
BROWN UNNERSITY

Department of Computer Science

Master's Thesis

CS-92-M7

"Contribution to Incremental Constraint Algorithms"

by

Ming-Li Cheng

Contribution to Incremental Constraint

Algorithms

Ming-Li Cheng
Department of Computer Science

Box 1910 Brown University

Providence RI 02912

USA

April, 1992

This thesis by Ming-Li Cheng is accepted in its present form by the Department of Computer
Science as satisfying the thesis requirement for the degree of Master of Science.

Prof. Pascal Van Hentenryck

Abstract

This paper introduces three problems which could occur in Constraint Logic Pro
gramming and presents possible ways to increase the efficiency of these problems.
The first problem is enforcing arc consistency on a set of inequalities by reducing the
domains of variables. The second problem is to find an incremental algorithm for least
generalization in presence of on line bindings. The third problem is the extension of
the second problem where each least generalization is required to be in a certain form.
A dynamic algorithm is also generated for the problem.

Contents

I Arc Consistency of Linear Inequalities 3

1 Intro duction 3

2 Preliminaries and Basic Idea 4

3 Constraints for Reconsideration 6

4 The Static Algorithm 7

5 The Second Algorithm 9

5.1 The Algorithm 11

5.2 Some Examples .. 13

6 The Third Algorithm 15

7 Conclusion 18

II Incremental Term Generalization 19

1 Introduction 19

2 Preliminaries 20

3 The Static Algorithm for Generalization 20

3.1 Generalization of any Two Terms 20

3.2 The Static Algorithm. 22

4 ANew Generalization Algorithm 24

5 Update Generalization 25

5.1 Algorithm for Regeneralization 26

5.2 An Example 27

6 Supporting Data Structures 27

6.1 Binding Terms . 29

6.2 The Timing of Generalization . . . 29

6.3 Direct Accessing for Term Updates 29

7 Conclusion 30

1

III Restricted Least Generalization 31

1 Introduction 31

2 The Static Algorithm 32

3 The Dynamic Algorithm 34

4 Update Generalization 36

5 Time Complexity 37

A An Application on Least Generalization 38

2

1

Part I

Arc Consistency of Lillear Inequalities

Introduction

The purpose of this article is to find an algorithm which enforces arc-consistency on
a set of inequalities. The definition of arc-consistency for constraint is as the following:

Definition 1 Let C(XI, ... , xn) be a constraint and Di be the domain of Xi (1 ~ i ~ n).
Constraint c(Xl, ... , xn) is said to be arc-consistent wrt Di (1 ~ i ~ n) if the following
condition holds for all i
• \;fbi E Di :3bl, ... ,bi-l,bi+I, ... ,bn E DI, ... ,Di-I,Di+I, ... ,Dn such that c(bl, ... ,bn)
holds.

This problem of inequalities is a typical Constraint Satisfaction Problem, which
is defined by a finite set of variables taking values from finite domains and a set of
constraints between these variables. The solution to this problem is an assignment of
values to variables satisfying all inequalities. The technique is to reduce the search
space by removing, from the domains of variables, values that cannot appear in the
solution. The constraints in this paper are inequalities in the form of:

Where the ai, bj are constants, the Xi and Yj are variables with domains. Whether
a constraint is satisfied depends on the maximum values of the variables on the left
side and the minimum values of the variables on the right side.

To satisfy a constraint, the domains of variables on both sides of the constraint
may be restricted by the constraint. Generally, the minimum value of each variable
on the left side of an inequality may increase and the maximum value of each variable
on the right side of an inequality may decrease. If there is only one inequality, each
variable in the constraint should be considered once because the minimum value
of a variable on the left side of the inequality depends on maximum values of all
other variables on the left side and minimum values of all variables on the right
side. Similarly, the maximum value of a variable on the right side of an inequality
depends on minimum values of all other variables on the right side and all maximum
values on the left side. Since the domains of the variables depend on each other, the
variables in an inequality may need to be reevaluated if the domain of a variable in
the inequality is changed by another constraint. We want to find a dynamic algorithm
which reevaluates only those variables whose domains could possibly be changed and
ignores all other variables. The following section gives a clear explanation for this
problem.

3

2 Preliminaries and Basic Idea

In the following, for each variable v, we denote by v.max the largest value in the
domain of v and v.min the smallest value in the domain of v.

for each constraint Cj :

We denote by Cj.right the set of variables on the right side of Cj , Cj.left the
set of variables on the left side of Cj . Cj.max is the maximum value obtained from
the left side of the constraint; Cj.max := alXl.max +a2x2.max + .. + anxn.max + a,
and Cj.min is the minimum value obtained from the right side of the constraint;
Cj.min := blYl.min + b2Y2.min + .. + bmYm.min + b.

For any value Ui in the domain of a variable Xi on the left side, there must exist
values in the domains of all other variables on the left side that satisfy :

Otherwise Ui should be removed from the domain of Xi.
Similarly for any value Ui in the domain of a variable Yi on the right side, there

must exist values in the domains of all other variables on the right side that satisfy:

Cj.max

~ biui + blUl + b2U2 + ... + bi-lUi-l + bi+lUi+l + ... + bmum + b. (2)

aiUi +alxl·max + ... + ai-lxi-l.max + ai+lxi+l.max + .,. + anxn.max + a

~ Cj.min. (3)

(3) is the special case of (1), which is sufficient to test the qualification of Ui. But,
instead of testing each value in the domain of a variable, we derive a value, Ai, for Xi
such that the minimum value of Xi cannot be smaller than Ai.

aixi > Cj.min - (alxl.max + .. + ai-lXi-l.max

+ ai+lxi+l.max + .. + anxn.max + a).

> Cj.min - (L
n

ak * xk.max + a).
k=l,k#i

> Cj.min - (Cj.max - ai * xi.max).

we could derive Ai from the inequality above.
Cj.min - (Cj.max - ai * xn.max)

Similarly, we could derive Bi for Yi such that the maximum value of Yi cannot be
larger than Bi .

4

Cj.max >	 biUi + b1Yl.min + .. bi-lYi-l.min

+bi+lYi+l.min + ... + bnYn.min + b.

===> biYi < Cj.max - (L
n

bk *Yk.min + b).
k=l,k#i

===> biYi < Cj.max - (Cj.min - bi *Yi.min).

we could derive Bi from the inequality above.

Bi =
Cj.max - (OJ.min - bi *Yi.min)

bi

We could decide if the maximum value or minimum value of a variable needs to
be changed by comparing it with Bi or Ai. If Bi is smaller than the maximum value
of Yi on the right side, lBiJ becomes the new maximum value of the variable. If Ai is
larger than the minimum value of Xi on the left side, rAil becomes the new minimum
value of the variable. But, if Bi is smaller than Yi.min or Ai is larger than Xi.max,
there is no value in the domain of this variable could satisfy this inequality.

The following is the basic idea for updating the domains of variables in a constraint.

For each variable Y on the left side

Calculate B for Y

if y.min < B < y.max

Update y.max

else if B < y.min

return FAILURE.

For each variable x on the right side

Calculate A for x

if x.min < A < x.max

Update x.min

else if A > x.max

return FAILURE.

The above idea is enough when there is only one inequality. Now we are in position
to discuss the system of several inequalities. An inequality needs to be reconsidered if
the domain of one of the variables was affected by another inequality. Whenever rAi1
becomes the new xi.min, the constraints with the variable on the right side should
be reconsidered since the minimums of these constraints will be higher.
Similarly, whenever lBd becomes the new Yi.max, the constraints with the variable
on the left side should be reconsidered since the maximums of these constraints will
be lower.
The following is the basic idea of the algorithm for inequalities:

Stepl Initialize each inequality:
Evaluate the maximum and minimum of the inequality.

5

3

C1 : VI +V2 > V3 +V4

C2 : V4 + Vs > V2 + Vs

Figure 1: Example 1

1.1	 For each variable x on the left side of a constraint:
Evaluate A for x such that x.min cannot be smaller than A.
Update the minimum value of x if necessary and keep all other constraints
with the variable on their right side for further reevaluation.

1.2 For each variable y on the right side of a constraint:
Evaluate B for y such that y.max cannot be larger than B.
Update the maximum value of y if necessary and keep all other constraints
with the variable on their left side for further reevaluation.

Step2 For each constraint that needs to be reevaluated.
Update the max or min of the constraint.
Apply 1.1 or 1.2 for the variables in the constraint.

As we can see, the algorithm should be able to obtain the following information.

•	 Which constraints should be reconsidered?

•	 Which variable causes the constraint to be reconsidered?

•	 When a constraint C is reconsidered, how much should C.max decrease or how
much should C.min increase?

Constraints for Reconsideration

Now let us take a look at Example 1. Assuming that the maximum value of V2 is
changed by C2, C1 should be reconsidered since V2 is on its right side. Furthermore,
if the maximum value of V4 is changed when C1 is reconsidered, C2, which contains
V4 on its right side, should be considered again. The cycle will continue until the
domains of V2 and V4 become stable.

A queue Qis used to keep the information of which constraints need to be reconsid
ered. Q is a set oftuples as (min,y, C,dv) such that y E C.right or as (max,x,C,dv)
such that x E C.left.

Whenever the maximum value of a variable, V, is decreased by some value dv, a
tuple (max, V, C, dv) is inserted to Q for each constraint C with V on the left side of
the constraint; similarly, whenever the minimum value of a variable, v, is increased

6

by some value dv, a tuple (min,v,C,dv) is inserted to Q for each constraint C with
v on the right side of the constraint.

In Example 1, (max, V4, C2, d1) and (min, V2, C2, d2) are in Q ifthe domains of V2

and V4 change during the evaluation of C1. But, these tuples are redundant because
C2 has not been evaluated yet, V2 and V4 have to be evaluated by C2 anyway.

We call the first evaluation of each constraint the initialization of the constraint.
A tuple (m, v, C, dv) does not need to be inserted to Q if C is not yet initialized.
C.Init is set to TRUE after C is evaluated.

PushTuple(in v, m, dv, inout Q)
begin

case m of:
mtn:

Q := Q U {(min, v, C, dv) I V C such that v E C.right 1\ C.lnit = TRUE};
max:

Q := Q U {(max, v, C, dv) I V C such that v E C.left 1\ C.lnit = TRUE}
end

DEQUEUE(Q):(m, v, C, dv)
Post: (m,v,C,dv) E Qo and Q = Qo \(m,v,C,dv).

In all specifications, we take the convention that a parameter p subscripted with 0
(i.e.,po) represents the value of p at call time.

4 Algorithm 1

We now present the algorithm for the problem. The algorithm initializes each con
straint first; Each variable is evaluated in order that the maximum or minimum value
of the variable is updated if necessary. C.lnit of the constraint is set to TRUE when
the constraint is initialized. Second, for the constraint in each tuple of Q, reconsider
the constraint and reevaluate its variables.

Calmaxmin(inout C):
C.max := Ei=l aixi.max +a where n is the number of variables on the left side of C.
C.min := E~l biYi.min + b where m is the number of variables on the right side of C.

CalB(in Y, C, out B)
C.max-(C.min-b*y.min) h b' th ffi' t f . CB := b were IS e coe Clen 0 yIn.

7

CalA(in x, C, out A)
C.min-(C.max-au:.max) h . th £Ii' t f . CA :=

a
were a IS e coe CIen 0 x In j

Algorithm 1
begin

Q:= 0;

for each constraint C do

Applylnit(C, Q)j

while Q =J 0 do

begin

tu := DEQUEUE(Q);
UpdateC(tu, Q)

end
end

ApplyInit(inout C, Q)
begin

Initialize(C);

for each y E C.right do

InitY(y, C, Q)j
for each x E C.left do

InitX(x, C, Q)
end

Initialize(inout C)
begin

Calmaxmin(C)j

C.Init := TRUE

end

InitY(inout y, C, Q)
begin

CalB(y, C, B)j
if y.min < B < y.max then

begin

dv := y.max - LBJj

y.max := LBJ;
PushTuple(y, max, dv, Q)

end

else if B < y.min

8

return FAILURE
end

InitX(inout x, G, Q)
begin

CaIA(x, G, A);
if x.min < A < x.max then
begin

dv := rAl - x.min;
x.min:= rAl;
PushTuple(x, min, dv, Q)

end
else if A> x.max

return FAILURE
end

UpdateC(in (m,v,G,dv), inout Q)
begin

case m of:
max:

G.max := G.max - a * dv where a is the coefficient of v in Gj
mtn:

G.min := G.min + b* dv where b is the coefficient of v in Gj
for each x E G.left do

InitX(x, G, Q);
for each y E G.right do

InitY(y, G, Q)
end

In the worst case, where each variable appears in all constraints, whenever the
domain of a variable changes, all constraints have to be reconsidered and as we could
see in procedure UpdateC, all variables are reevaluated by each constraint. Because a
single domain update could trigger n* e times of variable reevaluation and it is possible
to have n* d times of domain update, hence the time complexity of Algorithm 1 is
O(n2 ed); where n is the total number of variables, d is the largest domain size of all
these variables and e is the number of inequalities.

Algorithm 2

In Algorithm 1, whenever a constraint is reconsidered, all its variables must be reeval
uated by InitY or InitX. But it is not true that all variables have to change their

9

5

CI : v + w + z >= q + 3
v : [0,2]
w:[O,I]
z : [0,3]
q : [0,4]

Figure 2: ExampIe 2

domains to satisfy the new status of the inequality.

Consider Example 2, CI.min = 0+3 = 3, CI.max = 2 + 1 + 3 = 6, and
the domains of v, w, z and q will not change. But, if CI.min changes from
3 to 5 because the minimum value of q changes from °to 2, the procedure
UpdateC in Algorithm 1 will trigger the reevaluation of v, wand z by using
A . - Cl.min-(Cl.max-ai'"Xi.max).

t - ai .

V : °< 5 - (6 - 1 * 2) = 1, v.min becomes 1.
w : 0 = 5 - (6 - 1 * 1) = 0, w.min remains 0.
z : a< 5 - (6 - 1 * 3) = 2, z.min becomes 2.

Only v and z are affected by the change of CI.min.

As we can see, when CI.min or CI.max changes, it will be nice if we could predict
which variables need to be reevaluated.

Since a.max can only decrease and a.min can only increase, Bi will be smaller
each time a.max or a.min changes; Similarly, Ai becomes larger each time a.max
or a.min changes. The problem here is when will lBij be small enough to replace
Yi.max or when will rAil be large enough to replace xi.min; (Bi - xi.max) * bi and
(Yi.min-A)*ai give the information we need. We denote by old(a.max-a.min) the
difference between a.max and a.min last time a was considered, and new(C.max
a.min) the difference between a.max and a.min now.

Yi.max changes if (old(a.max - a.min) - new(C.max - a.min))
> (Bi - Yi.max) * bi.
Also xi.min changes if (old(a.max - a.min) - new(a.max - a.min))
> (xi.min - Ai) * ai·

If the new lBij replaces the xi.max as the next Xi.max, the new Bi must be smaller
by (Bi - xi.max)j thus, if Xi.max is fixed, a.max - a.min should be (Bi - xi.max) *bi
smaller to make the new lBij small enough to be the new xi.max. If the amount of
change of C.max and C.min each variable could tolerate in a constraint is provided,
then, when a.max or C.min changes, only some variables in the constraint need to
be reconsidered. We introduce another data structure, R, in order to support the
information.

10

R = { (C,v,dr) I v E C.right V v E C.left}. R is a set of tuples as (C,y,dr) or
(C, x, dr) where y E C.right, x E C.left and dr is the tolerant value of y or x such
that y.max and x.min will not change unless the total amount of changes made to
C.max and C.min is greater than dr.

C.DIF is the total amount of changes made to C.max and C.min. In Algorithm 2,
whenever Vi in a constraint C is evaluated, a tuple (Vi, C, (Bi - Vi.max) *bi+C.DIF)
is inserted to R if Vi is on the right side of C or (Vi, C, (Vi.min - Ai) * ai + C.DIF)
is inserted if Vi is on the left side of C. When C.DIF is (Bi - vi.max) * bi or
(vi.min - Ai) * ai larger or more, the tuple will be retrieved and the reevaluation of
Vi will be evoked.

5.1 Algorithm 2

Algorithm 2
begin

Q:= 0; R:= 0;
for each constraint C do

ApplyInit(C, Q, R);

while Q =f 0 do

begin

tu := DEQUEUE(Q);
UpdateC(tu, Q, R)

end
end

ApplyInit(inout C, Q, R)
begin

Initialize(C);
for each y E C.right do

InitY(y, C, Q, R);
for each x E C.left do

InitX(x, C, Q, R)
end

Initialize(inout C)
begin

Calmaxmin(C);
C.DIF:= OJ
C.Init := TRUE

end

11

InitY(inout y, G, Q, R)
begin

CalB(y, C, B);
if y.min < B < y.max then
begin

dv := y.max - LBJj
y.max := LBJj
PushTuple(y, max, dv, Q)

end
if B < y.min

ret urn FAILURE
else

R:= R U {(G,y,(B-y.max)*b+G.DIF)}
where b is the coefficient of y in C

end

InitX(inout x, C, Q, R)
begin

CalA(x, C, A)j
if x.min < A < x.max then
begin

dv := IAl - x.min;
x.min := IAl j

PushTuple(x, min, dv, Q)
end
if A> x.max

return FAILURE
else

R := R U {(C,x, (x.min - A) * a + C.DIF)}
where a is the coefficient of x in C

end

UpdateC(in (m,v,C,dv), inout Q, R)
begin

case m of:
max:

C.max := C.max - a * dv where a is the coefficient of v in Cj
C.DIF:= C.DIF + a * dVj

mtn:
C.min := C.min + b* dv where b is the coefficient of v in Cj
C.DIF:= C.DIF+ b* dVj

InR:= { (C,vr,dr) E Q I (vr E C.left V vr E C.right) 1\ dr < C.DIF}j

12

R:= R \ InR;

while InR i- 0 do

begin

(C,vv,ddr):= DEqueueR(InR)j
if vv E C.right then

InitY(vv, C, Q, R)
else

InitX(vv, C, Q, R)
end

end

DEqueueR(InR):(C, v, dr)
Post: (C,v,dr) E InRa and InR = InRa \ (C,v,dr).

As we can see in procedure UpdateC, InR collects the tuples of R with tolerant
values smaller than C.D]F since only the variables inside those tuples of C will be
affected by the change of C.max or C.min.

5.2 Examples

el : x + y >= Z + W

c2 : r + s >= t + y

x : [0,5]
y : [0,6]
Z : [2,4]
w : [2,3]
r : [0,5]
s : [2,3]
t:[4,5]

Figure 3: ExampIe 3

In Example 3, c1.min = z.min + w.min = 4 and c1.max = x.max + y.max = 11.
x.min remains a and (el, x, 2) is inserted to R because A:z: < x.min and x.min
A:c = 2. y.min remains a and (el,y,l) is inserted to R because All < y.min and
y.min - A y = 1. z.max remains 4 and (el, z, 5) is inserted to R because Bz > z.max
and B z - z.max = 5. And w.max remains 3 and (el, w, 5) is inserted to R because
Bw > w.max and Bw - w.max = 6.

13

C : x + y + z >= w + 1

x : [0,2]
y : [0, 1]
z : [0,3]
w:[2,4]

Figure 4: Example 4

For c2, c2.min = t.min + y.min = 4 and c2.max = r.max + s.max = 8. r.min
becomes 1 and (c2, r, 0) is inserted to R because Ar > r.min. s.min remains 2 and
(c2, s, 3) is inserted to R because A 6 < s.min and A 6 - s.min = 3. y.max becomes
4 and (c2,y,0) is inserted to R because y.max > By. Since el contains y on its left
side and dv = 6 - 4 = 2, (max, y, el, 2) is added to Q. And finally t.max remains 5
and (c2, t, 3) is inserted to R because t.max < Bt and Bt - t.max = 3.

el is reconsidered when tuple (max,y,el,2) is dequeued from Q; cl.max = 11
2 = 9 and el.min is still 4. Only one tuple in R, (el, y, 1), which contains el and which
has tolerant value smaller than 2 needs to be reconsidered. Since Ay = 4-(9-4) = -1
and y.min-Ay+C.DIF = 0- (-1)+2 = 3, y.min remains 0 and (el, y, 3) is inserted
to R. Notice that rAyl was expected to replace y.min, but the increase of y.max which
occurred previously made rAyl too small to replace y.min. But, at least we could
promise that the variables with larger tolerant values will not be reconsidered.

In example 4, a.min = 2 + 1 = 3 and a.max = 2 + 1 + 3 = 6. x remains 0 and
(x, C, 1) is inserted to R because x.min > A~ and x.min - Ax = 1. y remains 0 and
(y, a, 2) is inserted to R because y.min > Ay and y.min - Ay = 2. z remains 0 and
(z, C, 0) is inserted to R because z.min = A z •

When a.min becomes 5 because the minimum value of w changes from 2 to 4,
we only need to reevaluate the tuples with tolerant value smaller than 2 (the change
of C.min), which are (z, a, 0) and (x, a, 1). x.max and z.max will change and two
proper tuples will be inserted to R.

Whenever a.max or C.min changes, each variable being evaluated is promised
to be changed except those variables whose domains have been changed by other
constraints since the last time the constraint was considered. As we could see in pro
cedure UpdateC, InR collects variables with tolerant value smaller than the change
of a.max or C.min; thus, only limited number of variables will be reconsidered. In
the worst case, where each variable appears in all constraints, whenever the domain
of a variable changes, all constraints have to be reconsidered. Since there might be
n*d times of domain update, therefore the time complexity of Algorithm 2 is O(ned)j
where n is the total number of variables, d is the largest domain size of all these
variables and e is the number of inequalities.

14

6

C: x + y + z >= w + q

x : [0,2]
y: [0,1]
z : [0,3]
w : [1,2]
q : [2,3]

Figure 5: Example 5

Algorithm 3

It is still possible to improve Algorithm 2 to make it work more efficient in some cases.
Consider when (max, y, el, d1) and (min, x, el, d2) are in the queue. In Algorithm 2,
if (max, y, el, d1) is dequeued first, el will be updated and may cause some new tuples
to be inserted to Q. But after (min,x,el,d2) is dequeued, el needs to be updated
again and may possibly insert more tuples to Q. It is better in this case to accumulate
the changes of C.max together with the changes of C.min. Instead of reconsidering
some variables each time C.max or C.min is changed, we accumulate the changes of
C.max and C.min until there is no tuple in Q which contains the constraint, and
then reevaluate all the variables inside those tuples in R with tolerant values smaller
than the accumulated value.

In example 5, C.max = 2 + 1 +3 = 6, C.min = 1 + 2 = 3 and (C,x, 1), (C,y,2),
and (C, z, 0) are in R. Suppose that w.min increases to 2 and nextq.min increases
to 3 due to other constraints, two tuples (min, w, C, 1) and (min, q, C, 1) are inserted
to Q consecutively. If (min, w, C, 1) is processed first, tuple (C, z, 0) in R has to be
reconsidered. The minimum value of z increases to 1, and tuple (C, z, l)((z.min
Az) * a + C.D!F = 1) is inserted to R. When (min, q, C, 1) is dequeued, not only
(C, x, 1) but also (C, z, 1) has to be reconsidered; z has to be evaluated twice.

In this example, if we could delay the evaluation of variables until both (min, w, C, 1)
and (min, q, C, 1) have been dequeued, some variables, like z, could be evaluated only
once.

In procedure UpdateC of Algorithm 3, we test if there is any tuple in Q with
constraint C and then decide whether to reevaluate the variables of C.

15

Algorithm 3
begin

Q := 0; R:= 0;

for each constraint C do

ApplyInit(C)j

while Q =I- 0 do

begin

tu := DEQUEUE(Q);
UpdateC(tu, Q, R)

end
end

ApplyInit(inout C, Q, R)
begin

Initialize(C);

for each y E C.right do

InitY(y, C, Q, R);
for each x E C.left do

InitX(x, C, Q, R)
end

Initialize(inout C)
begin

Calmaxmin(C);

C.DIF:= OJ

C.Init := TRUE

end

InitY(inout y, C, Q, R)
begin

CaIB(y, C, B)j
if y.min < B < y.max then

begin

dv := y.max - lBJ;
y.max := lBJ;
PushTuple(y,max, dv, Q)

end

if B < y.min

return FAILURE

else

R:= R u {(C,y, (B - y.max) * b+C.DIF)}

16

where b is the coefficient of y in C
end

InitX(inout x, c, Q, R)
begin

CalA(x, C, A);
if x.min < A < x.max then
begin

dv := rAl - x.min;

x.min := rAl;

PushTuple(x, min, dv, Q)

end
if A> x.max

return FAILURE
else

R := R U {(C, x, (x.min - A) * a +C.DIF)}
where a is the coefficient of x in C

end

UpdateC(in (m,v,C,dv), inout Q, R)
begin

case m of:
max:

C.max := C.max - a * dv where a is the coefficient of v in C;
C.DIF:= C.DIF +a * dv;

m~n :
C.min := C.min + b* dv where b is the coefficient of v in Cj
C.DIF:= C.DIF + b* dVj

InQ := { (m, vq, C, ddv) E Q I vq E C.right V vq E C.left };

if InQ := 0 then

begin

InR:= { (C,vr,dr) E Q I (vr E C.left V vr E C.right) 1\ dr < C.DIF};

R:= R \ InR; .

while InR "# 0 do

begin

(C,vv,ddr) := DEQUEUE(InR)j

if vv E C.right then

InitY(vv, C, Q, R)

else

InitX(vv,C, Q, R)

end

end

17

7

end

The time complexity of Algorithm 3 is still O(ned), only constant time better
than Algorithm 2 in some cases. Since Algorithm 3 never pushs more tuples than
Algorithm 2, it never works worse than Algorithm 2.

Conclusion

In this paper, we have introduced O(ned) dynamic algorithms for this problem of
inequalities. But there is still room for some improvement. For example, when the
sum of minimum values on the left side of an inequality is larger than the sum of
maximum values on the right side of the inequality, this inequality will never need to
be reconsidered again. That is to say, it is necessary to keep two more data for each
inequality and the inequality could be satisfied forever as soon as the minimum value
on the left side becomes larger than the maximum value on the right side. Though
the time complexity is still O(ned), it should be more efficient in some cases.

18

1

Part II

Incremental Term Generalization

Introduction

The idea of least generalization of terms or literals, which plays an important role
in non-deductive reasoning, has been discussed in many papers including Plotkin
[1970;1971], Reynolds [1970], Lassez, Maher and Marriott [1988], and Lassez and
Marriott [1987]. These papers provide algorithms to find the least generalization of
a set of terms or literals in time linear to the sum of sizes of these terms or literals if
a proper data presentation is given.

Terms come in three varieties, constant symbols, variables and function applica
tions. In this paper we restrict terms to the last two varieties. We say that the term T1
is more general than the term T2 if T10" = T2 for some substitution 0". Substitution
is a set of variable/term pairs and each variable/term pair is called a variable binding;
each variable is said to be bound in this substitution. Applying a substitution to a
formula means replacing each occurrence of a bound variable with its term. For exam
ple P(v1,v2,v3) is more general than P(v1,v2,j(v4)) because there is a substitution
0" = {v3/j(v4)} such that P(v1,v2,v3)0" = P(v1,v2,j(v4)). A least generalization
of a set of terms is a generalization which is less general than any other such gen
eralization. For example, the least generalization of {P(x,y,j(x)),P(w,z,j(w))} is
P(v1,v2,j(v1)), but P(v1,v2,j(v3)) or P(v1,v2,v3) is not the least generalization.
There is only one least generalization for a set of terms.

Definition 1 A generalization of a set of terms {t1, t2, ... , tn} is a term T such
that there is a substitution O"i for each ti and ti = TO"i.

Definition 2 A least generalization of a set of terms {t1, t2, ... , tn} is a general
ization, T, such that for any other generalization of {t1, t2, ... , tn}, T', there is a .
substitution 0" and T = T'O".

But when a variable inside a term is bound, the generalizations relate to this term
may need to be updated due to several different reasons. We have to know which
generalizations need to be updated when a binding occurs, otherwise, we may need to
regenerate all the generalizations all over again. The problem in this paper is not only
to find the least generalization of any two terms, but also to attempt updating only
those generalizations which need to be updated when a binding occurs. For example,
the generalization of (x,j(y)) is vI and the generalization of (z,j(y)) is v2. When x
is bound to j(xl), we want only the generalization of (x, j(y)) to be reconsidered but
not the generalization of (z,j(y)). In fact, the generalization of (J(x1),j(y)) should
be a functor j, like j(v3).

Our aim in this paper is to find a dynamic algorithm which finds the least gener
alization of any two terms and is able to reconstruct only the generalizations which

19

need to be updated whenever a binding occurs.

2 Preliminaries

In this paper, we use tl, t2, t3, tr, t1', t2', T1, T2, T3, ... for terms, v, x, y, z, w, v1, v2, v3,
... for variables, f,g, h, for functor names and P for predicate symbol.

Definition 3 A set of generalizations {> is a set of tuples < tl, t2, t3 > such that
t1, t2 and t3 are terms and t3 is the least generalization of t1 and t2.

Definition 4 The domain of a set of generalizations {>, noted dom({», is the set
of tuples (t1, t2) for which there exists a t3 such that < t1, t2, t3 > E {>.

Definition 5 A set of generalizations {> is functional iff each (t1, t2) E dom({»,
there exists at most one t3 such that < t1, t2, t3 > E {>.

In the following, we only consider functional sets of generalization and we note
{>(t1, t2), the unique t3, if it exists such that < t1, t2, t3 > E ~.

In the following, we assume that we have an infinite set of variables that can be
used during the generalization algorithm. A new variable can be obtained by calling
the function NV, which returns a variable v not in use at the time of the call. Note
that these variables are not accessible from the user and hence will never be bound
externally.

The size of a term is the total number of terms in each level of the term. For exam
ple, the size of f(x, f(y), h(j(y))) is 7 because the set ofterms is ((x,j(y), y, h(j(y)),
f(y), y,j(x, f(y), h(j(y))))} in total.

The rest of the paper is organized in the following way. Section 3 describes the
static algorithm for this problem. Section 4 presents a dynamic algorithm which
maintains a set of generalizations may need to be updated when a binding occurs.
Section 5 gives a dynamic algorithm for updating generalizations in the presence of a
binding. Section 6 discusses the supporting data structures and their impact on time
complexity.

3 The Static Algorithm for Generalization

3.1 Generalization of any Two Terms

There are four cases of least generalizations depending on the types of the two
terms as depicted in Figure 1. Figure 2 depicts an example including all cases. In
example 1, the generalization of P(x,x,f(x),g(y,x)) and P(y,y,h(y),g(x,h(y))) is
P(v 1, V 1, v2, g(v3, v4)). Each term in this generalization is obtained from the gener

20

For the generalization of two terms tl and t2, there are four cases:

• 1 If both tl and t2 are variables, <ll(tI, t2) is a variable. For example, <ll(x,y) =
v!.

• 2 If one of tl or t2 is a functor and the other is a variable, <ll(tI, t2) is a variable.
For example, <ll(x, f(y)) = v2.

• 3	 If t1 and t2 are functors with different names, <ll(tI, t2) is a variable. For
example, <ll(J(x), h(y)) = v3.

• 4 If both tl and t2 are functors with the same name and tl = f(ti, ...)t~) and
t2 = f(tL ... , t~), <ll(tI, t2) is a functor with name f and arguments <ll(t!, tn,
1 :S i :S n. <ll(tI, t2) = f(<ll(ti, tn, ... , <ll(t~, t~)).

Figure 1: Four cases of least generalizations

P(x, x, f(x), g(y, x))
P(y) y, h(y), g(x, h(y)))

vI = <ll(x,y)

v2 = <ll(J(x), h(y))

v3 = <ll(y) x)

v4 = <ll(x, h(y))

g(v3)v4) = <ll(g(y,x),g(x,h(y)))

The generalization of the two predicates is:

P(vI, vI) v2, g(v3, v4)).

Figure 2: Example 1

21

alization of the corresponding terms in the two predicates; vI is the generalization of
x and y, v2 is the generalization of f(x) and h(y), v3 is the generalization of y and
x, and v4 is the generalization of x and h(y). vI is given as the least general term
of {x, y} because x and yare two variables. For the second column, which is also
{x, y}, we should be able to recognize that vI has been given as their least general
term and avoid generating a new term. The third column, {f(x), h(yH, contains
functors with different function names. Since neither h, f; nor any other function
name can represent these terms, the least general term should be a variable, say v2.
The fourth column, {g(y, x), g(x, h(y))}, contains terms with the same function name
g, a variable is not enough to be their least general term. The least generalization
should also begin with 9 and its two subterms should be the least general terms of
{y, x} and {x, h(yH. Notice that although {y, x} contains exactly the same terms as
{x, y}, their least general terms are different because they are in different order. v3
is given as the general term of {y, x}, v4 is given as the general term of {x, h(yHand
finally g(v3,v4) is created as the generalization of {g(y,x),g(x,h(y)H.

3.2 The Static Algorithm

The static generalization algorithm can now be defined as follows.

Generalize(tl, t2):

Given two terms tl, t2, Generalize(tl, t2) returns a set of generalizations, <P, such that

<P(tl, t2) is the least generalization of (tl, t2). We denote by functor(t) the function

name of the functor t, type(t) the type of term t.

Generalize(tl, t2)
begin

<P := 0;

Generalize-aux(tl, t2, <p)

end

Generalize-aux(in tl, t2, inout <p)
begin

if (tl, t2) tf- dom(<P) and tl =I- t2 then
begin

if type(tl) = type(t2) = variable then
<P:= <P U {< tl,t2,NV >}

else if type (tl) = variable then
<P := <P U {< tl, t2, NV >}

else if type(t2) = variable then
<P := <P U {< tl, t2, NV >}

else if functor(tl) =I- functor(t2) then
<P:= <P U {< tl,t2,NV >}

else

22

begin
let
tl = j(tL , t~);
t2 = j(t~, , t~);
In
for i := I to n do

Generalization-aux(tI, t~, cp);
cP := cP U {< tl, t2, j(cp(tL tn, ... , cp(t~, t~)) >}

end
end

end

The algorithm above finds the generalization of any two terms. It can be gener
ated easily to apply to an arbitrary set of terms. The basic idea is that it is possible
to obtain the generalization of a set of terms {tl, ... , tm} by performing the least
generalizations of pairs, e.g glb(... , (glb(glb(tl, t2),glb(t3, t4)), ..)). A divide and con
quer approach is used to organize the generalizations in the form of a binary tree.
As we could see in Figure 3, several generalizations are produced as the footsteps
to the generalization of the whole. This approach can be used as the basic step of
an algorithm receiving any number of terms. Suppose that the basic step receives
terms {x,h(y),j(w),j(z)}. The basic step first uses the algorithm above to produce
the generalizations of (x,h(y)) and (j(w),j(z)). And it produces vI = cp(x,h(y)) as
the generalization of the first pair and j(v2) = CP(j(w), j(z)) as the generalization
of the second pair. Then, the basic step continues calling the algorithm for vI and
j(v2), v3 is produced as the generalization of vI and j(v2). Since there is no other
generalization in this level, v3 becomes the generalization of the four terms.

tl t2 t3 t4

~/ ~/
tl'

~
T

/
t2'

Figure 3: A divide and conquer approach is used for the generalization of {tl, t2, t3, t4}

23

4 ANew Generalization Algorithm

Our main interest is to design an algorithm that would update the generalizations
dynamically in the presence of new bindings.

In the static algorithm, when a binding occurs, we should either do the generaliza
tions all over again, or scan through all the general terms to find out which ones need
to be regenerated. A general term that is generated from a term which is or which
contains the term being bound has to be reconsidered. But, for dynamic updating, it
would be more appropriate to keep more information during the process of general
ization. We should be able to know which generalizations may be reconsidered when
bindings occur.

We now generalize the dynamic algorithm to produce, in addition to the set <I> , a
list of the least generalizations (tl, t2, tr) where tr is the least generalization of tl, t2
which may need to be reconsidered when a binding occurs. The generalization is
straightforward and simply returns an element for each of the basic cases.

Generalize(inout tl, t2)
begin

Q:= 0;
<I> := 0;
Generalize-aux(tl, t2, <I> , Q)

end

Generalize-aux(in tl, t2, inout <I> , Q)
begin

if (tl, t2) (j. dom(<I» and tl i- t2 then
begin

if type(tl) = type(t2) = variable then
Update(<I>, Q, tl, t2)

else if type(tl) = variable then

Update(<I>, Q, tl, t2)

else if type(t2) = variable then

Update(<I>, Q, tl, t2)

else if funetor(tl) i- funetor(t2) then
Update(<I>, Q, tl,t2)

else

begin

let

tl = f(ti, "0' t~);

t2 = f(t~, ... , t~);

In

for i := 1 to n do

Generalization-aux(t;, t~, <I> , Q);
<I>:= <I> U {< tl,t2,f(<I>(tLtn, ... ,<I>(t~,t~)) >}

24

5

end
end

end

Update(inout ep , Q, in tI, t2)
begin

v:= Nll;

ep:= ep U {< tI,t2,v >};

Q := Q U {(tI, t2, v)}

end

The kind of generalization that needs to be collected for reconsideration is the
one with variable as generalization. For generalization like j(z) = ep(J(x), f(y)),
there must also exist z = ep(x, y). A binding to x or y may affect z, but there is
no direct affect on j(z). All j(x), j(y) and j(z) are terms bound to functor j, no
binding could occur to them directly. Hence only generalizations with variable as
generalization need to be reconsidered and they are collected to Q as we could see in
the algorithm.

Q is a set of tuples (tl, t2, tr) that may need to be reconsidered when bindings oc
cur. Whenever a generalization is generated except in the case that the generalization
is a functor, an element is added to Q.

The set Q produced by Generalization for {x,y,g(x),J(z),x,g(z),g(x),g(z)} is
depicted in Figure 4 (They are organized by the basic step that we have discussed in
the previous section).

Update Generalization

Whenever a binding occurs, there may be some generalizations that need to be up
dated; When x is bound to t, all the tuples (tI, t2, tr) in Q, such that where x E tl or
x E t2 should be reconsidered. As we could see in Figure 4, (x, y, vI), (g(x), j(z), v2),
(x,g(z),v3) and (x,z,v4) will be affected if x is bound to another term, but only
(x,y,vI) will be affected ify is bound.

The tuples to be reconsidered could be divided in several cases as depicted below.
Let (tI, t2, tr) denotes the tuple with x inside and O[x/t] denotes the object 0 where
each occurrence of x has been replaced by t. In the following, tI' = t:l[x/t] and
t2' = t2[x/t] .

• If (tI/, t2/) E dom(ep), the generalization of tl and t2, tr, should be bound to
ep(tI/, t2/) .

• If (tI/, t2/) ~ dom(ep) and both tI' and t2' become functors with the same name, a
new generalization should be generated for tI' and t2' and the old generalization,
tr, of tl and t2, should be bound to the new generated term.

25

•	 If (tl', t2') (j. dom(<P) and tl' and t2' are functors with different names or any
one of tl' or t2' is a variable, since the generalization remains a variable, tr could
remain unchangedj (tl, t2, tr) in Q is replaced by (tl', t2', tr).

As we can see, the behavior of regeneralization includes checking the domain of <P,
generating more general terms, and binding one general term to another general term.

5.1 Algorithm for Regeneralization

We are now in position to present the algorithm to update the generalizations in the
case of a binding. First, all the tuples with the term being bound inside are collected
from Q. Second, each of these tuples is examed and applied with different approach
as depicted above. We note VAR(t) the set of variables in term t.

UpdateGeneralization(inout <P, Q, in x, t)
begin

R := { (tl, t2, tr) E Q I x E tl V x E t2};
Q:= Q \ R;
R := R[x/t];
PropagateBinding(R, Q, <p)

end

PropagateBinding(inout R, Q, <p)
begin

while R =1= 0 do
begin

tu := DEQUEUE(R);
Regenerate(tu, Q, <p)

end
end

Regenerate(in (tl', t2', tr), inout Q, <p)
begin

if (tl', t2') E dom(<P) then
UpdateGeneralization(<P, Q, tr, <p(tl', t2'))

else if type(il') = functor and type(t2') = functor
and functor(il') = functor(t2') then

begin

Generalize-aux(tl', t2', <P, Q)i

UpdateGeneralization(<P, Q, tr, <P(tl', t2'))

26

end

else

Q := QU {(t1', t2', tr)}
end

DEQUEUE(R):(t1, t2, tr)
Post: (tl,t2,tr) E Ro and R = Ro \ (t1,t2,tr).

5.2 An Example

Consider Figure 4 again. Tuples (x,y,v1), (g(x),f(z),v2), (x,g(z),v3), and (x,z,v4)
are in R if x is bound to g(w).

For (x,y,v1), which becomes (g(w),y,v1), there is no general term, which should
be a variable, for (g(w), y). Hence v1 remains unchanged. Similar to (x, y, v1),
(g(x), f(z), v2) becomes (g(g(w)), f(z), v2) and v2 remains unchanged. For (x, g(y), v3),
which becomes (g(w),g(y),v3), a new least general term should be generated because
v3 could no longer qualify to be the least general term of g(w) and g(y). Suppose that
g(v8) is generated as the least general term of g(w) and g(y), v3 should be bound to
g(v8) by calling UpdateGeneralization recursively. The binding of v3 to g(v8) makes
(v3,g(v4),v6) become (g(v8),g(v4),v6) and a new generated term g(v9) is given as
the generalization of g(v8) and g(v4); therefore, v6 should be bound to g(v9). The
only generalization relates to v6, (vS,v6,v7), becomes (vS,g(v9),v7). For (x,z,v4),
which becomes (g(w),z,v4), v4 should remains unchanged. Figure S is the status of
Q after the binding of x.

6 Supporting Data Structures

Some operations in the algorithm are crucial to the timing of the problem. To ·obtain
an efficient algorithm, some proper data structures must be chosen. The following
are the operations in our consideration.

1 Binding Terms.

2 The operations on ~, the set of generalizations.

1. Checking the domain of ~.

2. Adding a new element to ~.

3. Retrieving a element of ~.

3 Retrieving the tuples in Q which need to be reconsidered when a variable is bound.

27

1 (x,y,vl)
2 (g(x),J(z),v2)
3 (x,g(z),v3)
4 (x, z, v4)
S (vl,v2,vS)
6 (v3,g(v4),v6)
7 (vS,v6,v7).

Figure 4: Q produced by Generalization for {x,y,g(x),!(z),x,g(z),g(x),g(z)}

1 (g(w),y,vl)
2 (g(g(w)),J(z),v2)
3 (w,z,v8)
4 (g(w),z,v4)
S (vl,v2,vS)
6 (v8, v4, v9)
7 (vS,g(9),v7).

Figure 5: The Q set after x = g(w)

28

6.1 Binding Terms

When a term is bound to another, all the terms which contain this term will be
affected. For example, when x is bound to f(xl), f(x) and g(y,f(x)) will become
f(f(xl)) and g(y, f(f(xl))). To avoid updating all the related terms whenever a
binding occurs, we should choose a right representation for terms.

A term could be represented by a name, which is either a variable name or a
function name, and a set of pointers to the subterms of the term if the term is a
functor. For instance, g(x,y) is represented by name 9 and pointers to x and y. In
addition to the name and pointers to subterms, a term could also have a pointer to
the term it is bound to; when x is bound to f(xl), the pointer of x will point to
f(xl). All the terms relate to x, like f(x) and g(y,f(x)), will be automatically taken
care of because they have pointers point to x (directly or through other terms) and
x has pointed itself to f(xl). No individual effort is needed for each of these terms.

6.2 The Timing of Generalization

We could use a hash table to represent the generalization set, <1>. Suppose that HF is
the hash function for this table, HF(tl, t2) leads to a location in the hash table where
a pointer set containing pointers to tl, t2 and t3 will be put to represent the tuple
< tl, t2, t3 > in <1>.

A single location in the hash table may contain several pointer sets, each pointer
set (ptl, pt2, pt3) such that ptl is the pointer to tl, pt2 is the pointer to t2 and pt3 is
the pointer to t3 and t3 is the generalization of tl and t2.

To know if there is a generalization for tl and t2 (if (tl, t2) E dom(<1»), we simply
check if there is a pointer set containing pointers to tl, t2 and the generalization of
them in the location of the hash table assigned to by HF(tl, t2).

Similarly, to retrieve the generalization of tl and t2, the location in the hash
table assigned to by HF(tl, t2) is searched until a pointer set containing pointers to
tl , t2 and their generalization is found. We follow the third pointer and reach the
generalization of tl and t2.

The above two operations on <1> require time proportional to the size of a term
because we have to follow pointer to the term and scan through it to see if it is the
tl or t2 we are looking for.

To add a tuple < tl, t2, t3 > to <1>, we simply add a pointer set which contains
pointers to tl, t2 and t3 to the location in the hash table assigned to by HF(tl, t2).

6.3 Direct Accessing for Term Updates

In UpdateGeneralization, when a binding like x = t occurs, we need to retrieve those
tuples in Q with x inside: R = { (tl, t2, tr) E Q I x E tl V x E t2}.

Without any assistance, we have to scan through each tuple to see if it contains
x, which requires time linear to the size of Q. By this way, no matter how many
generalizations are actually affected, the time complexity will always be O(sN) where

29

7

N is the total number of generalizations and s is the size of a term. But, if we could
provide knowledge of which tuples will be affected by the binding of a variable, these
tuples could be accessed directly without checking all the generalization tuples.

To support direct accessing, each variable in the symbol table maintains a set of
pointers and each pointer points to a tuple in Q that could be affected by the variable.
When a binding occurs, all the generalizations produced from terms containing the
variable being bound are affected, hence, whenever a generalization tuple is added
to Q, the pointer of the tuple should be given to all the variables inside the two
terms of the generalization. For example, when vl = ~(h(x,y),w) is generated and
(h(x,y),w,vl) is added to Q, the pointer to (h(x,y),w,vl) should be added to the
pointer sets of x, y and w. It is to say we have to scan through the two terms to
obtain all the variables inside. Thus, the timing of Generalize-aux is proportional to
the larger size of these two terms.

As we could see in Regenerate, time to regenerate a single general term is still
proportional to the size of a term because we first have to make sure the generalization
of the updated terms does not exist and then call Generalize-aux to obtain the new
generalization. Both these two steps take time linear to the size of a term. But, the
reconsideration of a generalization may bind a general term to another general term
and then trigger more generalizations and bindings.

Conclusion

In our algorithm the time to generate the least general term of two terms is propor
tional to the larger size of the two terms since the information for term updating
must be kept during generalization.

Updating of one general term requires time linear to the size of a term because
scanning through a term may be required by comparing terms or generating new
general terms.

But, exactly how much time is needed to update generalizations because of a, single
term binding? In the worst case, all the general terms will be affected by a single
binding. Suppose that the total number of general terms is N and the maximum size
of a term is limited to s. This is still a O(sN) algorithm although in many cases it is

. O(sM) such that M is the total number of generalizations updated and M < N.

30

1

Part	 III

Restricted Least Generalization

We have introduced a least generalization algorithm before, now we would like to
introduce a problem where the least generalization is required to be in a certain form.
For example, the generalization of f(x) and f(y) in the form of f(h(z)) is f(h(vl)).
This problem may occur when the generalization of any two terms is bound to a
certain form.

Introduction

The problem can be defined as: Given tl, t2 and a form t, we want to find T, the

least generalization of tl and t2 with respect to t. The following is the definition

of the generalization. We denote by glb(tl, t2) the least generalization of tl and t2,

mgu(tl, t) the most general unification of tl and t.

Definition 1 The least generalization of tl and t2 with respect to t, noted rglb(tl, t2, t),

is T

iff	 :38 tl8 = t8 /\ :38' t28' = t8' /\ t' = glb(tl, t2) /\ T = mgu(t', t) V

:38 tl8 = t8 /\ -,::J8' t28' = t8' /\ T = mgu(tl, t) V
....,:38 tl8 = t8 /\ :38' t28' = t8' /\ T = mgu(t2, t).

It is not defined otherwise.

Before we discuss the problem, it is necessary to know that a term t1 is compatible

with a term t if there is a substitution 8 such that tl8 = t8.

Remember the least generalization problem we have before, for any two terms
we could find a proper term as their least generalization. But, suppose now the
general term is bound to a certain term or it is required to be in a certain form, the
original least generalization may not be able to satisfy this situation. For example,
the least generalization of f(x) and h(y) is v. If v is bound to f(vI), there is no
generalization of f(x) and h(y) could be in the form of f(vI) because h(y) is not
compatible with f(vl)j thus, h(y) should be excluded and moreover f(x) and f(vl)
should be unified and be the generalization of itself. The following are the different
cases of generalization of tl and t2 with respect to t:

•	 If both t1 and t2 are compatible with t, the generalization of tl and t2 should
be the unification of the least generalization of (tl, t2) and t.

For example, the generalization of f(x) and f(y) with respect to f(h(z)) is
Unify(Generalization(J(x),f(y)), f(h(z))) = Unify(J(v),j(h(z))) = f(h(z)) .

•	 If tl is compatible with t but t2 is not, the generalization is the unification of
tl and t.

For example, the generalization of f(x) and h(y) with respect to f(J(z)) is
Unify(J(x), f(J(z))) = f(J(z)).

31

2

•	 If t2 is compatible with t but tl is not, the generalization is the uni£cation of
t2 and t .

•	 If both tl and t2 are not compatible with t, no generalization could be obtained.

Now we de£ne a data structure, I:!., which will be used in our algorithm.

Definition 2 A set of generalizations I:!. is a set of tuples < tl, t2, t, T > such that T
is the least general term of tl and t2 with respect to t.

Definition 3 The domain of a set of generalizations I:!. , noted dom(l:!.), is the set
of tuples (tl, t2, t) for which there exists a T such that < tl, t2, t, T > E I:!..

Definition 4 A set of generalizations I:!. is functional iff each (tl, t2, t) E dom(l:!.),
there exists at most one T such that < tl, t2, t, T > E I:!..

In the following, we only consider functional sets of generalization and we note
I:!.(tl, t2, t), the unique T, if it exists such that < tl, t2, t, T > E I:!..

The rest of the paper is organized as follows. Section 2 presents the static al
gorithm for this problem. Section 3 presents a dynamic algorithm for this problem
which generates a set of generalizations that may need to be reconsidered.

The Static Algorithm

The static generalization algorithm can now be de£ned as follows.

GeneralizeF(tl, t2, t):

Given two terms tl, t2 and a form t, GeneralizeF(tl, t2, t) returns a set of generaliza

tions I:!. such that I:!. (tl, t2, t) is the generalization of (tl, t2) with respect to t.

First let us assume that Unify(T, TI) makes T and TI the same term and returns
the term itself.

This algorithm is based on the different cases discussed previously, but here we
£nd out whether the form t is a variable before checking the compatibility of the two
terms with the form. If the form t is a variable, no compatibility needs to be checked
because a variable is compatible with any variable or functor.

GeneralizeF(inout tl, t2, t)
begin

AU.-'- 0.,
GeneralizeF-aux(tl, t2, t, I:!.)

end

32

GeneralizeF-aux(in tl, t2, t, inout .6.)
begin

if (tl, t2, t) f/. dom(.6.) then
begin

if type(t) = variable then
begin

Generalize(tl, t2);
.6. := .6. U {< tl, t2, t, ct>(tl, t2) >}

end
else if Compatible(tl, t) 1\ Compatible(t2, t) then
begin

Generalize(tl, t2)j

T := Unify(ct>(tl, t2), t);

.6. := .6. U {< tl, t2, t, T >}

end
else if Compatible(tl, t) 1\ --, Compatible(t2, t) then
begin

T := Unify(tl, t)j
.6.:=.6. U {< tl,t2,t,T >}

end
else if --, Compatible(tl, t) 1\ Compatible(t2, t) then
begin

T := Unify(t2, t)j
.6.:=.6. U {< tl,t2,t,T >}

end
else if --, Compatible(tl, t) 1\ --, Compatible(t2, t) then

return FAILURE
end

end

Compatible(in tl, t2):Bu
begin

8:= 0j
return Comp-aux(tl, t2, 8)

end

Comp-aux(in tl, t2, inout 8):Bu
begin

if type(tl) = variable
if tl E VAR(t2)

return FAILURE
else

8 := {(tl/t2)}

33

3

else if type(t2) = variable
if t2 E VAR(tl)

return FAILURE
else

8 := {(t2jtl)}
else iffunctor(tl) =I- functor(t2) then

return FAILURE
else
begin

let
tl = f(tL , t~);

t2 = f(t~, ,t~)j

In
for i := 1 to n
begin

if (Comp-aux(tt, tt, 8)) = FAILURE then
return FAILURE

else
begin

tl := t18;
t2 := t28

end
end

end
return TRUE;

end

The Dynamic Algorithm

As we could see in the static algorithm, in the case where only tl is compatible with
t, the generalization is the unification of tl and t. Since tl and t become the same
term as well as the generalization after the unification, whenever tl or t changes,
the generalization changes automatically. It is similar in the case where only t2 is
compatible with t. The generalizations produced in these two cases will never need
to be reconsidered because they will be taken care of automatically. But, in the case
where both tl and t2 are compatible with t, the generalization of tl and t2 remains
open to be affected; Thus, these generalizations should be kept for reconsideration
in the future. We will use a queue QU containing elements of the form (tl, t2, t, T),
informally (tl, t2, t, T) E QU if T is the generalization of tl and t2 with respect to t
and both tl and t2 are compatible with t. The dynamic generalization algorithm can

34

now be defined as follows.

GeneralizeF(tl, t2, t):

Given two terms tl, t2 and a form t, GeneralizeF(tl, t2, t) returns a set of generaliza

tions fj. such that fj.(tl, t2, t) is the generalization of (tl, t2) with respect to t, and

QU, a set of generalizations (tl, t2, t, T) such that T is the least generalization of

tl, t2 with respect to t which may need to be reconsidered when bindings occur.

GeneralizeF(inout tl, t2, t)
begin

QU:= 0j
1\U.-.- 0.l

GeneralizeF-aux(tl, t2, t, fj., QU)

end

GeneralizeF-aux(in tl, t2, t, inout fj., QU)
begin

if (tl, t2,t) tf. dom(fj.) then
begin

if type(t) = variable then

begin

Generalize(tl, t2)j

fj. := fj. U {< tl, t2, t, <I>(tl, t2) >}

end
else if Compatible(tl, t) 1\ Compatible(t2, t) then
begin

Generalize(tl, t2)j
T := Unify(<I>(tl, t2), t)j
Update(fj., QU, tl,t2,t,T)

end
else if Compatible(tl,t) 1\ ..., Compatible(t2,t) then
begin

T := Unify(tl, t)j

fj. := fj. U {< tl, t2, t, T >}

end
else if..., Compatible(tl, t) 1\ Compatible(t2, t) then
begin

T := Unify(t2, t)j

fj. := fj. U {< tl, t2, t, T >}

end
else if..., Compatible(tl, t) 1\ ..., Compatible(t2, t) then

return FAILURE
end

end

35

4

Update(inout 6., QU, in tl, t2, t, T)
begin

6. := 6. U {< tl, t2, t, T >}j

QU := QU U {(tl, t2, t, Tn

end

Update Generalization

Now we want to generate an algorithm to update the generalizations in the presence
of a binding; When a term is bound to another term, all the generalizations relate to
this term should be reconsidered. For example, the generalization of f(x) and y with
respect to z is v, but if y is bound to h(yl), h(yl) is not compatible with Zj thus, the
generalization should be Unify(J(x), z) = f(x).

When a binding, x = xl, occurs, a tuple (tl, t2, t, T) in QU has to be reconsidered
either because x E tl or x E t2 or x E t. The updated tl, t2 and t after the binding
actually become tl', t2' and t' such that tl' = tl[x/xl], t2' = t2[x/xl] and t' = t[x/xl]j
O[x/xl] denotes the object 0 where each occurrence of x has been replaced by xl.

We have to reconsider the generalization of (tl', t2', t) by calling GeneralizeF-aux
agam.

Now we present the algorithm for generalization update. First, all the tuples
containing the term being bound are collected from QU. Second, each tuple is recon
sidered by GeneralizeF-aux. And also the produce of a new general term due to a
binding may lead to another term binding; The old general term should be bound to
the new one.

UpdateGeneralizationF(inout 6., QU, in x, xl)
begin

R := { (tl, t2, t, T) E QU I x E tl V x E t2 V x E t};

QU:= QU \ R;

R := R[x/xl]j

PropagateBinding(R, QU, 6.)

end

PropagateBinding(inout R, QU, 6.)
begin

while R =f 0 do
begin

(tl', t2', t', T) := DEQUEUE(R)j

GeneralizeF-aux(tl', t2', t', 6., QU)j

if T =f 6.(tl', t2', t') then

UpdateGeneralizationF(6., QU, T, 6.(tl', t2', t'))

36

5

end
end

DEQUEUE(R):(tl, t2, t, T)
Post: (tI, t2, t, T) E Ro and R = Ro \ (tl, t2, t, T).

Time Complexity

In GeneralizeF-aux, the key operations are Compatible, Generalize and Unify. Gen
eralize is the same one we introduced before, which takes time proportional to the
size of a term to produce the least generalization of any two terms. It is obvious as
we read the Compatible algorithm that it also takes time proportional to the size of
a term to decide if two terms are compatible with each other. And also Unify may
require the same time complexity because we may need to scan through the two terms
to be unified. All the three key operations take time proportional to the size of a
term; thus, we could conclude that the time to generate a generalization of any two
terms with respect to a form is proportional to the size of a term.

Because GeneralizeF-aux is also called when a generalization needs to be changed,
the time to update a single generalization is also linear to the size of a term. But, the
update of a generalization might lead to more bindings because the old generalization
needs to be bound to the new generalization; thus, it is possible in the worst case that
a single binding affects all the generalizations. The total time of processing a single
binding is O(sN) where N is the total number of general terms and s is the maximum
size of a term.

37

A An Application on Least Generalization

Here we introduce an application on least generalization. Lex is a program that
receives a number of predicates and generates the least generalization for them. In
the program, a divide and conquer approach is used to organize the generalizations
in the form of a binary tree and the generalization of predicates is based on the
generalizations of pairs of corresponding terms in the predicates. This program also
provide dynamic update on generalization in the presence of a binding. The following
is an example of how a generalization of predicates is made.
Finding the generalization for p(J(x),y),p(z,w),p(J(w),q) and p(J(z),r):

p(J(x), y) vO = ~(J(x),z)

p(z, w) vI = ~(y,w)

p(vO,vI)

p(J(w),q) v2 = ~(w, z)
p(J(z), r) f(v2) = ~(J(w),J(z))

v3 = ~(q,r)

p(J(v2), v3)

p(vO,vI) v4 = ~(vO, f(v2))
p(J(v2), v3) v5 = ~(vl,v3)

p(v4,v5)

First, p(vO,vI) is generated as the generalization of p(J(x),y) and p(z,w) in the
way such that vO is obtained from the generalization of f(x) and z and vI is obtained
from the generalization of y and w. Next, p(J(v2), v3) is generated as the general
ization of p(J(w), q) and p(J(z),r)) such that f(v2) is the generalization of f(w) and
f(z) and v3 is the generalization of q and r. Finally, p(v4,v5), the generalization of
the four predicates is generated from p(vO, vI) and p(J(v2), v3).

Now suppose that z is bound to f(zl), the generalization of f(x) and z should be
changed from vO to f(vo/). vO is bound to f(vO/) and this invoke the reconsideration
of the generalization of vO and f(v2). The generalization of these two terms becomes
f(v4/) and v4 should be bound to f(v4/).

The general predicate p(vO, vI) becomes p(J(vO/), vI) and the final generalization
p(v4, v5) becomes p(J(v4/), v5) after the binding of z. In this application, neither of
these predicates will be affected directly because we could always get the new term
through the old term. For example, to obtain the current generalization of the four
predicates, p(J(v4/), v5), all we have to do here is to follow index from v4 to f(v4/).
No generalization of predicates will be affected once it is generated.

The basic data structures used in this program include a symbol table and a hash
table for terms, a predicate table for predicates and a general predicate table for

38

general predicates which are generated from predicates. Notice that the index to a
term means the position of the term in the symbol table.

• symtable: a symbol table such that each element contains the following.

1. lexptr: the name of the term.

2.	 type: the type of the term, variable or functor.

3. fp: includes indices to the subterms of the term.

4.	 nextp: index to the term it is bound to.

5. arg: number of subterms in the term.

6.	 tolist: an array contains indices to elements in genTable, which are gener
alizations could be affected by the binding of this term. When this term
is bound to another term, this list is followed and all the generalizations
pointed to by the indices should be reconsidered, thus, the list provides
direct accessing for generalization update.

• ht: a hash table for supporting symbol table. Each element contains:

1.	 list: an array contains indices to the terms in the symbol table.

• pred: a table contains predicates such that each element contains the following:

1.	 lexptr: the name of the predicate.

2.	 fp: includes indices to the terms in the predicate.

3. arg: number of terms in the predicate.

4.	 g: index to the general predicate relates to this predicate. In the first
example, the g of p(f(x),y) is the index of p(vO,vl) in the preg table.

• preg: a table contains general predicates. Each element contains:

1.	 lexptr: the name of the predicate.

2.	 fp: includes indices to the terms in the general predicate.

3. arg: number of terms in the predicate.

4.	 g: index to the general predicate relates to this general predicate. In the
first example, the g of p(vO, v1) is the index of p(v4, v5) in the preg table.

• Gen:	 a two dimensional table that records all the generalizations. If the least
general term of the ith and the jth terms in the symbol table is the kth term in
the symbol table then Gen[i] [j] = k. If there is no least general term generated
for the ith term and the jth term then Gen[i][j] = 0. Whenever a generalization
is generated, a proper element in this table will be updated.

• genTable:	 a table contains generalizations which may need to be updated when
bindings occur. Each element contains:

39

1.	 one: index to the first term of the generalization.

2.	 two: index to the second term of the generalization.

3. gen: index to the general term of the first and the second terms.

Whenever a generalization with variable as generalization is generated, a proper
element will be added to this table.

• queue: a queue contains new bindings which are generated during term update.
Each element contains (old, new) such that the (old) term should be bound to
the (new) term.

The program is organized in the following files:

• global.h contains the definitions of the global data structures.

• lex.c contains procedures for	 data initialization and procedures which receive
input.

• symbol.c contains procedures	 that manage the symbol table, hash table and
predicate tablesj procedures for insertion and searching.

• gene.c contains procedures for generalization.

•	 change.c contains procedures for updating in the presence of a binding. New
bindings which are generated during update are also taken care of automatically
by these procedures.

The following are part of the table contents after the generalization of p(J(x, y), y)
and p(J(z,w),z).

p(J(x, y), y)
p(J(z, w), z)

p(J(vI, v2), v3)

pred: the predicate table

lexptr fp(terms)
1 p 1,3 (p(J(x, y), y))
2 p 4,5 (p(J(z, w), z))

preg: the general predicate table

lexptr fp(terms)
1 p 9,10 (p(J(vI, v2), v3))

40

symtable: the symbol table

lexptr type f p(subterms) tolist nextp (the whole term)
1 f functor 2,3 (J(x,y))
2 x variable <1>
3 y variable < 2,3 >
4 f functor 5,6 (J(z, w))
5 z variable < 1,3 >
6 w variable <2>
7 vI variable
8 v2 variable
9 f functor 7,8 (J(vl, v2))
10 v3 variable

ht: the hash table
Index to

1 (2) (x)
2 (3) (y)
3 (5) (z)
4 (6) (w)
5 (1) (f(x,y))
6 (4) (J(z,w))
7 (7) (vI)
8 (8) (v2)
9 (10) (v3)
10 (9) (f(vl,v2))

Gen: the generalization table

Gen[2][5] = 7; vI = <p(x, z).

Gen[3][6] = 8; v2 = <p(y, w).

Gen[I][4] = 9; f(vl, v2) = <p(f(x, y), f(z, w)).

Gen[3][5] = 10; v3 = <p(y, z).

genTable: table for generalizations which may need to be updated.

< one, two, gen >
1 < 2,5,7 > vI = <p(x,z).
2 < 3,6,8 > v2 = <p(y,w).
3 < 3,5,10 > v3 = <p(y, z).

The hash table supports term searching; for example, the hash function locates
f(x, y) to the the fifth element of the hash table, which contains index 1 to the symbol

41

table, thus the first term is compared with f(x, y), which takes time proportional to
the size of the term to make sure it is the f(x,y) we are looking for. Without hash
table, we may have to cQmpare all the terms in the symbol table with the term we
are searching for.

Also notice the relationship between the tolist in each element of the symbol table
and the elements in genTable; The tolist of z as we could see contains indices, 1
and 3, to the elements in the genTable because vI and v3 may need to be updated
when z is bound to another term. The use of tolist makes it possible to access the
generalizations directly without checking all the generalizations. To obtain the tolist
of a term, an index should be inserted each time a reconsiderable generalization which
relates to this term is generated.

Suppose that x is bound to y, the nextp of x will be 3 (the index to y), and
the index in the tolist of x, 1, leads us to the first element of genTable, thus, the
generalization of x and z, which becomes the generalization of y and z, should be
reconsidered. But from Gen[3] [5] = 10, we find out the generalization of y and
z already exists, therefore, instead of generating new generalization, v1 should be
bound to v3.

We should also be aware of the fact that when a binding occurs, the index of an
element in the genTable sometimes needs to be added to the tolists of other terms.
In the example above, if x is bound to f(q, r), the first element of the genTable is
reconsidered. Although the generalization, v1, remains the same, the index of this
element should be added to the tolists of q and r because the generalization may be
affected when the binding of q or r occurs.

The update of generalization will not directly affect predicates and general predi
cates because the contents in both pred and preg table are referred through symbol
table. The new status of a predicate could be obtained through the nextp indices of
the terms in the predicate. No individual effort is needed to maintain the contents in
the predicate and general predicate tables.

The following pages are the codes of the program, which also include some de
scriptions for more details.

42

References

[1]	 J-L. Lassez, M.J. Maher and K.Marriott. Unification Revisited. In Foundations
of Deductive Databases and Logic Programming} Morgan Kaufmann Publishers,
1988.

[2]	 C. David Page Jr., Alan M. Frisch. Generalization with Taxonomic Information.
In Proceedings of AAAI-90} Boston, MA, 1990.

[3]	 G. D. Plotkin. A Note on Inductive Generalization, chapter 8, Volumn 5 of
Machine Intelligence} Edinburgh University Press, 1970.

[4]	 G. D. Plotkin. A Further Note on Inductive Generalization, chapter 8, Volumn
6 of Machine Intelligence} Edinburgh University Press, 1971.

[5]	 J. C. Reynolds. Transformational Systems and Algebraic Structure of Atomic
Formulas, chapter 7, Volumn 5 of Machine Intelligence} Edinburgh University
Press, 1970.

[6]	 P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Pro
gramming Series, The MIT Press, Cambridge, MA, 1989.

43

#include <stdio.h>
#include <ctype.h>
#include <string.h>

#define BSIZE 128
#define EOS '\0'
#define V 1
#define F 2

#define HSIZE 197
#define STRMAX 999
#define SYMMAX 100
#define FALSE 0
#define TRUE 1
#define MaxA 20

extern int tokenval;
extern int tempv;
extern int countg;
extern int teminx [] ;
extern int tempinx[]i

extern char lexemes[];
extern int lastchari
extern int lastgenT;
extern int lastentry;
extern int lastpre;
extern int lastpg;
extern int oldlastpre;

struct gTable
int one;
int two;
int gen;

} i

struct tlist {
int geni
int updw;

struct pgtable {
char *lexptri
int g;
int arg;
int nump;
int fp[BSIZE]i

} ;
struct entry {

char *lexptr;
char *lexptrl;
int g;
int gnum;
int arg;
int type;
int nextp;
int gpos;
int pos;
int place;
int ingen;
struct tlist tolist[20];
int fp[BSIZE];

} ;

struct ht2 {
char *name;
int entryi

} i

struct ht1 {

int num;
struct ht2 list[20]i

} i

struct ht1 ht[HSIZE]i

struct gTable genTable[SYMMAX];
struct entry symtable[SYMMAX]i
struct entry pred[SYMMAX];
struct pgtable preg[SYMMAX]i
int Gen[SYMMAX] [SYMMAX]i
int inxt2[SYMMAX] [SYMMAX] i

int inxt3[SYMMAX] [SYMMAX]i/* started from 1, 0 is the nurnber*/
int Contain [SYMMAX] [SYMMAX]i
extern int checkT()i
extern int hacon()i
extern int insert()i
extern int insertp();
extern void error()i
extern int getpre()i
extern int getfname()i
extern int check()i
extern int getf2()i
extern int getarg()i
extern int findfun() i

extern int gent);
extern int samet) i
extern int chf();
extern void printgenp()i
extern char *newT()i

/**/
/* lex. c: * /
/* This file contains the main procedure and the procedures */
/* which receives predicates and terms from input. */
/* The procedures includes: */
/* main: the main procedure. */
/* init */
/* lexs * /
/* chV * /
/ * printprep * /
/ * printgenp * /
/* printsym * /
/* getpre * /
/* getfname * /
/* getf2 */
/* getarg * /
/* findfun */
/**/
#include "global.h"
#include <sys/types.h>

char lexbuf[BSIZE];

int tokenval = -1;

int exist = 0;

int oldlastpre;

void lexs();

void chV();

int getpre();

int getfname();

int check();

int getf2 () ;

int getarg();

lint findfun () ;
void printprep();
void printgenp();
void printsym () ;
void init();

main ()
{

char n ;

int i,j,k;

init(); /*initialize data structures*/

do {

print f ("\n \nl: Add/more predicates. \n ") ;

printf(1I2: Bind a variable.\n");

printf ("3: Quit. \n");

printf("Your choice? \n");

scanf("%lc",&n) ;

printf("\n");

if (n == ' I')
lexs() ; /*receive input and generalization*/

else if (n -- '2')
chV () ; /*bind a term to another*/

else if (n == '3')

break;

} while (n != '3');

}

/***
init:

called by main.

Initializes data structure.

***/
void init ()
{

int i,j,k;
for (i = 0 ;i<HSIZE;i++)

ht[i] .num = 0;

for (i = 0; i<SYMMAX;i++)
{

for (k =Oik<BSIZE;k++)
{

preg[i] .fp[k] = Oi

}
preg[i] .nump = 0;

}
for (i =Oii<SYMMAXii++)

{
for (j = O;j<BSIZEij++)

{
symtable[i] .fp[j] = 0;
pred[i] .fp[j] = 0;
preg[i] .fp[j] = 0;

}
pred [i] . 9 = 0 i
preg[i].g = 0;
symtable[i] .ingen = Oi
symtable[i] .nextp =0;

}

/***
lexs:
called by main.
calls getpre, gen, printprep,

printgenp and printsys.
receives input and generalizes.

***/
void lexs ()
{

int t=O,i=l,j=O,k=Oi

oldlastpre = lastprei

/*get predicates from
while((t = getchar())

{
ungetc (t, stdin) i
getpre () ;

}

input*/
!='*')

printprep () ;
/* Generalize predicate*/

gen () i

/* Output the status of generalization */

printgenp () ;

print sym () i

}

/***
chV:
called by maini

calls chf, printprep,

printgenp and printsys.

prestep for term bindings.

***/

void chV()
{

char s[128];

char t [12 8] ;

print f ("Which variable you want to bound? ");

scanf ("%s ", s) i

printf("Bind to ? ");

scanf (II %s ", t) ;

/* Bind s to t*/

chf (t, s) i

/* Output the status after binding */

printprep () ;

printgenp () i

printsym();

}

/***
printprep:
called by lexs and chV.
Outputs predicates.

***/
void printprep ()
{

int i,j;

printf ("\n");

for (i=l;i<=lastpre;i++)
{

printf("\n%d: %s(",i,pred[i] .lexptr)i

for (j=lij<=pred[i] .arg;j++)

{

printf(l%s",symtab1e[pred[i] .fp[j]] .lexptr);
if (j != pred[i] .arg)

printf(",") ;
}

print f (II) \n II) ;

}
printf("----------------------------\n")i

}

/***
printgenp:
called by lexs and chV.
Outputs general predicates.

***/
void printgenp ()
{

int i,j,ki

printf ("\n");

for (i = 1ii< lastpg; i++)
{

printf("\n%d: %s(",i,preg[i] .lexptr) i

for (j=lij<=preg[i] .argij++)

{

printf ("%s ", symtable [preg [i] . fp [j]] .lexptr) ;
if (j != preg[i] .arg)

printf (", ") ;
}

printf(") \n");

}
printf("----------------------------\n");

}

/***
printsym:
called by lexs and chV.
Outputs Terms in symbol table.

***/
void printsym ()
{

int i,j,next,k;

printf (" \n") ;

for (i = 1; i<=lastentryii++)

{printf(" %d: %s ",i,symtable[i].lexptr)i

j=Oi

k = i;
while (symtab1e[k] .nextp !=O && symtable[k] .nextp !=i)

{
k = symtable[k] .nextpi

}

/*k = symtable[i].nextPi*/

if (k != i && symtable[k] .lexptr !=NULL)

printf (" --> %d: %s ", k, symtable [k] .lexptr) ;

printf("\n");

}

}

static int num =0;

/***
getpre:
called by lexs.
calls getfname and getf2.
gets a predicate from input.

***/
int getpre ()
{

int t,p;

int j=Oi

exist = 0;

/* get the predicate name */

p = get fname () i

t = getchar();

while(t ==' lit , \ t ')

t = getchar();

/* Get the terms in the predicate */
if (t == '(')

getf2 (p) ;

/***
getfname:
called by getpre.
calls insertp.
gets the predicate name from input.

***/
int getfname()
{

int t,Pi

t = getchar() i

while(lisalpha(t))

t = getchar()i

if (isalpha(t))
{

int p,b = Oi

while (isalnum(t))

{
lexbuf[b] = ti

t = getchar()i

b = b+1i

if (b >= BSIZE)

error ("compiler error") i
}

lexbuf[b] = EOSi

/*if (t != EOF)*/

ungetc (t, stdin) i

/* insert the predicate name to predicate table and return a index*/
p=insertp(lexbuf)i
return Pi

}
else if (t EOF)

return 0 i

/***
getf2:
called by getpre, getarg and findfun.
calls getarg.
Gets the terms in the predicate from input.

***/
int getf2(p)
{

int t,i=O,j = Oi

int r = 1j

if (exist ==1)

{

/* there exists predicate with the same name,

the number of terms inside should be the same .*/

for (i = O,j = 1 ii<pred[p] .argji++,j++)
{

/* get a term from input and return a index to the term*/

r=getarg (p) j

if (r !=O)

pred[p] .fp[j] = ri

}
else

{

nurn =0 i

i =li

while (r != 0)

{
/* get a term from input and return a index to the term*/
r = getarg (p) i
if (r != 0)

{
pred[p}.fp[i} = ri
i++i

}
}

pred [p} . arg = i-1i

}
}

/***
getarg:
called by genf2.
calls checkT, getf2 and insert.
gets a term from input fro predicate,
inserts the term to symbol table
and returns a index to the term.

***/
int getarg(l)
int li
{

int t,ii

int typei

int count = Oi

type = Vi

nurn++i

while(l)

{

t = getchar()i

if (t ==' , lit -- '\t' II t -- '\n')

else if (t == ')')

return Oi

else if (isdigit(t))

{

ungetc (t, stdin) i

scanf (II %d ", &tokenval) i

return 0 i

}

else if (isalpha(t))

{

int p,q,b = Oi
while (isalnurn(t) I I (t == ',' && count >0) I I

t == '(' I I t == ')' && count>O)
{

if (t == '(')
{

/* the term is a functor */
count++i
type = Fi

}

else if (t -- ')')

count--i

lexbuf[b] = ti

t = getchar()i

b = b+li

if (b >= BSIZE)

error ("compiler error") i
}

lexbuf[b] = EOSi

if (t != EOP && t != ',')

ungetc(t,stdin)j

if (t == '(')

{

p = checkT(lexbuf)j
getf2 (p) i

return Pi
}

/* check if the term exists */
p = checkT(lexbuf)i

if (p == 0)
{

/* the term does not exist,
it should be inserted to symbol table*/

exist = Oi
p = insert(lexbuf,type)j

}

else if (q == 0)

exist = li

return Pi

}

else

return Oi

}
}

/***
findfun:
called by insert.
calls checkT, getf2 and insert.
Inserts the terms inside a term
to the symbol table

***/
int findfun(j,s)
int ji
char S[]i
{

int t,Pi

int i = O,k=Oi

int countj

int typei

type =Vi

symtable[j] .arg = Oi

/* skip through the function name */

while (s[i] != '(')

i++i

i++i

/* Get a term inside the term and insert it to symbol table */
while(s[i] != '\0')

{
type = V;

count = 0;
 , ,if (s [i] == ' , I I s [i] '\t' II (s[i]-- , && count -- 0)

I I s [i] == ' \n')
;

else if (s[i] == ')')
return 0;

else if (isdigit(s[i]))
{

ungetc(s[i] ,stdin);

scanf ("%d", &tokenval);

return 0;

}
else if (isalpha(s[i]))

{
int p,b = 0;
while (isalnurn(s[i]) I I (s[i] - , , , && count > 0)

,) ,II s[i] == '(' II s[i] -- && count> 0)
{

if (s[i] == ' (')
{

count++;

type =F;

lexbuf[b] = '\0';

}
else if (s[i] == ')')

count--;

1exbuf [b] = s [i] ;

b = b+1;

if (b >= BSIZE)

error(" compiler error");

i++;

}

lexbuf[b] = EOS;

if (s [i] == ' (,)

{
p = checkT(lexbuf);

getf2 (p) ;

return p;

/* check if the term exists */

p = checkT(lexbuf);

if (p == 0)

{
/* the term does not exist,

it should be inserted to sYmbol table*/
exist = 0;
p = insert(lexbuf,type);

}
else

exist = 1;

syrntable[j] .fp[k] = p;

syrntable[j] .arg++;

k++;

i++;

)

/**/

/ * symbol. c: * /

/* contains procedures that manage the symbol table, */

/* hash table and predicate table; procedures for insertion */

/ * and searching. * /

/* The procedures includes: */

/* checkT */

/* insert */

/* hashing */

/* insertp */

/* hacon */

/**/

#include "global.h"

#include <stdlib.h>

char lexemes[STRMAX];

int lastchar = -1;

int lastentry =0;

int lastpre =0;

int tempv =0;

int teminx[20];

int hashing();

int hacon();

/***
checkT:
called by getarg, chf, ch1, decide,
newT and makeV.
calls hacon.
Checks the hash table if a term exist

***/
int checkT(s)
char s[];
{

int i;

int va,n;

int ha;

ha = 0;

va = hacon(s); /* obtain a hash value*/

n = ht[va].num;

/* compare the terms in a position of hash table with the term we request*/
for (i = 1; i<=n; i++)

{
if (strcmp(s,ht [va] .list[i] .name) 0)

{

ha = ht[va] .list[i] . entry;
return ha;

}
}

return ha;
}

/***
insert:
called by getarg, makenewF and genF.
calls hashing, hacon and findfun.
inserts a term to both symbol and hash table.

***/

int insert (s,type)
char s [] ;

int type;
{

int p,POSi
int ha;

if (lastentry +1 >= SYMMAX)

error(lIsymbol table full");

/* insert the term to the end of the symbol table*/

lastentry = lastentry+1;

symtable[lastentry] . type = type;

p = lastentry;

/* insert the term into hash table with insex to symbol table*/

ha = hashing(s,p);

pos = hacon (s) ;

/*symtable[p] .pos = pos;

symtable[p] .place = hai*/

/* if it is a functor,

the terms inside should also be inserted*/

if (type ==F)

findfun(lastentry,s);

if (symtable[p] .lexptr == NULL)
symtable[p] .lexptr = symtable[p] .lexptr1 = ht[pos] .list[ha] .name;

else
ht[pos] .list[ha] . name = symtable[p] .lexptr;

return p ;
}

/***
hashing:
called by insert, newT.
calls hacon.
inserts a term s to hash table
with index p to symbol table.

***/
int hashing(s,p)
char S[]i
int p;
{

int va,n,len;

int ha;

/* Obtain a hash value */

va = hacon(s);

ht [va] .num++;

n = ht [va] . num;

/* insert the term into the hash table */

ht[va].list[n] .name= &lexemes[lastchar +1];

strcpy(ht[va] .list[n] .name, S)i

len = strlen(s);

lastchar = lastchar + len +1;

/* with index p to a entry in the sYmbol table */

ht[va] .list[n] . entry = p;

symtable[p] .lexptr1 = ht[va] .list[n] .name;

symtable[p] .pos = va;

symtable[p] .place = ha;

ha = n;

return haj
}

/***
insertp:
called by getfnarne.
inserts a predicate s to predicate table,
but only predicate name at this moment.

***/
int insertp(s)

char S[]i

{
int lenj
len = strlen(S)i

if (lastpre +1 >= SYMMAX)

error ("symbol table full") j

/* insert to the end of the table*/
lastpre = lastpre+1j
pred[lastpre] .lexptr = &lexemes[lastchar +l]j
pred[lastpre].g =OJ

lastchar = 1astchar + len +lj

strcpy(pred[lastpre] .lexptr,s)j

return lastprej

}

/***
hacon:
called by checkT, insert, hashing and newT.
generates a hash value for term s.

***/
int hacon(s)
char s[]j
{

long valj

int vaj

val = atol (s) j

va = val % HSIZEj

return vaj

}

/**/

/* gene.c: */

/* contains procedures for generalization. */

/* The procedures includes: */

/* gen */

/* genre */

/* existg */

/* same */

/* Hvalue */

/* makeV */

/* genT */

/* listg */

/* sameF */

/* genF */

/* itoa */

/* reverse */

/* putinx */

/**/

#include "global.h"

#include <stdlib.h>

int tempinx[20] j

int lastpg=lj

int lastgenT=Oj

int countg = li

void itoa() j

int existg()j

int genre() j

int putinx()j

/**
gen:
Finds the generalization of several predicates.

**/
int gen()
{

int i,j=O,k,l,m,Pi

int lenj

int ge,gj

int oldnUffij

for (i =OJ i<20j i++)

teminx[i] = OJ

for (i =OJ i<20j i++)

tempinx[i] = Oi

/* exam only those newly inserted predicates */

for (i =l+oldlastpreji<=lastpreji++)

{

j =OJ

if (pred[i].g == 0)

{

/*	 This predicate does not have generalization yet,
find those new predicates with the same predicate name
and generate a generalization for them */

ge = existg(pred[i] .lexptr)j

tempinx[j] = ij

j++j

/* Get the predicates with the same predicate name*/
for (k =i+ljk<=lastpreik++)

if (strcmp(pred[i] .lexptr,pred[k] .lexptr) ==0)
{

tempinx[j] = kj

j++i
}

/*	 genre will find the generalization for these j new predicates*/
g = genre(O,j-l)i

/*	 g is the generalization for these j predicates.
if there is a old generalization with the same predicate name,
generate the generalization for the old one and g */

if	 (ge != 0)
{

tempinx[O] = gei

tempinx[l] = gi

g = genre (-1, 1) i

}

}

}
}

/**
existg:
called by geni
checks if there is a generalization for predicate with
predicate name sexists.

**/
int existg(s)
char s[]j
{

int i;

for (i = 1ji<lastpgji++)

if (strcmp(s,preg[i] .lexptr) 0)

{

while (preg[i].g != 0)

i = preg[i] .gi

return i j

}

return 0;
}

/**
same:
called by genF, genre.
calls putinx, Hvalue, genF and decide.
finds the least general term for terms p and q, the
general term will be inside general predicate 1.

**/
int same(p,q,l)
int Pi
int qj
int lj

{

int r=Oj
int i,j,k,g;

if (p ! = q)

{

r = OJ
}

else

r = 2;

/* p anq q are the same term,

the generalization is itself*/

if (r ==2)

{

putinx(l,p) ;

return p;

}

/* if the generalization has already exist,

return the index to the general term*/

i f ((g = Gen [p] [q]) ! =0)

return g;

if (symtable[p] . type -- F && symtable[q] . type -- F)

r = 1;

else

r = 0;

if (r == 0)

{

/* At least one of the two terms is a variable,

generate a variable term as their genera1ization*/

k = Hva1ue(p,q,1);
return k;

}
else

{
k = sameF(p,q);

if (k!= 0)
{

/* The two terms are functors with different names,
generate a variable term as their generalization*/

k = Hvalue(p,q,l);
return k;

}
else /* The two terms are functors of the same name,

generate a function term as their generalization*/
k= genF(p,q,l);

return k;
}

}

/**
Hvalue:
called by same;
calls makeV.
generates a variable term as the generalization of k and h.
the generalization will be inside general predicate 1

**/
int Hva1ue(k,h,1)
int k;
int h;
int 1;
{

int n,i,gn;

int q =0;

/*generate a variable term
and insert it to inxt tab1e*/

n = makeV(k,h,l);

Gen [k] [h) = n;

gn = symtable[n] .gnum;

/*this generalization is inside predicate 1*/

inxt2 [gn] [1] = 1;

return n;

}

/**
makeV:
called by Hvaluei
calls checks, genT and listg.
generates a new variable as the generalization of k and h

**/
int makeV(k,h,l)
int k,h,li
{

char s [12 8] ;

char ss[128];

int len;

int tempnum,Pi

int pos;

int gnum,num;

tempnum = tempv+ atoi(IO");

itoa(tempnum,s);

s t r cpy (s s , II temp II
) ;

strcat(ss,s);

if ((p = checkT(ss)) [=0)
{

gnum = symtable[p] .gnum;

num = inxt3[gnum] [0];

inxt3[gnum] [num] = 1;

inxt3[gnum] [0] = inxt3[gnum] [0]+1;

tempv++;

return p;

}

if (lastentry +1 >= SYMMAX)

error (" symbol table full
 II) ;

lastentry = lastentry+1;

symtable[lastentry] .lexptr = symtable[lastentry] .lexptr1 =&lexemes[lastchar +1];

symtable[lastentry] .gnum = countg++;

symtable[lastentry] . type = V;

tempnum = tempv+ atoi(IO");

itoa(tempnum,s);

strcpy(symtable[lastentry] .lexptr, "temp");

strcat(symtable[lastentry] .lexptr,s);

len = strlen(symtable[lastentry] .lexptr);

lastchar = lastchar + len +1;

tempv++;

symtable[lastentry] .gnum = countg++;

hashing (symtable [lastentry] .lexptr,lastentry);

pos = genT(k,h,lastentry);

symtable[lastentry] .gpos = pos;

listg(k,pos,l,lastentry);

listg(h,pos,2,lastentry);

gnum = symtable[lastentry] .gnum;

inxt3 [gnum] [0] = 1;

inxt3[gnum] [1] = 1;

return lastentrYi
}

/**
genT:
called by makeVi
1 is the generalization of terms k and h, keeps
this information in genTable and returns the index
of the element.

**/
int genT(k,h,l)
int ki
int hi
int 1 i
{

lastgenT++i

genTable[lastgenT] . one = k;

genTable[lastgenT] .two = h;

genTable[lastgenT] .gen = 1;

return(lastgenT);
}

/**
listg:
called by makeV;
adds the index p of genTable to the list of term k.

**/
int listg(k,p,n,e)

int k,p,n,ei
{

int ii
if (symtable[k] . type -- V)

listgen(k,p,n,e)i

else

{
for (i = Oii<symtable[k] .argii++)

listg(symtable[k] .fp[i] ,p,n,e)i

}

}

int listgen(k,p,n,e)
int k,p,n,ei

{
int ii
i = symtable[k] .ingen++i
symtable[k] .tolist[i] .gen = Pi
symtable[k] .tolist[i] .updw = ni

}

/**
sameF:
called fy same.
checks if term p and q are functor with the same
function name.

**/
int sameF(p,q)
int Pi
int qi
{

char *sl,*s2i

int i = Oi

sl = symtable[p] .lexptr;

s2 = symtable[q] .lexptr;

while (strncmp(sl,s2,1) -- 0 && strncmp(sl,"(I,l) != 0)
{

sl++;

s2++;

if (strncmp(sl,s2,1) -- 0)

return 0;

else

return -1;

/**
genF:
called by same.
calls findfun and insert.
generates a function term as the generalization of two
function terms k and h.
the generalization will be inside general predicate 1.

**/
int genF(p,q,l)
int p;
int q;
int 1;

{

int i,k,j=O;

int fp[BSIZE];

char buff[BSIZE];

int oldchar,len;

int entry;

forti =O;i<BSIZE;i++)

fp [i] = 0;

for (i =O;i<symtable[p] .arg;i++)

fp[i] = same (symtable [p] .fp[i] ,symtable[q] .fp[i],l);

oldchar = lastchar;

strcpy (buff, symtable[p] .lexptr);

i = 0;

while (strncmp(buff+i," (",1) !=O)

i++;

strcpy(buff+i+1,1\0") ;

for (i =O;i<symtable[p] .arg;i++)
{

strcat(buff,symtable[fp[i]] .lexptr);

if (i != symtable[p] .arg-1)

strcat(buff,",");

}

strcat(buff,")");

entry = insert(buff,V);

symtable[entry] .arg = symtable[p] .arg;

for (i =O;i<symtable[p] .arg;i++)

symtable[entry] .fp[i] = fp[i];

Gen[p] [q] = entry;

symtable[entry] . type = F;

symtable[entry] .gnum = countg++i

inxt2[symtable[entry] .gnum] [1] = Ii

findfun(entry,symtable[entry] .lexptr)i

return entrYi

}

/**
reverse:
called by itoai
reverses string s.

**/
void reverse(s)
char S[]i
{

int c, i, j i

for (i = O,j = strlen(s)-lii <j i++,j--)
{

C=S[i]i

s[i]=S[j]i

s[j] = Ci

}

}

/**
itoa:
called by makeV.
calls reverse.
turns integer to string

**/
/	 void itoa(n,s)

int n;
char s[];
{

int i,sign;

if «sign = n) <0)
n =-ni

i = 0;

do {

s[i++] = n % 10 +'0';

} while «n /= 10) >0);

if (sign <0)

s[i++] = '-';

s[i] = '\0';

reverse(s);

}

/**
genre:
called by gen.
calls same, putinx and genre.
generates a generalization for several predicates.

**/
int genre(i,j)
int i;
int j;
{

int p;

int q;

int g;
int 1;
int len;

if (i == -1)
{

/*we are going to find the generalization of
a old generalization and a newly generated generalization*/

preg[tempinx[l]].g = lastpg;

preg[tempinx[O]].g = lastpg;

preg[lastpg] .arg = preg[tempinx[l]] .arg;

preg[lastpg] .nump = 2;

/*find the least generalization for each pair of terms

in the two predicate*/

for (1 = l;l<=preg[tempinx[l]] .arg;l++)

{

teminx[O] = preg[tempinx[O]].fp[l];

teminx[l] = preg[tempinx[l]] .fp[l];

g = same(teminx[O],teminx[l],lastpg);

preg[lastpg] .fp[l] = g;

}

preg[lastpg] .lexptr = &lexemes[lastchar +l] i

strcpy (preg [lastpg] .1exptr,preg[tempinx[1]] .lexptr);

}
else if (j-i>=2)

{
/* there are more than two predicates,

a divide and conquer approach is used here*/

p = genre(i, (int) (j-i) /2+i);

q = genre ((int) (j-iU2+i+1,j);

/* p and q are two general predicates obtained from two groups
of predicates, we are going to generate the generalization of p and q*/

preg[p] .g = lastpg;
preg[q].g = lastpg;
preg[lastpg] .arg = preg[p].arg;
preg[lastpg].nump = 2;

/*find the least generalization for each pair of terms

in the two predicate*/

for (1 = l;l<=pred[p] .argil++)

{

teminx[O] = preg[p] .fp[l];

teminx[l] = preg[q] .fp[l];

g = same(teminx[O],teminx[l] ,lastpg);

preg[lastpg].fp[l] = g;

}

preg[lastpg] .lexptr = &lexemes[lastchar +1];

strcpy(preg[lastpg] .lexptr,preg[p].lexptr);

}
else if (j-i<l)

{

/* there is only one predicate, the generalization
will be obtained based on the predicate itself */

pred[tempinx[j]].g = 1astpg;

preg[lastpg] .arg = pred[tempinx[j]] .argj

preg[lastpg] .nump = 1j

for (1 = l;l<=pred[tempinx[j]] .argjl++)

{

preg[lastpg].fp[l] = pred[tempinx[j]] .fp[l]i

putinx(lastpg,pred[tempinx[j]].fp[l]);

}

preg[lastpg].lexptr = &lexemes[lastchar +1];
strcpy(preg[lastpg] .lexptr,pred[tempinx[j]] .lexptr);

}

else

{

/* there are exactly two predicates*/

pred[tempinx[j]].g = lastpg;

pred[tempinx[i]].g = lastpg;

preg[lastpg] .arg = pred[tempinx[j]] .arg;

preg[lastpg] .nump = 2;

/*find the least generalization for each pair of terms
in the two predicate*/

for (1 = l;l<=pred[ternpinx[j]] .arg;l++)
{

teminx[O] = pred[tempinx[i]] .fp[l];
teminx[l] = pred[tempinx[j]] .fp[l];
g = same(teminx[O],teminx[l],lastpg);
preg[lastpg].fp[l] = g;

}
preg[lastpg] .lexptr = &lexemes[lastchar +1];
strcpy (preg [lastpg] .lexptr,pred[tempinx[j]] .lexptr);

}

len = strlen(preg[lastpg] .lexptr)i

lastchar = lastchar+len+1;

lastpg++ ;

return(lastpg-1)i

}

int putinx(1,p)

int 1;

int Pi

{

if (symtable[p] .gnum== 0)

symtable[p] .gnum = countg++;

inxt2[symtab1e[p] .gnum] [1] = 1;
}

/**/
/* change.c: */
/* contains procedures for updating in the presence of a */
/* binding. */
/* The procedures includes: */
/ * chf * /
/* ch1 * /
/ * makenewF * /
/* updateD */
/* update2 */
/* decide * /
/* cpix * /
/* newT */
/* push * /
/* pop */
/**/
#include "global.h"

#define MAXVAL 100
struct rec {

int gen;
int arg;
int old;
int new;
int nt;
int ft;

} ;

struct rec queue[MAXVAL];

int newt;

int sp = 0;

int ext=O;

void push () ;

struct rec pop();

/**
decide:
Called by updateD.
calls checkT, newT, levelp, same, cpix and push.
decides how a generalization should be updated and
applies with different approach.

**/
int decide(en,n,j,l,nt,ft)
int en;
int n;
int j;
int 1;
int nt;
int ft;

{

int g,ogen,num,ngen,oinx,f,s,of,os,bro;

int p,i,k,old;

int Iv = 0;

int one,two,gen;

char buff[BSIZE];

/* get the two terms and their generalization
from the element in the genTable */

one = genTable[en].one;

two = genTable[en] .two;

gen = genTable[en] .gen;

/* follow indices to the terms they have been bound to*/
while (symtable[one] .nextp != 0)

one = symtable[one] .nextpi
while (symtable[two] .nextp != 0)

two = symtable[two] .nextpi
while (symtable[gen].nextp != 0)

gen = symtable[gen] .nextpi

of = onei
os = two;

/* get the new status of the two terms*/
if (one != j && one != 1)

{

strcpy(buff,newT(one,j,l))i

of = onei

f = checkT(buff)i

}
else

f = Ii

if (two != j && two!= 1)
{

strcpy(buff,newT(two,j,l}}i

s = checkT(buff}i

}
else

s = 1 i

ogen = Gen[of] [OS]i
oinx = symtable[ogen] .gnumi
g = inxt3 [oinx] [1] i

if (one == two)
Gen [f] [s] = f i

else if (ext ==TRUE I I Gen[f] [s] == 0
{

/*the new generalization does not exist*/

if (ft FALSE II (Iv = levelp(f,s,of,os)} == O}

{
/* the generalization will remain a variable term*/
if (f == s)

{
p = s arne (f , s , g) i
ngen = symtable[p].gnumi
cpix(ngen,oinx}i
push(g,n,gen,p,newt,lv);

}

else

Gen[f] [s] = Gen[of] [os] i

}
else

{

/* the new generalization will become a functor */
if ((f == s) && (one == two) }

Gen [f] [s] = f i

else

{

p = s arne (f , s , g) i
ngen = symtable[p] .gnumi
cpix (ngen, oinx) i
push(g,n,gen,p,newt,lv}i

}

}

}

else if ((k = Gen[f] [s]) !=O)

{

/*the new generalization exists*/

int h,cou, counti

h = pred[k] .gnumi

for (cou = 1iCOU <= inxt3[oinx] [O]iCOU++)

if (inxt2[h] [inxt3[oinx] [cou]] == 1)

count++i

if (count == 0 I I gen == k)

{

/* the old generalization does not appear in the

same predicate as the new generalization */

if (ft == FALSE II (lv = levelp(f,s,of,os)) == 0)

{

if (gen ! = k)

symtable[gen] .nextp = ki

}

else

{

teminx[O] = fi

t eminx [1] = S i

P = same (f, s, g) ;

ngen = symtable[p].gnumi

cpix (ngen, oinx) ;

push(g,n,gen,p,newt,lv) i

}
}

else
{

/* the old generalization appears in the same predicate
as the new generalization */

lv = levelp(f,s,of,os);

teminx[O] = f;

teminx[l] = Si

P = sarne (f , s , g) i

ngen = symtable[p].gnum;

cpix (ngen, oinx) ;

push(g,n,gen,p,newt,lv) ;

}
}

}

int cpix(new,old)

int new, old;

{

int i;

for (i = O;i<= inxt3[01d] [O];i++)

inxt3 [new] [i] = inxt3 [010,] [i];

/**
updateO:
Called by chf and update2.
calls decide and update2.
retrieves the generalizations related to the term being
bound and updates each of these generalizations.

**/
int updateO(j,l,nt,ft)
int ji
int 1;
int nt;

int ft i

{
int i,m,n,kind,new,hi

int en,one,two,gen,newgen,entryi

char buff[BSIZE]i

for (i = Oii<symtable[j] .ingen ii++)
{

en = symtable[j] .tolist[i] .geni

n = symtable[j] .tolist[i] .UpdWi

/*update the generalizations*/

decide(en,n,j,l,nt,ft)i

}
symtable[j] .nextp = li
/*update2 will take care of the new bindings occur the update*/
update2 () ;

}

/**
levelp:
called by decide.
predict if the generalization of new status of two terms
has more level than the generalization of the old terms

**/
int levelp(f,s,of,os)
int f,s,of,oSi
{

if (symtable[f] . type ==F && symtable[s] . type == F &&

(symtable[of] . type != symtable[f] .type) I I

symtable[os] . type != symtable[s] . type)

return 1i
else

return Oi
}

/**
update2:
called by updateO.
calls pop and decide.
takes care of the new bindings kept in queue.

**/
int update2 ()

{
int i,k,h,p,oldi

struct rec valli

while (sp>O)
{

vall = pOp()i
updateO(vall.old,vall.new,vall.nt,vall.ft)i

}
}

/**
chf:
called by chv.
calls checkT, ch1 and updateO.
the first step of a binding, t will be bound to s.

**/
int chf(s,t)
char *s;
char *t;
{

int i,j,p,k,l,m,n,ge,sib,h,kind,new;

int ft;

/* check whether if t exists*/

j = checkT(t);

if (j !=O)
{

/*t exists */

1 = ch1 (s , j) ;

for (i =0; i<20; i++)

teminx[i] = 0;

if (symtable[l] . type -- F)

ft = TRUE;

else

ft = FALSE;

updateO(j,l,newt,ft);
}

else

printf("No such variable.\n");

/**
newT:
called by decide and newT.
calls newT, checkT, hashing and hacon.
finds the new status of p such that each occurence of q
in p is replaced by r.

**/
char *newT(p,q,r)
int p;
int q;
int r;

{

int i,j,k,len,fi = -1;

char *1;

char new[BSIZE];

char buff[BSIZE];

int fp[BSIZE];

int pos,ha;

int cons = TRUE;

strcpy(buff,symtable[p] .lexptr1);

i = 0;

while (strncmp(buff+i," (",1) !=O)

i++;

strcpy(buff+i+1,"\0");

for (i =O;i<symtable[p] .arg;i++)

{

if (symtable[p] .fp[i] == q)

strcat(buff,symtable[r] .lexptr);

else

{

if (symtable[symtable[p] .fp[i]] . type == F)

{
strcpy(new, newT (symtable[p] .fp[i] ,q,r));
strcat(buff,new);
if (ext == 0)

cons = TRUE;
ext = 0;

}

else
strcat(buff,symtable[symtable[p].fp[i]] .1exptrI);

}

if (i != symtable[p).arg-I)

strcat(buff,",");

}

strcat(buff,")");

ext = checkT(buff);

if (ext == 0)

ha	 = hashing(buff,p);

return buff;
}

/**
chI:
called by chf.
calls checkT, makenew.
makes new term for sand trasfers the information from
term j to s.

**/

int chI(s,j)

char *s;

int j;

{

int p;

int i,k;

p = checkT (s) ;

/*check if sexists already*/

if (p == 0)

{

/*insert the new term and return the index to symbol table*/

p = makenewf(s);

newt = TRUE;

}

else

newt = FALSE;

/*	 the indices to the elements in genTable which indicate generalizations
related to the jth term should be given to the pth term(s)*/

k = symtable[p] .ingen;

symtable[p) .ingen = symtable[p] .ingen + symtable[j] .ingen;

for (i = O;i< symtable[j] .ingen; i++)

{

symtable[p] .tolist[k+i] .gen = symtable[j] .tolist[i] .gen;

symtable[p] .tolist[k+i] .updw = symtable[j] .tolist[i] .updw;

}

symtable[j] .lexptr1 = symtable[p] .lexptri
return Pi

}

/**
makenewf:
called by ch1.
calls insert.
inserts a new term s to sYmbol table.

**/
int makenewf(s)
char *Si
{

int i,Pi

for (i =Oii<strlen(s) && strncmp(s+i,I(",l) !=Oii++)

if (strncmp (s+i, II (" ,1) ==0)

p =insert (s, F) ;

else

p =insert (s,V) i

return Pi
}

/**
push:
called by decide.
inserts a new binding into queue.

**/
void push(gen,arg,old,new,nt,ft)
int geni
int argi
int oldi
int new;
int nt;
int fti

if (sp <MAXVAL)
{

queue [sp] . gen = geni

queue [sp] . arg = argi

queue [sp] . old = old;

queue [sp] . new = new;

queue [sp] .nt = nt;

queue [sP++] .ft = fti

}
else

printf("error: stack full\n")
}

/**
pop:
called by update2.
retrieves a binding kept in queue for further update.

**/
struct rec pop ()
{

if (sp >0)

{
int i,ji
i = queue [sp-l] .geni
j = queue [sp-l] .argi
return queue[--sp]i

}
else

print f (II error: stack empty\n ") i

}

