
BROWN UNIVERSITY

Department of Computer Science

Master's Thesis

CS-92-Mll

"Volume Warping: A New Technique for Modeling with Volumetric Data"

by

Thomas J. True

Volume Warping: A New Technique for

Modeling with Volumetric Data*

Thomas J. True

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for the

Degree of Master of Science in the Department of Computer Science

at Brown University

May 1992

"This work was supported in part by grants from NSF, DARPA, IBM, NCR, Sun
Microsystems, Hewlett-Packard and Digital Equipment Corporation.

This research project by Thomas J. True is accepted in its present form

by the Department of Computer Science at Brown University

in partial fulfillment of the requirements for the Degree of Master of Science.

Professor Jo
Advisor

F. Hughes

__ifujg_'L _

Date

Abstract

We present volume warping, a technique for deforming sampled
volumetric data using B-splines that is related to image warping and
to the free-form deformations of Sederberg/Parry and Coquillart. We
show how to speed up the process to achieve near-real-time speed, and
explain the compromises that are made in the resampling of the data to
effect such speeds. User interface paradigms based upon this technique
are also discussed. This technique further expands the repertoire of
volumetric modeling techniques.

Contents

1 Introduction 1

1.1 Volumetric Data and Volumetric Models 1

1.2 Volume Warping 2

1.3 Overview .. 2

2 Previous Work 3

2.1 Free-Form Deformations . 3

2.2 Direct Manipulation of Deformations 4

2.3 Image Warping 6

2.4 Origins of Volumetric Data. 7

2.5 Volumetric Sculpting 7

3 Motivation 8

3.1 A Step Towards Unification 8

3.2 Local Shape Control 8

4 The Algorithm 9

5 Implementation 11

5.1 Overview . 11

5.2 Rapid Evaluation of B-splines 13

5.3 Implementation Details. 15

5.4 Antialiasing 18

5.5 Control Point Placement 20

6 User Interface 22

6.1 Background 22

6.2 How It Works 23

6.3 Extensions.. 24

7 Usage Examples 24

8 Performance 26

9 Future Work 29

9.1 Performance. 29

9.2 Usability .. 30

9.3 Applications 30

10 Conclusions 30

11 Acknowledgements 31

11

1 Introduction

1.1 Volumetric Data and Volumetric Models

In recent years, advances in computer hardware technology and computer
graphics have led to the development of volume visualization and volumetric
modeling. Volumetric modeling, the viewing and modeling of data expressed
in three dimensions, which was simply a dream a decade ago, has become
a reality today [14] [17]. This new reality requires new and more powerful
volumetric modeling techniques.

A volumetric model can be defined simply as a function on 3-space or a
subset of 3-space. If f is a real-valued function on 3-space such that the level
set of f, can be defined as the set of points Sa = {x, y, z : f(x, y, z) = a} and
f is differentiable, then Sa will be a continuous surface called an isosurface.
If the function f is chosen with the intent of creating an isosurface with
a particular shape, f can be described as a volumetric model. Thus for
example, the function f(x, y, z) = x2 + y2 + Z2 - 1 is a volumetric model of
a unit sphere where the level set So is the sphere l

.

Various authors have described ways of building models whose isosurfaces
have certain desired shapes. Blinn [2] made "blobby objects" by placing
"charged points" in space and then computing an isosurface of the potential
arising from these charges; Wyvill et al. [4] described an extension of these
blobby objects called "soft objects"; Bloomenthal and Shoemake [3] described
convolution surfaces that arise from extending soft objects.

There is a subclass of volumetric models called sampled volumet1'ic models
in which the value of the function f is known only at an array of points in
3-space. In these models, the values at non-lattice points must be inferred
from the samples. If the samples are generated by sampling a band-limited
function, one can reconstruct the function by convolution with a sine filter,
but this is impractical for large data sets. These in-between values are often
computed by a simple linear interpolation method. Analogous with two­
dimensional pixmaps, these three-dimensional arrays of density values are
called voxmaps.

Sampled volumetric data has the advantage that the regularity of the

10ther choices are possible. If, for example f(x,y,z) = x 2 + y2 + z2 then SI is the
sphere. Later, we will use functions varying between 0 and 1 and choose Sl/2 to represent
the boundary.

1

data structure makes the rendering and interchange of data easier in much
the same way that the regularity of image data makes image interchange easy
and image processing tractable.

1.2 Volume Warping

Volume waTping is a new technique for deforming sampled volumetric data.
By applying a tl'ivariate B-spline defined mapping function to a volumetric
model (defined as a function on 3-space or a subset of 3-space), a new density
function on 3-space is built.

The idea underlying this deformation technique is best understood by
analogy with image warping: if you draw an image on a rubber sheet, and
then deform the rubber sheet, the image is deformed. In 3D, a value is
assigned to each point of a rubber block; when the rubber block is deformed,
the values are carried to new locations, just as deforming the rubber sheet
carried along the image values on it.

The warping of volumetrically defined models has an advantage over di­
rect deformations of polygonal models. If, for example, one tries to move
one corner of a polygonally defined cube so as to deform it, the few polygons
constituting the cube must be subdivided or creases will form. By contrast,
applying volume warping to a sampled volumetric model entails automatic
re-polygonization, so that no such problems arise.

Volume warping acts on the space in which a model lies rather than on
the polygons extracted from the volumetric model. Volume warping how­
ever, is not appropriate for a finely polygonalized model or for spline patch
models. In both cases, the free-form deformations described by Sederberg
and Parry [18] are probably better. By contrast, when one has volumetric
data or when the underlying model is not explicitly known, volume warping
can be a powerful technique, just as image warping [20] can be useful in
deforming photographs of real-world objects, of which no explicit model is
available.

1.3 Overview

The basic idea behind volume warping depends on a "continuous" world,
but this paper describes an implementation of it in a discrete world using

2

sampled volumetric models. This implementation in a discrete world leads
to certain complications that are addressed in this paper.

The remainder of this paper is divided into ten sections. Section 2 de­
scribes the previous work that forms a foundation for volume warping. Sec­
tion 3 describes motivation for this research. Section 4 describes the con­
tinuous mathematical model of warping implemented on discretely sampled
volume data and Section 5 describes this discrete implementation. Section 6
describes the current interface to volume warping and describes other user
interface possibilities being investigated. The final five sections present ex­
amples, performance issues, possible future work, conclusions and acknowl­
edgements.

2 Previous Work

Sampled volumetric modeling is comparatively new, and has not yet received
as much attention as that of polyhedral modeling. There is a wide spectrum
of modeling techniques for polyhedral models [1] [18]. Similarly, there is a
large set of techniques used to modify image data [7] [20] [6]. Since sampled
volumetric data shares characteristics of both polygonal modeling and image
processing, it seems only appropriate to borrow from each of these domains.
Volume warping does just this.

Although modeling with volumetric data is comparatively new, much
work has been done in the acquisition and display of volumetric data for
medical imaging and scientific visualization [14] [17]. Previous interactive
techniques have also been developed for volumetric modeling [10].

2.1 Free-Form Deformations

The free-form deformation (FFD) method of Sederberg and Parry [18] de­
forms an object by mapping the object from R3 to R3 through a map defined
in terms of tl'ivariate Bernstein polynomials. This mapping transforms each
object point embedded in a local coordinate system back to a new location
within the world coordinates.

This local coordinate system in which the object is embedded is a parallelepiped­
shaped lattice of control points where one corner is the origin (0,0,0) and the
opposite corner is (1,1,1). Letting Qo be the origin of this parallelepiped,

3

and 5, T and U be the three orthogonal vectors from Qo which span the
edges, any point within this local coordinate system can be written as the
sum

Q = Qo + s5 + iT +uU

The local (s, i, u) coordinates of each object point can then be determined
using simple linear equations:

T xU· (Q - Qo) 5 xU· (Q - Qo) 5 x T· (Q - Qo)
s= i= u=-----O.-'------'----'­

TxU·5' 5xU·T' 5xT·U

The FFD function which subsequently maps the local (s, i, u) coordi­
nates of the object back into the world coordinates is defined by taking
a weighted sum of eontrol points. These control points are denoted by
Pijk(i = 1, ... ,I,j = 1, ... ,m,k = 1, ... ,n); Pijk is the i th control point
in the 5 direction, the ph control point in the T direction and the kth control
point in the U direction. They are in a grid within the parallelpiped and
serve as the coefficients for the Bernstein polynomials.

The deformation is then specified by moving the control points from their
undisplaced positions on the lattice. The deformed position of an object point
Qffd with coordinates (s, i, u) can then be found by evaluating the trivariate
Bernstein polynomial:

Because the final mapped location of each object point is determined by
a weighted sum of the control points, changing the control points changes
the deformation. The FFD control points affect the final shape of the object
the same way that the control points of a Bezier spline affect the resulting
curve.

2.2 Direct Manipulation of Deformations

Hsu [12] builds upon FFDs by developing a direct manipulation interface for
controlling the deformations. Using a B-spline based free-form deformation
method instead of the original Bezier approach used by Sederberg and Parry,
Hsu's interface allows the user to directly manipulate the surface of an object

4

without having to directly manipulate the control points. This interface is
the starting point on which the user interface for volume warping is based.
This interface will be discussed in further detail in Section 6.

Bryson [5] also describes several paradigms for the direct manipulation
of surface deformations. Unlike the spline-based free-form deformations de­
scribed above, these deformations are based on spatially weighted transfor­
mations defined using a bump weighting function

x::S;O

s(x,a) = O<x<a{ ;-(o:.f'
x~a

step(x,rO,rl) = s(x - rO,rl -rO)

step(x,c-rO,c-rl) x<c
burnp(x c r0 r 1) =

'" { step(2c-x,c-rO,c-rl) x~c

where c is the center of the bump, rl is the distance from the center within
which the bump is equal to 1, and rO is the distance from the center beyond
which the value of the bump is equal to O.

Vertices on a surface are then moved to deform a surface by multiplying a
specified deformation transformation T by the value of the bump weighting
function at each vertex. This defines a new transformation T'. At each
vertex, the deformation transformation is then defined as:

T'(x) = bump(x, c, rO, rl) * T + (1 - bump(x, c, rO, rl) * I D

where x is the distance of the vertex from the center of the deformation and
I D is the identity transformation.

Treating the surface as simply a collection of vertices, vertices in the
region where the value of the bump function is 1 will be transformed by
T, vertices in the region where the value of the bump function is 0 will
not be transformed at all and vertices inbetween will be transformed by T' .
Unlike free-form deformations which require an underlying data structure,
this approach allows the manipulation of arbitrary groups of points in space.
Note, however, that large deformations will generate creases as in FFDs,
because there is no automatic repolygonization.

5

2.3 Image Warping

Image warping can be defined as the application of geometric transformations
to image data [20]. This image processing technique is commonly used for
geometric correction, image synthesis and special effects.

Catmull [7] developed an early image warping algorithm based on closed­
form mapping functions. Originally developed for texture mapping, Catmull
found that by decomposing a 2-D mapping of a raster image into a succession
of I-D mappings, one in horizontal and the other in vertical scanline order,
the mapping (an image warp) could be performed quickly.

Image warping can also be described as a mesh warping, where the input
and output images are each partitioned into a mesh of patches where each
patch delimits an image region over which a continuous mapping function
is applied [20]. In this case, mapping between the input and output images
becomes simply a matter of transforming each patch. Using this technique,
moving the vertices in a mesh defines arbitrary mapping functions with local
control.

Smyth [19] has developed a 2-pass mesh warping technique where a bi­
variate function based on two 2D arrays of control points is used to produce a
continuous mapping between the points in the source image and those in the
target. The first pass puts each image point into the proper column in the
output image by resampling each row and mapping all points (u, v) to their
correct (x, v) positions in an intermediate image 1. The second pass places
each point into the proper output row by resampling each column in 1 and
mapping every point (x, v) to its final (x, y) position in the target image. The
mapping functions used in this algorithm are derived from the interpolation
of a spline through the x coordinates for pass 1 and the y coordinates for
pass 2.

Another technique for image warping is the separable algorithm of Wol­
berg [20]. This algorithm, which is performed simulataneously on both the
input image 1 and the transpose of the input image IT, is composed of 4
stages. In the first stage each image is resampled both horizontally and ver­
tically; the coordinate resampler then computes all spatial tranformations in
the second stage; in the third stage local measures of shearing, perspective
distortion and bottlenecking are computed; in the fourth and final stage, a
compositor produces the resulting image by selecting the best pixels from I xy

and fly.

6

2.4 Origins of Volumetric Data

Sampled volumetric data from which an isosurface can be extracted arises
from a variety of sources. These sources can be grouped into two general
categories:

observed Data acquired by the simulation of a mathematical/physical model
or by scanning "real-life" objects or phenomenon to produce 2D cross
sections.

modeled Data produced by "free-hand" modeling or the voxelization of
geometric shapes.

A common application which produces data of the first type is medical
imaging [9]. Computed tomography (CT), positron emission tomography
(PET) and magnetic resonance imaging (MRI) are all common techniques
for the noninvasive imaging of the interior of the human body. Each of
the techniques can produce three-dimensional arrays of intensity values, i.e.,
sampled volumetric data which can be used to generate an isosurface2

. There
also exists irregularly sampled volumetric data from geology, meterology, etc.
which we do not discuss here.

Applications which generate volumetric data of the second type include
the SCULPT program developed by Galyean and Hughes [10] (see Sec­
tion 2.5) and other forms of volumetric modeling [2] [4] [3]. Voxelization of
geometric models [13] [15] also falls into this category.

2.5 Volumetric Sculpting

Galyean and Hughes [10] describe an interactive volumetric modeling tech­
nique based on the paradigm of sculpting a solid material. Using a 3D input
device to control a sculpting tool, the values in an array of voxels are mod­
ified much the same way the pixmap values are modified in a traditional
2D "paint" program. This tool, SCULPT, allows the creation of free-form
models with complex topology by direct editing of the volumetric data, but
lacks the ability to create finely detailed models.

2Not to suggest that medical imaging data was collected with the intent of generating
a particular isosurface shape, merely that once it is collected, one can, and often does,
choose to extract a surface shape from the data for other uses.

7

3 Motivation

3.1 A Step Towards Unification

Volume warping is a small step towards the much larger goal of the unification
of volumetric and surface-based modeling techniques. This unification can
be seen as having two facets:

1.	 To apply common techniques to both volumetric and polygonally based
models.

2.	 To make the interchange between the volumetric representation of an
object and a surface representation of the same object as easy as pos­
sible.

Built upon techniques originally developed for polygonal modeling [1] [18],
volume warping represents the first part of this unification. Other work is
currently underway [11] which will make the second part of the unification a
reality and more tightly bind the worlds of volumetric and polygonal model­
mg.

3.2 Local Shape Control

Unlike the volumetric sculpting of Galyean and Hughes, which provides
coarse shape/topology control for a volumetrically defined model, volume
warping provides more precise and smooth control over the isosurface. Vol­
umetric sculpting, like a traditional 2D paint program, only allows the user
to specify the presence or absence of material at a specific location. Volume
warping, on the other hand, by applying a mapping function to the actual
volumetric data values changes the values which subsequently influence the
isosurface generated. This cubic B-spline mapping function, based on eval­
uating only 64 control points (unlike the Bezier approach of Sederberg and
Parry) provides local control.

To give an example of this local shape control property of volume warp­
ing, suppose you have created a model of a teapot using the SCULPT pro­
gram [10] and you decide, after looking at it, that the neck of the teapot
should be a little lower. To make this alteration by sculpting would require

8

4

that you erase the neck and re-sculpt it lower down (just as in a pencil-and­
paper drawing you would have to erase and re-sketch). With volume warping,
however, you could ask to alter the space in which the model resides so as
to move the portion containing the neck. Volume warping can therefore be
seen as providing an extension to volumetric sculpting.

The Algorithm

A volumetric model is just a function on 3-space or a subset of 3-space. We
call this function the density function because it describes where material
is: a density of one means the material is there, a density of zero indicates
that the space is empty, and the isosurface where the density is 1/2 is the
boundary between the inside and the outside of the material. In this section,
we think of the density function as being defined primarily on the unit cube;
its values outside the unit cube are everywhere zero. Thus we have a function

d: [0,1] x [0,1] x [0,1] -t [0,1]: (x,y,z) f-7 d(x,y,z)

that denotes the presence or absence of material.
If we have a function from the unit cube to itself,3

B : (x,y,z) f-7 (BX(x,y,z),BY(x,y,z),BZ(x,y,z)) (1)

then we can build a different density function on the cube as follows: at
each point (x, y, z), the density is computed by first applying the map Band
then evaluating the original density function at the resulting point. The new
density at the point (x, y, z) is therefore

d'(x, y, z) = d(BX(x, y, z), BY(x, y, z), BZ(x, y, z)).

Figure 1 depicts this situation. The domain and codomain of B are drawn as
two separate cubes and the original density d is a real-valued function on the
domain. The new function, d' = d 0 B, becomes a function on the codomain
of B, and is indicated by the dashed line. We can call this new density
function the pushfo1'ward of the original density function by the map B. If B

3If P is a point in 3-space, the notation p x , pY, pz denotes the x, y, and z coordinates
of P.

9

codomai

\
\

\\ d'= dO B
\
\
\
\,

d
• Rdomain

Figure 1: The pushforward of a density function.

is injective, we can look for the point (x, y, z) that is sent to each point W in
the codomain by the map B. The value of the new density function at W is
just the value of the original function at the corresponding source point (and
is zero if TiV is not in the image of the map B). If B is not injective, some
sort of average over all the points in the preimage must be used to adjust
the definition. In our case, it suffices to deal only with the case where B is
injective, because the other cases can be handled during the filtering process
(see Section 5.4).

The volume-warping process, as shown in Figure 2, uses the pushforward
technique described above. We start with a volumetric model, i.e., a density
function d on a unit cube. We call this cube the source and denote it by S.
We create a particular B-spline map B from the source to another unit cube,
which we call the target T. We push forward the density d from S to get a
new density function d' defined on T.

The density on the target T is the warped version of the original density
function on the source S. If the B-spline map differs only slightly from the
identity, then the isosurfaces of the source and target density functions are

10

d'd

B targetsource

Ts
Figure 2: The mapping process.

quite similar and the term "warped" is justified.

5 Implementation

5.1 Overview

The description in the previous section was based on functions defined on
an entire cube. With sampled volumetric data, we have only samples of the
functions of interest. Since convolution with an appropriate reconstruction
kernel to recover the whole function is impractical, we work with approxi­
mations of the functions represented by the samples. Rather than proper
reconstruction with the sine function, we use box filters repeatedly. We have
not found the aliasing thus introduced to be a substantial problem.

The constants used in the program are

•	 ISIZE: the original model to be warped is an ISIZE x ISIZE x ISIZE
array of unsigned bytes (values between 0 and 255); by division by
255, these represent density values between 0 and 1, and the object
described by the model is an isosurface for value = 127 (i.e., density =
0.5). In our program, ISIZE = 30.

11

•	 TSIZE: the target voxmap is an TSIZE x TSIZE x TSIZE array of
unsigned bytes. The warped model is placed into the center of this
array (TSIZE must be greater than ISIZE) and the remainder of the
target voxmap is padded with zeros. In our program, TSIZE = 38.

•	 CSIZE: The B-spline maps that we define are determined by an array
of control points of size CSIZE x CSIZE x CSIZE. (We generally use
CSIZE = 9, but other values may be appropriate for finer control.) A
B-spline B(s, t, u) based on such an array of control points is defined
for values of s, t, and u between 0 and CSIZE - 3. The ratio of TSIZE
to CSIZE - 3 must be an integer for the rapid spline evaluations of
Section 5.2 to work In our program, this ratio is 60/(9 - 3) = 10. We
call this ratio the granularity G.

Our B-spline map is defined on the source with the help of the B-spline
basis functions and the CSIZE x CSIZE x CSIZE array of control points Pijk .

We first establish a correspondence between points in the source and points in
the cube [0, CSIZE - 3] x [0, CSIZE - 3] x [0, CSIZE - 3]. The correspondence
is simple: the entry in the source array whose index is (i,j, k) corresponds
to the point in 3-space whose coordinates are

(s,t,u) = (i/G,j/G,k/G)	 (2)

Recall that the B-spline basis functions are

1
Bo(t) -(l-t) 3

6
1

B} (t) "6(3t3
- 6t2 +4)

1
Bz(t) "6(-3t3 + 3tZ + 3t + 1)

1	 3B 3 (t) -t
6

These basis functions are used to blend the control points, taken in groups
of 64, as follows. For integers a, b, and c between 0 and G - 1, we define the
B-spline function on the subcube

a < s<a+1

b < t<b+1

c < u<c+1

12

of the source (which we call a region) by using the control points Pijk , for

a :S i<a+3

b < j<b+3

c < k<c+3

The general form for the mapping function on this region is therefore

3

BX(s, t, u) = L Bi(s - a)Bj(t - b)Bk(u - c)P:+i,b+j,c+k
i,j,k=O

3

BY(s, t, u) L Bi(s - a)Bj(t - b)Bk(u - C)P;+i,b+J',c+k
i,j,k=O

3

BZ(s, t, u) = L Bi(s - a)Bj(t - b)Bk(u - c)P:+i,b+j,c+k (3)
i,j,k=O

Note that there are G x G x G regions and that altering one of the control
points alters the values of the function in only a subset of the regions. Thus
although our map is analogous to the 3D Bernstein polynomials used by
Sederberg and Parry [18], it provides more localized control.

The B-spline map between the source and the target voxmap is specified
by the location of the control points. We can alter the map by moving
the control points that define this map. Having defined the altered map, the
density is pushed forward from the source to the target to produce the warped
sampled volumetric data set. For each point in the domain of the altered
3D B-spline we will evaluate the B-spline function to get another 3D point
(Equation (3) shows how to compute B(s, t, u)), and record the resulting
locations in a 3D array of 3D points called the deformation mapping army.

The precise details of the pushforward of the discrete data values are
given in Section 5.4. Before addressing this however, we describe how the
initial values of a B-spline map are computed for each point in the source
voxmap.

5.2 Rapid Evaluation of B-splines

It is clear that we must be able to compute the B-spline map rapidly, since
it is applied to each voxel in the source voxmap. The standard way to

13

do this with B-splines would be to use incremental computation [8]. Once
we realize, however, that the parameter values at which the B-splines are
computed do not change when the control-point positions are changed, we
see that a pre-computation scheme can save substantial time. Moreover, by
giving the relative sizes of the source and the control mesh an appropriate
relation, we achieve a substantial speedup.

Look once again at Equations (2) and (3). Since the source size is an
integer multiple of the control-mesh size, the fractional parts of s, t, and U

used in the computation of the B-spline in Equation (3) are the same for
points in any region. We use this fact as follows. If we denote by bij the
coefficient of t j in the ith basis function of Equation (3), then we can rewrite
the B-spline evaluation formula as

3

BX(s,t,u) = L Bi(s - a)Bj(t - b)Bk(u - c)P:+i,b+j,c+k

i,j,k=O

3

L bip(S - a)pbjq(t - b)qbkr(u - cy P:+i,b+j,c+k
i,j,k,p,q,r=O

3

BY(s, t, u) L Bi(s - a)Bj(t - b)Bk(u - C)P;+i,b+j,c+k

i,j,k=O

3

L bip(s - a)Pbjq(t - b)qbkr(u - cy P;+i,b+j,c+k
i,j,k,p,q,7'=O

3

L Bi(s - a)Bj(t - b)Bk(u - c)P:+i,b+j,c+k
i,j,k=O

3

L bip(s - a)Pbjq(t - b)qbk,-(u - cy P:+i,b+j,c+k
i,j,k,p,q,7'=O

where the values of s - a, t - b, and u - c are always a/G, ... , (G - l)/G.
In fact, for the point in the source voxmap indexed bye, J, g, the values of
s -a, t - b, and u - c will be (e mod G)/G, (J mod G)/G and (g mod G)/G.
Letting e = e mod G, and similarly for J and 9, we can write the formula

3

L
i,j,k,p,q ,r=O

14

3

BY(s, t, U) L: bip (e/G)Pbjq(J/G)q bkr ([; /GY P;'+i,b+j,c+k
i,j,k,p,q,r=O

3

BZ(s, t, U) = L: bip(e/G)Pbjq(J/G)qbkr(g/GY P:+i,b+j,c+k
i,j,k,p,q,r=O

We therefore precompute the values

3

c[eH]][g][i:l[j][kj = L: bip(e/GYbjq(J/G)qbkr(g/GY (4)
p,q,r=O

for 0 ::; e,], 9 < G and 0 ::; i, j, k ::; 3. Computing the value of the spline
function at particular values of e, f, and g now requires only that we deter­
mine the values of a, b, and c (which are just the integer parts of e/G, f /G,
and giG, respectively) and the values of e,], and g. We then calculate the
sum in Equation (4) by the simple form

3

BX(s, t, u) = L: c[e][]Hg][i][j][kjP:+i,b+j,c+k
i,j,k=O

3

BY(s, t, u) L: c[e][]Hg][iHj][kjP;'+i,b+j,c+k
i,j,k=O

3

BZ(s, t, u) = L: c[eH]][g][i][j][kjP:+i,b+j,c+k (5)
i,j,k=O

which is just a sum of 64 terms. Note that in C and Fortran, the 64 entries
of the coefficient array used are stored in sequential memory, so that access
to them can be particularly rapid.

5.3 Implementation Details

We now can complete the overall structure of the program.

Initialization. We begin by reading the original density function into the
source voxmap; we then set up the lattice of control points as described
in Section 5.5 and thus define a B-spline map from the source voxmap to
the target voxmap. This will be the map used to push forward the density

15

data flow

structure flow

source
voxmap

encapsulation

target
voxmap ----­

coefficient
array

deformation
mapping
array

control
point
lattice

Figure 3: Block diagram of initialization process.

function from the source voxmap to the target voxmap. Note that we choose
our control points so that the initial B-spline map is a scalar multiple of a
translate of the identity so that pushing forward the original density function
through the initial control point configuration will produce a target voxmap
which is identical to the source.

Once the lattice of control points is set up, we calculate the s, t, and u
values at each point of the source voxmap, and use these values to determine
the four B-spline basis function values on each of s, t and u; these are saved for
later use (see Section 6). Then we compute the G x G x G x CSIZE x CSIZE x
CSIZE array of coefficients described in Equation (4), for use in determining
the values of the spline map. Finally, we initialize the memory required for
the target voxmap and the deformation mapping array. Figure 3 pictorially
illustrates this initialization of the various data structures described above.

The main loop. The main loop of the program is basically just

repeat {

get user input to determine

16

which control points to move
determine which regions are affected
for each such region {

pushforward density function using unmoved control points
subtract pushed forward values
pushforward density function using moved control points
add pushed forward values

}

}

Each of the steps in this loop has its own subtlety. The first part, choosing
which control points to move, can be as simple as reading a file containing
a list of control-point indices and the new control-point locations. We have
actually implemented a more intuitive method of control as the basis for an
interactive user interface, as described in Section 6. For now, it suffices to
say that certain control points are scheduled to be moved.

If control point Pijk is to be moved, the regions labeled by indices (a, b, c),
where i - 3 :S a :S i and similarly for j and k, are influenced. For each
region we must first erase from the target voxmap the contribution of the
pushforward of the density on this region. We could do this as described
in the loop, by pushing forward the values and subtracting them from the
values stored in the voxels of the target voxmap. Instead, we have found
that for modest deformations, it suffices to simply write zeros into the target
voxmap at the pushed-forward locations. At this point, we actually change
the control points by moving them to their new locations, and hence define
a new B-spline mapping from the source to the target voxmap.

We must now push forward the density function from the source to the
target voxmap. The simplest way to do this is to compute where each source
voxel center is sent by the mapping, round off to integer coordinates, and
then place the density from the source voxel into the target voxel at those
coordinates. This produces severe aliasing, however, and we are therefore
compelled to do some filtering. To this end, we compute the (floating-point)
coordinates of the point to which each source voxel-center is sent and place
the results in the TSIZE x TSIZE x TSIZE deformation mapping array. Com­
puting the results of the map in this deformation mapping array is expensive,
but using the rapid B-spline computation described in Section 5.2 reduces
the time involved substantially. Figure 4 illustrates the flow of data from the
source to the target voxmap.

17

source
voxmap

control
point
movement

contra
point
lattice

x
 coefficient
array

deformation
mapping
array

antialiasing

Figure 4: Block diagram of warping process.

5.4 Antialiasing

As noted in the introduction, we ought to exactly reconstruct the complete
density function on the source voxmap with a sine filter, and then push
forward this reconstructed function. We could then filter the result with
a sine function on the target space to remove all high frequencies before
sampling the function into the target voxmap.

Rather than doing anything so computationally expensive, however, we
use box filtering to approximate the function. We reconstruct the density
function on the source with a box filter by taking the value at each voxel
center and assuming that the value of the original density function is constant
throughout the unit cube about the voxel center (henceforth called the voxe1).
We then look at the image of this cube under the B-spline mapping and, for
each voxel in the target, compute the approximate overlap of the transformed
box with the voxel and record it as a fraction of the target voxel's volume
that we call the weight. We then take the value from the source voxel and
multiply it by the weight, to get the weighted value. We tally these weights
and weighted values for each target voxel. In pseudocode:

for each source voxel V {

compute the transformed voxel B(V)

for each target voxel Q that overlaps B(V) {

18

compute weight = volume of the overlap

compute weighted value = weight * d(V)

add weight to Q.weight

add weighted value to Q.weighted_value

}

}

for each target voxel Q {

if weight < 1 then d"(Q) = Q.weighted_value

else d"(Q) = Q.weighted_value / Q.weight

}

Unfortunately, computing the exact overlap of the target voxel with the
transformed source voxel is prohibitively expensive. Once again, we com­
promise and instead compute an approximation of the transformed source
voxel: we compute the approximate transformed locations of the centers of
the six faces of the source voxel and take the bounding cube of these six
points as our proxy for the actual transformed source voxel. The effect (in
an analogous 2D case) is shown in Figure 5: the bounding boxes of adjacent
pixels may overlap. Thus a single target pixel (in the analogous 2D process)
may find itself with an accumulated weight of more than 100%; this is the
reason for the division in the last line of the pseudocode above.

On the other hand, a pixel may not be completely covered by the trans­
formed source pixels. If not, then it is reasonable to count the portion left
uncovered as contributing zero to the density function: adding this in brings
the total weight to 1 and does not change the weighted values at all. This
explains the second-to-Iast line of the pseudocode.

The approximate locations of the six transformed points are computed
with the deformation mapping array. Recall that we computed the target
locations of each mapped source voxel center in this array. To find the
center of the face lying between the voxel center at (e,!, g) and the one at
(e +1, !, g), we simply average the points stored in the deformation mapping
array at these two indices. 4 Figures 6 and 7 show the results of volume

4We could have computed the transformed locations of these face centers instead of
those of the voxel centers in the first place, but chose not to because having the locations
of the transformed voxel centers lets us do the very inexpensive pushforward described at
the end of Section 5.3 in almost real time.

19

--

--,
 \
\­ \...... ­ \ •

. ;' \ •
 \

•	
~- ,-..,

,	
~

\	 r \,...­ • ~-' , .,v
~ ..t•
\--­ HI _... .~ -- I..

\	
~\ I•

r .. I

,
~	

I...... --l" • I\ \ \

--• 1---- ­•
I- '"

target voxels

transformed voxels

bounding box

•	 transformed voxel centers

x	 approximations of
transformed face centers

Figure 5: The bounding box of 6 points in a transformed voxel is used to
approximate the transformed voxel.

warping with and without the antialiasing provided by this approximate box
filtering.

This completes the warping of the volume data; to make an actual picture,
we compute the isosurface of the resulting density field and render it.

5.5 Control Point Placement

In order to determine the placement of each control point, we start by di­
viding the central ISIZE x ISIZE x ISIZE subarray of the target data space
into CSIZE - 3 pieces in each direction; each division is then a cube with an
edge of length ISIZE/(CSIZE - 3) (which may not be an integer, of course).
The control points are then placed in an evenly spaced lattice based upon
this subdivision of the target voxmap.

Since we have chosen an evenly spaced control lattice and the values in
each segment being B-splines require 4 control points, the control points on
the end in each direction will lie outside of the central ISIZE x ISIZE x ISIZE
subarray of the target voxmap. This even spacing of the control points aids
in the mapping and B-spline evaluation by making the parametric steps in s,
t and u uniform throughout the volume. Note that because this is a B-spline,

20

Figure 6: A warped volume inwhich the pushforward was done with the
simple "map and round off" scheme.

Figure 7: A warped volume in which the bounding-box filtering technique
was used.

21

B

A

Figure 8: The placement of the control points for the B-spline map in 2D,
for a 9 x 9 control mesh; note that the data is divided into a 6 x 6 grid of
regIOns.

the image of the function defined by the control points is a proper subset of
the convex hull of the control points.

An example of the control point layout in 2D when CSIZE = 9 can be
seen in Figure 8. In this figure, notice how the data area denoted by the
bold rectangle is divided into CSIZE - 3 (i.e., 6) equal regions and how some
of the control points lie outside the bounds of the data. As an example of
how the control points affect each region, in this 2D example data values in
region Ax ::; x < Bx A y ::; y < By are influenced by the 16 control points in
the rectangular region denoted by the dotted line.

6 User Interface

6.1 Background

Hsu [12] develops a direct manipulation interface to FFDs which allows the
user to directly manipulate the surface of an object without having to directly
manipulate the individual control points which govern the surface. It is upon
this direct manipulation paradigm that the user interface for volume warping

22

is built.
Traditional interfaces to FFDs like those to spline curves and surfaces

have typically relied on direct control-point manipulation. An interface of
this type however is unnatural and hard to use and understand for a user that
is unfamiliar with the principles of splines. For example, the fact that the
control points most often do not approximate the surface of the object makes
direct control-point manipulation difficult since one can often not exactly
determine the effect that moving one particular control point will have on
the surface.

Hsu's interface eliminates the need for the user to be aware of the control
points providing a simple and easy to use click-and-drag interface based upon
the paradigm of a "magnet tool" that allows both the pulling on and pushing
against a single object point or a larger section of the object. By varying
the size, shape and "realm of influence" of this tool different effects can
be achieved. Although Hsu's method was originally applied to polygonally
defined models, it can be applied directly to the warping of volumetrically
defined models.

6.2 How It Works

In the users view, to warp volumetric data, all that is required is the selec­
tion of a point within the volumetric space and the movement of this point
to a new location within the volume. Once the point is placed in its new
location, the data warps accordingly. In reality things are not that simple
however. Even though the user no longer has to think about and directly
move the control points, the control points are still the governing factor in
the deformation. We therefore implement a scheme where the control points
are moved based upon how the user moves the selected point or a group
of selected points within the volumetric model. This scheme of moving the
control points based upon the movement of data points can be characterized
as an underconstrained system. Hsu describes in detail the general solution
for an underconstrained system of B-splines so we will not discuss it further
here.

23

6.3 Extensions

This interface, which allows the user to directly manipulate the volumetric
data by indirectly moving the control points based upon the movement of a
selected point or group of points can be the basis for several more complex
interaction methods. Among those that we can imagine are:

Arbitrary Geometry Allowing the user to specify arbitrary geometries for
the warping tool with different spheres/areas of influence provides an
unlimited number of achieveable warping effects.

Particle Accelerator A tool that when moved within a certain range of
the volume sucks in points on one side and then spits them back out
on the other side.

Start and Goal Curves Given user defined starting and ending 3D curves,
the warp of the volumetric data interpolates between the curves over a
sequence of frames.

Object Avoidance Given a user defined object, the volumetric data warps
by being pulled or pushed around or through a specified object or group
of objects. An example of this would be a torus accelerator where the
model is warped by pulling it through a torus.

7 Usage Examples

Comparison between the unwarped and warped volumetric models in Fig­
ures 9-14 demonstrates some of the results attainable with our technique.

24

Figure 9: Teapot, original sculpture.

Figure 10: Teapot, warped to adjust the spout position.

25

8 Performance

To be truly interactive, any modeling technique requires realtime perfor­
mance. We have worked hard to achieve this performance, feeling that vol­
ume warping would only be useful if this interactive performance could be
attained.

The interactive manipulation and viewing of volumetric models is nu­
merically intense and realtime performance on currently available graphics
workstations is hard to achieve. The pushforward mapping and antialiasing
inherent in volume warping makes interactive performance of our new vol­
umetric modeling technique even harder to achieve. Our rapid evaluation
of B-splines (see Section 5.2) and our ability to localize a deformation have
not been enough to give us realtime volume warping. Currently, one warp of
a volumetric model where ISIZE= 30, TSIZE= 38 and CSIZE= 9 requires
approximately 1 second on an HP 9000/730 high performance graphics work­
station. Analyzing this performance, we have found the following bottlenecks
in our implementation.

antialiasing Computing the bounding volume of the transformed source
voxel and the percentage of overlap calculations for each target voxel
as described in Section 5.4 have shown to consume a large part of the
actual deformation time (independent of rendering and redisplaying the
model).

rendering We use the marching cubes algorithm [16] to generate the indi­
vidual polygons which comprise the isosurface of the model. For even
relatively small models (ISIZE= 30) however, this algorithm generates
on the order of 6000-8000 triangles each time the model is re-rendered
after a warp.

screen refresh Independent of the actual rendering of the model discussed
above, we have found screen refresh to also to be a major bottleneck.
Although an HP 9000/730 graphics workstation is rated at 300,000
polygons/ sec, simple redisplay of a volumetric model composed of 6000
triangles can't be done in real time (30 frames/sec.). The reason for
this is that the 300,000 polygon/sec statistic is based on the display of
triangle strips where adjacent triangles share common vertices and the
adding of an additional triangle simply requires the addition of a single

26

Figure 11: Clay block, corner warped inward.

Figure 12: Clay block, corner warped outward.

27

Figure 13: Tree, original sculpture.

Figure 14: Tree, warped as if caught in a strong gust of wind.

28

point. Our rendering algorithm produces individual triangles which
cannot be displayed as quickly by the graphics hardware.

9 Future Work

9.1 Performance

One of the many ways inwhich we are looking to improve this modeling
technique is to improve the performance. We are looking into solutions to
the bottlenecks discussed in Section 8.

By changing our rendering algorithm to output triangle strips or polyg­
onally defined meshes, we feel that we might be able to achieve an order of
magnitude speedup in both rendering and screen refresh. A limitation in
most currently available graphics packages which may not make this feasable
however, is the fact that most implementations of triangle strips and polygon
meshes where vertices are shared do not allow vertices to have more than one
color and normal per vertex for lighting and shading calculations. We are
currently looking into ways to work around this limitation.

The interactive performance of the user interface could be improved if the
graphics hardware supported overlay planes which share the z-buffer with the
image planes. This would allow the interactive movement of the warping tool
without having to redraw the complete underlying model each time.

An iterative refinement approach to rendering a warped model could also
be used to improve the interactive performance. If we skipped the antialias­
ing step described in Section 5.4 (producing results similar to Figure 6) the
computation of the bounding volume and overlap for each transformed source
voxel would no longer be significant in the warping time. This unantialiased
rendering could then be used during an interactive "rubberbanding" phase
of warping a model; the antialiased rendering could the be used to exhibit
the final warped results once the "rubberbanding" is complete.

We also feel that volume warping is an ideal application for fine-grained
parallelism. Performance could be improved by farming out the B-spline
mapping of each region to a different processor.

29

9.2 Usability

As a standalone modeling technique, volume warping isn't all that useful.
In the future we would like to integrate volume warping with volumetric
sculpting so that the user could use the techniques together. As stated in
Section 3.2, we feel that volume warping would prove to be an excellent
postprocess to volumetric sculpting by providing the user local shape control
for making minor alterations to a sculpted model.

We would also like to see volume warping integrated into an environment
in which the user can easily switch between volumetric and polygonal model­
ing technques. Within an environment of this type, a user could easily warp
any modeled object.

We also plan to add the capabilities for using three-dimensional input
devices to control the deformations. Specific devices which we are considering
to control the movement of the warping tool include a three-dimensional
mouse, space-ball, and hardware dials.

9.3 Applications

In the future we would like to apply volume warping to scientific data. One
application of this technique may be the removal of distortions and inconsis­
tencies introduced during the data acquisition process, although one would
have to be careful to regulate the data errors introduced by the warping
process itself.

Another potential application may be in the field of morphometrics. Sci­
entists working in this area can apply volume warping to volumetrically de­
fined bone stucture models to graphically simulate bone structure growth
and decay during the aging process.

10 Conclusions

We have described volume warping, a new volumetric modeling paradigm
derived from techniques in polyhedral modeling and image warping. The
results let one deform volumetric models in a convenient manner that is
moderately fast and easy to implement. We have also described techniques
for rapid evaluation of B-splines in the particular case where the control
points are to be changed but the evaluation points remain constant, and a

30

technique for manipulating the control points of a 3D B-spline automatically
so as to effect a particular change in the map. We have also described several
user interface paradigms based upon this technique. We see this as one
small step towards the much larger goal of the unification of polygonal and
volumetric modeling techniques.

11 Acknowledgements

I would like to thank my advisor John Hughes for his initial suggestion to
undertake this research and endless help overcoming the mathematical and
technical stumbling blocks encountered along the way. His clear explanations
of the mathematical details, review of my writing, and overall interest in my
work has been immeasurable. I also could not have completed this research
without the help, support, and encouragement of all the great people in the
Brown University Computer Graphics Group led by Andries van Dam and
John Hughes. In particular I would to thank George Reilly, who assisted in
improving the performance of the code, Ken Herndon, who made the first
model of the teapot, and Dan Robbins, who created the model for the tree.
Other folks in the group worthy of special thanks for their guidance and as­
sistance include Bob Zeleznik, Nate Huang, Brook Conner, and Scott Snibbe.
Mary Andrade of Brown also deserves special thanks for her friendship, moral
support, and proofreading skills. I'd also like to thank Ingrid Carlbom and
William Hsu of the Digital Equipment Corporation Cambridge Research Lab;
Ingrid for numerous words of wisdom regarding volume visualization and sug­
gestions of future applications for my research and William for sparking my
interest in free-form deformations. I would also like to acknowledge the fi­
nancial support provided by Digital Equipment Corporation's Graduate En­
gineering Education Program which made my studies at Brown University
possible. Most of all, I'd like to thank my family for their unending support
and my special friend Therese Mersereau for her encouragement and patience
over the past 18 months.

31

References

[:I.]	 A. Barr. Global and local deformations of solid primitives. Computer
Graphics, 18(3):21-30, July 1984.

[2]	 J. F. Blinn. A generalization of algebraic surface drawing. ACM TOG,
1(3):235-256, 1982.

[3]	 J. Bloomenthal and K. Shoemake. Convolution surfaces. Computer
Graphics, 25(4):251-256, July 1991.

[4]	 J. Bloomenthal and B. Wyvill. Interactive techniques for implicit mod­
eling. Compute1' Graphics, 24(2):109-116, March 1990.

[5]	 Steve Bryson. Paradigms for the shaping of surfaces in a virtual en­
vironment. In Proceedings of the Hawaii International Conference on
System Sciences, pages 649-658, January 1992.

[6]	 Carolco Productions. Terminator 2, 1991.

[7]	 E. Catmull and A. R. Smith. 3-d transformations of images in scanline
order. Computer Graphics, 14(3):279-285, 1980.

[8]	 J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics:
Principles and Practice. Addison Wesley, second edition, 1990.

[9]	 H. Fuchs, S. Levoy, and S. M. Pizer. Interactive visualization of 3d
medical data. Computer, pages 46-51, 1990.

[10]	 T. Galyean and J. Hughes. Sculpting: An interactive volumetric mod­
eling technique. Computer Graphics, 25(4):267-274, July 1991.

[11]	 C. Grimm and J. Hughes. S-patching implicit surfaces. In preparation.

[12]	 William M. Hsu. A direct manipulation interface to free-form deforma­
tions. Master's thesis, Brown University, May 1991.

[13]	 A. Kaufman. Efficient algorithms fo 3d scan-conversion of parametric
curves, surfaces and volumes. Computer Graphics, 21 (4): 171-179, 1987.

32

[14]	 A. Kaufman. Volume Visualization. IEEE Computer Science Press,
1990.

[15]	 A. Kaufman and E. Shimony. 3d scan-conversion algorithms for voxel­
based graphics. In ACM Workshop on Interactive 3D Graphics, pages
45-75, October 1986.

[16]	 W.E. Lorenson and H.E. Cline. Marching cubes: A high resolution 3d
surface construction algorithm. Computer Graphics, 21(4):163-169, July
1987.

[17]	 G. M. Nielson and B. Shriver. Visualization in Scientific Computing.
IEEE Computer Science Press, 1990.

[18]	 T.W. Sederberg and S.R. Parry. Free-form deformation of solid geomet­
ric models. Computer Graphics, 20(4):151-160, August 1986.

[19]	 D. B. Smyth. A two-pass mesh warping algorithm for object transfor­
mation and image interpolation. ILM Technical Memo 1030, 1990.

[20]	 G. Wolberg. Digital Image Wa7'ping. IEEE Computer Science Press,
1990.

33

