
."". BROWN UNNERSITY
Department of Computer Science

Master's Thesis

CS-92-M3

"Interactive Animation of Fault Tolerant Parallel Algorithms"

by

Scott W. Apgar

Interactive Animation of

Fault Tolerant Parallel Algorithms *

Scott W. Apgar

Digital Equipment Corporation,

Codman Hill Road, Boxborough, MA 01719, USA

apgar@oblio.enet.dec.com,

Dept. of Computer Science, Brown University,

Providence, RI 02912, USA

January 31, 1992

Abstract

Animation of algorithms makes understanding them intuitively easier. This paper describes
the software tool Raft (Robust Animator of Fault Tolerant Algorithms). The Raft system allows
the user to animate a number of parallel algorithms which achieve fault tolerant execution. In
particular, we use it to illustrate the key Write-All problem. It has an extensive user-interface
which allows a choice of the number of processors, the number of elements in the Write-All array,
and the adversary to control the processor failures. The novelty of the system is that the interface
allows the user to create new on-line adversaries as the algorithm executes.

Submitted in partial fulfillment of the rquirements for the
Degree of Master of Science

in the Department of Computer Science at Brown University

·This research was supported in part by ONR grant NOOOl4-91-J-1613, and Digital Equipment Corporation.

ii

This thesis by Scott Wade Apgar
is accepted in its present form by the Deparment of

Computer Science as partial fulfillment of
the requirements for the Degree of Masters of Science

Date,.t" 3J ~2 AdViSor,~
Paris C. Kanellakis

1 INTRODUCTION 1

1 Introduction
Algorithm visualization is a powerful tool in helping the designer gain insight into the execution of
an algorithm. It provides a whole new dimension to the study of algorithms, exposing problems
and propelties of the algorithm which may not be discovered without the animation. Animation
techniques allow the display of changing data-structures and the execution flow of an algorithm,
exposing bottlenecks as well as potential enhancements.

In this paper we stress that allowing interaction with the animation makes it possible to gain
a clearer understanding of exactly how the algorithm is working, as well as the effect particular
parameters have on the algorithm. The ability to change certain algorithmic parameters interactively,
along with the visualization of these changes, provides immediate feedback to the designer. Parallel
fault tolerant algorithms provide a rich context for illustrating the capability to change parameters
based on the information being portrayed on the screen.

The main contribution of this work is the ability to interact with the animation as the algorithm
is executing, changing run~time characteristics, in particular the adversary used to fail processors.

Algorithm animation is a relatively new area of system development. [Brow87] describes the an­
imation tool Balsa, considered to be the pioneering effort in algorithm animation. Many of the
animation tools available today follow the general design guidelines established by Balsa. In short,
these guidelines suggest annotating the algorithm code with interesting events in order to identify
the possible operations which would be interesting to view. The tools typically provide a high level
graphical language composed of routine calls which remove the user from the intracacies of the ac­
tual graphics code. These routines are utilized to provide the animation actions designated for each
interesting event. Of course, the systems vary greatly in the amount of support offered the user.
Balsa has been successfully used to visually demonstrate data structures and algorithm designs in
an educational context. It has no interaction capability during the execution of the algorithm, but
provides facilities for prespecifiying animation scnearios. The animation tool Zeus is interesting for
its use of objects, strong-typing, parallelism, color and sound. [BH91] describes Zeus in detail. This
MIMD multiprocessor simulator Proteus [BCDW91] provides integrated graphical output through
the use of a trace file and an X-based graph program. It provides line graphs, bar graphs, and ta­
bles, however, it does not have the ability to perform animation of the algorithm. [Lin91] outlines a
methodology for automatic insertion of animation code into an algorithm, (annotating the interesting
events) removing the designer from manually analyzing the algorithm for insertion points.

Tango [Stas89] [SH90] is the animation tool used by Raft. Tango follows the Balsa design guide­

1 INTRODUCTION 2

line, providing the user with a high level interface to a graphics package. Routine calls are added to
the algorithm at user-specified places requesting the animation window be updated by user written
routines which make use of the Tango facilities. Tango provides an I/O function which allows basic
interaction with the animation window via the mouse. The user clicks on a point in the window,
and the location is returned to the user-provided animation routines. Tango was chosen for it's
modularity and simplicity of use. Also, Tango was developed at Brown, thus is closely tied to the
software development environment here. The message passing facility, MSG, was also developed here
at Brown, and Tango was designed to adhere to the interface MSG specified.

Now let us describe the class of algorithms animated using this tool. Efficient parallel algorithms
exist for many problems (integer manipulation, manipulating lists and trees, etc). By efficient we
mean that the algorithms can solve those problems with near linear speed-up. The efficiency of these
algorithms requires them to be very carefully designed to make the most of the parallel architecture.
This leaves very little computation time for use towards making the algorithms fault tolerant (ie
performing error detection and load rescheduling). The algorithms provided for animation by Raft
have been designed to provide robust efficient [KS89] execution of the original parallel algorithms. In
short, this means that the original parallel-time x processors product, N, of the original algorithm,
will be increased by at most a polylog factor of N, despite the presence of failures (see Section 2).

Raft allows the algorithm designer to easily interact with the algorithm, receiving immediate
visual and textual feedback to any perturbations. This is accomplished through a user interface which
controls execution of the algorithm in a simulator-like keyboard environment, and the annotation of
the algorithm with high-level calls to the animation tool providing the visual feedback.

Allowing interaction with the adversaries, which control the insertion of faults, makes it possible to
visualize the performance of the algorithm under user-designed fault models. The interaction makes
it possible to enact "what-if" scenarios, which has the benefit of exposing performance bottlenecks
in the algorithm. The interaction via the adversaries also facilitates the verification of any unproven
performance bounds.

This introduction is complemented by a short example of an animation using Raft. Figure 1,
page 4, shows a sample run of Raft including a subset of the animation displays and the keyboard
interface. The example shows an animation of the X algorithm (see Section 2.1.2) running under
the control of an interactive user-defined adversary (see Section 4.4), with P = 64, N = 64, and no
restarts allowed. Note that some of the informational output has been removed from the script and
ellipses inserted in the interest of brevity. User responses are in bold-face.

The remainder of the paper is organized as follows, the model of computation used by the
algorithms is described in Section 2. Section 3 describes the main contribution of this work, the user
interface portion of Raft. Section 4 gives detailed descriptions of each of the adversaries offered by
Raft· The implementation details are discussed in Section 5, and we end with a discussion of how to
add algorithms or adversaries to this tool in Section 6.

(

1	 3INTRODUCTION

Simulation script, acme text removed, indicated by ellipse.

Number of elements in Write-All Array: 64
Number of procePOrs to be u...d: 64

Which algorithm would you like to run to control the
execution of the fault tolerant Write-All algorithm?

1) X (smooth) [KS91] 2) X (jump)[KS91] 3)W [KS89] 4) Optimized
W IKS89]

Answer: 1

You have cho...n algoritbm X to control tbe fault tolerant
simulation of the Write-All algoritbm. Tbis is tbe smootb version.
Proces""rs must travene all edges on tbe way to a leaf in tbis ver­
sion.

Wbicb type of Adversary would you like?

1) Random (Probabilistic)
2) Table-Driven
3) Interactive, U...r prompted eacb cycle on a processor by proces­
aor basis
4) Interactive, ea.ch cycle give a IMquence of proc #'. to have state
toggled
5) Interactive, ea.ch cycle give P D's and 1 's
6) Intera.ctive, each cycle choose single Dodes in tree, all procesaors
assigned to that node are toggled
7) Intera.ctive, ea.ch cycle chool!Je single nodes In tree, a random
number of processors assigned to tha.t node are toggled
8) Intera.ctive, each cycle choose a region of nodes in tree, all
processors assigned to those nodes are toggled
9) Interactive, each cycle choose a region of nodes in tree, a
random number of processors assigned to those Dodes are toggled
10) Lower Bound Adversary
ll) No faults to be inserted
12) Quit simulation
14) More details on choices

Choice: 4

The user will be prompted for a sequence of #'s representing

the processors which will have there state (alive/dead) toggled.

The processors are numbered starting at O.

(ie assume only processor 1 is dead, and revive is true, the line 1,2,8

would kill processors 2 and 8, and would revive proces""r 1)

Run in single step mode. or continuous execution? (sIc)

Mode: S

In response to the: prompt,

type tbe character s to single step,

type s # to step # steps,

type c for continuous execution.

type ? to query a bidden node,

type q to stop tbe animation.

type a to cbange adversaries.

Toggle wbicb processors?

(give processor number (s) ...perated by commas)

(enter n to continue to next cycle witb no cbanges)

Cycle Number: I, Proc's: 0,1,2;3,4,5,6,7,8,9
:5
Cycle Number: 2, Proc's: 16,17,18,19,20,21,22,23
:a
Wbicb type of Adversary would you like?

Cboice: 11

Tbis cboice cau.... tbe remaiDiDg steps of tbe algoritbm to be
run adversary tr-. No more processors will be toggled.
:c
Array Element	 written by in Cycle

Processor

o 40 13
1 41 13
2 42 3
3 43 13
4 44 13
6 45 13
6 46 13
7 47 13
8 10 5
9 II 5
10 10 1
11 11 1
12 12 1
13 13 1

63 63

Work Done =882, NlogN=390, NlogNloglogN=1l70 Num Cycles ==
19

Do you want to trace tbe patb of any procePOr? (y/n)
Answer: n

Notes on Example Anim&tion

1.	 Note in figure 1.i. tbe first ten processors b&ve been killed, the rem&ining 54 live processors b&ve moved up in tbe tree.

2.	 In step 2, the u...r cho,," to kill 8 more processors in intermediate nodes. Since no proces""rs can account for tbe work done
in tbo... nodes, the work is not complete for tbat subtree. (_ Figure 1.ii) In general, as tbe processors progre88 up tbe tree,
edges are deleted to Indicate all work in tbe subtree is done.

3.	 Before the execution of tbe tbird step tbe user cbose to cbange tbe adversary, cboosing to run adversary tr-.

4.	 In Figure 1.iii procePOrs 10,ll bave traveraed up and down to tbe perform tbe work of dead processors 8,9 (killed before cycle
2). In the following 2 steps the processors in tbe grandparent node will travel down to tbe puent, join witb processors 10,n
and tben tbey will all travel back up to tbe grandparent node.

6.	 In the 7th cycle,Ficure 1.iv, procenors killed In tbe 2nd cycle bave tbeir work resumed by tbe newly arrived processors.. Note
tbat one half of tbe tree traversal is completed.

6.	 In cycle 12, proces""rs reacb tbe leaf nodes wbicb bad tbelr processors killed in cycle 1. Tbe processors In tbe ancestor node
travel downward, the leaf proce.""rs travel upward until tbey all meet at tbe grandparent node. Tbey all tben travel togetber
until reaching the root, at wbicb point tbe alcoritbm Is complete (takinC 19 cycles to complete).

1 INTRODUCTION 4

TANGO

tlt1£

l~]

~E: ·i(r-----.:~..·_-­

i. ii.
TANGO

8.

CYCLE

~;]

iii.

TANGO

~-:-~-~.::-:.'~".~~

_.... j~

W·_-·i
.'.'..'"' -• .;liL

I!'i'!';i,

::tIo·I,.,_.. ··---~i"I"··

<Tt1£

§]

iv.
TANGO

8.

:~"'._"~"''I:~i1;;'_'''.'--'-

v.

"Pi

vi.

Figure 1: Example animation displays of the X algorithm, P = 64, N = 64, and an interactive
adversary

2	 MODEL OF COMPUTATION 5

2 Model of Computation
We use as a basis the parallel random access machine or PRAM model [PW78], with the assumption
that all concurrently writing processors write the same value (COMMON CRCW). The PRAM is a
model that has attracted much research and many efficient algorithms have been designed for itj see
[KR88]. The PRAM is a convenient abstraction that combines the power of parallelism with the
simplicity of a RAM, but it has some unrealistic features, e.g., broad bandwidth memory access, and
freedom from faults. The gap between the PRAM and realizable parallel computers is being bridged
by current research. For example, memory access simulation in other architectures is addressed in
[AHMP87, DKM+88, HB88, Her189, Herl90, HP89, KR88, KU88, Kuck77, LPP88, LPP89, Meye86,
PSW91, Ran87, Upfa84, UW87]. The processors used in this model are subject to stop-failures
and restarts as in ISS 83]. There are P processors, with each processor being assigned a unique
identifier (PID) in the range 0, ... , P - 1. The memory model used. is one of shared memory, thus it
is accessible to al1 processors. Each processor also has a constant size private memory. The input to
the algorithm being modelled is stored in N cells in shared memory, with the rest of memory being
cleared.

To guarantee algorithm termination and sensible accounting of resources, we introduce an update
cycle, that generalizes the standard PRAM read/compute/write cycle. Each cycle consists of reading
a small fixed number of shared memory cells, performing some fixed time computation, and writing
a small number of shared memory cells. The parameters of the update cycle, Le., the number of
reads and writes, are fixed, but depend on the instruction set of the PRAM.

We assume that the shared memory writes of O(log max{N, P}) bit words are atomic. Algorithms
using this assumption can be easily converted to use only single bit atomic writes as in [KS89]. We
use the fail-stop with restart model, where time instances are the PRAM clock-ticks:

The following assumptions are made about the fault model employed in this computational model:

1.	 A failure pattern F (Le., failures and restarts) is determined by an on-line adversary, that
knows everything about the algorithm and is unknown to the algorithm.

2.	 Any processor may fail at any time in any update cycle, and it may later restart at any time,
provided:
(i) at any time at least one processor is executing an update cycle that successfully completes;
(ii) single bit writes are atomic, Le., failures can occur before or after a write of a single bit.

3.	 Failures do not affect the shared memory, but the failed processors lose their private memory.
Processors are restarted at their initial state with their PID as their only knowledge.

Condition 2 (i) is necessary to ensure that termination of the algorithm is possible. Update cycles
are thus sufficient to enable termination. In addition, they serve as units of accounting. They do
not constrain the instruction set of the PRAM, however (see Def. 2.2 below), the processors are not
charged for the instructions of the update cycles that are not completed..

We now present some definitions which are a necessary precursor to our definition of the key
measure of the robust efficiency of the algorithms, completed work, given in Definition 2.2 .

Definition 2.1 is a formal definition of the adversaries, or failure patterns, used.

Definition 2.1 A failure pattern F is a set of triples <tag, PID, t > where tag is either failure
indicating processor failure, or restart indicating a restart, PID is the processor identifier, and t is
the time when the processor either stops or restarts. The size of F is defined as the cardinality IFI.
o

Our measure, 5, of completed work generalizes the Parallel-time x Processors product and the
available processor steps of [KS89]j [KS91]).

2 MODEL OF COMPUTATION 6

Definition 2.2 Consider an algorithm with P initial processors that terminates in parallel-time T

after completing its task on some input data I and in the presence of a failure pattern F. If
Pi(I, F) ~ P is the number of processors completing an update cycle at time i, and c is the time
required to complete one update cycle, then we define the completed work S(l, F, P) as: S(l, F, P) =
cLi=l Pi(l, F). 0

Definition 2.3 A P-processor algorithm on any input data I of size III = N, and in the presence
of any pattern F of failures and restarts of size IFI ~ M, uses completed work S = SN,M,P =
maxl,F{S(l, F, PH.D

We are now ready to outline the problem solved by the algorithms presented here. After this
description of the problem in general, we give specific solutions for the problem in the following
sections. In [KS89] it is shown that it is possible to combine efficiency and fault-tolerance in many
key PRAM algorithms in the presence of arbitrary dynamic fail-stop processor errors. The solution
of a key problem can be used in transporting PRAM algorithms to architectures where processor
failures are present. This problem, called Write-All, is:

Given a P-processor PRAM and a O-valued array of N elements, write a 1 into all array locations.

This problem captures the computational progress that can be naturally accomplished in unit time
by a PRAM (when P = N). In the absence of failures, it is easily solved by an O(N) work parallel
assignment. "Efficient" solutions (with work N times a "small" factor) in the presence of failures
are non-obvious.

Given an efficient solution for the Write-All problem, it is possible to efficiently simulate any
N-processor synchronous PRAM on P restartable fail-stop processors (P ~ N). The simulations
of the individual PRAM steps are based on replacing the trivial array assignments in a Write-All
solution with the appropriate components of the PRAM steps. For the details on this technique, the
reader is referred to [KS89, KPS90].

2.1 Algorithms for the Write-All problem

In the presentation of the algorithms we assume that the number of array elements N and the number
of processors P are powers of 2 (nonpowers of 2 can be handled using padding) and all logarithms
are base 2. The algorithms involve traversals of data structures by processors. For simplicity we give
high level descriptions. It is easy to implement these algorithms using update cycles, so that when a
processors fails and then restarts, it resumes the traversal of the data structures at the point where
it failed.

2.1.1 Algorithms V, W: global allocation paradigm

Algorithm W, implemented in Raft, of [KS89] is a fail-stop (no restart) Write-All solution. It uses
two full binary trees and it consists of a loop in which the active processors synchronously iterate
through the following phases: Wi: enumerate the processors in a bottom-up traversal of the processor
tree, W2: allocate the processors in a divide-and-conquer top-down traversal of the progress tree,
W3: work at the leaves, and W4: evaluate progress in a bottom-up traversal of the progress tree. To
avoid a complete restatement, the reader is urged to refer to [KS89].

Algorithm W has efficient work subject to failures without restarts. It can be extended to handle
restarts, but, it may not terminate if no processors complete a full iteration of all four phases. In
addition, restarts invalidate the proof framework of [KS89]: the processor allocation Wi becomes
incorrect, since restarts prevent accurate estimates of active processors. However, as shown in [KS91],
processors can be assigned in o(log N) time by using the processor Pill in the top-down divide-and­
conquer allocation. [KS9i a] presents a modified version of algorithm W, called V, that has a simpler
allocation strategy without the enumeration phase.

2 MODEL OF COMPUTATION 7

01 forall processors PID=O..P - I parbegin
02 Perfonn initial processor assignment to the leaves of the progress tree
03 Traverse the progress tree bottom-up and update it to evaluate progress
04 while there is still work left in the tree do
05 WI: Enumerate processors in a bottow up traversal of processor tree
06 W2 (VI): Allocate processors using enumerated ids (PIDs) in a top-down traversal of
progress tree
07 W3 (V2): Perfonn work at the leaves reached in phase W2 (VI)
08 W4 (V3): Continue from the leaves ofthe progress tree and update it bottom up
08 od
09 parend

Figure 2: A high level view of algorithms W and V - global allocation paradigm.

01 forall processors PID=O..P - I parbegin
02 Perfonn initial processor assignment to the leaves of the progress tree
03 while there is still work left in the tree do
04 if current subtree is done then move one level up
05 elseif this is a leaf then perfonn the work at the leaf
06 elseif this is an interior tree node then
07 if both subtrees are done then update the tree node
08 elseif only one is done then go to the one that is not done
09 else move to the left/right subtree according to PID bit values fi fi
10 od
11 parend

Figure 3: A high level view of the algorithm X -local allocation paradigm.

[KS89] outlines a further optimization of W, which is implemented in Raft, algorithm Wopt:
Wopt uses full binary trees of lo~N leaves with log N array elements mapped to each leaf. When

using P > IO~N processors, it is sufficient for each processor to take its PID modulo IO~N to assure
uniform initial assignment of processors. Choosing P :5 N / 10g2 N is shown to yield optimal results,
ie S = O(N), in [KS89]. In order to add the restart capability to this algorithm there must be some
form of processor synchronization. This can be realized through the use of an iteration wrap-around
counter based on the PRAM clock. For an outline, see Figure 2.

Theorem 2.1 The completed work of algorithm V using P :5 N processors subject to an arbitrary
failure and restart pattern F of size Mis: S = O(N + P log2 N + M log N). The completed work
of algorithm W using P :5 N processors subject to an arbitrarty failure pattern without restarts is
S = O(N + P I~~;:;N). The completed work of algorithm Wopt, using P :5 N / 10g2 N is O(N).

2.1.2 Algorithm X: local allocation paradigm

Algorithm X utilizes a progress tree of N leaves that is traversed by the processors independently,
not in synchronized phases. This illustrates the local processor assignment paradigm. Each processor
searches for work in the smallest immediate subtree which needs work done.

The algorithm consists of initialization and a loop whose body is implemented as an update cycle
(see Figure 3).

The loop (lines 03-10) consists of a multi-way decision (lines 04-09). If the current node is marked
done (has value 1), the processor moves up (line 04). If the processor is at a leaf, it performs work
(line 05). If the current node is an unmarked interior node and both of its subtrees are done, the
interior node is marked done (line 07). If a single subtree is not done, the processor moves there
(line 08).

3 USER INTERFACE 8

The last case (line 09) is where a non-trivial decision is made(see italics in line 09). At depth h of
the tree, the value of the hth most significant bit of the processor PID is used to choose the direction:
osends the processor to the left, and 1 to the right. This is where the distinction is made between
the 2 X algorithms offered for animation by Raft. Alg. X traverses to the leaf nodes visiting every
node in between, in a "smooth" fashion. Alg. Xi jumps directly from the intermediate node to the
leaf node when it can determine which leaf node needs work done.

Theorem 2.2 Algorithm X with P ~ N processors is a correct and fault-tolerant soluti~n for the
Write-All problem of size N that solves the problem using completed work S = O(N· plog'2). There
is an adversary that forces algorithm X to have S = O(N. plog~). (see Section 4.10)

2.1.3 Raft Algorithms

Raft currently implements only a subset of the known Write-All solutions. Future work would
include adding more of the known algorithms to Raft. Raft offers the following algorithms:

1. Algorithm X

2. Algorithm Xi, a slight modification of X

3. Algorithm W

4. Algorithm Wopt, an optimal version of W

In general, tight upper bounds are still to be derived for both the no-restart and the restartable
setting. [KS91a] conjectures that the fail-stop (no restart) performance of X is S = O(N log N log log N)
using N processors. One of the reasons the Raft tool was created was to provide a flexible, intuitive
aid for verifying the conjectured bounds. While Raft does not provide proof of these bounds, if the
bound can not be beaten, while using Raft to change the adversaries to be the "worst" imagineable,
the conjectured bounds seem to stand up. Note, the conjectured bounds have not yet been disproven
through the extensive use of the Raft system.

3 User Interface
The user interface portion of Raft is the main contribution of the system. The interaction with the
adversaries and algorithms adds tremendous value to the animation. It allows users to dynamically
adjust the adversary to affect the algorithm in the desired ways. There are a number of options
available which allow the user to tailor the execution of the algorithm in many way. These options
are specified below. First a description of how the algorithms are represented by the animation
window is needed.

3.1 Animation Window

This section gives an overview of the use of the animation window and how the work done by the
algorithms is represented.

The tool used to perform the animation is Tango, developed at Brown by John Stasko, see
[Stas89]. The goal of the Tango tool was to make it possible for users to create animations without
understanding all the underlying graphics code necessary to control them. By making use of the
provided Tango routines it is possible to create simple animations without getting deep into the
details of the graphics code.

The animation window (see Figure 4) runs in its own process, separate from Raft. It need not
be restarted after each pass of Raft, as there is a reset button that allows the user to clear all the

3 USER INTERFACE 9

f~llJ)t·_

CYCLE o

I?~~~t '''''·f·,.~~h I-I.I"I~~

'llRI< DONE

B.
......

~d

!...._,'I

,'"ei

".,.
:~

TANGO

Figure 4: Sample Tango animation window, 64 processors

3 USER INTERFACE 10

necessary Tango data structures. After each execution of Raft, use the mouse to click on the reset
button in the Tango window, and Raft can be run again.

The control structure of the algorithms being animated is a binary tree. This is what is displayed
in the animation window. The leaf nodes of the tree represent one of the tasks to be performed. In
general, when all the work of a subtree is determined to be complete, the edge between the root of the
subtree and it's parent is deleted. In this way, the user can visualize the progress of the algorithm.

The processors are represented as small horizontal red lines residing at a node of the tree. Initially
each processor is assigned to a leaf node, modulo the number of leaves. That is if there are 16 leaf
nodes and 17 processors then leaf node 0 will have 2 processors assigned. When processors are killed
by an adversary the red line representing them is deleted; when they are restarted at a node a red
line is created. As processors move up and down the control tree, potentially being assigned to the
same node as other processors from the subtree, the thickness of the red lines is increased (by a
factor of the log of the number of processors present at the node) to show the presence of more than
one processor.

The number of steps the algorithm has taken to date is written in the CYCLE box in the top
left corner of the animation window before each step is animated. The amount of work done to
date, S (see Definition 2.2), is written in the WORK DONE box in the top right hand corner of the
animation window. Note that this is different from the number of cycles. An algorithm may have
only one processor alive, and take N cycles to perform the algorithm, where an algorithm with N
processors alive may take only one cycle to perform the algorithm. The amount of work done in each
case is the same. The number of processors currently alive is written in the LIVE PROC's box just
below the WORK DONE box.

Mter the simulation has completed, the user has the option of tracing the path of any processor
through the binary tree. The path is highlighted using colored arrows in the animation window, i

\
and is also printed in the Raft window. This feature allows the user to get an idea of the path each
processor takes through the tree during the execution of the algorithm. This is useful as an aid to
understanding how the algorithm works, and to give a better understanding of which nodes would
be likely candidates for faults.

The user can control the animation window in a variety of ways using the buttons Tango provides.
There are ZOOM IN, ZOOM OUT, PAN LEFT, PAN RlGHT, PAN UP, and PAN DOWN buttons
to control the view the user gets of the animation window.

The first query Raft makes of the user is whether or not to include the Tango animation window
in the execution of the algorithm. It may seem obvious that the user would want to see the animation,
but there are cases where it is advantageous to run the simulation without the Tango animation.

Due to the fact that the screen to be used for animation is of a fixed size, one can fit only so much
information on it. This fact limits the Tango window to be able to use only as much information as
can be stored in a screen. This software was developed on SUN Sparcstationl GX machines. The
screen on this machine limited the animation to using P = 1024 processors. Once this number was
used, the leaves of the binary tree have lost all resolution and appear as a thick black band across
the bottom of the Tango animation window. The Tango software allows the user to zoom in and out
on the window, thus it is possible to see what is happening at a local level, but when viewing the
entire tree, the lowest level appears to be solid black.

Also, due to the message passing facility IReis89] used, and the design of Tango, each change to
the animation screen requires that a message be sent to the animation window (see Section 5). With
large numbers of processors the number of messages that must be passed, and the memory required
to store all the animation actions slow the execution of Raft dramatically.

Thus if the user wants to simulate an algorithm using a larger number of processors (P > 1024) it

3 USER INTERFACE 11

is possible to run without the Tango animation window. The user can still gather useful information
on the runtime statistics of the algorithm, but will not have the intuitive aid of the animation screen.
In single step mode the user would still have the capability to query for the same information available
when the animation window is running. See Section 3.5 for a detailed description of the information
available via query.

3.2 Processor/Array Element Enumeration

The user is able to specify the number of processors and the number of elements in the Write-All
array for each execution of an algorithm. These numbers can range from 1 to 218• If the user inputs
a number larger than 218 the software loops asking for a smaller number. Note that all the data
structures are created from heap memory according to the size of these parameters. It is suggested
that the number of array elements given be a power of 2 to make the binary tree data structure
complete. Each processor is initially assigned to a leaf of the binary tree, starting from the left and
going right. In the normal case, the number of processors would be equal to the number of array
elements.

If the user chooses to use more processors than array elements, the additional processors are
assigned the the array elements modulo N. One could also choose to use fewer processors than array
elements. This causes some of the leaf nodes to have no processors assigned in the first step. The
assignment starts at leaf node 0 (on the left of the tree) and continues until the processors are
depleted.

In the optimized version of algorithm W, the number of processors is calculated based on the
number of array elements and the user specified number of processors is ignored.

3.3 Algorithm Selection

The next choice to be made is which Write-All algorithm will be used. There is currently a menu
of 4 choices available. The user simply needs to enter the number of the algorithm to be simulated.
The choices (1-4) are as follows: X, X j, W, Wopt. See Section 2 for a description of the algorithms.

This choice can only be specified once per each execution of Raft. The algorithms share some of
the same data structures, thus it is not possible to switch between algorithms during the execution.
See Section 6.2 for details on adding a new algorithm.

3.4 Adversary Selection

The user now has the chance to select which adversary will interact with the simulation. The
adversaries are listed in section 4. If the user chooses to run continuously, this is the only chance to
change adversaries. If the simulation is run in single step mode, then the user can choose to change
the adversary each step (see Section 3.5). Due to the model being used (fail-stop restarlable PRAM),
the adversaries will be used to fail as well as restart processors. The tool also offers the capability
of running without restarts in the case that the algorithm requires the fail-stop PRAM model (see
Section 2.1.1). To differentiate between these two models the user also is queried regarding whether
the revive flag should be set or not. This flag controls whether processors are allowed to restart once
they have been failed. The Lower Bound adversary (see Section 4.10) will never attempt to restart
processors, but all the other adversaries will restart processors if this flag is set.

3.5 Interactive Mode

The simulation can be run in one of two modes, single step, or continuous. The continuous mode
does not allow the user to interact with the simulation except through the adversary. If running Raft
with an interactive adversary (see Section 4) each step the adversary will prompt the user, otherwise
no interaction is needed. An example of this is shown in Section 4.7.

3	 USER INTERFACE 12

In single step mode the user has the ability to interact with the simulation between each PRAM
step taken. Single step mode allows the user to change adversaries, quit the simulation, enter
continuous mode if all interaction is complete, and query about the state of the simulation (work
done, processors alive, details on specific nodes of the tree). This portion of Raft makes it extremely
effective as an intuitive aid to understanding the action of the animated algorithms.

The options made available to the user in single step mode are: (the characters in parentheses
are the proper responses to the Raft prompt :)

•	 (s)ingle step - This allows the user to step the algorithm any number of times. Typing s #,
where # is some integer, will step the algorithm # times. Typing s will step the algorithm
once by default.

•	 (c)ontinuous execution - This allows the user to let the algorithm run to completion with one
command. The only interaction necessary from the user is that which may be required by
the adversary. There is no output given in this mode until the algorithm is complete and the
schedule of which processor wrote which array element in what cycle is printed out. (This is
printed out upon completion in interactive mode also)

• query - Typing (1) will give the user some choices as to what information is desired. The
choices are as follows:

1.	 Expand a node in the animation window. Using the mouse the user clicks on a node in
the animation window. Raft then prints out the following information on the node:

- node index - this is the index of the node in the tree.
- value - this is the value the node has, representing the amount of work done in the

subtree rooted at this node.
- live processor count - The number of live processors that are assigned to this node.
- dead processor count - The number of dead processors that are assigned to this node.
-	 assigned processors - the processors assigned to this node are listed by their unique

identifiers with their state (alive/dead).

2.	 total number of live processors left

3.	 total work done to date

4.	 return to simulation prompt

•	 (q)uit - this stops the animation immediately. Note that this has no effect on the Tango
window, except that it won't receive any more messages from Raft. The user must reset the
window if another algorithm is to be run.

• change (a)dversary - This allows the user to change the adversary before the next step is taken.
Note that one of the adversary selections is to run completely free of faults.

3.6 Processor 'Trace Facility

Once the simulation is complete, the user is offered the opportunity to trace the path of any
processors as they traveled through the tree. If the user chooses to trace the path of a processor
through the tree a new tree is drawn to replace the edges deleted in the original tree and the path is
highlighted by overlaying green or yellow arrows on the edges the processor traversed (see figure 5).
Figure 5 was taken from an execution of Raft using P = 64, N = 64, the X algorithm and the
Lower Bound Adversary. X took 19 cycles to finish all the work, there were 46 processors alive at

~··.·r···
~ .
.~

l~

£1 3DVdH3:.LNI H3:Sn e

4 ADVERSARY OPTIONS 14

the finish of the algorithm, and they had performed work S = 894. The user chose to trace the path
of processor 47 in this figure. Although the picture is not color, it is evident that there are arrows
traversing the edges from the 47th leaf node up to the root of the subtree containing unfinished work,
and down to the 63rd leaf node (processor 63 was killed by the lower bound adversary in step 1).
When processor 47 reached leaf node 63 it was killed by the adversary, thus it's path ended at leaf
node 63.

Note that if the user asks to see the path of a processor which was killed in the first cycle, no edges
will be highlighted. At the same time the animation window is being updated, there is also data
being printed in the User Interface window, describing which nodes were visited, with the leaf nodes
indicated, in the order the processor visited them

4 Adversary Options
The adversaries are used to control when each processor is subject to failure during the simulation.

There are currently 11 adversaries available to the user. They range from totally interactive to
completely specified before execution. In sections 4.1 - 4.11 these adversaries are described com­
pletely. Note that the user has the ability to change adversaries at any point in the simulation if
running in single step mode (as opposed to continuous mode where the algorithm runs through to
completion allowing interaction only through the adversary, see section 3.5). The user also has the
option of running the animation with no adversary, Le. with no failures.

The adversaries work on two different principles: failing specific processors, and failing processors
assigned to specific nodes in the tree. Most adversaries are designed to fail specific processors. The
adversaries which make use of the Tango I/O facility allow the user to use the mouse to choose
specific nodes in the animation window which are to have the assigned processors failed. Note that
in general there may be any number of processors assigned to a node. If the user needs to know
specifically which processors are assigned to each node he/she can use the query function to determine
exactly which processors are assigned to which nodes. Thus, instead of choosing specific processor
numbers to be toggled, the user is choosing specific nodes in the tree which will have all/some
(deterministic/probabilistic adversaries) processors assigned to them toggled. Note, depending on
the number of processors being simulated, the resolution of the cross hairs in the Tango screen is
not good enough to pick out single nodes. At around 256 nodes it starts being very difficult to select
single nodes at the leaves of the tree. At 1024 processors there is simply a solid dark band at the
leaves of the tree. The user would be encouraged to use adversary #4 until the nodes in the tree are
thinned out some. Alternatively, the user could make use of the ZOOM functionality of the Tango
window to focus on smaller portions of the tree, making it possible to select single nodes. The user
would then use the PAN LEFT, PAN RIGHT, PAN UP, and PAN DOWN buttons to select nodes
outside the visible portion of the Tango window. If this technique is to be used it is necessary to
ZOOM to the interesting part of the tree before the adversary is waiting for input each step. If the
adversary has been invoked, and is waiting for the user to choose nodes in the tree, it is not possible
to use the mouse to click on the ZOOM or PAN buttons until the adversary is complete.

The adversary is invoked at different times depending on which algorithm is being run. For the X
algorithms, the adversary is invoked before each local step is taken. For the W algorithms each step
consists of 4 phases, and the adversary is optionally invoked by the user between each phase. Note
that at the beginning of the simulation all processors are assumed to be alive. It is also assumed
that the adversary never fails all the processors in anyone cycle. There should always be at least
one processor alive to continue the execution of the algorithm.

The numbers given in parentheses in the following headings are the numbers used to identify
the adversaries by Raft. When running Raft, use those numbers to choose the different adversaries.

4 ADVERSARY OPTIONS 15

Examples of each adversary are shown below. Two of these examples, Random Adversary, and
Adversary 6 (mouse driven), have been extended and include some of the animation windows.

4.1 Random Adversary (#1)

This adversary is designed to choose processors to fail by random techniques. The user is prompted
to enter a number between 0 and 100, Pro Each time this adversary is invoked the pseudo-random
number generator is used to get a random number between 0 and 230 - 1. This number is then
normalized such that it lies between 0 and 100. If the normalized number is less than Pr the
processor is toggled, otherwise the processor is not affected in this step. Pr is intended to reflect the
percentage of processors that could be toggled given that the normalized number is equally likely to
be any integer in the range 0 - 100. During each step, due to the random nature of this adversary,
it is possible that no processors are toggled, or that all processors (except one) are toggled.

The user is also prompted for a second parameter for this adversary. The second parameter is
used as a factor by which to decrease Pr between each parallel step of the algorithm. This parameter,
a number between 0 and 1, is used to reduce Pr after each step. A choice of 0 will reduce the Pr
to 0 in the first step, and a choice of 1 will never reduce Pro The reason this reduction is available
is that the adversary is applied each step. It takes only log 1 P steps (where P is the number of

~
processors) before the number of processors remaining is reduced to one. For example, assuming Pr
= 50, and a parallel machine of 256 processors, it could take as few as log 1 256 = 8 steps before

i=1dli
there would only be one processor remaining. Again, note that since the adversary is random, it
may never fail any processors. By allowing the user to choose a value by which to monotonically
decrease Pr each step, a larger number can be chosen to affect the early steps of the algorithm, when
much of the work done is unique to a processor, without penalizing the later steps of the algorithm,
when much of the work being done is duplicated as processors are assigned to the same nodes while
traveling up and down the tree.

The script in Figure 6, page 18, is typical of one seen when choosing the random adversary. Note
that once the adversary prompts the user for the value of Pr it never interferes with the execution
again. The user responses are in boldface. Figure 6 also shows some of the animation displays
associated with this simulation script.

4.2 Table Driven Adversary (#2)

This adversary allows the user to completely specify the action of each processor before the algorithm
is run. The user creates a file which contains a line for each step of the algorithm. Each line contains
PO's and 1's, with the position in the line corresponding to the number of the processor. Note that
the user must have at least as many lines in the file as there are possible cycles in the algorithm.
This is a hard thing to know apriori, it is suggested that the last line the user is interested in be
repeated some number of times for padding to ensure that the program does not encounter EOF
while using this adversary.

A future enhancement to Raft would be to add a routine which created the file for the user, based
on some input specifications, or based on the action of the just completed user driven interactive
adversary..

4 ADVERSARY OPTIONS 16

A sample session for adversary # 2 would look as follows:

Choice: 2

The user must input the name of the file containing

the table representation of the adversary.

Each line of file represents one cycle.

A 1 should be in column n if the user wants processor n

alive during that step, a 0 if it should be dead.

File Name: adversary.input

Should processors be allowed tostart after a failure? (yIn): n

Run in single step mode, or continuous execution'? (s/c)

Mode: S

4.3 Interactive Adversary, prompting for each processor (#3)

On each cycle this adversary queries the user whether there are any changes to be made to the state
(alive,dead) of any of the processors. An answer of yes will start a processor by processor prompting
of the user. If the processor is alive, the user will be asked if it should be killed. IT the processor is
dead, and restart is enabled, the user will be asked if the processor should be restarted. IT the user
wishes to stop the prompting before all processors have been processed, an answer of q to any of the
questions will stop the adversary for this cycle.

A sample session with this adversary might look as follows: (user responses are in bold).

Run in single step mode, or continuous execution? (sic)

Mode: s

In response to the: prompt,

type the character s to single step,

type s # to step # steps,

type c for continuous execution t

type? to query a hidden node,

type q to stop the anima.tion.

type a to change adversaries.

:5

Any changes? ([y]/n)

y
Kill processor #0: (y /n/q)
n
Kill processor #1: (y/n/q)
n
Kill processor #2: (y/n/q)
y
Kill processor #3: (y/n/q)
y
Kill processor #4: (y/n/q)
n
Kill processor #5, (y/n/q)
y
Kill processor #6: (y /n/q)
q
:5
Any changes? (lyl/n)
y
Kill processor #0: (y/n/q)
y
Kill processor #1: (y /n/q)
y
Kill processor #4: (y/n/q)
n
Kill processor #6: (y /n/q)

q

Note that in the second step the user is again asked if processor 0 should be killed, but not asked if
processors 2,3 should be killed, as they are already dead. IT the revive flag were set (see section 3),
then the user would be queried whether to revive the dead processors also.

17 4 ADVERSARY OPTIONS

Which type of Adversary would you like?

Choice: 1

The random number generator is ulled to fail a percentage
of processors in each step. The probability of failure is
reduced by a user-chooen factor between steps. The probability
10 multiplied by the factor after each step.
This allows the user to fail a high number of procenors early in the
simulation witbout causing all processors to die in a. small Dumber
of steps.
Probability of failure: 50

Factor to red uce Pr by: (between 0 and 1) .50

Should proceSlOOrs be allowed to restart after a failure? (yIn): n

Run in single step mode, or continuous execution? (sIc)

Mode: S
In response to the: prompt,
type the character s to single step,
type s # to step # steps,
type c for continuous execution,
type ? to query a hidden node,
type q to stop the animation.
type a to change ad versaries.
: S
: 7
Please enter the number of the operation you would like
to perform:

1) expand a given node 2) total number of live processors
3) work done to date 4) return to simulation prompt

Operation: 1

Please click on the node you wish to expand?

(uler clicks on node 22 in animation window)

Node index = 22,
Value = 0,
Live.proc-eount = 3,
Dead.proc.count = 0

The processors assigned to this node are:

28 (Live) 30 (Live) 31 (Live)

Please enter the number of the oPeration you would like

to perform:

1) expand a given node 2) total number of live processors

3) work done to date 4) return to simulation prompt

Operation: 4

:c

Work Done =389, NlogN=390, NlogNloglogN=1170 Num Cycles =
36

Do you want to trace the path of any processor? (yIn)
Answer: n

Notes on Example Animation with Adversary #1

P = 64, N = 64, Algorithm = Xj

(1. In figure 6.i, 37 of 64 processors have been killed by the adversary. This is slightly more than 50% (57%), but fairly close.

2.	 In cycle 2, figure 6.ii, 10 more processors were killed. Note the user chosen percentage has been reduced by balf to be 25%.
10/27 = 37%, again slightly larger than the 25%, but close.

3.	 In cycle 3, the percentage of processors to fail went to 12.5%, and only 4 processors were failed, 4/17 = 23%, close to the
12.5%. In the following cycles, 1 processors was killed each cycle, until cycle 7 wben no more processors are killed, as the
probability has been red uced to less than 1.

4.	 Tbe difference in number of cycles between figures 6.iv and 6.v can be attributed to the small number of processors alive, and
the length of the p ..ths that need to be traversed to get to the unfinished leaf nodes.

5.	 Figure 6.vi shows the skeletal remains of the tree in cycle 26. Note that it takes another 10 cycles for all work to be completed,
as the processors must travel down to the unfinished leaf nodes to complete the work there. As the Xj algorithm is being
used, the processors do not need to traverse each edge, but m8¥ jump to the leaf wben they recognize it needs work. If the
pa.th from the nodes conta.ining live processors down to the unfinished lea! node. a.nd back to the root i. counted, there are
more than 10 edges.

6.	 Note in the script that the uoer never needs interact with the animation at all. The Random adversary needs no Interaction.
Unless the user wishes to query or cha.nge adversarie. there i. no need for interaction. The uller choMi to query for informa.tion
about node 22 in the tree during cycle 2 (_ Figure 6.il, root is node 0, children 1,2, grandchildren 3,4,5,6, etc.)

18 4 ADVERSARY OPTIONS

lANGO

[IT

:u......·__··-..·'··-T::i.....r ,,",- --~ ...(:~-'--a: 11"...'----

CltL£

CD

:11...--­i'U"~

i. ii.
TANGO

CltL£ o a.1

(
\

iii. iv.
TANGO

CltL£ CltL£--j­ oI!~l F=I !.
~.~. 8.:

":;-i.

rI" •••.. ···-1_1........1·~'··-··
 ~.or "J~"-- :lI'o;:"".

v. vi.

Figure 6: Example animation displays of the X j algorithm,
P = 64, N = 64, and the Random adversary

4 ADVERSARY OPTIONS 19

4.4 Interactive Adversary, Toggle listed processors (#4)

This interactive adversary prompts the user for a list of processor numbers, separated by commas,

which will have their state toggled in the current cycle. H the revive flag is set then the dead

processors will be revived, otherwise, they are ignored. H there are no changes to be made this cycle,

an answer of n will cause the simulation to continue.

A sample session would look as follows: (user responses in boldface)

Run in single step mode, or continuous execution'? (I/e)
Mode: 5

In response to the: prompt,

type the character. to .ingle step,

type s # to step # steps,

type c for continuous execution,
type ? to query a hidden node,

type q to stop the animation.

type a to change adversaries.
: 8

Toggle which processors?

(give processor number (.) separated by commas)

(enter n to continue to next cycle with no changes)

Cycle Number: 1, Proc's: O,1,2,S,4,5,6,1,8

: S

Cycle Number; 2, Proc's: O,1,2,S,4,5,6,1,8

:5

Cycle Number: 3, Proc'.: n

:5

In tills example, revive is set. In cycle 1, the first 9 processors are dead. In cycle 2 and 3, all P
processors are alive. H processor number 4 were not included in the command line for cycle number
2, then during cycle two it would still be dead. H revive were not set, then the first 9 processors
would be dead for all cycles.

4.5 Interactive Adversary, bit vector representing state (#5)

Tills adversary is the interactive version of the table driven adversary. Each cycle the user is prompted
for a string of O's and 1's representing the state of each of the P processors. Note, tills is not the
adversary to use if you are simulating with lots of processors, as it is necessary to enter a number of
O's and 1's equal to the index of the largest processor being changed. The user is given the choice
of entering n if there are no changes in this cycle, or of ending a line prematurely with a q if there
are no more processors to be toggled. There is a limit of 128 processors with this adversary, as it is
felt to be too difficult to type in that many O's and 1'so The user is prompted to use the previous
adversary for values of P larger than 128.

A sample session would look as follows: (user responses in boldface)

Run in single step mode, or continuou. execution? (s/c)

Mode: 5

In response to the: prompt,

type the character. to .ingle step,

type • # to step # steps,

type c for continuous execution,
type? to query a bidden node,

type q to stop the anImation.

type a to change adveraaties.
: 8

Enter a string of 0'. (dead processors) and 1'. (alive processors)

Either enter PO'. and 1 '., or end tbe string with a 'q'

after the last proce.sor to be toggled I. specified.

(enter n to continue to next cycle with no cbange.)

Cycle Number: 1, 0'./1'.: 11000000000011110000q

:8

4 ADVERSARY OPTIONS 20

Cycle Number: 2, 0'./1 's: OOOOOOOOOOOOOOOOOOOOOOOOOOq

: S

Cycle Number: 3, O's/l '.: n

:5

4.6 Interactive, Mouse Driven, select nodes singly, deterministic (#6)

This adversary makes use of the I/O features of Tango mentioned in section 5.3. The user positions
the cross hairs over a node of the binary tree and left-clicks on the mouse. This selects all processors
assigned to that node to be toggled. A box is drawn around the node in the animation window
to hghligbt the choices made. The user clicks on as many nodes as desired each cycle, clicking on
the CYCLE box when done. Each cycle the user is asked to confirm that the node (s) selected
should indeed have all assigned processors toggled. If a mistake was made, the user should answer
no to this question. Raft then gives the user the option of selecting processors again. The boxes
highlighting the chosen nodes are deleted once this question is answered. The figures in Figure 7,
page 22, contain some of the animation screens seen with this adversary. The simulation script
leading to these pictures is also shown. Note that we actually are implementing the Lower Bound
Adversary using interactive techniques here.

4.7 Interactive, Mouse Driven, select nodes singly, probabilistic (#7)

This adversary is similar to the previous one, except that the processors assigned to the selected
nodes are subjected to a probabilistic adversary, instead of all being toggled. The user is prompted
for a probability of failure, and the same algorithm that is applied in adversary #1 is then applied
here. Note that the reduction factor of the probability does not apply in this adversary, as the user
chooses a new probability at each step. See section 4.1 for a description of the random adversary.

A sample session with this adversary would be:
Run in single step mode, or continuous execution? (s/c)

Mode: C

Click on the node (.) you would like to select, click in CYCLE box when done

(user clicks on 8 nodes in the Tango animation window)

Kill a random percentage of processors assigned to nodes:

63 64 65 66 67 68 69

70
(y/n): y

Probability of failure: 85

Click on the node (s) you would like to select, click in CYCLE hox when done

(user click. on 4 node. In the Tango animation window)

Kill a random percentage of proce.sor. assigned to nodes:

3536 37 38

(y/n): y

Probability of failure: 50

Click on the node (0) you would like to select, click in CYCLE box when done

Kill a random percentage of processoro assigned to nodes:

(user click. on CYCLE box in the Tango animation window)

No proceslOrs selected.

It should be noted that this session was run in continuous mode, not single step mode. There
was no chance to change adversaries, nor to query about any of the nodes. See section 3.5 for more
details.

4 ADVERSARY OPTIONS	 21

Simulation script for adversary # 6, some text removed, indicated by ellipse.

: 5 8
:8

Which type of Adversary would you like? Which type of Adversary would you like?

Choice: 6 Choice: 6

This adversary allows the user to select nodes in the tree
which will have all processors assigned to them killed. The user will
use the mouse to select the nodes.

The U~ must select a single node at a time until all
 Click on the node (s) you would like to select, click In CYCLE
desired nodes have been selected. box when done

Kill all processors assigned to node (s)?
Should procenors be allowed to restart after a failure? (yin): No Nodes selected.
D : 5

Click on the node (s) you would like to select, click in CYCLE box
RUD in single step mode, or continuous execution? (s/c) when done

Kill all processors ...igned to node (s)?
Mode: 5 6364
In response to the: prompt, (yin): D
type the character IS to single step, Would you like to select more nodes? (yin) Y
type s # to step # steps, Click on the node (s) you would like to select, click in CYCLE box
type c for continuous execution, when done
type? to query a bidden node) Kill all processors assigned to node (s)?
type q to stop the animation. 7778
type a to change adversaries. (yin): Y

:5
Click on the node (s) you would like to select, click in CYCLE Click on the node (s) you would like to select, click in CYCLE box
box when done when done
(user clicks on the nodes seen surrounded by the boxes in figure i) Kill all processors assigned to node (s)?
Kill all processors assigned to node (s)? No Nodes selected.
63 64 65 66 67 68 69 :8
70 71 72 73 74 75 76
7778 Which type of Adversary would you like?
(yin): Y
:5
Click on the node (s) you would like to select, click in CYCLE box
when done

Choice: 11(user clicks on nodes with no processors assigned)
Kill all processors assigned to node (s)?

This choice causes the algorithm to be run adversary free.No Nodes selected.
No more processors will be killed.:8

C

Which type of Adversary would you like?

Work Done =894, NlogN=390, NlogNloglogN=1170 Num Cycles =
19Choice: 11

This choice caUgeS the algorithm to be run adversary free.
Do you want to trace the path of any processor? (Yin)No more processors will be killed.
Answer: n

Notes on Example Animation with Adversary #6

1.	 Note in figure 7.i, the first ten nodes have been selected by the user for failure as Indicated by the boxes surrounding the
nodes. These nodes were selected using the mouoe in the Tango window, left-elicking on the desired nodes.

2.	 In figure 7.ii, the li4 live processors have moved up the tree in step one, and the user haa just chosen the nodes 17-20 to fail
in step 2. Note there are no processors assigned to these nodes, thus none are failed.

3.	 Figure 7.iii shows cycle 9, when the live processors have traversed throuCh the tree and are ready to descend to unfinished
leaf nodes.

4.	 Figure 7.lv shows that the user haa selected leaf nodes 0 and 1 for failure. For illustration purposes, these nodes were cancelled
and 2 different nodes, leaf nodes 14 and Iii, were selected for failure in step 11 (see fiCure 7.v). This mimics the behavior of
the lower bound adversary.

Ii.	 Figure 7.vi shows the last two leaf nodes just after the live processors have reached them. After completinc the work at these
nodes the processors traverse up to the root and X hu completed.

4 ADVERSARY OPTIONS 22

t'Itl.£ o

'~-~:'I.I_--

i. ii.
To\HGO TANGO

t'Itl.£

IiJ Ej 8.. I!'
~

-...:a......• --_. -;;:.....-'-._~-

iii. iv.
TANGO

t'fClL t'Itl.£

[·:a @]B,J El
~

~
L±.

~ ~

"""'T···_··R·_·"1~,i~1 ".-.-.--"t.:~".-._':=l::or";;;;';'''R'.

~--

v. vi.

;(.
; ..

ill'-""J·· -------,;.~r

Figure 7: Example animation displays of the X algorithm,

P = 64, N = 64, and an interactive mouse driven adversary

4 ADVERSARY OPTIONS 23

4.8 Interactive, Mouse Driven, select regions of nodes, deterministic (#8)

The following two adversaries are iderrtical to the previous two, except that the user selects regions
of nodes with the mouse as opposed to single nodes. A region is some consecutively numbered set
of nodes, all at the same level of the tree. Left click on the left most node of the region, then left
click on the right most node of the region. All nodes between those two nodes, inclusive, will have
the processors assigned to them toggled. The user can select as many regions as desired during each
cycle. Left-click twice on the CYCLE box to end the region selection for tbis cycle.

A sample session would look as:

Run in single .tep mode, or continuous execution? (sIc)

Mode: S

In response to the: prompt,

type the character s to single step,

type s # to otep # oteps,

type c for continuous execution,

type ? to query a hidden node,

type q to stop the animation.

type a to change adversaries.

: S

Click first on the left most node in the region,

followed by the right most node in the region.

Select as many regions as you like.

Double click on the CYCLE box when you are done.

(user clicks on 2 nodes (6 nodes apart) in the Tango animation window)

Kill all processors assigned to node (s)?
63 64 65 66 67 68 69

70

(yin): n

Would you like to select different nodes? (yin)

y
Click first on the left most node in the region,

followed by the right most node in the region.

Select as many regions as you like.

Double click on the CYCLE box when you are done.

(user clicks on 2 nodes (5 nodes apart) in the Tango animation window)

Kill all processors assigned to node (s)?
63 64 65 66 67 68 69
(yin): Y

Select another region, or double click on the cycle box jf done.

(user double clicks on CYCLE box in the Tango animation window)

:8

Click first on the left most node in the region,

followed by the right most node in the region.

Select as many regions as you like.

Double click on the CYCLE box when you are done.

(user clicks on 2 nodes (4 nodes apart) in the Tango animation window)

Kill all processors assigned to node (s)7
3536 3738

3940

(yin): y

4.9 Interactive, Mouse Driven, select regions of nodes, probabilistic (#9)

Tbis adversary applies a probabilistic adversary to the regions of nodes the user has selected each
cycle. Selection is done exactly as for the previous adversary. The user will be prompted for a
probability of failure after each region is selected. Double-clicking on the CYCLE box will stop
region selection for tbis cycle.

A sample session would be:

Run in single otep mode, or co~tinuou. _ecution7 (.Ic)

Mode: 8

In responoe to the: prompt,

type the character. to .Ingle otep,

type • # to otep # oteps,

type c for continuou. execution,

24 4 ADVERSARY OPTIONS

type ? to query a hi.dden node,

type q to stop the animation.

type a to change e.d versaries.

: 5

Click first on the left most node in the region,

followed by the right most node in the region.

Select as many regions as you like.

Double click on the CYCLE box when you are done.

(user clicks on the 2 boundary nodes in the Tango animation window)

Kill a percentage of processors assigned to node (s)?

63 64 65 66 67 68 69

70 71 72 73 74 75 76

7778

(yin): Y
Probability of failure: 50

Select another region, or double click to end .election

(u:>er double clicks on CYCLE box in the Tango animation window)

:5

Click first on the left most node in the region,

followed by the right most node in the region.

Select as many regions as you like.

Double click on the CYCLE box when you are done.

(user clicks OD the 2 boundary nodes in the Ta.ngo animation window)

Kill a percentage of processors assigned to node (8)?

394041 42

(yin): Y

Probability of failure : 100

Select another region, or double click to end selection

(user double clicks on CYCLE box in the Tango animation window)

:5

Click first on the left most node in the region,

followed by the right most node in the region.

Select as many regions as you like.

Double click on the. CYCLE box when you are done.

(user double clicks on CYCLE box in the Tango animation window)

(:5

4.10 Lower Bound Adversary (#10)

This adversary is designed. to cause the worst possible behavior of the X algorithms. The adversary
has the following behavior.

Select a number, Ui, of the tasks remaining to be done (in this case, array elements waiting to be
written) which have the fewest number of processors, including 0 processors, assigned. to complete
them. These tasks are at the leaves of the tree by definition of X. Thus, the only processors eligible
for failure by this adversary are those assigned. to the leaf nodes. The number of nodes which have
their assigned. processors failed. each step is Ui, where Uo = N, and Ui = Ui-d 10gUo. Thus in the
first step, N / log N nodes are selected.. Note that if N = P then N / log N processors are failed. as
there is a single processor assigned. to each leaf node.

The index, i, is incremented. only when Ui processors are actually failed. in a step. It is possible
that there are no processors assigned. to the leaf nodes, or that the number of nodes with processors
assigned. is less than Ui. In either of these cases, i is not incremented.. After a small number
of iterations of i, the number of processors to be failed. goes to O. lUi = 1~~tJoJ goes to 0 after

i = rloglOgUO Uo1+1 steps.

The position of the nodes selected. for failure has significance to the efficiency of the adversary.
The performance of the algorithms is worst when the processors to be failed. are grouped according
to the largest possible subtree of height::; log Ui. H there are more than Ui nodes which are eligible
for failure (ie. the Ufh node can be chosen from a set of nodes with the an equal number of assigned.
processors), then the adversary is most effective if the nodes are selected. to be in consecutively

5	 IMPLEMENTATION 25

numbered leaves, starting on the boundary of a subtree of height log Vi (if possible).

If the nodes to be failed were not grouped, then neighboring nodes would be able to finish the
uncompleted work 2 steps later, one step to get to the root of the subtree, one step to get down to .
the unfinished leaf and perform the work. Then all processors would only have to ascend to the root
of the tree and the algorithm would be finished.

There is a slight improvement which can be added to the lower bound adversary to cover all
possible values of N. If the value of VI = llo~N Jis a power of 2 (this is true for all values of N = 2Y

such that log N = 2%) then an entire subtree (call it subtree B) will have the processors at it's leaf
nodes failed. This leaves the processors at the leaves of the neighboring subtree of equal size (call it
subtree A) free to traverse up the tree and down to the failed nodes in 2*log VI steps. If VI = lJo~N J
is not a power of 2, then there will still be processors alive in a portion of subtree B. These processors
will proceed to perform work as they travel through sub tree B, without having to wait the 2 *log VI
steps for the processors of subtree A to arrive to do the work. Thus if the adversary fails an entire
subtree of processors it will cause more work to be done. So each step, set Vi equal to the smallest
power of 2 greater than Vi.

When this adversary is selected there is no interaction between the adversary and the user during
the execution of the algorithm. The user still has the opportunity to use the query functionality, but
as the action of this adversary is completely specified by the selection of P and N there is no more
input required by the adversary here. Simply type 10 in response to the prompt for an adversary.

4.11 Non-existent Adversary (#11)

This choice allows the algorithm to run without any processors being failed. The user simply types
11 in response to the adversary prompting and no other input is needed by the adversary.

5 Implementation
5.1 General

There are 3 modules of code used to build the Raft tool.

1.	 Raft.c - This module contains all the user-interface code, all the algorithm routines, all the
adversary routines, and the code written to interface with the Tango software. This module is
roughly 4000 lines of documented C code, including 43 subroutines.

2.	 Raftscenes. c - This module contains all the code written to perform the animation. It is
compiled into an object file, then linked in directly with the Tango software. Tango calls these
routines when messages are passed from Raft via the IReis89] facility. This module is composed
of roughly 1000 lines of documented C code, containing the 6 routines mentioned in Section 5.3
below, with numerous calls to the Tango package routines.

3.	 Raft.h is an include file which keeps track of all the variables and constants required by this
software.

The Tango and MSG software is also necessary for the animation window to be activated. Tango
is comprised of 14 modules of commented C code, totalling roughly 8500 lines. The MSG software
provides a rich set of message passing utilities for use between processes. The utility used by Raft is
a single routine of roughly 150 lines of C code which sends a message via a routine call and returns
a string to the caller.

The next two sections go into some more detail on the user interface software, and the Tango­
algorithm interface routines.

5	 IMPLEMENTATION 26

5.2 User Interface Implementation Notes

The keyboard interface employed by Raft is very simple by design. It consists of a main loop
which performs all the necessary initialization, prompting the user for the necessary parameters (see
Section 3, and setting up all the global data structures from heap memory. It then calls the routine
which implements the user chosen algorithm. The code written to implement the algorithm takes
care of all the remaining interaction during execution. All the algorithm routines follow the general
outline given below:

1.	 call the algorithm specific initialization routine. This sets up the animation window, allocates
and initializes any algorithm specific data structures, and initializes the global data structures.

2.	 enter a loop controlling the execution of the algorithm. Each iteration of the loop represents
one PRAM step of the algorithm. (The implemented algorithms are controlled by the value of
the work done in the root node being equal to N.)

3.	 Inside the loop the following steps are taken:

(a) Call the adversary routine to toggle any processors this step.

(b)	 If in single step mode,call single step routine to allow the user to query before step is
taken. (Note, user may change adversaries at this point, if so, routine must clear out any
previously toggled processors for this step, and then invoke new adversary).

(c)	 Enter the synchronous loop, allowing each processor to perform the algorithm, making
calls to the animation window to update the screen with any changes. (Note, the changes
to the animation window are being composed by the user provided Tango routines at this
point so that they will appear to happen all at the same time, see Section 5.3)

(d) Send a message to the	 Tango window to perform all the composed actions, then copy the
write data structure onto the read data structure to implement the shared memory (see
below).

4.	 Go back to the top of the loop

In order to implement the PRAM model used by these algorithms, it is necessary to simulate
shared memory access. As the processors loop synchronously to perform a single PRAM step, it
is necessary to keep two copies of the controlling data structure. The first copy stores the current
value of the work done at each node. The processors read from this data structure while performing
the algorithm. The second copy of the data structure is used for all writes. Thus, each processor
reads the same value and can write any new value into the second data structure. At the end of
each synchronous loop, the write data structure is copied into the read data structure, effectively
simulating shared memory. Note, as mentioned in Section 2, each processor is concurrently writing
the same value to memory, thus there is no priority scheme necessary.

Adding an algorithm to Raft is discussed in Section 6.2.

The adversary routines are all resident in the user interface module. They all make use of the
global arrays Live and changed to keep track of the state of each processor. The code written varies
greatly depending on the nature of the adversary, However, in general, there is a loop of P iterations
which writes either a 1 or a 0 in the Live array, and sets a bit in the changed array if the state toggled
(this is necessary to inform the main loop which processors need to send animation information across
to the Tango Window). It is important to note that there must always be at least one processor which
remains alive, else the algorithm's will not execute properly. Adding an adversary to Raft is discussed
in Section 6.1.

27

(

5	 IMPLEMENTATION

5.3 Tango-Algorithm Interface Implementation Notes

Raft interfaces to Tango through a message passing facility. This message passing facility is a layer of
software as described in [Reis89]. A routine is called which passes messages from Raft to the Tango
software. The message passed is a character string which is then parsed by Tango to determine which
of the user-provided routines to invoke. The user provided animation scene routine is then passed
the parameters which Tango parses out of the character string and run. There is also an Xl! based
version of Tango which avoids this extra layer of software. A version of Raft has been created to
work with Xtango also. See [SH90] for a detailed description of the differences between Tango and
Xtango. The main difference is that the entire animation is run in a single process, thus there is no
need for the message passing facility.

There are some requirements on Raft which are outlined here, as are it's capabilities to affect the
animation window.

In order to keep track of the state of the animation window, there is a data structure which all
the algorithms make use of. Since the data structure displayed in the animation window is a binary
tree, it makes sense that the algorithms keep track of the state of the animation window using a
binary tree. In order to keep the animation as fast as possible, the execution of the algorithm is not
animated fully. Anytime there is duplication by the algorithm, (for example 2 processors traveling
together over an edge, or multiple processors resident at a single node of the tree) there is only a
single image shown in the animation window. The duplicate image would be overlaid on the screen
and appear as a single image anyway. This provides a speedup in animation time, and requires much
less memory to store the animation actions. This tree is represented as an array of records. The
information stored in the tree is important because Tango is very particular about creating and/or
deleting already existing images. If Raft sent a message to the Tango window requesting to delete a
processor line at a node, and the line didn't exist, the Tango window would crash. Each record, one
per node of the tree, contains the following pieces of information:

1.	 procJine_present - This flag keeps track of whether there is a red line representing the fact that
there is a processor alive at the node.

2.	 num_procs_aLnode - This field is used to keep track of the required thickness of the lines at
each node. The line is scaled by the log of the number of processors at the node.

3.	 parenLedge - When the algorithm completes the task (s) of a subtree, the parent edge to that
subtree are deleted. This flag keeps track of the fact that the parent edge has already been
deleted.

There are 6 routines which are used to control the animation window. Using these routines the
user may perform the following actions:

•	 Routine BalTree

-	 Create a balanced binary tree with red processor lines at all leaf nodes.

•	 Routines TreeNode & KillTreeNode

- Select specific nodes of the tree using the mouse and return the number of the node (root
is 0, children are 1,2, grandchildren are 3,4,5,6, etc.) (useful for adversaries or queries)

- Select a range of nodes in the tree and return the number of the boundary nodes on the
left and right.

5 IMPLEMENTATION 28

• Routine MoveProcLine

- Create a red line representing a processor present at a node.

- Move an already created red line from one node to another.

- Thicken an already created red line to represent more than one processor at a node

- Delete a red processor line at a specified node.

- Delete the thickened red processor line at a specified node.

- Remove an edge from the binary tree to represent work in that subtree done.

• Routines Highlight & UnHighlight

- Highlight/Unhighlight an edge between two nodes

In order to change the capabilities of the animation, it would be necessary to write new code for
the animation scenes. These animation scenes make use of routines provided by the Tango software.
Note that all these routines utilize the MALLOC library routine in C to grab memory from the
heap. Tango keeps all this memory unless specifically told to free it. The routines that are linked in
with the Tango image to perfonn the tasks listed above were carefully designed to return memory
whenever possible. If new routines are designed, the author must be very aware of the memory
requests made, else the animation slows down tremendously.

Tango keeps each element (line, circle,text, etc.) of the animation window in its own record in
heap memory. It also stores all the actions perfonned on each element in heap memory. These
records are not released back to the heap after the action has been perfonned, unless explicitly
requested. Special attention need be paid to the composition and concatenation of Tango actions.
These functions are used to make two single actions appear to occur at the same time (composition,
or sequentiallyconcatenation, in the animation window. Composing/concatenating two transactions
into one creates an entirely new record in heap memory, even if the code asks for the composed
action to be pointed to by one of the original actions. This causes memory requirements to expand
dramatically if care is not taken to assign the new actions to temporary pointers, delete the old
actions, reassign the temporary actions, then delete the temporary actions.

5.3.1 BalTree routine

This routine must be called first to initialize the animation window. It sets up all the data structures
and necessary Tango hooks, then draws a binary tree with N leaves (N / log N leaves for the optimized
version of W) in the animation window. As parameters to this routine the calling program must
send the number of processors to be animated,P (they are represented as red lines at the leaf nodes
of the tree), the number of leaf nodes to be drawn, N, and a third parameter, trace, which is used
to differentiate between the initial call to this routine and calls generated when using the processor
trace facility. Because the algorithms destroy the image of the binary tree in order to represent work
being completed, it is necessary to redraw the tree when the algorithm is complete if the user would
like to trace the path any processor took during the execution of the algorithm. trace should be 0
when calling BalTree initially, and a 1 when the trace facility is redrawing the tree.

Tango uses a feature called an association to keep track of all the different line segments, text,
shapes, etc. which create the figure (s) in the animation window. All the Tango provided routines
make use of these associations with a hashing technique to get pointers to the images when deleting,
creating, or J;Doving an image in the animation window. This routine creates the initial definitions
of these associations to be used later.

This routine also tells Tango to draw in the CYCLE box, WORK DONE box, and the LIVE
PROCESSORS box.

5	 IMPLEMENTATION 29

5.3.2 MoveProcLine routine

This routine is responsible for changing the image of the binary tree when the algorithms are being
executed. It takes care of telling Tango when to move which parts of the animation window. Due
to the varied nature of the tasks this routine performs, it has 8 parameters passed to it.

•	 pos - the number of the node in the tree representing the position of the processor being
simulated. The nodes are numbered consecutively starting at the root (# 0) going left to right
across levels of the tree.

•	 newpos - the number of the node in the tree representing the position that the processor being
simulated wants to move to.

•	 pn - Processor number. This is not actually used in the animation window itself, but is very
important as an aid in differentiating between the associations made by Tango. Two lines
sharing the same space in the animation window can be differentiated by the association if
they have been stored with unique identifiers, which are the processor numbers in this case.

r:

•	 op - This parameter tells the routine which of the 6 different operations to perform on the
animation window.

1.	 REMV-EDGE - This tells the routine that the edge from node pos to node newpos in the
tree is to be removed. This represents the fact that all the work in the subtree with node
pos as root has been completed.

2. REMVJ>ROCLINE - This tells the routine that the red line representing the presence of
/ a processor at node pos is to be removed. This is used if the node a processor is being I,
\	

moved to already has a red line drawn to avoid duplication in the animation window.

3.	 MOVEJ>ROCLINE - This tells the routine that the red line representing the presence of
a processor at node pos is to be moved to node newpos. This is used to animate the path
a processor takes through the tree.

4.	 CREATEJ>ROCLINE - This tells the routine that a red line needs to be created at a
node to represent the arrival of a processor. It is used when the node being moved from
no longer has a red line resident (some other processor previously at this node has already
moved to another node).

5.	 INCR_WIDTH - The width of the red line at a node represents the number of processors
there this step. The width of the line is scaled to the log of the number of processors
there.

6.	 ALG_W - When the W algorithm is being animated, this tells the routine to move a red
processor line from the root node to the node in newpos (a leaf node). This represents
the path the node took from the root down to the leaf node. Note that in the interest of
speed of animation the entire path is not shown as it is unique.

•	 size - This parameter holds the number of processors at node pos. It is used by the routine
in conjunction with the op INCH-WIDTH when drawing the thick red line representing the
number of processors at the node.

•	 cyc_count - This tells the routine the amount of work done to this point. It is only valid when
the last parameter, done, is set to 1. The routine writes this number in the WORK DONE
box.

5 IMPLEMENTATION	 30

•	 steps - This tells the routine how many steps have been simulated sofar. It is written in the
CYCLE box when the last parameter, done, is set to 1.

•	 done - This parameter tells the routine that there are no more actions to be added to the
animation this step. The routine then goes off and issues the message to Tango that it should
perform all the stored actions. Due to the speed at which Tango performs the animation it is
necessary to use a Tango feature known as composing to make one large animation action out
of all the animation requests sent each step. There are a set of linked lists kept of all animation
requests. When the done parameter is set to 1, these linked lists are processed with the actions
being composed into one large action for Tango to perform. The memory associated with these
actions is then given back to the heap. If the composition feature wasn't used, each action
would be performed consecutively, leading to a dramatic slowdown in animation, and a loss in
the appearance of the algorithm being executed in parallel.

5.3.3 Highlight & UnHighlight routines

These two routines are used to highlight the path a processor took through the binary tree during
the execution of the algorithm. These routines are passed three parameters: the numbers of the two
nodes between which the path should be highlighted, and the direction the processor was going when
traversing the edge.

A green/yellow arrow is drawn between the two nodes depending on whether the processor is
going up or down in the tree. A processor may pass through the same edge a number of times in
either direction. If a processor is passing over an edge for the second time a new arrow is not drawn,
instead, the previously drawn arrow is moved to the top plane of the animation window.

Once the entire path a particular processor took through the tree is highlighted the user is offered
the chance to view another processors path. If the user chooses to do so, the currently highlighted
path is erased using the UnHighlight routine. The parameters are exactly the same. They are used
to fetch the images of the arrow for deletion. Note that all these messages requesting arrows be
deleted are composed into a single animation action and performed only when the done parameter
is set to a 1. This makes the edges appear to disappear together. When highlighting the path, the
animation messages are handled immediately, in a synchronous fashion to give the appearance of
traveling through the tree.

5.3.4 TreeNode & KillTreeNode routines

These routines are used to interact with the mouse and the Tango animation window. They make
use of a message passing facility to pass back to the calling routine a pointer to a character string.
The contents of this string are set up by these routines to contain the number of the node the user
clicked on with the mouse.

The TreeNode routine takes as a parameter the number of leaf nodes in the tree. It uses the
Tango 10 facility to allow the user to choose a node. The node number is passed back to the calling
routine and all known information about that node is displayed to the user. There is a slight margin
of error that is present with the mouse. The node with the smallest node number that is within the
margin of error is passed back to the user. Thus if the nodes of the tree are q~ite dense, the user
will have some difficulty choosing them uniquely.

The KillTreeNode routine is used in conjunction with the adversaries. There are two parameters
to this routine: the number of leaf nodes,num_nodes and a boolean, done. This routine allows the
user to choose either one or two nodes, depending on the value of done. If done is equal to 0, then
the routine was called by an adversary selecting single nodes. If done is equal to 2 then the routine
was called by an adversary selecting a region of nodes. In either case the chosen nodes have a red

31

6

6	 ENHANCEMENTS

box drawn around them to indicate that they have been selected, and the node number is passed
back to the calling routine. When the last parameter, done, is set to 1 all the boxes outlining the
chosen nodes are deleted.

Enhancements

Additional algorithms, or adversaries could be added to Raft to increase it's functionality. There are
certain requirements that must be followed in order to fit new algorithms, or adversaries, cohesively
into the Raft tool. These requirements are briefly addressed below.

6.1 Adding Adversaries

It is fairly straightforward to add an adversary to Raft. There is a single data structure which is
used to hold the state (alive/dead) of each processor. Each time the new adversary is invoked it
should leave the state of each processor in the dynamically allocated global array, Live. If processor
i is alive, there should be a 1 in element i of the array, if processor i is dead there should be a 0
in element i of the array. It should also update element i of the global array changed. This array
tells Raft whether there has been any change in the state of a processor since the last step. This
information is used to determine whether to call the animation routines for this processor in this
step; a 1 in element i means the state has changed for processor i, a 0 means the state remained the
same. Note that the adversary must ensure that at least one processor remains alive in each cycle,
else the algorithms cease to work correctly.

The new adversary should be added to the CASE statement which selects the adversary to
perform. This is done in routine adversary_setup. A brief textual description of the adversary should

(be added here also. The routine which performs the adversary should then be added to the CASE
statement in the routine countJive_procs_antLperjo1'1n_adversary under the appropriate switch value.

6.2 Adding an algorithm

There are certain requirements that are imposed by Raft on the algorithms to be animated. These
requirements are due to the rigid method in which the Tango animation scenes must be coded. Of
course, by writing additional Tango animation scene routines, any algorithm may be animated.

In order to add an algorithm to the suite of those the user may select, without having to write
new Tango animation scene routines, the following prerequisites must be met:

1.	 The algorithm must make use of a binary tree as the displayed data structure, or not make
use of the animation facility. If it is desired to animate an n-ary tree it would be necessary
to write new Tango routines to control the n children at each node of the tree. The existing
Tango routines provide for creation of binary trees or graphs.

2.	 The algorithm needs to have calls to the Tango animation scenes inserted at the appropriate
points. These routines are described in section 5.3. The syntax of the message passing is
described in !Reis89]. There is also additional code required to update the data structure
representing the state of the animation display. This is where the bulk of the work will be.

3.	 The algorithm needs to be added to the existing CASE statement in routine algorithm_setup,
and in routine main, a new initialization routine needs to be written for the required data
structures (all are dynamically allocated), and a brief description of the algorithm written for
display upon user request.

6	 ENHANCEMENTS 32

4.	 There is a defined interface with the adversaries that must be adhered to. The adversaries
keep an array Live where each element represents the state of a processor. Tbis array must
be used in the algorithm to control the action of live/dead processors. Also, element i of array
changed needs to be checked to see if any animation action updates need to be sent across
to the Tango process. Calls to the routine counLlive_procs_and..perjorm_adversary should be
inserted in the algorithm at the appropriate points. Alternatively, a completely new adversary
could be written to make use of existing structures in the proposed algorithm.

5.	 In order to provide the processor trace capability, it is necessary to keep a bistory of the nodes
each processor visits. Tbis is to be stored in a linked list of linked lists, history, with one
list per processor. The ith element of the primary list represents the initial position of the ith
processor. Each element of the secondary lists represents the next change in position of the
processor.

6.3 Future Considerations

A future enhancement to Raft would be to add a routine which creates a file for the Table Driven
adversary automatically. It could do tbis based on some input specifications, or based on the action
of the just completed user driven interactive adversary.

It would also be nice to add all known algorithms solving the fault tolerant Write-All problem.

An interesting modification would be to update Raft for execution on a parallel architecture,
such as the Connection Machine. This would allow direct simulation of the algorithms, without the
overhead associated with simulating on a single cpu. This would add some additional complexity
in the memory access, but as mentioned earlier, this problem has been addressed extensively in the
literature.

It would be nice to update the interface to be menu driven, via Motif, or some such toolkit.

Ifyou are interested in more details, it is suggested that you contact the author at swa@cs.brown.edu,
or apgar@oblio.enet.dec.com. Enhancements to the tool are encouraged!

33 REFERENCES

References

[AHMP87J H. Alt, T. Hagerup, K Mehlhorn, and F.P. Preparata. "Deterministic simulation of ide­
alized parallel computers on more realistic ones," SIAM Journal of Computing,16 (5):808­
835, Oct 1987.

lAW 91J	 R. Anderson and H. Woll, "Wait-Free Parallel Algorithms for the Union-Find Problem" ,
Proc. of the 23rd ACM Symp. on Theory of Computing, pp. 370-380, 1991.

[BCDW91J E. A. Brewer, C. N. Dellarocas, A. Colbrok, W. E. Weihl. "PROTEUS: A Righ­
performance Parallel-Architecture Simulator," Massachusetts Institute for Technology,
Laboratory for Computer Science, Technical Report MIT/LCS/TR-516, Sept. 91.

IBKRS 91J J. Buss, P.C. Kanellakis, P. Ragde, A.A. Shvartsman, "Parallel algorithms with processor
failures and delays", Brown Univ. Tech. Report CS-91-54, August 1991.

IBrow87J	 M. H. Brown. "Algorithm Animation." Ph.D Dissertation, Computer Science Department,
Brown University, May 1987.

IBH91J	 M. H. Brown, J. Hershberger. "Algorithm Animation using Zeus." Digital Equipment Corp.
DEC Systems Research Center, Palo Alto, CA

[DKM+88J M. Dietzfelbinger, A. Karlin, K Mehlhorn, F. Meyer auf der Riede, H. Rohnert, and
R.E. Tarjan. "Dynamic Perfect Hashing: Upper and lower bounds." In Proceedings of the
29th Annual Symposium on the foundations of Computer Science, White Plains, New York,
pp 524-531, Oct 1988.

(

\ [FW78J	 S. Fortune, J. Wyllie. "Parallelism in random access machines," Proc. 10th ACM STOC,
pp. 114-118, 1978.

[HE88J	 K T. Herley and G. Bilardi. "Deterministic simulations of P-RAMs on bounded-degree
networks." In Proceedings of the 26th Annual Allerton Conference on Communication,
Control, and Computation, Monticello, fllinois,pp 1084-1093, Sept 1988.

[Herl89J	 KT. Herley. "Efficient simulation of small shared memories on bounded degree networks."
In Proceedings of the 30th Annual Symposium of the Foundations of Computer Science,
Research Triangle Park, North Carolina, pp 390-395, Oct 1989.

IHerl90J	 KT. Herley. "Space-Efficient Representations of Shared Data for Parallel Computers." In
Journal of the ACM, (7):407-4151990.

IHP89J	 S.W. Hornick and F.P. Preparata. "Deterministic PRAM Simulation with Constant Re­
dundancy." In Information and Computation, Vol 92, No.1, pp. 81-96, May 1991.

[KPS90J	 Z. M. Kedem, K V. Palem, and P. Spirakis, "Efficient Robust Parallel Computations," in
Proc. 22nd ACM Symposium on Theory of Computing, pp. 138-148,1990.

[KPRS 91J Z. M. Kedem, K V. Palem, A. Raghunathan, and P. Spirakis, "Combining Tentative
and Definite Executions for Dependable Parallel Computing," in Proc. 23rd A CM Symp.
on Theory of Computing, 1991.

IKR88J	 R. M. Karp and V. Ramachandran. "A Survey of Parallel Algorithms for shared-Memory
Machines," Technical Report UCB/CSD 88/408, Computer Science Department, Univer­
sity of California at Berkeley, CA.

34 REFERENCES

[KS89] P. Kanellakis, and A. Schvartsman. "Efficient Parallel Algorithms Can Be Made Robust,"
Technical Report CS-89-35, Department of Computer Science, Brown University, Provi­
dence Rl.

[KS91] P. Kanellakis, and A. Schvartsman. "Efficient Parallel Algorithms On Restartable Fail­
stop Processors," Technical Report CS-91-36, Department of Computer Science, Brown
University, Providence RI.

[KS91a] P. Kanellakis, and A. Schvartsman. "Robust Computing with Fail-stop Processors," De­
partment of Computer Science, Brown University, Providence RI.

[KU88] A. R. Karlin and E. Upfal. "Parallel Hashing: An efficient Implementation of Shared
Memory." In Journal of the ACM, Vol. 35, No.4 pp. 876-892, Oct 1988.

[Kuck77]	 D.J. Kuck. "A Survey of parallel machines organization and programming," In ACM Com­
put. Survey. 9,1 (1977),29-59.

[Lin91]	 Y. Lin "A Framework for Automatic Algorithm Animation", Technical Report CS-91-37,
Computer Science Department, Brown University, May 1991.

[LPP88]	 F. Luccio, A. Pietracaprina, and G. Pucci. "A Probabilistic Simulation of PRAMS on a
Bounded Degree Network," In Information Processing Letters 28, pp. 141-147,1988.

[LPP89]	 F. Luccio, A. Pietracaprina, and G. Pucci. "A New Scheme for the Deterministic Simulation
of PRAMS in VLSI", In Algorithmica (1990) 5: 529-544.

[Meye86]	 F. Meyer auf der Heide. "Efficient simulations among several models of parallel computa­
tion." In SIAM Journal of Computing, 15 (1):106-119, Feb 1986.

[MSP 90] C. Martel, R. Subramonian, and A. Park, "Asynchronous PRAMs are (Almost) as Good as
Synchronous PRAMs," in Proc. 32d IEEE Symp. on Found. of Computer Science, pp. 590­
599,1990.

[PSW91]	 M. Palis, S. Rajasekaran, D. Wei. "Emulation of a PRAM on Leveled Networks," In 1991
International Conference on Parallel Processing, Vol I, pp. 418-421, 1991.

[Ran87]	 A. Ranade. "How to emulate shared memory", In Proceedings of the 28th Annual Sympo­
sium on the Foundations of Computer Science, Los Angeles, California, pp. 185-194, Oct
1987.

[Reis89]	 S. Reiss. User Manual, MSG Facility. Brown University.

[Shv91]	 A. A. Shvartsman, "Achieving Optimal CRCW PRAM Fault-Tolerance", in Information
Processing Letters, vol. 39, pp. 59-66, 1991.

ISS 83]	 R. D. Schlichting and F. B. Schneider, "Fail-Stop Processors: an Approach to Designing
Fault-tolerant Computing Systems", ACM Transactions on Computer Systems, vol. 1,
no. 3, pp. 222-238, 1983.

[Stas89]	 J. Stasko. "Tango: A Framework and System for Algorithm Animation", Ph.D Disserta­
tion, Computer Science Department, Brown University, May 1989.

[SH90]	 J. Stasko, D. Hayes. "Xtango Algorithm Animation Designers Package", User manual,
College of Computing, Georgia Institute of Technology, Atlanta GA. Dec 1990

REFERENCES 35

[Upfa84]	 E. Upfal. "A Probabilistic Relation Between Desirable and Feasible Models of Parallel
Computation." In Proceedings of the 16th ACM Symposium of Theory of Computing (Wash­
ington, D.C., Apr. 30-May 2). ACM, New York, 1984, pp. 258-265.

[UW87]	 E. Upfal and A. Wigderson. "How to Share Memory in a Distributed System." Journal of
the ACM, 34 (1):116-127, Jan 1987.

,

I
\

