
BROWN UNIVERSITY
 
Department of Computer Science
 

Master's Thesis
 
CS-92-Mll
 

"Volume Warping: A New Technique for Modeling with Volumetric Data" 

by
 

Thomas J. True
 



Volume Warping: A New Technique for
 
Modeling with Volumetric Data*
 

Thomas J. True 

Department of Computer Science
 
Brown University
 

Submitted in partial fulfillment of the requirements for the
 

Degree of Master of Science in the Department of Computer Science
 

at Brown University
 

May 1992 

"This work was supported in part by grants from NSF, DARPA, IBM, NCR, Sun 
Microsystems, Hewlett-Packard and Digital Equipment Corporation. 



This research project by Thomas J. True is accepted in its present form
 
by the Department of Computer Science at Brown University
 

in partial fulfillment of the requirements for the Degree of Master of Science.
 

Professor Jo 
Advisor 

F. Hughes 

__ifujg_'L _
 
Date 



Abstract 

We present volume warping, a technique for deforming sampled 
volumetric data using B-splines that is related to image warping and 
to the free-form deformations of Sederberg/Parry and Coquillart. We 
show how to speed up the process to achieve near-real-time speed, and 
explain the compromises that are made in the resampling of the data to 
effect such speeds. User interface paradigms based upon this technique 
are also discussed. This technique further expands the repertoire of 
volumetric modeling techniques. 
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1 Introduction 

1.1 Volumetric Data and Volumetric Models 

In recent years, advances in computer hardware technology and computer 
graphics have led to the development of volume visualization and volumetric 
modeling. Volumetric modeling, the viewing and modeling of data expressed 
in three dimensions, which was simply a dream a decade ago, has become 
a reality today [14] [17]. This new reality requires new and more powerful 
volumetric modeling techniques. 

A volumetric model can be defined simply as a function on 3-space or a 
subset of 3-space. If f is a real-valued function on 3-space such that the level 
set of f, can be defined as the set of points Sa = {x, y, z : f(x, y, z) = a} and 
f is differentiable, then Sa will be a continuous surface called an isosurface. 
If the function f is chosen with the intent of creating an isosurface with 
a particular shape, f can be described as a volumetric model. Thus for 
example, the function f( x, y, z) = x2 + y2 + Z2 - 1 is a volumetric model of 
a unit sphere where the level set So is the sphere l

. 

Various authors have described ways of building models whose isosurfaces 
have certain desired shapes. Blinn [2] made "blobby objects" by placing 
"charged points" in space and then computing an isosurface of the potential 
arising from these charges; Wyvill et al. [4] described an extension of these 
blobby objects called "soft objects"; Bloomenthal and Shoemake [3] described 
convolution surfaces that arise from extending soft objects. 

There is a subclass of volumetric models called sampled volumet1'ic models 
in which the value of the function f is known only at an array of points in 
3-space. In these models, the values at non-lattice points must be inferred 
from the samples. If the samples are generated by sampling a band-limited 
function, one can reconstruct the function by convolution with a sine filter, 
but this is impractical for large data sets. These in-between values are often 
computed by a simple linear interpolation method. Analogous with two­
dimensional pixmaps, these three-dimensional arrays of density values are 
called voxmaps. 

Sampled volumetric data has the advantage that the regularity of the 

10ther choices are possible. If, for example f(x,y,z) = x 2 + y2 + z2 then SI is the 
sphere. Later, we will use functions varying between 0 and 1 and choose Sl/2 to represent 
the boundary. 
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data structure makes the rendering and interchange of data easier in much 
the same way that the regularity of image data makes image interchange easy 
and image processing tractable. 

1.2 Volume Warping 

Volume waTping is a new technique for deforming sampled volumetric data. 
By applying a tl'ivariate B-spline defined mapping function to a volumetric 
model (defined as a function on 3-space or a subset of 3-space), a new density 
function on 3-space is built. 

The idea underlying this deformation technique is best understood by 
analogy with image warping: if you draw an image on a rubber sheet, and 
then deform the rubber sheet, the image is deformed. In 3D, a value is 
assigned to each point of a rubber block; when the rubber block is deformed, 
the values are carried to new locations, just as deforming the rubber sheet 
carried along the image values on it. 

The warping of volumetrically defined models has an advantage over di­
rect deformations of polygonal models. If, for example, one tries to move 
one corner of a polygonally defined cube so as to deform it, the few polygons 
constituting the cube must be subdivided or creases will form. By contrast, 
applying volume warping to a sampled volumetric model entails automatic 
re-polygonization, so that no such problems arise. 

Volume warping acts on the space in which a model lies rather than on 
the polygons extracted from the volumetric model. Volume warping how­
ever, is not appropriate for a finely polygonalized model or for spline patch 
models. In both cases, the free-form deformations described by Sederberg 
and Parry [18] are probably better. By contrast, when one has volumetric 
data or when the underlying model is not explicitly known, volume warping 
can be a powerful technique, just as image warping [20] can be useful in 
deforming photographs of real-world objects, of which no explicit model is 
available. 

1.3 Overview 

The basic idea behind volume warping depends on a "continuous" world, 
but this paper describes an implementation of it in a discrete world using 
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sampled volumetric models. This implementation in a discrete world leads 
to certain complications that are addressed in this paper. 

The remainder of this paper is divided into ten sections. Section 2 de­
scribes the previous work that forms a foundation for volume warping. Sec­
tion 3 describes motivation for this research. Section 4 describes the con­
tinuous mathematical model of warping implemented on discretely sampled 
volume data and Section 5 describes this discrete implementation. Section 6 
describes the current interface to volume warping and describes other user 
interface possibilities being investigated. The final five sections present ex­
amples, performance issues, possible future work, conclusions and acknowl­
edgements. 

2 Previous Work 

Sampled volumetric modeling is comparatively new, and has not yet received 
as much attention as that of polyhedral modeling. There is a wide spectrum 
of modeling techniques for polyhedral models [1] [18]. Similarly, there is a 
large set of techniques used to modify image data [7] [20] [6]. Since sampled 
volumetric data shares characteristics of both polygonal modeling and image 
processing, it seems only appropriate to borrow from each of these domains. 
Volume warping does just this. 

Although modeling with volumetric data is comparatively new, much 
work has been done in the acquisition and display of volumetric data for 
medical imaging and scientific visualization [14] [17]. Previous interactive 
techniques have also been developed for volumetric modeling [10]. 

2.1 Free-Form Deformations 

The free-form deformation (FFD) method of Sederberg and Parry [18] de­
forms an object by mapping the object from R3 to R3 through a map defined 
in terms of tl'ivariate Bernstein polynomials. This mapping transforms each 
object point embedded in a local coordinate system back to a new location 
within the world coordinates. 

This local coordinate system in which the object is embedded is a parallelepiped­
shaped lattice of control points where one corner is the origin (0,0,0) and the 
opposite corner is (1,1,1). Letting Qo be the origin of this parallelepiped, 
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and 5, T and U be the three orthogonal vectors from Qo which span the 
edges, any point within this local coordinate system can be written as the 
sum 

Q = Qo + s5 + iT +uU 

The local (s, i, u) coordinates of each object point can then be determined 
using simple linear equations: 

T xU· (Q - Qo) 5 xU· (Q - Qo) 5 x T· (Q - Qo) 
s= i= u=-----O.-'------'----'­

TxU·5' 5xU·T' 5xT·U 

The FFD function which subsequently maps the local (s, i, u) coordi­
nates of the object back into the world coordinates is defined by taking 
a weighted sum of eontrol points. These control points are denoted by 
Pijk(i = 1, ... ,I,j = 1, ... ,m,k = 1, ... ,n); Pijk is the i th control point 
in the 5 direction, the ph control point in the T direction and the kth control 
point in the U direction. They are in a grid within the parallelpiped and 
serve as the coefficients for the Bernstein polynomials. 

The deformation is then specified by moving the control points from their 
undisplaced positions on the lattice. The deformed position of an object point 
Qffd with coordinates (s, i, u) can then be found by evaluating the trivariate 
Bernstein polynomial: 

Because the final mapped location of each object point is determined by 
a weighted sum of the control points, changing the control points changes 
the deformation. The FFD control points affect the final shape of the object 
the same way that the control points of a Bezier spline affect the resulting 
curve. 

2.2 Direct Manipulation of Deformations 

Hsu [12] builds upon FFDs by developing a direct manipulation interface for 
controlling the deformations. Using a B-spline based free-form deformation 
method instead of the original Bezier approach used by Sederberg and Parry, 
Hsu's interface allows the user to directly manipulate the surface of an object 
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without having to directly manipulate the control points. This interface is 
the starting point on which the user interface for volume warping is based. 
This interface will be discussed in further detail in Section 6. 

Bryson [5] also describes several paradigms for the direct manipulation 
of surface deformations. Unlike the spline-based free-form deformations de­
scribed above, these deformations are based on spatially weighted transfor­
mations defined using a bump weighting function 

x::S;O 

s(x,a) = O<x<a{ ;-(o:.f' 
x~a 

step(x,rO,rl) = s(x - rO,rl -rO) 

step(x,c-rO,c-rl) x<c
burnp(x c r0 r 1) = 

'" { step(2c-x,c-rO,c-rl) x~c 

where c is the center of the bump, rl is the distance from the center within 
which the bump is equal to 1, and rO is the distance from the center beyond 
which the value of the bump is equal to O. 

Vertices on a surface are then moved to deform a surface by multiplying a 
specified deformation transformation T by the value of the bump weighting 
function at each vertex. This defines a new transformation T'. At each 
vertex, the deformation transformation is then defined as: 

T'(x) = bump(x, c, rO, rl) * T + (1 - bump(x, c, rO, rl) * I D 

where x is the distance of the vertex from the center of the deformation and 
I D is the identity transformation. 

Treating the surface as simply a collection of vertices, vertices in the 
region where the value of the bump function is 1 will be transformed by 
T, vertices in the region where the value of the bump function is 0 will 
not be transformed at all and vertices inbetween will be transformed by T' . 
Unlike free-form deformations which require an underlying data structure, 
this approach allows the manipulation of arbitrary groups of points in space. 
Note, however, that large deformations will generate creases as in FFDs, 
because there is no automatic repolygonization. 
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2.3 Image Warping 

Image warping can be defined as the application of geometric transformations 
to image data [20]. This image processing technique is commonly used for 
geometric correction, image synthesis and special effects. 

Catmull [7] developed an early image warping algorithm based on closed­
form mapping functions. Originally developed for texture mapping, Catmull 
found that by decomposing a 2-D mapping of a raster image into a succession 
of I-D mappings, one in horizontal and the other in vertical scanline order, 
the mapping (an image warp) could be performed quickly. 

Image warping can also be described as a mesh warping, where the input 
and output images are each partitioned into a mesh of patches where each 
patch delimits an image region over which a continuous mapping function 
is applied [20]. In this case, mapping between the input and output images 
becomes simply a matter of transforming each patch. Using this technique, 
moving the vertices in a mesh defines arbitrary mapping functions with local 
control. 

Smyth [19] has developed a 2-pass mesh warping technique where a bi­
variate function based on two 2D arrays of control points is used to produce a 
continuous mapping between the points in the source image and those in the 
target. The first pass puts each image point into the proper column in the 
output image by resampling each row and mapping all points (u, v) to their 
correct (x, v) positions in an intermediate image 1. The second pass places 
each point into the proper output row by resampling each column in 1 and 
mapping every point (x, v) to its final (x, y) position in the target image. The 
mapping functions used in this algorithm are derived from the interpolation 
of a spline through the x coordinates for pass 1 and the y coordinates for 
pass 2. 

Another technique for image warping is the separable algorithm of Wol­
berg [20]. This algorithm, which is performed simulataneously on both the 
input image 1 and the transpose of the input image IT, is composed of 4 
stages. In the first stage each image is resampled both horizontally and ver­
tically; the coordinate resampler then computes all spatial tranformations in 
the second stage; in the third stage local measures of shearing, perspective 
distortion and bottlenecking are computed; in the fourth and final stage, a 
compositor produces the resulting image by selecting the best pixels from I xy 

and fly. 
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2.4 Origins of Volumetric Data 

Sampled volumetric data from which an isosurface can be extracted arises 
from a variety of sources. These sources can be grouped into two general 
categories: 

observed Data acquired by the simulation of a mathematical/physical model 
or by scanning "real-life" objects or phenomenon to produce 2D cross 
sections. 

modeled Data produced by "free-hand" modeling or the voxelization of 
geometric shapes. 

A common application which produces data of the first type is medical 
imaging [9]. Computed tomography (CT), positron emission tomography 
(PET) and magnetic resonance imaging (MRI) are all common techniques 
for the noninvasive imaging of the interior of the human body. Each of 
the techniques can produce three-dimensional arrays of intensity values, i.e., 
sampled volumetric data which can be used to generate an isosurface2 

. There 
also exists irregularly sampled volumetric data from geology, meterology, etc. 
which we do not discuss here. 

Applications which generate volumetric data of the second type include 
the SCULPT program developed by Galyean and Hughes [10] (see Sec­
tion 2.5) and other forms of volumetric modeling [2] [4] [3]. Voxelization of 
geometric models [13] [15] also falls into this category. 

2.5 Volumetric Sculpting 

Galyean and Hughes [10] describe an interactive volumetric modeling tech­
nique based on the paradigm of sculpting a solid material. Using a 3D input 
device to control a sculpting tool, the values in an array of voxels are mod­
ified much the same way the pixmap values are modified in a traditional 
2D "paint" program. This tool, SCULPT, allows the creation of free-form 
models with complex topology by direct editing of the volumetric data, but 
lacks the ability to create finely detailed models. 

2Not to suggest that medical imaging data was collected with the intent of generating 
a particular isosurface shape, merely that once it is collected, one can, and often does, 
choose to extract a surface shape from the data for other uses. 
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3 Motivation 

3.1 A Step Towards Unification 

Volume warping is a small step towards the much larger goal of the unification 
of volumetric and surface-based modeling techniques. This unification can 
be seen as having two facets: 

1.	 To apply common techniques to both volumetric and polygonally based 
models. 

2.	 To make the interchange between the volumetric representation of an 
object and a surface representation of the same object as easy as pos­
sible. 

Built upon techniques originally developed for polygonal modeling [1] [18], 
volume warping represents the first part of this unification. Other work is 
currently underway [11] which will make the second part of the unification a 
reality and more tightly bind the worlds of volumetric and polygonal model­
mg. 

3.2 Local Shape Control 

Unlike the volumetric sculpting of Galyean and Hughes, which provides 
coarse shape/topology control for a volumetrically defined model, volume 
warping provides more precise and smooth control over the isosurface. Vol­
umetric sculpting, like a traditional 2D paint program, only allows the user 
to specify the presence or absence of material at a specific location. Volume 
warping, on the other hand, by applying a mapping function to the actual 
volumetric data values changes the values which subsequently influence the 
isosurface generated. This cubic B-spline mapping function, based on eval­
uating only 64 control points (unlike the Bezier approach of Sederberg and 
Parry) provides local control. 

To give an example of this local shape control property of volume warp­
ing, suppose you have created a model of a teapot using the SCULPT pro­
gram [10] and you decide, after looking at it, that the neck of the teapot 
should be a little lower. To make this alteration by sculpting would require 
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that you erase the neck and re-sculpt it lower down (just as in a pencil-and­
paper drawing you would have to erase and re-sketch). With volume warping, 
however, you could ask to alter the space in which the model resides so as 
to move the portion containing the neck. Volume warping can therefore be 
seen as providing an extension to volumetric sculpting. 

The Algorithm 

A volumetric model is just a function on 3-space or a subset of 3-space. We 
call this function the density function because it describes where material 
is: a density of one means the material is there, a density of zero indicates 
that the space is empty, and the isosurface where the density is 1/2 is the 
boundary between the inside and the outside of the material. In this section, 
we think of the density function as being defined primarily on the unit cube; 
its values outside the unit cube are everywhere zero. Thus we have a function 

d: [0,1] x [0,1] x [0,1] -t [0,1]: (x,y,z) f-7 d(x,y,z) 

that denotes the presence or absence of material. 
If we have a function from the unit cube to itself,3 

B : (x,y,z) f-7 (BX(x,y,z),BY(x,y,z),BZ(x,y,z)) (1) 

then we can build a different density function on the cube as follows: at 
each point (x, y, z), the density is computed by first applying the map Band 
then evaluating the original density function at the resulting point. The new 
density at the point (x, y, z) is therefore 

d'(x, y, z) = d(BX(x, y, z), BY(x, y, z), BZ(x, y, z)). 

Figure 1 depicts this situation. The domain and codomain of B are drawn as 
two separate cubes and the original density d is a real-valued function on the 
domain. The new function, d' = d 0 B, becomes a function on the codomain 
of B, and is indicated by the dashed line. We can call this new density 
function the pushfo1'ward of the original density function by the map B. If B 

3If P is a point in 3-space, the notation p x , pY, pz denotes the x, y, and z coordinates 
of P. 
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\\ d'= dO B 
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\ 
\,

d 
• Rdomain 

Figure 1: The pushforward of a density function. 

is injective, we can look for the point (x, y, z) that is sent to each point W in 
the codomain by the map B. The value of the new density function at W is 
just the value of the original function at the corresponding source point (and 
is zero if TiV is not in the image of the map B). If B is not injective, some 
sort of average over all the points in the preimage must be used to adjust 
the definition. In our case, it suffices to deal only with the case where B is 
injective, because the other cases can be handled during the filtering process 
(see Section 5.4). 

The volume-warping process, as shown in Figure 2, uses the pushforward 
technique described above. We start with a volumetric model, i.e., a density 
function d on a unit cube. We call this cube the source and denote it by S. 
We create a particular B-spline map B from the source to another unit cube, 
which we call the target T. We push forward the density d from S to get a 
new density function d' defined on T. 

The density on the target T is the warped version of the original density 
function on the source S. If the B-spline map differs only slightly from the 
identity, then the isosurfaces of the source and target density functions are 
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B targetsource 

Ts 
Figure 2: The mapping process. 

quite similar and the term "warped" is justified. 

5 Implementation 

5.1 Overview 

The description in the previous section was based on functions defined on 
an entire cube. With sampled volumetric data, we have only samples of the 
functions of interest. Since convolution with an appropriate reconstruction 
kernel to recover the whole function is impractical, we work with approxi­
mations of the functions represented by the samples. Rather than proper 
reconstruction with the sine function, we use box filters repeatedly. We have 
not found the aliasing thus introduced to be a substantial problem. 

The constants used in the program are 

•	 ISIZE: the original model to be warped is an ISIZE x ISIZE x ISIZE 
array of unsigned bytes (values between 0 and 255); by division by 
255, these represent density values between 0 and 1, and the object 
described by the model is an isosurface for value = 127 (i.e., density = 
0.5). In our program, ISIZE = 30. 
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•	 TSIZE: the target voxmap is an TSIZE x TSIZE x TSIZE array of 
unsigned bytes. The warped model is placed into the center of this 
array (TSIZE must be greater than ISIZE) and the remainder of the 
target voxmap is padded with zeros. In our program, TSIZE = 38. 

•	 CSIZE: The B-spline maps that we define are determined by an array 
of control points of size CSIZE x CSIZE x CSIZE. (We generally use 
CSIZE = 9, but other values may be appropriate for finer control.) A 
B-spline B( s, t, u) based on such an array of control points is defined 
for values of s, t, and u between 0 and CSIZE - 3. The ratio of TSIZE 
to CSIZE - 3 must be an integer for the rapid spline evaluations of 
Section 5.2 to work In our program, this ratio is 60/(9 - 3) = 10. We 
call this ratio the granularity G. 

Our B-spline map is defined on the source with the help of the B-spline 
basis functions and the CSIZE x CSIZE x CSIZE array of control points Pijk . 

We first establish a correspondence between points in the source and points in 
the cube [0, CSIZE - 3] x [0, CSIZE - 3] x [0, CSIZE - 3]. The correspondence 
is simple: the entry in the source array whose index is (i,j, k) corresponds 
to the point in 3-space whose coordinates are 

(s,t,u) = (i/G,j/G,k/G)	 (2) 

Recall that the B-spline basis functions are 

1
Bo(t) -(l-t) 3 

6 
1

B} (t) "6(3t3 
- 6t2 +4) 

1
Bz(t) "6(-3t3 + 3tZ + 3t + 1) 

1	 3B 3 (t) -t 
6 

These basis functions are used to blend the control points, taken in groups 
of 64, as follows. For integers a, b, and c between 0 and G - 1, we define the 
B-spline function on the subcube 

a < s<a+1 

b < t<b+1 

c < u<c+1 
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of the source (which we call a region) by using the control points Pijk , for 

a :S i<a+3 

b < j<b+3 

c < k<c+3 

The general form for the mapping function on this region is therefore 

3 

BX(s, t, u) = L Bi(s - a)Bj(t - b)Bk(u - c)P:+i,b+j,c+k 
i,j,k=O 

3 

BY(s, t, u) L Bi(s - a)Bj(t - b)Bk(u - C)P;+i,b+J',c+k 
i,j,k=O 

3 

BZ(s, t, u) = L Bi(s - a)Bj(t - b)Bk(u - c)P:+i,b+j,c+k (3) 
i,j,k=O 

Note that there are G x G x G regions and that altering one of the control 
points alters the values of the function in only a subset of the regions. Thus 
although our map is analogous to the 3D Bernstein polynomials used by 
Sederberg and Parry [18], it provides more localized control. 

The B-spline map between the source and the target voxmap is specified 
by the location of the control points. We can alter the map by moving 
the control points that define this map. Having defined the altered map, the 
density is pushed forward from the source to the target to produce the warped 
sampled volumetric data set. For each point in the domain of the altered 
3D B-spline we will evaluate the B-spline function to get another 3D point 
(Equation (3) shows how to compute B(s, t, u)), and record the resulting 
locations in a 3D array of 3D points called the deformation mapping army. 

The precise details of the pushforward of the discrete data values are 
given in Section 5.4. Before addressing this however, we describe how the 
initial values of a B-spline map are computed for each point in the source 
voxmap. 

5.2 Rapid Evaluation of B-splines 

It is clear that we must be able to compute the B-spline map rapidly, since 
it is applied to each voxel in the source voxmap. The standard way to 
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do this with B-splines would be to use incremental computation [8]. Once 
we realize, however, that the parameter values at which the B-splines are 
computed do not change when the control-point positions are changed, we 
see that a pre-computation scheme can save substantial time. Moreover, by 
giving the relative sizes of the source and the control mesh an appropriate 
relation, we achieve a substantial speedup. 

Look once again at Equations (2) and (3). Since the source size is an 
integer multiple of the control-mesh size, the fractional parts of s, t, and U 

used in the computation of the B-spline in Equation (3) are the same for 
points in any region. We use this fact as follows. If we denote by bij the 
coefficient of t j in the ith basis function of Equation (3), then we can rewrite 
the B-spline evaluation formula as 

3 

BX(s,t,u) = L Bi(s - a)Bj(t - b)Bk(u - c)P:+i,b+j,c+k
 
i,j,k=O
 

3 

L bip(S - a)pbjq(t - b)qbkr(u - cy P:+i,b+j,c+k 
i,j,k,p,q,r=O 

3 

BY(s, t, u) L Bi(s - a)Bj(t - b)Bk(u - C)P;+i,b+j,c+k
 
i,j,k=O
 

3

L bip(s - a)Pbjq(t - b)qbkr(u - cy P;+i,b+j,c+k 
i,j,k,p,q,7'=O 

3 

L Bi(s - a)Bj(t - b)Bk(u - c)P:+i,b+j,c+k 
i,j,k=O 

3 

L bip(s - a)Pbjq(t - b)qbk,-(u - cy P:+i,b+j,c+k 
i,j,k,p,q,7'=O 

where the values of s - a, t - b, and u - c are always a/G, ... , (G - l)/G. 
In fact, for the point in the source voxmap indexed bye, J, g, the values of 
s -a, t - b, and u - c will be (e mod G)/G, (J mod G)/G and (g mod G)/G. 
Letting e = e mod G, and similarly for J and 9, we can write the formula 

3 

L 
i,j,k,p,q ,r=O 
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3 

BY( s, t, U) L: bip (e/G)Pbjq(J/G)q bkr ([; /GY P;'+i,b+j,c+k
i,j,k,p,q,r=O 

3 

BZ(s, t, U) = L: bip(e/G)Pbjq(J/G)qbkr(g/GY P:+i,b+j,c+k
i,j,k,p,q,r=O 

We therefore precompute the values 

3 

c[eH]][g][i:l[j][kj = L: bip(e/GYbjq(J/G)qbkr(g/GY (4)
p,q,r=O 

for 0 ::; e,], 9 < G and 0 ::; i, j, k ::; 3. Computing the value of the spline 
function at particular values of e, f, and g now requires only that we deter­
mine the values of a, b, and c (which are just the integer parts of e/G, f /G, 
and giG, respectively) and the values of e, ], and g. We then calculate the 
sum in Equation (4) by the simple form 

3 

BX(s, t, u) = L: c[e][]Hg][i][j][kjP:+i,b+j,c+k 
i,j,k=O 

3 

BY(s, t, u) L: c[e][]Hg][iHj][kjP;'+i,b+j,c+k 
i,j,k=O 

3 

BZ(s, t, u) = L: c[eH]][g][i][j][kjP:+i,b+j,c+k (5) 
i,j,k=O 

which is just a sum of 64 terms. Note that in C and Fortran, the 64 entries 
of the coefficient array used are stored in sequential memory, so that access 
to them can be particularly rapid. 

5.3 Implementation Details 

We now can complete the overall structure of the program. 

Initialization. We begin by reading the original density function into the 
source voxmap; we then set up the lattice of control points as described 
in Section 5.5 and thus define a B-spline map from the source voxmap to 
the target voxmap. This will be the map used to push forward the density 
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Figure 3: Block diagram of initialization process. 

function from the source voxmap to the target voxmap. Note that we choose 
our control points so that the initial B-spline map is a scalar multiple of a 
translate of the identity so that pushing forward the original density function 
through the initial control point configuration will produce a target voxmap 
which is identical to the source. 

Once the lattice of control points is set up, we calculate the s, t, and u 
values at each point of the source voxmap, and use these values to determine 
the four B-spline basis function values on each of s, t and u; these are saved for 
later use (see Section 6). Then we compute the G x G x G x CSIZE x CSIZE x 
CSIZE array of coefficients described in Equation (4), for use in determining 
the values of the spline map. Finally, we initialize the memory required for 
the target voxmap and the deformation mapping array. Figure 3 pictorially 
illustrates this initialization of the various data structures described above. 

The main loop. The main loop of the program is basically just 

repeat {
 
get user input to determine
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which control points to move 
determine which regions are affected 
for each such region { 

pushforward density function using unmoved control points 
subtract pushed forward values 
pushforward density function using moved control points 
add pushed forward values 

} 

} 

Each of the steps in this loop has its own subtlety. The first part, choosing 
which control points to move, can be as simple as reading a file containing 
a list of control-point indices and the new control-point locations. We have 
actually implemented a more intuitive method of control as the basis for an 
interactive user interface, as described in Section 6. For now, it suffices to 
say that certain control points are scheduled to be moved. 

If control point Pijk is to be moved, the regions labeled by indices (a, b, c), 
where i - 3 :S a :S i and similarly for j and k, are influenced. For each 
region we must first erase from the target voxmap the contribution of the 
pushforward of the density on this region. We could do this as described 
in the loop, by pushing forward the values and subtracting them from the 
values stored in the voxels of the target voxmap. Instead, we have found 
that for modest deformations, it suffices to simply write zeros into the target 
voxmap at the pushed-forward locations. At this point, we actually change 
the control points by moving them to their new locations, and hence define 
a new B-spline mapping from the source to the target voxmap. 

We must now push forward the density function from the source to the 
target voxmap. The simplest way to do this is to compute where each source 
voxel center is sent by the mapping, round off to integer coordinates, and 
then place the density from the source voxel into the target voxel at those 
coordinates. This produces severe aliasing, however, and we are therefore 
compelled to do some filtering. To this end, we compute the (floating-point) 
coordinates of the point to which each source voxel-center is sent and place 
the results in the TSIZE x TSIZE x TSIZE deformation mapping array. Com­
puting the results of the map in this deformation mapping array is expensive, 
but using the rapid B-spline computation described in Section 5.2 reduces 
the time involved substantially. Figure 4 illustrates the flow of data from the 
source to the target voxmap. 
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Figure 4: Block diagram of warping process. 

5.4 Antialiasing 

As noted in the introduction, we ought to exactly reconstruct the complete 
density function on the source voxmap with a sine filter, and then push 
forward this reconstructed function. We could then filter the result with 
a sine function on the target space to remove all high frequencies before 
sampling the function into the target voxmap. 

Rather than doing anything so computationally expensive, however, we 
use box filtering to approximate the function. We reconstruct the density 
function on the source with a box filter by taking the value at each voxel 
center and assuming that the value of the original density function is constant 
throughout the unit cube about the voxel center (henceforth called the voxe1). 
We then look at the image of this cube under the B-spline mapping and, for 
each voxel in the target, compute the approximate overlap of the transformed 
box with the voxel and record it as a fraction of the target voxel's volume 
that we call the weight. We then take the value from the source voxel and 
multiply it by the weight, to get the weighted value. We tally these weights 
and weighted values for each target voxel. In pseudocode: 

for each source voxel V {
 
compute the transformed voxel B(V)
 
for each target voxel Q that overlaps B(V) {
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compute weight = volume of the overlap
 
compute weighted value = weight * d(V)
 
add weight to Q.weight
 
add weighted value to Q.weighted_value
 

}
 

}
 

for each target voxel Q {
 
if weight < 1 then d"(Q) = Q.weighted_value
 
else d"(Q) = Q.weighted_value / Q.weight
 

} 

Unfortunately, computing the exact overlap of the target voxel with the 
transformed source voxel is prohibitively expensive. Once again, we com­
promise and instead compute an approximation of the transformed source 
voxel: we compute the approximate transformed locations of the centers of 
the six faces of the source voxel and take the bounding cube of these six 
points as our proxy for the actual transformed source voxel. The effect (in 
an analogous 2D case) is shown in Figure 5: the bounding boxes of adjacent 
pixels may overlap. Thus a single target pixel (in the analogous 2D process) 
may find itself with an accumulated weight of more than 100%; this is the 
reason for the division in the last line of the pseudocode above. 

On the other hand, a pixel may not be completely covered by the trans­
formed source pixels. If not, then it is reasonable to count the portion left 
uncovered as contributing zero to the density function: adding this in brings 
the total weight to 1 and does not change the weighted values at all. This 
explains the second-to-Iast line of the pseudocode. 

The approximate locations of the six transformed points are computed 
with the deformation mapping array. Recall that we computed the target 
locations of each mapped source voxel center in this array. To find the 
center of the face lying between the voxel center at (e,!, g) and the one at 
(e +1, !, g), we simply average the points stored in the deformation mapping 
array at these two indices. 4 Figures 6 and 7 show the results of volume 

4We could have computed the transformed locations of these face centers instead of 
those of the voxel centers in the first place, but chose not to because having the locations 
of the transformed voxel centers lets us do the very inexpensive pushforward described at 
the end of Section 5.3 in almost real time. 
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Figure 5: The bounding box of 6 points in a transformed voxel is used to 
approximate the transformed voxel. 

warping with and without the antialiasing provided by this approximate box 
filtering. 

This completes the warping of the volume data; to make an actual picture, 
we compute the isosurface of the resulting density field and render it. 

5.5 Control Point Placement 

In order to determine the placement of each control point, we start by di­
viding the central ISIZE x ISIZE x ISIZE subarray of the target data space 
into CSIZE - 3 pieces in each direction; each division is then a cube with an 
edge of length ISIZE/(CSIZE - 3) (which may not be an integer, of course). 
The control points are then placed in an evenly spaced lattice based upon 
this subdivision of the target voxmap. 

Since we have chosen an evenly spaced control lattice and the values in 
each segment being B-splines require 4 control points, the control points on 
the end in each direction will lie outside of the central ISIZE x ISIZE x ISIZE 
subarray of the target voxmap. This even spacing of the control points aids 
in the mapping and B-spline evaluation by making the parametric steps in s, 
t and u uniform throughout the volume. Note that because this is a B-spline, 
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Figure 6: A warped volume inwhich the pushforward was done with the 
simple "map and round off" scheme. 

Figure 7: A warped volume in which the bounding-box filtering technique 
was used. 
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A 

Figure 8: The placement of the control points for the B-spline map in 2D, 
for a 9 x 9 control mesh; note that the data is divided into a 6 x 6 grid of 
regIOns. 

the image of the function defined by the control points is a proper subset of 
the convex hull of the control points. 

An example of the control point layout in 2D when CSIZE = 9 can be 
seen in Figure 8. In this figure, notice how the data area denoted by the 
bold rectangle is divided into CSIZE - 3 (i.e., 6) equal regions and how some 
of the control points lie outside the bounds of the data. As an example of 
how the control points affect each region, in this 2D example data values in 
region Ax ::; x < Bx A y ::; y < By are influenced by the 16 control points in 
the rectangular region denoted by the dotted line. 

6 User Interface 

6.1 Background 

Hsu [12] develops a direct manipulation interface to FFDs which allows the 
user to directly manipulate the surface of an object without having to directly 
manipulate the individual control points which govern the surface. It is upon 
this direct manipulation paradigm that the user interface for volume warping 
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is built. 
Traditional interfaces to FFDs like those to spline curves and surfaces 

have typically relied on direct control-point manipulation. An interface of 
this type however is unnatural and hard to use and understand for a user that 
is unfamiliar with the principles of splines. For example, the fact that the 
control points most often do not approximate the surface of the object makes 
direct control-point manipulation difficult since one can often not exactly 
determine the effect that moving one particular control point will have on 
the surface. 

Hsu's interface eliminates the need for the user to be aware of the control 
points providing a simple and easy to use click-and-drag interface based upon 
the paradigm of a "magnet tool" that allows both the pulling on and pushing 
against a single object point or a larger section of the object. By varying 
the size, shape and "realm of influence" of this tool different effects can 
be achieved. Although Hsu's method was originally applied to polygonally 
defined models, it can be applied directly to the warping of volumetrically 
defined models. 

6.2 How It Works 

In the users view, to warp volumetric data, all that is required is the selec­
tion of a point within the volumetric space and the movement of this point 
to a new location within the volume. Once the point is placed in its new 
location, the data warps accordingly. In reality things are not that simple 
however. Even though the user no longer has to think about and directly 
move the control points, the control points are still the governing factor in 
the deformation. We therefore implement a scheme where the control points 
are moved based upon how the user moves the selected point or a group 
of selected points within the volumetric model. This scheme of moving the 
control points based upon the movement of data points can be characterized 
as an underconstrained system. Hsu describes in detail the general solution 
for an underconstrained system of B-splines so we will not discuss it further 
here. 
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6.3 Extensions 

This interface, which allows the user to directly manipulate the volumetric 
data by indirectly moving the control points based upon the movement of a 
selected point or group of points can be the basis for several more complex 
interaction methods. Among those that we can imagine are: 

Arbitrary Geometry Allowing the user to specify arbitrary geometries for 
the warping tool with different spheres/areas of influence provides an 
unlimited number of achieveable warping effects. 

Particle Accelerator A tool that when moved within a certain range of 
the volume sucks in points on one side and then spits them back out 
on the other side. 

Start and Goal Curves Given user defined starting and ending 3D curves, 
the warp of the volumetric data interpolates between the curves over a 
sequence of frames. 

Object Avoidance Given a user defined object, the volumetric data warps 
by being pulled or pushed around or through a specified object or group 
of objects. An example of this would be a torus accelerator where the 
model is warped by pulling it through a torus. 

7 Usage Examples 

Comparison between the unwarped and warped volumetric models in Fig­
ures 9-14 demonstrates some of the results attainable with our technique. 
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Figure 9: Teapot, original sculpture. 

Figure 10: Teapot, warped to adjust the spout position. 
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8 Performance 

To be truly interactive, any modeling technique requires realtime perfor­
mance. We have worked hard to achieve this performance, feeling that vol­
ume warping would only be useful if this interactive performance could be 
attained. 

The interactive manipulation and viewing of volumetric models is nu­
merically intense and realtime performance on currently available graphics 
workstations is hard to achieve. The pushforward mapping and antialiasing 
inherent in volume warping makes interactive performance of our new vol­
umetric modeling technique even harder to achieve. Our rapid evaluation 
of B-splines (see Section 5.2) and our ability to localize a deformation have 
not been enough to give us realtime volume warping. Currently, one warp of 
a volumetric model where ISIZE= 30, TSIZE= 38 and CSIZE= 9 requires 
approximately 1 second on an HP 9000/730 high performance graphics work­
station. Analyzing this performance, we have found the following bottlenecks 
in our implementation. 

antialiasing Computing the bounding volume of the transformed source 
voxel and the percentage of overlap calculations for each target voxel 
as described in Section 5.4 have shown to consume a large part of the 
actual deformation time (independent of rendering and redisplaying the 
model). 

rendering We use the marching cubes algorithm [16] to generate the indi­
vidual polygons which comprise the isosurface of the model. For even 
relatively small models (ISIZE= 30) however, this algorithm generates 
on the order of 6000-8000 triangles each time the model is re-rendered 
after a warp. 

screen refresh Independent of the actual rendering of the model discussed 
above, we have found screen refresh to also to be a major bottleneck. 
Although an HP 9000/730 graphics workstation is rated at 300,000 
polygons/ sec, simple redisplay of a volumetric model composed of 6000 
triangles can't be done in real time (30 frames/sec.). The reason for 
this is that the 300,000 polygon/sec statistic is based on the display of 
triangle strips where adjacent triangles share common vertices and the 
adding of an additional triangle simply requires the addition of a single 
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Figure 11: Clay block, corner warped inward. 

Figure 12: Clay block, corner warped outward. 

27
 



Figure 13: Tree, original sculpture. 

Figure 14: Tree, warped as if caught in a strong gust of wind. 
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point. Our rendering algorithm produces individual triangles which 
cannot be displayed as quickly by the graphics hardware. 

9 Future Work 

9.1 Performance 

One of the many ways inwhich we are looking to improve this modeling 
technique is to improve the performance. We are looking into solutions to 
the bottlenecks discussed in Section 8. 

By changing our rendering algorithm to output triangle strips or polyg­
onally defined meshes, we feel that we might be able to achieve an order of 
magnitude speedup in both rendering and screen refresh. A limitation in 
most currently available graphics packages which may not make this feasable 
however, is the fact that most implementations of triangle strips and polygon 
meshes where vertices are shared do not allow vertices to have more than one 
color and normal per vertex for lighting and shading calculations. We are 
currently looking into ways to work around this limitation. 

The interactive performance of the user interface could be improved if the 
graphics hardware supported overlay planes which share the z-buffer with the 
image planes. This would allow the interactive movement of the warping tool 
without having to redraw the complete underlying model each time. 

An iterative refinement approach to rendering a warped model could also 
be used to improve the interactive performance. If we skipped the antialias­
ing step described in Section 5.4 (producing results similar to Figure 6) the 
computation of the bounding volume and overlap for each transformed source 
voxel would no longer be significant in the warping time. This unantialiased 
rendering could then be used during an interactive "rubberbanding" phase 
of warping a model; the antialiased rendering could the be used to exhibit 
the final warped results once the "rubberbanding" is complete. 

We also feel that volume warping is an ideal application for fine-grained 
parallelism. Performance could be improved by farming out the B-spline 
mapping of each region to a different processor. 
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9.2 Usability 

As a standalone modeling technique, volume warping isn't all that useful. 
In the future we would like to integrate volume warping with volumetric 
sculpting so that the user could use the techniques together. As stated in 
Section 3.2, we feel that volume warping would prove to be an excellent 
postprocess to volumetric sculpting by providing the user local shape control 
for making minor alterations to a sculpted model. 

We would also like to see volume warping integrated into an environment 
in which the user can easily switch between volumetric and polygonal model­
ing technques. Within an environment of this type, a user could easily warp 
any modeled object. 

We also plan to add the capabilities for using three-dimensional input 
devices to control the deformations. Specific devices which we are considering 
to control the movement of the warping tool include a three-dimensional 
mouse, space-ball, and hardware dials. 

9.3 Applications 

In the future we would like to apply volume warping to scientific data. One 
application of this technique may be the removal of distortions and inconsis­
tencies introduced during the data acquisition process, although one would 
have to be careful to regulate the data errors introduced by the warping 
process itself. 

Another potential application may be in the field of morphometrics. Sci­
entists working in this area can apply volume warping to volumetrically de­
fined bone stucture models to graphically simulate bone structure growth 
and decay during the aging process. 

10 Conclusions 

We have described volume warping, a new volumetric modeling paradigm 
derived from techniques in polyhedral modeling and image warping. The 
results let one deform volumetric models in a convenient manner that is 
moderately fast and easy to implement. We have also described techniques 
for rapid evaluation of B-splines in the particular case where the control 
points are to be changed but the evaluation points remain constant, and a 
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technique for manipulating the control points of a 3D B-spline automatically 
so as to effect a particular change in the map. We have also described several 
user interface paradigms based upon this technique. We see this as one 
small step towards the much larger goal of the unification of polygonal and 
volumetric modeling techniques. 
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