate camera up

1 Rotate camera down

a * Define sound for node
A * Preview (play) sound for node
s * Turn sound for node ON
S * Turn sound for node OFF
x Turn browser audio capability ON
X Turn browser audio capability OFF

A.4 File Format

The applications developed for this paper handles three types of files: com
piled C or C++ code, graph definition in ASCII, and audio files. The com
piled code is handled through the various facilities of FIELD and is trans
parent to the user. The graph definition is user-defined and is described

20

below. The audio files follow the currently supported format on the Sun
Spare workstations.

AA.l Graph Definition

The file format used to define graphs is given, below. White spaces are
ignored and case does not matter. Both children: and orthogonal: are optional
but all entries must be on separate lines. An optional filename for the audio
data can follow the name of the node.

NODE:
nodel [audioname]
CHILDREN:
childl

child2

child3

ORTHOGONAL:
orthol

ortho2

NODE:
node2 [audioname]

AA.2 Audio Definition

The audio field in graph data file described in section A.4.1 refers to the audio
data file. The audio data file is a file that contains the sound to be generated
for a particular node. Any file with the proper format could be used. Special
samples were made for the audio components of this system. Briefly, audio
files are stored in ulaw format-which is a format that compresses the audio
sampling of the sound (as a waveform) logarithmically. It is the standard
format used by platforms such as the Sun Spare's and the NeXT computers.
Refer to the man pages for more information on how to create such files.

21

B Other Orthogonal Channels

While the emphasis of this study is in exploiting the orthogonality of the
third dimension to visualize orthogonal information not currently handled
by two dimensional means, it is certainly not limited to that. The principle
of using new channels of information orthogonally so as to extend existing
systems rather than redesigning current systems to account for such things
is applicable to other channels as well. Take the audio channel, for example.
Section 3.2 proposed that the depth, or thickness, of nodes encode the number
of times a node is invoked as an aid to visual the direction of the flow of a
program in terms of stack depth. We can, in fact, encode that in another
way: we can have a background sound that varies its pitch in proportion to
the depth of the call stack.

In this context, we give an example of a functionality that goes well with
the C++ program flow browser. It fits well into the framework of visualizing
large amount of data-in this case, the aide is in a temporal sense rather
than a spatial sense. That is, rather than organizing the data spatially to
help us gain a better and more efficient visual understanding of the data, we
are given, in the call browser a cue as to when to concentrate on the data.
Prior work in this area has included using sound to debug programs in a
parallel environment [3] and to visualize program flow [1]. We use it as an
extension to the program flow browser because it aides in the assimilation of
a large amount of data by allowing the user to save visual concentration for
when interesting events actually occur.

B.l Audio Example: the Audible Trigger

Here, we use the audio channel to further illustrate the principle of orthog
onality. The obvious difference between audio capabilites the visual capabil
ities of two dimensional graphics makes it simple to understand the virtues
of using it to carry some other form of information. Certainly, this is using
something not found in the traditional layouts taken straight from the books
and put on the screen. The extension it provides is not, however, spatial.

One particular problem with a visual system is the focus and concentra
tion it demands from the user. A passive user may easily miss a visual cue in
a graphical debugger if attention is compromised for even a little bit. It may
be impossible to tell, subsequently, whether anything has been missed or not.

22

This holds true for both two dimensional and three dimensional systems. A
solution would be to allow the user to tag an audible trigger to a node so
that when the node is visited, the trigger would go off causing some form
of sound to inform the user of the fact that a particular event (or visit) has
occurred.

This system allows the user to select a node and assign a sound to it.
The sound is played when the node is made active (called and placed on top
of the run stack).

Taking this notion one step further, in the environment of orthogonal
planes as described above, a node not on the main plane can, when the audio
signal is triggered, prefix its signature sound with those of its ancestors. In
the case of C++, then, a parent of class C that is manifested in a node
N(C) with the sound S(C) can have methods mC,i with each having its own
signature S(mc,i). The invocation of a method, C :: mC,i, would cause the
sound S(C) to be created followed by the sound S(mc,i). The user can then
identify a function class and method without even looking at the console.

C System Architecture

The implementation of the system is divided into three parts: (1) the base
system which consists of the mechanisms of the browser both graphically and
audially, (2) the applications which are built on top of the base system, and
(3) the server units which act in concert to create an interface between two
very large software projects: FIELD [8] and UGA [14].

The design of the first two parts are given in the main paper: the base
systems is based upon section 3 and appendix B and while the applications
are described in section 4. Here, we will comment briefly on the design of
the interface that is not discussed elsewhere. Interest in creating such an
interface has existed for some time but while the two projects are well suited
to be interfaced together they are under the auspices of separate groups and,
up to now, few people have been involved with both projects. The differences
in the approaches to software engineering in the two projects make for an
interesting study in contrast in itself but that will not be dwelt upon here.

23

C.l The Interface Units

The interface of the browsing system is realized by creating the framework
that sits between and interfaces two very large software projects: UGA, the
Unified Graphics System under development by the Brown Computer Graph
ics Group and FIELD, a program visualization system under the direction
of Professor Steven Reiss. Both systems are very large and each has its own
method of communication.

The strategy taken by this project was to create a mini-server that sat be
tween FIELD and UGA. The mini-server initially creates a child process and
sets up the sockets to communicate with it. The parent process is dedicated
to the FIELD system and, after initialization, it enters into a blocked state
listening for messages from the message server of FIELD. The child process
is dedicated to the UGA and, after setting up the browser, it enters an event
loop listening for user initiated events. The child is responsible for all the
graphical and audio input/output. The child is also hooked into FIELD, ac
tually, but only in a synchronized manner within the browser: when it needs
to request information on file format, etc. All asynchronous events from the
graphical side are handled by the child. All asynchronous events generated
by the program being tracked, "flow events" , are caught by the parent which
then relays them to the child via the private sockets set up between the
parent and the child. In this manner, the two systems are connected into
one application. A schematic of the architecture of the system is given in
Figure 9.

References

[1]	 Marc H. Brown and John Hershberger. Color and sound in algorithm
animation. Technical Report 76a, Systems Research Center, DEC, aug
1991.

[2]	 John B. Fraleigh. A First Course in Abstract Algebra. Addison-Wesley
Publishing Company, 1989.

[3]	 Joan M. Francioni, Larry Albright, and Jay Alan Jackson. Debugging
parallel programs using sound. Proceedings of the A CMjONR Workshop
on Parallel and Distributed Debugging, 26(12):68-75, 1991.

24

./-_ .._--

! /
-, .,..~

! ~.
: \. , \
J '.
f \
I , ~! \\O~\e"e

f "
I \

i \
! \
f 06· i
; :?6b i
f t'p~
i ' IS'.
i !

\ FIELD (

\.,..... \

,., i
...... J ,. ,

"

-'----._-_.__._.--/
I 3D

Browser

Figure 9: Interfacing FIELD and UGA

25

[4]	 George W. Furnas. Generalized fisheye views. CHI '86 Conference
Proceedings, pages 16-23, 1986.

[5]	 William W. Gaver. The sonicfinder: An interface that uses auditory
icons. Human-Computer Interaction, 4:67-94, 1989.

[6]	 Ernest R. Hilgard, Richard C. Atkinson, and Rita L. Atkinson. Intro
duction to Psychology. Harcourt Brace Jovanovich, New York, 1971.

[7]	 D. A. Henderson Jr. and S. K. Card. Rooms: The use of multiple virtual
workspaces to reduce space contention in a window-based graphical user
interface. A CM Transactions on Graphics, 5:211-243, 1986.

[8]	 Steven P. Reiss. Interacting with the field environment. Software Prac
tice and Experience, 20(1):89-115,1990.

[9]	 George G. Robertson, Jock D. Mackinlay, and Stuart K. Card. Cone
trees: Animated 3d visualizations of hierarchical information. CHI '91
Conference Proceedings, pages 198-194, 1991.

[:1.0]	 George G. Robertson, Jock D. Mackinlay, and Stuart K. Card. The
information visualizer, an information workspace. CHI '91 Conference
Proceedings, pages 181-188, 1991.

[:11]	 George G. Robertson, Jock D. Mackinlay, and Stuart K. Card. The
perspective wall: Detail and context smoothly integrated. CHI '91 Con
ference Proceedings, pages 174-179, 1991.

[12]	 Manojit Sarkar and Marc H. Brown. Graphical fisheye views of graphs.
Technical report, Systems Research Center, DEC, 1992.

[13]	 Edward R. Tufte. Envisioning Information. Graphics Press, Cheshire,
Connecticut, 1990.

[14]	 Matthias Wloka, Nate Huang, and D. Brookshire Conner. Uga software
standards. Technical report, Brown University, 1992.

26

RootBc£J" III wmyum RootBeer III vumyum

marv !O&mb

gga

.gga gga

~
\\

. t({Iy

oop

ub

pfateI: Jln Ortfwgonal pfane

--:.:
==:§§~~;.~.:-~.~"':.~.;;':':.:.....:".....,.
~_~::::-=

Rotated

View

(

rus.}\ggrc.gal:: •

/

~
I /7ltyOu.:t.e

/ /" .Qucu
l/,/ W

~ -.....!l:l·"k Original

Flat

View

--~~=

~
~ ~

_.

e.~

~-----
............... .,.........

7oJ'1lQ.~:rC'·'llllC .

Pinch

Dictionary

Node

Rotate to

Flat

View

prate II I: (jrouping 'By 9-feigfit

Rotated

Boxt

View

4

Text

View

l¥
,//

/1

..J
~	 : \ II , '
i.fI!i'
;
;

/
;

,\\

"~''''''..

;	 .i ''',
1/	 I .,/)
i! ~ i,,
'i J. : /!i ii, ... /

! l i 1 !~ I / :.)'/ I..,'
II iif : ..
i! :/ i ,IiiI I ! f! _!

i !! I'! {I
I :',;, ,', ,
: i/ i!l /Ii
I "J J: .- I I..J. l, 'il ... I I~, - ? iii ./ i i

' ---. "1 .. I; " ~ J ii' /.,'... " ri ./ i! Rotate<:::-. .""o'>-l;f! / !f
".. "'::;'x t View

~	 . / ...~. ~
~"\" / '-':;'~

.~_.__.... Again

~~~' 
, I

;!
,/ 

~la.flh ~~,
".•~-# ~"\; -\, 

• \U"#'i '.<lC"" I'"",.~ .~. I"~.- ~T~ I .....
 
-r~ If j '\
 

""j j,it ;"J&"
 
. 
i 

I ! 
i

/
! .i",.- !
: 

" 
II 

I ;,	 :"~	 on'O.i i! ~ j~ieU/
i J ' i I '" £,il1Y"
 
! i/ ! 1'1 Olue'l:i /' /

! )I I,Iii ~'~'et 
I 
i 

:
I:
I {I f /


i II ifI p,/

' I, '{I II Ii II !I! /i
1.- ~~ 'il .' 1/~: ~ I,'; .I. , '"'"'",c.... .. I Ii.;". 

~-~~ t'l 
" 

/ '/ Text"- ...... "~'~ / II 
'" " ". oj/ I,'J 

" .",~ /I View 
"" I'"~ I " 

'.' .~\,O~ 

P{ate IV: grouping 'By J-(eigfit (cont 'tf) 



~1bbo: : 
~1bbo 

() 

flowview's 

call graph 

fae bo 

.I'1bnQ 

u;di] ~ibbl.o 

farl.l~alOfj~:) 

f(ktl . 
~i(lr 

'JIIf; 

Call graph and hierarchy 

int) 

boO 
Rotated view 

. k:::::: - finbo0 

~ 

fa, 

.....w..... ...... 
1'..1 -,...... 

1 ,.... ,... 
f f 

fib fact 

fibbo factorial 

9 9 

:; level :: level 

: : level : : level 

-t1bbo -fact 

fae 

main .. 

Class hierarchy (methods hidden) 

main '" 

fi;'rIO 

Class hierarchy (methods shown) 

I I 

P[ate 0/: Ortfwgona['Browser in an 06ject-Orientet{'Environment 



recursive * 

~ -4iT;TinQ 

.f(~ "'if '\ 

!.\ ""-'~~int)
_. 

~

~bo()
 

'''lfubo() 

t-~* -----"-~-Gbb(jO 

i: Visiting method fibbo: :fCint) ii: Rotated view 

"11 

" 

/;" I 
. I

•./.....: . 

........ 

,/ 

---. ..';:~am-* <II........ -----II
 

..... 

"" .." 
iii: Node thickness can indicate call level. .. iv: ...or profile function usage 

prate 0/1: Using neae tliuk..1U!SS to Iioea ron-time information 




