
BROWN UNNERSITY

Department of Computer Science

Master's Thesis

CS-92-M2

"Class Library for the Automation of Motif (CLAM) Programmer's Manual"

by

Peter Wagner

Class Library for the Automation of Motif (CLAM)

Programmer's Manual

Peter Wagner

Masters Project

Brown University

Advisor: Professor Steven Reiss

January 25, 1991

This thesis by Peter Wagner is accepted in its present fonn by the Department of Computer Science

as satisfying the thesis requirement of the degree of Master of Science.

~~ 2-/~//rL

r-- I

"7 Professor Steven Reiss Date

CLAM Programmer's Manual

Table of Contents

1. Introduction to CLAM

2. ClamPulldownMenu

2.1 Overview

2.2 Parameters

2.3 Menu Data Structure

2.4 Defining the Menu - the ClamMenu Data Array Format

2.4.1 Submenus

2.5 Using ClamPulldownMenu

2.6 ClamPullDownMenu Methods

2.7 Using ClamPulldownMenu with Motif Code

3. ClamPopupMenu

3.1 Overview

3.2 Parameters

3.3 Using ClamPopupMenu

3.4 ClamPopupMenu Methods

3.5 Using ClamPopupMenu with Motif Code

4. ClamPanel

4.1 Overview

4.2 Parameters

4.3 ClamPanel Data Structure

4.4 Using ClamPanel

4.5 ClamPanel Methods

4.6 Using ClamPanel with Motif Code

5. ClamDialog

5.1 Overview

5.2 Parameters

5.3 Dialog Format Codes

5.4 Defining Dialogs

5.4.1 Defining Widgets

5.4.2 Widget Layout

5.4.3 Region Layout

5.5 Special Features

5.6 Using ClamDialog

5.7 ClamDialog Methods

5.8 Using ClamDialog with Motif Code

6.BAUM

6.1 Overview

6.2 Using BAUM with CLAM

Peter Wagner CLAM Programmer's Manual Contents

7. Callback Functions

7.1 Overview

7.2 CLAM Callbacks

7.3 ClamPulldownMenu & ClamPopupMenu Callback Types

7.4 ClamPanel Callback Types

7.5 ClamDialog Callbacks

8. Using Resource Files

8.1 Overview

8.2 Establishing a Resource File

8.3 Accessing a Widget's Resources

8.4 ClamPulldownMenu & ClamPopupMenu Resource Notes

8.5 ClamPanel Resource Notes

8.6 ClamDialog Resource Notes

9.Problems? - Common Pitfalls

10. Known Bugs

11. Future Enhancements

Appendix A - Example programs

Peter Wagner CLAM Programmer's Manual Contents

1. Introduction to CLAM
The Class Library for the Automation of Motif is a set of classes that provides a simple way to create Motif user inter
faces without learning Motif programming. The library contains classes which create pulldown menu systems, popup
menus, panels (a panel is a window of buttons that resizes itself intelligently), widget layouts, and dialog boxes. Each
class is instantiated with data which defines the interrace component. Menus and panels are defined by an array ofdata
structures, while dialogs are defined by a string containing special format codes.

CLAM was designed to allow the programmer who is not conversant in X Windows, Xt Intrinsics, or Motif to quickly
and easily put together a graphical user interrace. CLAM also provides the flexibility necessary to create intricate Gill
components. Experienced Motif and Xt programmers will find CLAM useful in reducing the time spent developing
the Gill component of a system.

While CLAM can be used without knowing how to write Motif and Xt Intrinsics programming, an understanding of
Motif widgets and basic Xt concepts is important. In addition, a programmer using CLAM will need to use a few basic
Xt Intrinsics functions. Use of these functions is described in context below and in the example programs.

Objects created with CLAM can easily be integrated into Xt and Motif code. Any CLAM object can be passed as a
Widget to any function that takes a Widget parameter.

2. ClamPulldownMenu
2.1 Overview

A ClamPulldownMenu object provides the pulldown menu system for a Motif application. Typically a
ClamPulldownMenu object will be installed as the menu bar in a Motif MainWindow widget.
ClamPulldownMenu methods provide an easy way to create and modify the menu bar, menus, and submenus.

2.2 Parameters

ClamPulldownMenu has two constructors (besides the copy constructor). The fIrst takes no arguments and thus
allows a default declaration of a ClamPulldownMenu object:

ClamPulldownMenu menu;

The second constructor takes four arguments:

ClamPulldownMenu(const char *name, const Widget parent, const void *data, const ClamMenuData
menuD).

The ftrst argument is the name of the menu. This string will be the name of the top widget in the pulldown menu
system. This name will be used to reference menu widgets when setting resources in a resource me.

The second argument is the Widget which is the parent of the menu system. In a typical scenario, this will be the
MainWindow widget which serves as the main window of an application. Look at the example programs to see
ClamPulldownmenu used in this fashion.

The third argument is the default data value which will be passed to the callback routines assigned to the menu
buttons. This value will be overridden for a given menu button callback if a data value is provided for that button
in the ClamMenuData record which deftnes the button (see below). The intention of this value is to provide an
easy way to designate a common data value for all menu callbacks.

The fourth argument is the ClamMenuData array. This array deftnes the menu pads and their associated menus.
This array contains an entry for every menu button and pad in the menu hierarchy. Note that while the
ClamPulldownMenu class supports any number of levels of menus and submenus, submenu entries are not
deftned within the array passed to the ClamPulldownMenu constructor. Rather, an indication is made that a given
menu entry is to have an associated submenu, and the submenu is attached to the menu after the
ClamPulldownMenu is constructed (see ClamPulldownMenu::ftllSubmenuO). The ClamMenuData structure is
discussed in the next section.

2.3 Menu Data Structure

Peter Wagner CLAM Programmer's Manual Page 1

An array of ClamPulldownMenu structures is passed to the ClamPulldownMenu constructor as the specification
for the menu pads and their associated menus. The same structure is also used to defme the buttons in a submenu.
An element in the array describes one menu button or menu pad. The ClamMenuData structure is:

typedef struct ClamMenuData {CLAM_MENU_STATE state;
char *name;
char *pixmap;
char *selectPix;
void (*routine)(Widget, void *, void *);
void *data}

The state entry is a bit field and describes several important parameters for a given menu button or pad. Various
values are OR'd together to comprise the state field.

The low order bits indicate the type of the menu entry. One of the following values must be specified:

CLAM_PSTATE_END: Indicates the last entry in an array of ClamMenuData.
CLAM_PSTATE_MENU: The entry is for a menu pad and subsequent entries

belong in this pad's menu.
CLAM_PSTATE_SEPARATOR: The entry is a separator.
CLAM_PSTATE_BTN: The entry is a menu button.
CLAM_PSTATE_SUBMENU: The entry is a cascade button and will have a submenu.
CLAM_PSTATE_IGNORE: The entry is to be ignored.
CLAM_PSTATE_TOGGLE: The entry is a toggle button.

Only one of the above values should be OR'd into the state field. Behavior is undefined if more than one of
the above values is used.

The middle order bits are optional and indicate several button options:

CLAM]STATE_DISABLE: The entry is insensitive - grayed out.
CLAM_PSTATE_SELECT: A toggle entry is indicated as set.
CLAM_PSTATE_DIAMOND_TOGGLE: Toggle buttons are displayed as diamonds.
CLAM_PSTATE_INVISffiLE_TOGGLE: No toggle indicator is displayed.

The high order bits are used for setting menu mnemonics, the keystroke alternative for clicking the menu
button with the mouse. The following macros facilitate setting menu mnemonics:

CLAM_PSTATE_CHAR(c): Specifies c as the mnemonic.
CLAM_PSTATE_META_CHAR(c): Specifies Meta-c as the mnemonic.
CLAM_PSTATE_FCT_KEY(#): Specifies Function key 'W as the mnemonic.
CLAM_PSTATE_SHIFT_KEY(c): Specifies Shift-c as the mnemonic.
CLAM_PSTATE_CTRL_KEY(c): Specifies Ctrl-c as the mnemonic.

One of the above macros should be used to set the mnemonic for a given menu option.

The name entry detennines the label that will be displayed in the menu button and is the name of the widget to be
referenced in a resource file.

The pixmap entry is the name of the pixmap that is to be displayed in the button. Ifa pixmap is not to be displayed,
the pixmap entry must be set to O.

The selectPixmap entry is only applicable to toggle buttons. It is the pixmap that is to be displayed when the toggle
button is selected. If a select pixmap is not used, selectPixmap must be set to O.

The routine entry is the callback routine that will be called when the user selects the menu entry.

The data entry is the data that will be passed to the above callback function. If this entry is zero, the default data
passed to the ClamPulldownMenu constructor (or fillMenuO method) will be passed to the callback function.

2.4 Defining the Menu· the ClamMenu Data Array Format

The ClamMenuData array used to create a ClamPulldownMenu is a description of the menu pads and the buttons

Peter Wagner CLAM Programmer's Manual Page 2

in the menus that cascade from those pads. This array does not contain the defmitions of any submenus that to not
cascade directly from the menu pads. Submenus are added to the menu system via the method
ClamPulldownMenu::fillSubmenuO.

Each element in the array has a certain designation which detennines the function of that element. The designation
is found in the state field of the ClamMenuData structure (see section 2.3 Menu Data Structure for a complete
description of the possibilities for the state field). The array elements are arranged in the following general fonn
(push buttons, separators, toggle buttons, and cascade/submenu buttons are interchangeable in the example
below):

CLAM_PSTATE_MENU 1st Menu Pad
CLAM_PSTATE_BTN 1st Menu push button
CLAM_PSTATE_SEPARATOR 1st Menu separator
CLAM_PSTATE_BTN 1st Menu push button

CLAM]STATE_MENU 2nd Menu Pad
CLAM_PSTATE_TOGGLE 2nd Menu toggle button
CLAM_PSTATE_SUBMENU 2nd Menu cascade button

CLAM]STATE_MENU 3rdMenu Pad

CLAM_PSTATE_END End of Menu Data

A menu pad will be created for each array element designated as CLAM_PSTATE_MENU. Each array element
following an element designated as CLAM]STATE_MENU will create an entry in the menu triggered by that
menu pad. A menu can have push buttons, toggle buttons, separators, and cascade buttons. Cascade buttons are
created with the CLAM]STATE_SUBMENU designator. Cascade buttons lookjust like push buttons, however,
they are set up to accept submenus (see section 2.4.1).

If a record designated as CLAM_PSTATE_MENU (a menu pad) has the name "Help", it will automatically be
the rightmost menu pad and will be right justified.

2.4.1 Submenus

Creating menu systems with multiple levels of submenus is a two step process. First the toplevel menu, the menu
pads and associated menus, is created. This step is accomplished by instantiating a ClamPulldownMenu with a
ClamMenuData array or by the call to ClamPulldownMenu::fl1lMenuO. Next the method
ClamPulldownMenu::fillSubmenuO is called:

fl1ISubmenu(const char *names[l, const ClamMenuData menuDataD, const void *data)

The first argument, names, is a NULL tenninated array of strings. This array contains the series ofcascade button
names which leads to the cascade button to which the current submenu is to be attached. An example will make
this description clearer. Suppose there is a File menu pad which brings up a menu with the choices New, Open,
Exit.

File Edit Help
-New
-Open <--- -Default
-Exit -Catalog

-Other

We want to add a submenu to the Open button which contains the options Default, Catalog, Other. In this case,
the names array would be ("File", "Open", NULL} - one has to select File then Open to get to the submenu which
is being added. Note that the Open menu button to which the submenu is being attached must have been created
with a designation of CLAM_PSTATE_SUBMENU.

The second argument, menuData, is a ClamMenuData array which defmes the buttons in the submenu. The
structure of this array is similar to the ClamMenuData array which defmes the menubar and the top level menus.
However, this array cannot contain any entries with a CLAM_PSTATE_MENU designation. menuData contains

Peter Wagner CLAM Programmer's Manual Page 3

any number of push buttons, separators, toggle buttons, and cascade/submenu buttons and is terminated by a
CLAM_PSTATE_ENDr~oro.

The last argument, data, is the default data value which will be passed to the callback routines assigned to the
menu buttons in this submenu.

2.5 Using ClamPulldownMenu

Two steps are required before a menu system can be created using the ClamPulldownMenu class. First, the widget
which is to contain the menu, its parent, must be created (in turn there are several things that must be done before
the menu's parent widget is created - open the display, create the top level shell widget, etc. - see the example
programs). This widget will probably be a Motif MainWindow widget. Second, an array of ClamMenuData
structures must be filled with the appropriate data to create the desired menu configuration.

Once the above tasks are accomplished, the ClamPulldownMenu can be created. AClamPulldownMenu is created
in one of two ways, depending upon the method used to instantiate:

1) ClamPulldownMenu menu;
(or ClamPulldownMenu *menu =new ClamPulldownMenu;)

2) ClamPulldownMenu menu(name, parent, data, menuData);
(or ClamPulldownMenu *menu =new ClamPulldownMenu(name, parent, data, menuData);)

If the 2nd method is used, the menu system is installed upon instantiation. However, if the fIrst method is used, it
is still n~essary to fill the ClamPulldown Menu. Use the method

ClamPulldownMenu::fillMenuO

This method takes exactly the same parameters as the non-default ClamPulldownMenu constructor. This two step
method provides some flexibility in declaring ClamPulldownMenu variables.

To free memory used by a ClamPulldownMenu obj~t, simply delete the object. Memory used by the widgets that
comprise the menu system will be returned when the application destroys the widget that is the parent of the menu
system.

2.6 ClamPuIlDownMenu Methods

Note: Many of the functions below take an argument which is an array ofstrings which indicates a menu entry
or submenu on which to perform some action. For a description of how this string array is used, see section
2.4.1.

void fiUMenu(const char *name, const Widget par, const void *data, const ClamMenuData menuDataD)

Fills a menu that was instantiated without parameters. name is the name of the ClamPulldownMenu
object (and is actually the name of the menubar Widget). par is the Widget that is the parent of the menu
system. data is the default value to be passed as the client_data to the callback function that is called
when a menu item is activated. mData is the array of data which sp~ifies the structure of the menu
system (see s~tion 2.3).

int fiUSubmenu(const char *namesD, const ClamMenuData menuData[], const void *data)

Creates a submenu offof the cascade button designated by the array names. The names array is a NULL
terminated array ofstrings which contains the series ofcascade button names which leads to the cascade
button to which the submenu is to be attached. menuData is the array which defines the buttons in the
submenu. data is the default data value which will be passed to the callback routines assigned to the menu
buttons in this submenu. Returns ERROR if the cascade button indicated by the names array does not
exist, NO_ERROR otherwise.

int enablePad(const char *pad, const EnableDisable flag)

Based on the value off/ag, Enables or disables the menu pad named pad. Returns ERROR ifpad is not
found, NO_ERROR otherwise.

int enableEntry(const char *entry[] , const EnableDisable flag)

Peter Wagner CLAM Programmer's Manual Page 4

Based on the value off/ag, Enables or disables the menu entry indicated by the NULL terminated string
array entry. Returns ERROR if entry is not found, NO_ERROR otherwise.

int removePad(const char *pad)

Removes the menu pad named pad. Returns ERROR ifpad is not found, NO_ERROR otherwise.

void removePadsO

Removes all menu pads from the menu bar.

int removeEntry(const char *entry[])

Removes the menu entry specified by the string array entry. Returns ERROR if entry is not found,
NO_ERROR otherwise.

int removeEntries(const char *submenu[])

Remove all entries from the menu indicated by the string array submenu. Returns ERROR if submenu
is not found, NO_ERROR otherwise.

int setToggle(const char *entryD, const SelectDeselect flag)

Based on the value off/ag, sets or unsets a the toggle button indicated by the entry array. Returns
ERROR if entry is not found, NO_ERROR otherwise.

int setRadioBebavior(const char *submenu[l, const Boolean flag)

Based on the value off/ag, sets or unsets radio behavior for the menu indicated by the submenu array. A
menu which has radio behavior set will enforce the rule that only one toggle button on the menu can be
set at any given time. Returns ERROR if submenu is not found, NO_ERROR otherwise.

int getSize(const char *submenu[])

Returns the number of entries in the menu indicated by the submenu array. Returns ERROR if submenu
is not found, NO_ERROR otherwise.

WidgetList getEntries(const char *submenu[])

Returns a WidgetList containing the Widget id's of all of the entries in the menu specified by submenu.
Returns NULL if submenu is not found.

Widget getWidget(const char*entry[])

Returns the Widget pointer of the menu entry specified by the entry array. Returns NULL if entry is not
found.

Widget getPad(const char*pad)

Returns the Widget pointer of the menu pad specified by pad.

void addPad(const ClamMenuData menuData[l, const char *after, const void *data)

Adds a menu to the top level of the menu system. The menuData array defines the menu that is to be
added. The first record in the menuData array must be designated CLAM_PSTATE_MENU. The name
indicated in the first record will be the name of the new menu pad. The rest of the records follow the
format outlined in section 2.4.1. The after parameter is the name of the existing menu pad after which
the new pad is to be added. Ifafter is NULL, the new menu pad is added first. data is the default value
to be passed as the client_data to the callback function that is called when a menu item on the new menu
is activated.

int addEntry(const CIarnMenuData entryData, const char *sub[], const char *after, const void *data)

Adds an entry described by entryData to the menu specified by the sub array. The new entry is added
after the entry specified by after. Ifafter is not found, the entry is placed first. data is the default value
to be passed as the client_data to the callback function for the new entry. Returns ERROR if sub is not
found, NO_ERROR otherwise.

Peter Wagner CLAM Programmer's Manual PageS

int removeCaUbacks(const char *entry[])

Removes all callbacks from the menu entry specified by the entry array. Returns ERROR if entry is not
found, NO_ERROR otherwise.

int removeCallback(const char *entry[l, BaumCallbackProc routine, void *data)

Removes one specific callback from the menu entry specified by the entry array. This function will
remove the callback which matches both the routine and the data parameters. Returns ERROR if entry
is not found, NO_ERROR otherwise.

int addEntryCallback(const char *entry[l, BaumCallbackProc routine, void *data)

Adds the callback function routine to the menu entry specified by the entry array. data is the value passed
to the callback function as the clienCdata. Returns ERROR ifentry is not found, NO_ERROR otherwise.

2.7 Using ClamPulldownMenu with Motif Code

A ClamPulidownMenu is a Motif RowColumn widget with the XmNrowColumnType resource set to
XmMENU_PULLDOWN. A ClamPulldownMenu instance can be passed to any function as a Widget, as the
operator 0 is defined to return a pointer to the underlying Motif widget The widget returned by the 0 operator on
a ClamPulldownMenu is the menubar widget of the menu system.

3. ClamPopupMenu
3.1 Overview

ClamPopupMenu provides a simple facility for creating popup menus in an application. A popup menu is a menu
which is not always visible (unlike a pulldown menu), but is brought up by an event, usually a certain key
sequence.

3.2 Parameters

ClamPopupMenu takes exactly the same parameters as ClamPullDownMenu. The only difference in the
construction ofa ClamPulldownMenu and a ClamPopupMenu is in the format of the ClamMenuData array. While
in a ClamPulldownMenu the data array can have several records designated as CLAM_PSTATE_MENU, a
ClamPopupMenu does not have any such records. The first record in the array is for the first button in the menu.

3.3 Using ClamPopupMenu

Again, look at ClamPulldownMenu for details on how to instantiate and fill a ClamPopupMenu. The methods for
both are the same.

The key to using ClamPopupMenus is to get them to pop up when desired. Popping ClamPopupMenus is done by
setting up a callback for the event which is to cause the menu to popup. Usually this event will be an input event
in a work window. The example program demonstrates the use ofan input callback in the main window work area
to bring up a popup menu when the middle mouse button is pressed.

Within the callback function there are two ways to bring up a ClamPopupMenu. If the menu is already defined, it
is only necessary to call the ClamPopdownMenu::manageO method. This method will bring the menu up, and
once the user makes a selection for the menu or clicks outside of the menu with the right mouse button, the menu
will automatically pop down (be unmanagedO). In order to call the manageQ method, it is necessary to have a
pointer to the ClamPopdownMenu object. This pointer should be passed to the callback function via the
clienCdata. Alternatively, the ClamPopupMenu object can be declared so that it is in the scope of the callback
function (i.e. global).

The first method of bringing up a ClamPopupMenu assumes that the menu has already been instantiated at the
time of the event. It is also possible to instantiate and manage the ClamPopupMenu all within the callback
function. However, for performance reasons, this method is not recommended.

To remove a ClamPopupMenu from the system, call ClamPopupMenu::destroyO (inherited from

BaumRowColumnWidget) before deleting the ClamPopupMenu object.

Peter Wagner CLAM Programmer's Manual Page 6

3.4 ClamPopupMenu Methods

int fiUPopupMenu(const char *, const Widget, const void *, const ClamMenuData [], const int)

See ClamPulldownMenu::fIlIMenu.

int addPopupEntry(const ClamMenuData menuEntry, const void *data, const char *after)

Adds a new entry to the popup menu. Entry is defined by data in menuEntry. data is the default value to
be passed as the client_data to the callback function for the new entry. after is the name of the menu
button after which the new entry is to be added. Ifafter is not found, the entry is placed fIrst, and the
function returns ERROR. otherwise the function returns NO_ERROR.

int enableEntry(const char *entry, const EnableDisable flag)

Based on the value ofjlag, Enables or disables the menu entry named entry. Returns ERROR if entry is
not found, NO_ERROR otherwise.

int setToggle(const char *entry, const SelectDeselect flag)

Based on the value ofjlag, sets or unsets a the toggle button entry. Returns ERROR if entry is not found,
NO_ERROR otherwise.

int removeEntry(const char *entry)

Removes the menu entry entry. Returns ERROR if entry is not found, NO_ERROR otherwise.

int fiUSubmenu(const char *entry, const ClamMenuData menuData[l, const void *data)

Creates a submenu offof the cascade button designated by entry. data is the default data value which will
be passed to the callback routines assigned to the menu buttons in this submenu. Returns ERROR if the
cascade button entry does not exist, NO_ERROR otherwise.

Widget getWidget(const char *entry)

Returns the Widget id of the menu entry specified by entry. Returns NULL if entry is not found.

int removeEntriesO

Removes all entries from the menu.

int removeCallbacks(const char *entry)

Removes all callbacks from the menu entry specified by entry. Returns ERROR if entry is not found,
NO_ERROR otherwise.

int removeCaliback(const char *entry, BaumCallbackProc routine, void *data);

Removes one specific callback from the menu entry specified by entry. This function will remove the
callback which matches both the routine and the data parameters. Returns ERROR if entry is not found,
NO_ERROR otherwise.

int addEntryCaliback(const char *entry, BaumCallbackProc routine, void *data)

Adds the callback function routine to the menu entry specified by entry. data is the value passed to the
callback function as the client_data. Returns ERROR if entry is not found, NO_ERROR otherwise.

int getSizeO

Returns the number of entries in the menu.

WidgetList getEntriesO

Returns a WidgetList containing the Widget id's of all of the entries in the menu.

3.5 Using ClamPopupMenu with Motif Code

A ClamPopupMenu is a Motif RowColumn widget with the XmNrowColumnType resource set to
XmMENU_POPUP. A ClamPopupMenu instance can be passed to any function as a Widget, as the operator 0 is
defined to return a pointer to the underlying Motif widget. The widget returned by the 0 operator on a

Peter Wagner CLAM Programmer's Manual Page 7

ClamPopupMenu is the RowColumn widget that contains the menu options.

4. ClamPanel

4.1 Overview

A ClamPanel is a window of buttons that resizes itself "intelligently", i.e. it chooses the best arrangement of
buttons based on the size of the buttons and the size of the window. Any number of push and toggle buttons can
comprise a ClamPanei. When a ClamPanel is initially realized, all buttons assume the size of the largest button
within the panel. When a ClamPanel is resized, the buttons will shrink if necessary and will expand either 1) back
to the original size but no larger or 2) beyond the original size so that all buttons are always touching. The button
expansion behavior is set when the ClamPanel is created. It is also possible for the programmer to set the preferred
button size.

4.2 Parameters

ClamPanel has two constructors (besides the copy constructor). The ftrst takes no arguments and thus allows a
default declaration of a ClamPanel object:

ClamPanel menu;

The second constructor takes six arguments:

ClamPanel(const char *, const Widget, const ClamPanelBtn D, const void *,

const CLAM_PANEL_OPTIONS, const ClamShellType);

The frrst argument is the name of the panel. This string will be the name of the form widget that manages the
buttons. This name will be used to reference menu widgets when setting resources in a resource fIle.

The second argument is the widget which is the parent of the ClamPanel. In a typical scenario, this will probably
be the Main Window widget which serves as the main window of the application or the Top Level Shell widget
which is the parent of the Main Window widget The example programs demonstrate a ClamPanel parented in this
fashion.

The third argument is the ClamPanelBtn array. This array defmes the panel buttons and contains an entry for every
button in the panel. The data structure ClamPanelBtn is described in detail in the next section.

The fourth argument is the default data value which will be passed to the callback routines assigned to the panel
buttons. This value will be overridden for a given panel button callback if a data value is provided for that button
in the ClamPanelBtn record which defines the button (see below). The intention of this value is to provide an easy
way to designate a common data value for all panel button callbacks.

The ftfth argument is a bit fteld that holds the values for several ClamPanel parameters that affect the behavior/
look of all the buttons in the panel. Any or all of the below values can be OR'd together in this bit fteld:

const int CLAM_PANEL_PUSH =1; Indicates that all buttons are push buttons
const int CLAM_PANEL_TOGGLE =2; Indicates that all buttons are toggle buttons
const int CLAM_PANEL_BUTTON_BORDER =4; Indicates that a border is to surround all buttons
const int CLAM_PANEL_BUTTON_NORESIZE =8; Indicates that buttons are not to expand beyond

original size

The sixth argument indicates the type of shell that is to hold the ClamPanel. The options are:

SHELL_DIALOG

SHELL_TOP_LEVEL

SHELL_APPLICATION

SHELL_NONE

The choice of shell is a subtle issue. Ifa title is not required on the ClamPanel window, choose SHELL_DIALOG.
If a title is required, one of the other shell types if appropriate. Consult a manual which describes shell widget
types for help in making this decision.

4.3 ClamPanel Data Structure

Peter Wagner CLAM Programmer's Manual Page 8

The ClamPanelBm structure is the same as the ClamMenuData structure only without the state field:

typedef struct ClamPanelBtn {char *name;
char *pixmap;
char *selectPixmap;
void (*routine)(Widget, void *, void *);
void *data;}

The name entry is the name for the push or toggle button widget. This name will be used when referencing a
particular button in a resource ftle. name is also the text that will appear in the button if a pixmap is not specified.
Setting name to 0 serves to terminate the ClamPanelBm array. For example, a panel that contains four buttons will
have a ClamPanelBm array in which the fifth record has name set to 0, thereby indicating to ClamPanel that the
button array ends after the fourth button.

The pixmap entry is the name of the pixmap that is to be displayed in the button. If a pixmap is not to be displayed,
the pixmap entry must be set to O.

The selectPixmap entry is only applicable to toggle buttons. It is the pixmap that is to be displayed when the toggle
button is selected. If a select pixmap is not used, selectPixmap must be set to O.

The routine entry is the callback routine that will be called when the user presses the button.

The data entry is the data that will be passed to the above callback function. If this entry is zero, the default data
passed to the ClamPanel constructor (or ftllPanel method) will be passed to the callback function.

4.4 Using ClamPanel

Two steps are required before a ClamPanel can be created. First, the widget which is to be the parent of the
ClamPanel must be created (in turn there are several things that must be done before the menu's parent widget is
created - open the display, create the top level shell widget, etc. - see the example programs). This widget will
probably be a Motif MainWindow widget or a Top Level Shell widget. Second, an array of ClamPanelBtn
structures must be filled with the appropriate data to create the desired ClamPanel.

Once the above tasks are accomplished, the ClamPanel can be created. A ClamPanel is created in one of two ways,
depending on the method used for intantiation:

1) ClamPanel panel;
(or ClamPanel *panel =new ClamPanel;)

2) ClamPanel panel(name, parent, panelData. data, options, shellType);
(or ClamPanel *panel = new ClamPanel(name, parent, panelData, data, options, shellType);)

Note that it is not necessary to specify a shellType parameter. If no shellType is specified, the shell type will
default to SHELL_DIALOG.

If the 2nd method is used, the ClamPanel is created upon instantiation. However, ifthe fust method is used, it is
still necessary to fill the ClamPanel. Use the method

ClamPanel::ftllPaneIO

This method takes exactly the same parameters as the non-default ClamPanel constructor. This two step method
allows some flexibility in declaring ClamPanel variables.

Once a panel has been created, it is still necessary to pop it up in order to make it visible. Popping up a panel is
accomplished by calling the method ClamPanel::popUpO. Call ClamPanel::popDown to make the panel invisible.
Note that calling ClamPanel::popDown does not destroy the panel- ClamPanel::popUp() can be called to make it
visible again.

To remove a ClamPanel from the system, call ClamPanel::destroy() (inherited from BaumFormWidget) before
deleting the ClamPanel object.

4.5 ClamPanel Methods

void fdlPanel - see sections 4.2 and 4.4.

Peter Wagner CLAM Programmer's Manual Page 9

void setButtonSize(const int width, const int height)

Only applies if panel is designated PANEL_BUTION_NORESIZE - Sets the button size for all buttons
in the panel. The size set is the maximum size for the buttons. This size will only be realized at the time
of the call if the panel is large enough to accomodate all of the buttons at this size. Otherwise, this size
will be applied as the maximum size that the buttons can become when the panel is enlarged.

void size(int width, int height)

Sets the size of the panel to width x height.

void setPlace(const int x, const int y)

Positions the panel at the coordinates (x, y), relative to the upper left comer of the screen.

void getPlace(int& x, int& y)

Returns the position of the panel in the parameters x and y.

void addButton(const ClamPanelBtn btn, char *name, void *data, const CLAM_PANEL_OPTIONS opts)

Adds a button to the panel. name is the name of the new button (to be referenced in the resource file). btn
defines the new button. data is the value that will be passed to the button's callback routine as the
clienCdata. opts detemine whether the button is a push or toggle button and whether or not the new
button has a border. Note that by varying opts it is possible to have different button types within a panel.
It is not possible to create different button types without using this function.

Widget getButton(const char *name)

Returns the Widget ill of the button named name.

int removeButton(const char *)

Removes the button named name from the panel. Returns ERROR if the button named name is not
found, NO_ERROR otherwise.

int setToggle(const char *name, const SelectDeselect flag)

Depending on the value off/ag, sets or unsets the toggle button named name. Returns ERROR if the
button named name is not found, NO_ERROR otherwise.

int resetPanel(const ClamPanelBtn panelDataD, const void *data, const CLAM_PANEL_OPTIONS opts)

Removes all buttons in the panel and creates new buttons based on the data in panelData. data and opts
are used as in the constructor and fillMenuO functions. Returns ERROR if the panel has been instantiated
but not yet ftlled, NO_ERROR otherwise.

void popUpO

Pops the panel up - makes it visible.

void popDownO

Pops the panel down - makes it invisible.

4.6 Using ClamPanel with Motif Code

A ClamPanel is a Motif Form widget containing a set of buttons. A ClamPanel instance can be passed to any
function as a Widget, as the operator 0 is defined to return a pointer to the underlying Motif widget. The widget
returned by the 0 operator on a ClamPanel is the Form widget that contains the buttons. The shell widget that
contains the form can be determined by calling XtParentO on the ClamPanel instance (or by calling
<ClamPanel instance>.parentO - see section 6, Baum, for an explanation of Baum methods available for Clam
objects).

5. ClamDialog

5.1 Overview

Peter Wagner CLAM Programmer's Manual Page 10

CIamDialog provides a formatted string interface for widget layout. A ClamDialog is created with a string that
contains special codes and data which specify which widgets to create and where. ClamDialog has been designed
to provide the flexibility to produce virtually any dialog box. In addition, CIamDialog can be used to layout
widgets within any Motif manager widget by specifying that the dialog is not to create its own shell (shellType of
SHELL_NONE) but is to layout the widgets within the parent widget.

Note that in the sections below, the terms widget and region are used to indicate different entities. A region is an
area that contains widgets. A widget is anyone of the various GUI components that CLAM supports. However,
this difference is only conceptual. A region, technically speaking, is a MotifForm widget. The discussions below,
however, assume that regions and widgets are different types of objects.

5.2 Parameters
CIamDialog has three constructors (besides the copy constructor). The flrst takes no arguments and thus allows a
default declaration of a ClamDialog object:

CIamDialog dialog;

The other two constructors take nine arguments:

CIamDialog(const char *, const Widget, const char *, const short, const ClamShellType, const Boolean, const
Boolean, const XtCallbackProc, const void *)

CIamDialog(const char *,const Widget, const char **, const short, const ClamShellType, const Boolean,
const Boolean, const XtCallbackProc, const void *)

The only difference between the two constructors is in the third argument, char * vs. char **.
The flrst argument is the name of the dialog. This string will be the name of the shell widget that contains the
dialog and also the name of the outermost form widget in the dialog. This name will be used to reference dialog
widgets when setting resources in a resource me.

The second argument is the Widget which is the parent of the dialog system. In a typical scenario, this will be the
MainWindow widget which serves as the main window of an application. However, just about any widget can
serve as the parent of a dialog. Look at the example programs to see a couple of ways in which dialogs can be
parented.

The third argument is the format string which defmes the widgets of the dialog. Note that this variable can be either
a char * or a char **. CIamDialog assumes that a char ** format string is a NULL terminated array of strings. If
a char ** format string is passed to ClamDialog, the string array is simply concatenated into a single char *before
the format string is parsed. Thus the string can be broken up into any set of strings that makes sense to the
programmer.

See section 5.3 for a detailed description of the format codes.

The fourth argument is the modality of the dialog. This setting affects whether other windows are active while the
dialog is up. Modality can be set to

XmDIALOG_MODELESS
XmDIALOG_PRIMARAY_APPLICATION_MODAL
XmDIALOG_FULL_APPLICATION_MODAL
XmDIALOG_SYSTEM_MODAL

See a Motif manual for a description of these settings.

The flfth argument is the shell type for the dialog. This setting determines the type of shell that holds the dialog.
Shell type settings can be

SHELL_DIALOG creates DialogShell
SHELL_TOP_LEVEL creates TopLevelShell
SHELL_APPLICATION creates ApplicationShell
SHELL_NONE no shell created, widgets laid out in parent window

See a Motif manual for a description of these shell types. SHELL_NONE allows ClamDialog to be used to layout

Peter Wagner CLAM Programmer's Manual Page 11

application windows that are not dialog boxes.

The sixth argument is a Boolean which determines whether the dialog follows its parent window when the parent
window is moved.

The seventh argument is a Boolean which determines whether the dialog is raised when its parent is raised.

The eighth argument is the callback routine that will be called whenever the user changes something in the dialog.
This callback will be passed the last argument (see below) as the clienCdata except when the widget is an Option
Menu. In the case of Option Menus, the client_data to the callback is the button number of the button selected
from the menu. To identify which widget the user has changed and thus determine the appropriate callback action,
the programmer must check the name of the widget passed to the callback function. The widget's name is
determined by calling the Xt function XtName(Widget w). See the example programs for details on how this is
function is used in this context.

The last argument is the data that will be passed to the dialog's callback routine as the client_data.

5.3 Dialog Format Codes

A ClamDialog is defmed by a string which contains special codes which designate widget types and parameters.
All codes begin with a '%'. Widget and region codes are capital letters (except for the separator widget which has
a code of %-) Widget and region parameter codes are all lower case letters.

Note that ClamDialogs are region based. That is, the composition of a dialog is broken up into regions to simplify
widget layout (see section 504.3). A ClamDialog is composed ofone or more regions. Regions can nest, thus every
region that is specified in the dialog string must have a matching end region marker. The format string must begin
with a '%R' and end with a '%E'.

5.3.1 Widget & Region Codes

%R Start Region
%E End Region
%L Label
%P Push Button
%G Toggle Button
%D Drawn Button
%0 Option Menu
%S Scrolled List
%T Text
%F Text Field
%C Scale
%H Separator
%A Drawing Area
%M Command Area
%B Scroll Bar
%W Arrow Button
%U Cascade Button
%1 File Selection Box

5.3.2 Codes for AU Widget Types

The following can be specified for all widgets:

%p position - followd by 0-4, if %p not indicated position = 0 (see section SA)
0: BELOW
1: FIRST
2: TO_THE_RIGHT
3: WITHIN_BELOW
4: WITHIN_TO_THE_RIGHT

%h horizontal tabs - followed by # (see section 5.5)

Peter Wagner CLAM Programmer's Manual Page 12

%v vertical tabs - followed by # (see section 5.5)
%n name - followed by string, if not present widget is given name of "NoName"
%s stretch horizontally - if indicated stretch to the right; else don't stretch (see section 5.5)
%j stretch vertically - if indicated stretch the bottom, else don't stretch (see section 5.5)
%f don't attach left side of widget - if indicated override normal left attachment (see section 5.5)
%k don't attach top of widget - if indicated override normal top attachment (see section 5.5)
%< attach left widget's right side - if indicated (see section 5.5)
%" attach top widget's bottom side - if indicated (see section 5.5)
%z make widget insensitive - if indicated widget is insensitive, else widget is sensitive

5.3.3 Codes for Region (%R)

%b	 border type - followd by 0-4, if %b not indicated border type =0
These correspond to the Motif borderType resource for Frame widgets
0: XmNO_LINE	 '
1: XmSHADOW_IN
2: XmSHADOW_OUT
3: XmSHADOW_ETCHED_IN
4:XmSHADOW_ETCHED_OUT

%r radioBehavior - if indicated yes, else no (see section 5.5)

%m menu - if indicated, create a RowColumn manager for pulldown menus (see section 5.5)

%e spread - if indicated yes, else no (see section 5.5)

%c number of Columns for RowColumn region - followed by #, 1 if not indicated.

%t type - if indicated XmPanedWindow, XmForm if not indicated (default) or XmRowColumn if

other codes requiring XmRowColumn manager are preseent (%r, %m). Note that topmost
region cannot be an XmPanedWindow. Enclose entire dialog in an additional region and make
the second region an XmPanedWindow to get desired behavior (see section 5.5).

%q	 packing - 0-3, if not indicated XmNO_PACKING (see section 5.5)
These correspond to the Motif packing resource for RowColumn widgets
0: XmNO_PACKING
1: XmPACK_COLUM
2: XmPACK_TIGHT
3: XmPACK_NONE

5.3.4 Codes for Label and its Descendants (Push Button, Toggle Button, Cascade Button, Option Menu)

These are for widgets that have a label:

%1 label string - followed by a string
%a alignment - followed by 0-2, if not indicated alignment = 0

These correspond to the Motif alignment resource for Label widgets
0: XmALIGNMENT_BEGINNING
1: XmALIGNMENT_MIDDLE
2: XmALIGNMENT_END

%x	 pix map name - followed by a string which is the name of the file containing the pix map to be
displayed in the label.

5.3.5 Codes for Label Only

%d default - if indicated the button will be shown as the default

5.3.6 Codes for Toggle Button Only

%y set - if indicated the button will be set when created
%m select pix map name - followed by a string which is the name of the file containing the pix map

pixmap to displayed when the toggle button is set

5.3.7 Codes for Cascade Button Only

Peter Wagner CLAM Programmer's Manual	 Page 13

None

5.3.8 Codes for Drawn Button

%w width - followed by a number which is the width in pixels

%g height - followed by a number which is the height in pixels

5.3.9 Codes for Option Menu

%0 options - followed by a string of options, comma delimited (Ex. %oone,two,three)

5.3.10 Codes for Scrolled List

%i items - followed by a string of items, comma delimited (Ex. %ione,two,three)

%u number of items in list - followed by #

%b number of visible items - followed by #

%e selection policy - followed by 0-3, if %e not indicated policy =Xm_SINGLE_SELECT

These correspond to the Motif selectionPolicy resource for List widgets
0: XmSINGLE_SELECT
1: XmBROWSE_SELECT
2: XmMULTlPLE_SELECT
3: XmEXTENDED_SELECT

5.3.11 Codes for Text and TextField

%1 contents - followed by string to be displayed in text widget

%c number of columns - followed by # (width in characters of text widget)

%r number of rows - followed by #, 1 if not indicated

%b scroll bars - display scroll bars if this option indicated

5.3.12 Codes for Scale

%m minimum value on scale - followed by #, 0 if not specified

%u maximum value on scale - followed by #, 100 if not specified

%i initial value - followed by #, minimum if not specified

%0 orientation - vertical if specified, horizontal by default

%w show value - show value if specified, don't show value if not specified

5.3.13 Codes for Separator

%0 orientation - vertical if specified, horizontal by default

%t type - followed by 0-6, if not indicated type = XmSINGLE_LINE

These correspond to the Motif separatorType resource for Separator widgets

0: XmSHADOW_ETCHED_IN
1: XmSHADOW_ETCHED_OUT
2: XmSINGLE_LINE
3: XmDOUBLE_LINE
4: XmSINGLE_DASHED_LINE
5: XmDOUBLE_DASHED_LINE
6: XmNO_LINE

%g length in tabs - followed by #, if not specified separator is stretched across its parent form
%w width in pixels - followed by #, if the separator doesn't show up, this parameter may not have

been specified.

5.3.14 Codes for Drawing Area

%w width in pixels - followed by #

%g height in pixels - followed by #

5.3.15 Codes for Command Area

%w width in pixels - followed by #

%g height in pixels - followed by #

Peter Wagner CLAM Programmer's Manual Page 14

%x max # of history items - followed by #

%i # history items visible - followed by #

%m prompt - followed by string, no prompt if not specified

5.3.16 Codes for ScrollBar

%w width in pixels - followed by #

%g height in pixels - followed by #

%0 orientation - vertical if specified, horizontal by default

5.3.17 Codes for Arrow Button

%d	 direction - followed by 0-3, if not indicated direction =XmARROW_UP
These correspond to the Motif arrowDirection resource for ArrowButton widgets
0: XmARROW_UP

I:XmARROW_DOWN

2:XmARROW_LEFT

3:XmARROW_RIGHT

5.3.18 Codes for File Selection Box

None

5.3.19 Special Codes

%% '%' in string

%, ',' in item within list

%. ends a label or list (so there can be white space following)

Use '%%' to indicate a label that contains a percent sign.

Use '%,' to indicate a comma within an item within a list.

Use '%.' to terminate a label that is followed by white space.

5.4 Defining Dialogs

5.4.1 Defining Widgets

Defining individual widgets is simple - just follow the codes outlined in section 5.3. More involved is the
process of laying out widgets and regions.

5.4.2 Widget Layout

ClamDialog uses a very simple method of laying out widgets. A widget can be placed either FIRST in its
region (need not be specified, the parser figures out whether a widget or region is FIRST), TO_THE_RIGHT
of the previous widget, or BELOW the widgets in the current row of widgets.

FIRST

Region's Form Widget

Attached to Form

Peter Wagner CLAM Programmer's Manual	 Page 15

TO_THE_RIGHT

FIRST

Left side is attached to previous
widget's right side, top is ..- Region's Form Widget
attached to whatever the previ
ous widgets top is attached to

BELOW

IFIRST II TTR II TTR II TTR I
IBELOW I

..- Region's Form Widget

A widget placed BELOW is attached on the top to the fIrst widget in the previous row and on the
left to whatever the fIrst widget in the previous row is attached to on the left.

This simple layout scheme does not in itself provide the mechanism whereby any conceivable dialog can
formed. However, by breaking dialogs down into simple regions, and placing the regions with a mechanism
similar to that used for laying out widgets (the same three options plus two options unique to regions,
WlTHIN_BELOW and WlTIllN_TO_THE_RIGHT), virtually any dialog layout can be achieved.

5.4.3 Region Layout

As indicated above, regions are layed out according to rules that are very similar to those used for widgets.
Three options are the same - FIRST, BELOW, and TO_THE_RIGHT. Note that when these options are used,
regions are placed relative to other regions, not relative to individual widgets.

The two options specifIc to regions are WlTIllN_BELOW and WlTHIN_TO_THE_RIGHT. These options
take care of situations where a region is to be placed relative to a widget, not relative to another region. The
rules for these options are identical to their widget counterparts explained in section 5.4.2.

Most complex dialogs can be broken up into regions in a variety of ways. Usually a solution is fairly
straightforward. The example programs demonstrate several dialog layouts.

A dialog format string always starts with a %R and ends with a %E. In addition, special region formatting
codes (%s, %e, %j) cannot be used on the top level region. If these options are needed on the top level, enclose
the entire dialog string in another region. ("%R%R%s%e%j ... %E%E").

5.5 Special Features

There are a number of format codes that affect the layout of widgets and regions. There are also some global
constants that can determine widget spacing. Below is a more detailed explanation of these flags than is found in
section 5.3, and an explanation of the format constants.

5.5.1 Special Codes for All Widget Types

Non-attachment codes %f, %k: These codes indicate that the normal left (%f) and top (%k) attachments
are not to be performed. This allows a widget's placement to be completely under the control of the resource
fIle. It is also common for these codes to be used in conjunction with the stretch codes %s and %j, and the
special attachment codes %" and %< (see below), if a widget is to move instead of stretch when a window is
resized.

Peter Wagner CLAM Programmer's Manual Page 16

Attachment codes %s, %j: (Note that this applies to both Regions and Widgets) By default, a widget's left
and top sides are attached to the widget(s) it is adjacent to. The right and bottom sides are not attached to
anything. If %s is specified, the widget's right side is attached to the Ponn widget that is the widget's parent.
%j indicates that the widget's bottom side is to be attached to the Ponn widget that is the widget's parent.
These parameters greatly facilitate lining up widgets and sensible resize behavior. Note that if a widget is not
stretching to the extent that is expected, it's parent probably needs to be stretched itself. Check to see that the
parent Ponn extends where expected. It is often necessary to specify these parameters for both the widget and
its parent.

Attachment codes % /I, %<: These codes can be helpful when designing a fonnat which is to resize correctly
when its shell is resized. If the current widget is to remain the same size, but the adjacent widget(s) is/are to
respond to a shell resize, acornbination of these attachment codes with the non-attachment codes can be used
to specify this behavior. This situation can occur when the widget to be resized is not adjacent to the edge of
the fonn, and the widget which is to remain the same size is.

%" indicates that the bottom side of the widget above the current widget is to be attached to the top of the
current widget. This flag is used in conjunction with the non-attachment code %k, as it doesn't make sense
to attach the top of one widget to the bottom of another widget and vice versa.

%< indicates that the right side of the widget to the left of the current widget is to be attached to the left of
the current widget. This flag is used in conjunction with the non-attachment flag %f.

Pads: There are several global constants that can be used to space widgets unifonnly. These constants and
their defaults are:

const short DIALOG_VERTICAL]AD = 0;

const short DlALOG_HORIZONTAL_PAD = 0;

const short DIALOG_REGION_HORIZONTAL_PAD =0;

const short DIALOG_REGION_VERTICAL_PAD =0;

When set to 0, these constants have no effect. When> 0, these constants detennine the left and top offsets for
widgets and regions, and the offsets cannot be overridden by resource file settings. The fIrst two constants
apply only to widgets, while the last two apply only to regions. By setting these greater than 0, one can achieve
unifonn spacing throughout the dialog. However, the flexibility provided by resource me settings is lost.

Tabs %h, %v: A widget or region does not have to be placed relative to its neighbors. An absolute position
can be set by using tabs. Both horizontal and vertical tabs can be set. The following constants detennine the
tab sizes:

const short DIALOG_VERTICAL_TAB = 5;

const short DlALOG_HORIZONTAL_TAB = 5;

const short DIALOG_REGION_VERTICAL_TAB = 5;

const shortDIALOG_REGION_HORIZONTAL_TAB = 5;

The frrst two constants apply only to widgets, while the the last two apply only to regions. The smaller the
tab sizes, the more exactly one can place widgets and regions.

5.5.2 Special Codes for Regions

Radio Behavior %r, %q: The %r flag automatically ensures that only one toggle button can be set in a
region. The %q flag can be used in conjunction with the %r flag. When the %r flag is specifled, the region's
manager widget is a RowColumn widget instead ofa Ponn widget. The %q flag indicates what sort ofpacking
(see RowColumn packing resource) the RowColumn manager should use.

Menu Manager %m: If cascade buttons are to be used within the dialog for bringing up menus, the region
that contains the cascade button must be of type RowColumn and the rowColumnType resource must be set
to XmMENU_PULLDOWN. Specifying %m for the region causes a RowColumn manager of
XmMENU_PULLDOWN type to be created.

Spread %e: The spread flag %e indicates that the widgets within the region are to be arranged at even
intervals accross the region. This flag is usually used in conjunction with the %s flag to stretch the region

Peter Wagner CLAM Programmer's Manual Page 17

accross a certain area and to have the widgets within the region arranged at even intervals accross the region.
Only Label, Push Button, and Toggle Button widgets can be used inside a region with a spread designation.
Behavior is undefined if other widget types are included. Note that the constant

const short TIGHTNESS =10;

detennines how tightly the widgets are arranged. The greater the value of TIGHTNESS, the closer together
the widgets are placed.

Paned Window Manager %t: %t indicates the type of window manager to be used for a region. By default,
a Fonn widget is used as the manager. The %r and %m flags cause a RowColumn widget to be created as the
region manager. If the %t flag is present, the region manager created will be a PanedWindow widget. This
flag will most often be used for the main region of an application to allow resizing of regions via resize sashes.
Note that %t is incompatible with both %r and %m, and will override the expected behavior specified by %r
and %m.

5.6 Using ClamDialog

Before a dialog can be created, the widget which is to be the parent of the dialog, must be created (in turn there
are several things that must be done before the dialog's parent widget is created - open the display, create the top
level shell widget, etc. - see the example programs). Once the widget which is to be the dialog's parent exists, the
ClamDialog object can be created. A ClamDialog can be created in one of two ways, depending upon the method
used to instantiate:

1) ClamDialog dialog;
(or ClamDialog *dialog =new ClamDialog;)

2) ClamDialog dialog(name, parent, dialogString, modality. shellType, follow, raise, routine);
(or ClamDialog *dialog = new ClamDialog(name, parent, dialogString, modality, shellType,
follow, raise, routine);)

If the 2nd method is used, the dialog is created upon instantiation. However, if the first method is used, it is still
necessary to fill the ClamDialog. Use the method

ClamDialog::fillDialogO

This method takes exactly the same parameters as the non-default ClamDialog constructor. This two step method
allows some flexibility in declaring ClamDialog variables. Note that fillDialog will also accept a char * or a char
** fonnat string.

Once a dialog has been created, it is still necessary to pop it up in order to make it visible, unless it was created
with a shell type of SHELL_NONE (in which case it will come up as soon as it is filled). Popping up a dialog is
accomplished by calling the method ClamDialog::popUpO. Call ClamDialog::popDown to make the dialog
invisible. Note that calling ClamDialog::popDown does not destroy the dialog - ClamDialog::popUpO can be
called to make it visible again. Note that calling ClamDialog::popUpO or ClamDialog::popDownO on a dialog
with shell type of SHELL_NONE results in a fatal error.

To remove a ClamDialog from the system. call ClamDialog::destroyO (inherited from BaumFonnWidget) before
deleting the ClamDialog object.

5.7 ClamDialog Methods

int fiUDialogO - see sections 5.2 & 5.5.

Widget getWidget(char *name)

Returns the widget ID of the widget within the dialog named name. Returns NULL if named widget is
not found.

int removeWidget(char *name)

Removes the widget named name from the dialog. Returns ERROR if named widget is not found,
NO_ERROR otherwise.

int sensitizeWidget(char *name, const Boolean flag)

Peter Wagner CLAM Programmer's Manual Page 18

Sensitized/desensitizes widget named name based on the values off/ago Returns ERROR if named
widget is not found, NO_ERROR otherwise.

int addWidgetCaliback(char *name, const XtCallbackProc routine, void *data, char *callbackType)

Adds routine as a callback to the widget named name. data is the value passed as the client_data to the
callback. callbackType detennines the type of callback added to the widget ("valueChangedCallback",
"activateCallback", etc.). Returns ERROR if named widget is not found, NO_ERROR otherwise.

int removeWidgetCaUback(char *name, const XtCallbackProc routine, void *data, char*callbackType)

Removes the callback matching routine, data, and callbackType. Returns ERROR if named widget is not
found, NO_ERROR otherwise.

int removeWidgetCaUbacks(char *name, char *callbackType)

Removes all callbacks of type callbackType ("activateCallback", "valueChangedCallback", etc.) for
named widget. Returns ERROR if named widget is not found, NO_ERROR otherwise.

void position(int x, int y)

Positions the upper left corner of the dialog box at coordinates (x, y).

void popUp(XtGrabKind grab)

Pops up the dialog. grab is usually XtGrabNone, but can also be XtGrabNonexclusive or
XtGrabExclusive. This setting affects the modality of the dialog. See an Xt Intrinsics manual for more
infonnation on XtGrabKind.

void popDownO

Pops down the dialog.

5.8 Using ClarnDialog with Motif Code

A ClamDialog is a Motif DialogSheU, ApplicationSheU, TopLevelShell, or manager widget (depending on shell
type parameter) which contains first a Fonn widget and then some number of other widgets depending on the
dialog defmition. Every region in a ClamDialog corresponds to a Fonn, PanedWindow, or RowColumn widget.
If a border has been specified for a region, that region will be contained in a Frame widget which has the same
name as the region. The individual items within a ClamDialog are each separate widgets which are attached to
each other or to their enclosing fonn. Use getWidgetO to get the widget ID of an item within a ClamDialog.

A ClamDialog instance can be passed to any function as a Widget, as the operator 0 is defined to return a pointer
to the underlying Motif Widget. The widget returned by the 0 operator on a ClamDialog is the topmost Fonn
within the layout. The shell widget that contains the fonn (assuming shell type is not SHELL_NONE) can be
detennined by calling XtParentO on the ClamDialog instance (or by calling <ClamDialog instance>.parentO - see
section 6 and the Baum manual for an explanation ofBaum methods available for Clam objects).

6.BAUM
6.1 Overview

BAUM (Brown Augmented Utilities for Motif) is a set of C++ wrappers for Motif widgets. BAUM facilitates
Motif programming in C++ by providing methods for setting and getting all resources, creating and managing
widgets, and common Xt functions. CLAM's internals rely heavily on BAUM. See the BAUM documentation for
details on how to use the BAUM class library.

6.2 Using BAUM with CLAM

It is helpful to recognize that all CLAM classes inherit from some BAUM class. Therefore, BAUM methods can
be called with CLAM objects.

class ClamPulldownMenu : public BaumRowColumnWidget

class ClamPopupMenu : public ClamMenu

class ClamMenu : BaumRowColumnWidget

Peter Wagner CLAM Programmer's Manual Page 19

class ClamPanel: public BaumFonnWidget
class ClamDialog : public BaumFonnWidget

7. Callback Functions
7.1 Overview

All of the work done by a Motif application is accomplished through callback functions. The interface is set up to
process events (button clicks, key presses, mouse movement, time passage, etc.) and to translate these events into
function calls. Once the interface is set up, the Xt Intrinsics takes over. The program sits in a simple loop waiting
for events to happen. When an event happens, the appropriate callback is executed, passing control from the user
interface to the application's routines.

The above model, that of Event Driven Programming, places certain restrictions on the way a program must
operate. For example, a callback function should execute very quickly (approximately one second or less) in order
for events to be processed smoothly (there are several ways to handle a situation where there is more work to be
done than can be accomplished in under a second. See MotifProgramming Manual by Dan Heller, O'Reilly &
Associates, Inc., Chapter 20 - "Advanced Dialog Programming"). It is recommended that one read about events
and callbacks in the Xt Intrinsics manual and O'Reilly Volume 1, Xlib Programming Manual before developing
a system using Clam.

The following sections assume that the programmer is familiar with callback semantics.

7.2 CLAM Callbacks

The callback routines used by CLAM objects are of type XtCallbackProc. Note that a function of type
BaumCallbackProc is exactly the same as one of type XtCallbackProc, however, these functions cannot be used
interchangeably without casting, since the C++ compiler will not accept an XtPointer as a void *, even though
they are exactly the same thing (typedef void * XtPointer;). A simple cast of BaumCallbackProc to
XtCallbackProc or vice versa gets around this problem.

CLAM assigns callback functions to widgets as indicated in sections 7.3 - 7.5. Also, all CLAM classes have
routines for adding additional callbacks to any widget and for removing callbacks.

7.3 ClamPulldownMenu & ClamPopupMenu Callback Types

The callback routine associated with a menu button is assigned to a push button as the activateCallback and to a
toggle button as the valueChange callback. Cascade buttons (submenu buttons) cannot have callbacks.

7.4 ClamPanel Callback Types

Same as for menus.

7.5 ClamDialog Callbacks

Dialog callbacks are always called with the name of the affected widget as the clienCdata. The name thus serves
to identify which of the widgets in the dialog has been changed. Many callbacks also contain important
infonnation about the user action in the calCdata. The data structure passed as the calCdata varies depending on
the type of callback. Consult the Motif and X manuals for infonnation on call_data structures.

The following list indicates how callbacks are assigned to each type of dialog widget:

• Label no callback
• Push Button activateCallback
• CascadeButton cascadingCallback
• Toggle Button valueChangedCallback
• Drawn Button inputCallback
• Arrow Button activateCallback
• Option Menu simpleCallback =activateCallback for each button in menu
• Scrolled List defaultActionCallback
• Text valueChangedCallback
• TextField valueChangedCallback

Peter Wagner CLAM Programmer's Manual Page 20

• Scale valueChangedCallback
• Separator no callback
• Drawing Area inputCallback
• Command commandEnteredCallback
• Scroll Bar valueChangedCallback
• File Selection Box okCallback

8. Using Resource Files

8.1 Overview

Every widget's behavior is determined by a setofparameters called resources. Typical resources are width, height,
background color, foreground color, etc. Resources can be set by the program, in which case they cannot be
changed at runtime, or there are several ways that resource values can be set at runtime. Consult an X reference
for further information on the resource database and establishing resource files.

It is the intention that CLAM be flexible yet also very easy to use. With that end in mind, a minimal number of
resources are hard coded in CLAM, allowing the programmer great flexibility in modifying the user interface
components that CLAM generates. Sections 8.4 - 8.6 describe which resources are hard coded in CLAM, and
certain important resouces that a programmer may well want to customize.

8.2 Establishing a Resource File

There are many ways to change an application's resources. The following set of suggestions is by no means an
exhaustive list.

1) If the Baum library is used, the BaumDisplay method BaumDisplay::resourceFile(<resource file name»
provides an easy way to indicate a resource file to be read when the program is executed.

2) Resources can be specified in the user's ~/.xdefaults (see section 8.3 for naming conventions).

3) Resources can be specified in a file in the users root directory that has the same name as the application's
top level shell widget.

8.3 Accessing a Widget's Resources

A particular widget is referenced by its name preceeded by the names of the widget's ancestors as the widget tree
is traversed up to the top level of the application. Names are separated by periods. A wildcard ,*, can be used to
replace any name or series of names. See the Motif manual for a complete list of resources for each Motif widget
type.

Example:	 Top level of application named "app"

Main Window widget of application named "main", parent is "app"

Dialog box of application named "dialog", parent is "main"

Outermost region of dialog named "regionO", parent is "dialog"

Push button widget in "regionO" named "pushl", parent is "regionO"

Push button widget in "regionO" named "push2", parent is "regionO"

The push button widget "push 1" can be referenced by the name

app.main.dialog.regionO.push1

If the foreground and background colors of the push button were to be set, the format would be:

app.main.dialog.regionO.pushl.foreground: <color for foreground>
app.main.dialog.regionO.pushl.background: <color for background>

It is not necessary to specify the complete name hierarchy when referencing a widget. Wildcards can replace one
or more names. The above could be shortened to:

*pushl.foreground:	 <color for foreground>
*pushl.background:	 <color for background>

If the foreground and background of all widgets in regionO were to be set, the format could be:

Peter Wagner CLAM Programmer's Manual	 Page 21

*regionO*foreground: <color for foreground>
*regionO*background: <color for background>

Note that without examining the CLAM code, it is not always possible to know the complete ancestor tree for a
given widget. Use wildcards to work around any unknowns in the widget tree.

Also note that widgets that have scrollbars (scrolled list and scrolled text) are actually contained inside an
additional widget, a container that holds the scrollbars and the text or list area The containing widget has the name
specified in the format string with the letters'SW' appended to the end. For example, if it were necessary to
specify the right attachment of a scrolled text widget named "scrolledText", one would reference

*scrolledTextSW*rightAttachment:

in the resource ftle.

8.4 ClamPulidownMenu & ClamPopupMenu Resource Notes

8.4.1 Hard Coded Resources

8.4.1.1 Pusb Button

• sensitive (if designated not sensitive)
• mnemonic (if mnemonic designated)
• labelType (if pixmap specified)
• labelPixmap (ifpixmap specified)

8.4.1.2 Toggle Button

Same as for push buttons plus:

• selectPixmap (if selectPixmap specified)
• visibleWhenOff
• indicatorType (if diamond shape designated)
• set (if designated as selected)

8.4.1.3 Cascade Button (Submenu button)

Same as for push buttons.

8.5 ClamPanel Resource Notes

8.5.1 Hard Coded Resources

8.5.1.1 Pusb Button

• labelType (if pixmap specified)
• labelPixmap (ifpixmap specified)

8.5.1.2 Toggle Button

Same as for push buttons plus:

• selectPixmap (if selectPixmap specified)

8.5.2 Recommended Resources to Cbange

8.5.2.1 Toggle Button

• indicatorOn (set to False to remove indicator from toggle button)

8.6 ClamDialog Resource Notes

8.6.1 Hard Coded Resources

A widgets left and top attachments are hardcoded unless the %f and %k parameters are specified. No other
resources are hardcoded unless a parameter is specified.

8.6.2 Recommended Resources to Cbange

There are any number of resources that can be changed to alter the appearance and behavior of the widgets in

Peter Wagner CLAM Programmer's Manual Page 22

a dialog box. However, there are two important resources that bear mention - lettOffset and topOffset.

The widgets within a ClamDialog are all attached on the top and left sides to another widget (unless %f and!
or %k is used). Thus all widgets are placed rather snugly inside the dialog box. Widgets can be moved from
the default position by adjusting the top and left offsets. Note that these offsets will not be affected by resource
me settings if they are being controlled by tabs, pads, or the spread parameter.

9. Problems? - Common Pitfalls
9.1 Menus

• Check the ClamMenuData array! Make sure that all fields in the structure have been initialized.

9.2 Panels

• Check the ClamPanelBtn array! Make sure that all fields in the structure have been initialized.

9.3 Dialogs

• Check the format string for inconsistencies!

• Can't set resources? Check that names followed by white space are terminated with '%.'.

• 'Stretched' widgets not stretching? Perhaps the containing region also needs to stretch.

10. Known Bugs
10.1 Menus

10.2 Panels

10.2.1 Resize: ClamPanels are sometimes "one event behind" when resizing. The ClamPanel's buttons do not
reflect the current size of the window, rather they reflect the size of the window before the last resize event.

10.3 Dialogs

10.3.1 Dialog follow: If a dialog is configured to follow its parent window when the parent is moved, the dialog
can get confused by movement within a virtual window manager.

11. Future Enhancements
11.1 Menus

• To be specified with a string like ClamDialog

• To accept submenus upon initialization, i.e. no need to call fillSubmenO method

11.2 Panels

• To be specified with a string like ClamDialog

11.3 Dialogs

Appendix A - Example programs
Look for the examples directory where CLAM is installed.

Peter Wagner CLAM Programmer's Manual Page 23

