
BROWN UNIVERSITY

Department of Computer Science

Master's Thesis

CS-91-M9

Interaction Objects

by
Mark L. Stem

\
!

Interaction Objects

Mark 1. Stern

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for the

Degree of Master of Science in the Department of Computer Science

at Brown University

May 1991

This research project by Mark L. Stern is accepted in its present form

by the Department of Computer Science at Brown University

in partial fulfillment of the requirements for the Degree of Master of Science.

Professor Andries van Dam

Advisor

/7'7 J

Date

Abstract

The research and development of interaction techniques is currently hindered by
inadequate programming abstractions and the lack of an unifying framework, thus
requiring low-level programming and a laborious cycle of compiling and testing code.
This research project introduces a structural framework for the development of
interaction objects to be used in a 2D or 3D environment. Interaction objects can
be thought of as software "agents" that recognize and respond to interactive gestures.
Each interaction object supports an interaction technique, and several interaction ob
jects ran res1lOnd to a single interactive gesture in different ways. The design of the
structural framework strives to satisfy four research objectives: separability, gener
ality, flexibility, and usability. An initial implementation, described in detail in the
appendix, shows promise for the viability of this design and helps identify areas for
future work.

Contents

1 Introduction 1

2 Research Objectives 2

2.1 Separability 2

2.2 Generality . 3

2.3 Flexibility . 3

2.4 Usability .. 3

2.5 Interaction Modeling 3

3 Related Work 3

3.1 Ga.rnet . 4

3.2 BAGS 4

4 Design 5

4.1 Representation 6

4.2 Communication Mechanism 6

4.3 Parameters 8

4.3.1 Interests .. 8

4.3.2 Conditions 9

4.3.3 Actions 9

4.4 Event Manager 10

4.5 An Example .. 10

4.6 A Variation .. 12

4.7 Textual Language. 12

4.8 Application of Framework 15

5 Implementation 15

6 Future Work 16

7 Conclusions 17

Acknowledgements 19

References 20

A Programmer's Guide to Interaction Objects in BAGS 22
A.l Programming Interface. 22
A.2 Initialization . 22
A.3 Object Creation . 23
A.4 Parameters to Finite State Machine 23

A.4.1 Interests .. 24
A.4.2 Conditions . 25
A.4.3 Actions . . . 25

A.5 Condition Routines. 26
A.6 Action Routines 27
A.7 Arglists 28
A.8 Data Lists 29
A.9 Running Interaction Objects 30
A.lO Event Handling 31

A.lO.l Background . 31
A.lO.2 Event Manager Routines. 32
A.I0.3 Inside the Event Manager 32

A.ll ISLE Parser 33
A.12 Data Structures. . . 33

A.12.l IOBJhandle . 34
A.12.2 IOBJobj ect . 35
A.12.3 IOBJinterest 37
A.12,4 IOBJcondition . 37
A.12.5 IOBJaction . 38
A.12.6 IOBJarglist 38
A.12.7 VALUitem 39

List of Figures

1 Finite State Machine used by Interaction Objects 7
2 Structure of Interaction Objects . 8
3 ISLE Description of Translation Technique. . . . 13
4 ISLE Description of Variation of Translation Technique 14

11

1 Introduction

Recent work in computer graphics has included the development of interactive three
dimensional modeling and animation systems, such as the Brown Animation Genera
tion System (BAGS) [7, 14, 16]. The goal of these systel~s is to enable a non-technical
user to apply interactive and gestural methods in producing and animating a scene
containing 3D objects based on reality or imagination. Towards this end, various in
teraction techniques have been developed to provide gestural control of 3D objects in
a scene, such as overlapping sliders and the virtual sphere [3] for 3D object rotation.
Also, other interaction techniques developed for a 2D environment have been extended
~0 the 3D environment, such as snap-dragging [2].

While these interaction techniques enhance the expressive power of the end user,
they constitute an ad hoc collection with no unifying structure or communication style.
Each technique has been developed for a specific task and does not exploit common
input and output functionality shared by various interaction techniques. Furthermore,
to carry out its effects, each technique often uses its own mechanism for communicating
changes to the application or graphics system, such as constraints or methods. These
conditions have an inhibiting effect on the development and usability of current and
new interaction techniques. Developing new interaction techniques requires significant
effort because, in the absence of adequate programming abstractions, they usually
have to be coded from scratch.

Some of this extra work could be avoided by using more sophisticated program
ming abstractions. High-level toolkits for 2D environments, such as the Macintosh
Toolbox [1] and the aSF /Motif widget set [13], do offer preprogrammed interaction
techniques, but these toolkits do not provide easy decomposition and customization of
interactive behaviors and usually demand a high price in complexity and size. Further
more, a literature review did not reveal the existence of interaction toolkits geared for
use in 3D environments. Thus, creating new 3D interaction techniques requires low
level programming and a laborious cycle of compiling and testing code. This process is
not conducive to easy and rapid design and development of 3D interaction techniques.

This paper describes a research effort to design a programming abstraction called
interaction objects that addresses the problems cited above. To help shape the design,
a set of four research objectives is first described. Some related work is reviewed,
and then the design of interaction objects is presented in detail, along with examples.

New issues arising from the development of the design are explained in a section on
future work, and an analysis of how the design of interaction objects satisfies the four
research objectives is presented in the conclusion. For the programmer, an initial
implementation is described in rich detail in the appendix.

Several assumptions about the reader are made for this paper. You should be
familiar with the concepts of interaction tasks and interaction techniques; an overview
can be found in Chapter 8 of Computer Graphics: Principles and Practice [4]. It is also
helpful to have an understanding of how some interaction techniques have been applied
to 3D environments (see TDUI [5] and Melissa Gold's master's thesis [6] for some
examples). You should also understand the concepts of programming abstractions
and graphics packages and toolkits. Since the appendix describes an implementation
based on a particular software environment (the Brown Animation and Generation
System), familiarity with that environment is helpful. However, it is not necessary to
read the appendix to understand the research project's design.

2 Research Objectives

This research project seeks to fill the gap between low-level programming of interac
tion techniques and high-level toolkits by developing a structural framework for the
specification of interaction obiects to be used in a 3D environment. Interaction objects
can be thought of as soft;":a.Ie "agents" that recognize and respond to characteristic
interactive behaviors, thus providing a means for the user to manipulate 3D graphical
objects. Towards this end, this research project's objectives are separability, general
ity, flexibility, and usability, all of which support a single goal of interaction modeling.

2.1 Separability

User interface software is notorious for its large size, complexity, and difficulty in im
plementation and maintenance. To better manage user interface software, separation
of interface and application functionality has become an accepted design and software
engineering goal. However, there is little agreement on where and how the line of
demarcation should be established. The lack of agreement centers on how to achieve
communication between the interface and application components. A narrow com
munication channel leads to cleaner separation but does not accommodate the high
bandwidth requirements of semantic feedback often found in direct manipulation in
terfaces. Using a wider channel where more semantic power is available reduces the
independence of the interface component and increases its complexity. Despite the
lack of agreement, some interactions can be handled without direct application in
volvement. In general, scene objects should not be concerned with user interaction,
either with how they are manipulated by the user or how they are presented to the
user. Rather, scene objects should focus on the task for which they are designed, and
interaction objects should focus on recognizing and responding to interactive behav
iors. Towards achieving separability, the software must be organized effectively.

2

2.2 Generality

Despite the diversity of user interface software, abstractions can be developed for
use in a variety of situations. Organizing the user interface for generality encourages
software reuse and revision with minimal impact on application code. The availability
of powerful abstractions capturing commonly-used functionality enables flexibility in
developing new interaction techniques.

2.3 Flexibility

Given well-designed building blocks derived by factoring common user interface func
tionality, existing interaction techniques can be easily extended and new interaction
techniques can be quickly developed. Different interaction styles can be created for
users with varying skill levels; this is imperative in an environment where users range
from the novice to the highly experienced.

2.4 Usability

A strong emphasis of this research project is making interaction objects accessible to
and modifiable by the user; the user should not have to resort to low-level programming
to create or modify interaction techniques. Interaction objects should be described in
a high-level and compact textual language. A textual language allows easy access
and modifications and provides a means for capturing the specification of interaction
objects. To further enhance usability, an interactive editor can be developed to provide
a graphical front-end that stores sJ>ecifications in the textual language. Here, the
textual language then becomes a back-end. Combined with flexibility, the emphasis
on usability leads to a system that allows prototyping of interaction techniques.

2.5 Interaction Modeling

Given a general, flexible, and usable system for specification of interaction objects, new
interaction techniques can be easily constructed as specific needs arise. For example,
the author of interactive illustrations can draw upon a growing collection of interaction
objects, and construct new interaction objects to fit particular interactive illustrations.
The specification can also enable the encapsulation of interaction objects into a scene
description sent to a distant viewer. That author's influence is not limited to the
creation, modeling, and animation of a scene; it extends to exactly how and with what
techniques a user can interact with a scene. This is interaction modeling, by analogy
to animation modeling.

3 Related Work

While there have been many research efforts in the area of user interfaces, two par
ticular projects have relevance to the research objectives of this project: the Garnet

3

project at Carnegie Mellon University and the Brown Animation and Generation Sys
tem at Brown University. Each of these two projects are described in the next two
sections.

3.1 Garnet

Garnet [11] is a research project at Carnegie Mellon University (CMU) that develops
tools for the design and implementation of highly interactive, graphical user interfaces
for 2D environments. The facilities provided by Garnet include an object-oriented
programming system, a graphical object system, a constraint system, and encapsula
tions of interactive behaviors. Based on these facilities are high-level tools such as a
graphical interface builder and a dialog box creation system. The encapsulations of in
teractive behaviors has particular relevance to the problems addressed in this research
project.

Explained in detail in [10], various interactive behaviors can be encapsulated into
a set of objects called interactors. Each type of interactor captures a common mouse
based interaction technique and presents a device-independent and graphics-independ
ent abstraction to the interface programmer. The set of interactor types is quite small
because of the low number of distinct behaviors in user interfaces (see Szekely's PhD
thesis [15] for a classification of input gestures). This small set has been shown to cover
the range of mouse-based interaction techniques provided by the Macintosh 'I'oolbox.

All interactor types are parameterized so that the interactive gestures' initial and
terminating conditions and action procedures can be specified. The parameters drive
a simple finite state machine run by' all interactor types and specify the events that
trigger transitions and their associated action procedures. The control flow of the state
machine is intrinsic to interactors and is not programmed by the user, thus avoiding
the proliferation of transitions and states often found in transition network UIMSs.

Interactors contribute to separating interactive behaviors from the details of the
application and graphics system by isolating the input-handling code and using appli
cation callback functions to communicate interactive changes to the dependent applica
tion or graphics objects. Interactors extend a higher level of programming abstraction
than event streams and serve as a foundation for prepackaged interaction techniques
found in high-level toolkits.

Since the concept of encapsulating interactive behaviors is consistent with the
objectives of this research project, it is used as a basis for the design of interaction
objects. However, Garnet is limited to mouse-based interaction techniques, and does
not support other input devices or 3D objects. The interactors are contained within
a much larger system programmed in Lisp, making it difficult to isolate and use in
another programming system.

3.2 BAGS

In the development of the Brown Animation and Generation System (BAGS) over
the last few years, there has been a strong emphasis on the research and develop

4

ment of 3D interaction techniques for use by people without technica.l experience.
Several programming efforts reflect this research focus. An early testbed for direct
manipulation of 3D objects using 2D input devices, ca.lled TDUI (Three-Dimensional
User Interface) [5], included an independently-derived version of Nielson and Olsen's
triad mouse technique [12], and an improved version of Chen, Mountford, and Sellen's
virtual sphere technique [3]. The functionality of TDUI was then incorporated into
an interactive modeler-animator ca.lled MOO, where other 3D interaction techniques,
such as snap-dragging and the use of a Polhemus 3Space Isotrack input device were
added [6J.

Despite the new power of these interaction techniques, TDUI and MOO suffered
from a lack of separability and flexibility. The event loop was written as part of
the application code and took advantage of application data structures and flags to
determine various responses to different types of events. The names of application
functions were also hard-wired into the event loop, creating a non-generic program
and a software maintenance burden. Thus, there was little separation of interface and
application functionality. Flexibility was limited because the event loop contained
assumptions about input devices and the kinds of actions invoked by different event
types. For example, TDUI always performed pick-correlation in response to each mouse
button-down event, thus precluding other gestures, such as rubber-banding over a
region of the screen. To enable such a feature, the application code would have had
to be modified. and !~compiled, an tedious and time-consuming process with the large
size of the MOO code and associated libraries.

After the limitations of TDUI and MOO were recognized, two new BAGS packages,
ca.lled SWIG (Standard WIdGets) and COW (Control Of Widgets) were written to pro
vide more flexibility and generality. These two packages had a more object-oriented
flavor than TDUI and MOO, and some portions of the code became more data-driven.
For example, there was a "click object" that handled mouse clicks. Unfortunately,
certain behaviors were still hard-coded; the click object always performed a ray in
tersection test as part of pick-correlation. This design again precluded other uses of
the click object such as rubber-banding and advancing through an animation frame
by-frame. Since there was a tight coupling between events and behaviors, there could
not be multiple responses to the same event, thus limiting flexibility. Also, certain
assumptions were made by using globa.l variables; the data-driven approach was not
fully implemented throughout the code.

After reviewing the contributions and drawbacks of the Garnet and BAGS pack
ages, I identified severa.l design elements that would bring us closer to our goa.l, and
developed a design for interaction objects. This design is described in the next section.

Design

Interaction objects are the basis of a structura.l framework for specifying interaction
techniques. The term "interaction object" does not suggest the use of the classi
cal superclass-subclass-instance hierarchy found in object-oriented programming lan

5

4

guages. Rather, interaction objects are abstractions that encapsulate code and data
used in recognizing and responding to interactive gestures. Each interaction object
supports an interaction technique, and several interaction objects can respond to a
single interactive gesture in different ways.

The design of interaction objects consists of four components:

•	 the representation of an interaction object

•	 a communication mechanism through which application data structures can be
inquired or modified by interaction objects

•	 an event manager that dispatches events to interaction objects

•	 a textual language for capturing behavior of interaction objects

Each component is described in the following sections, with examples showing how
the pieces fit together.

4.1 Representation

An interaction object is represented by a data structure and a small, fixed-size finite
state machine. The finite state machine, shown in Figure 1, handles the starting,
running, stopping, and aborting of USE:r ge~t1.1Tes. While the finite state machine
establishes the control flow of an interaction object, various parameters stored in the
data structure determine the actions taken in response to different types of events.
Thus, when an interaction object is created, only the parameters have to be specified,
rather than the harder-to-specify control flow. The representation is based on that of
Garnet interactors, and the current implementation uses a slightly-modified version of
the finite state machine used by Garnet interactors, which has been shown to cover a
wide range of mouse-based behaviors. t A full description of the parameters and their
roles is given in Section 4.3.

4.2 Communication Mechanism

Most often, the routines invoked by interaction objects during state machine traversal
need to inquire or modify the application's data structures (or model). For example, in
a direct-manipulation click gesture, the application's model is traversed to determine
which application object is indicated by the mouse click. This communication between
interaction objects and application data structures is achieved by using data lists. The
application creates data lists, assigns names to these lists, and stores these names as
the parameters to the interaction objects. These data lists can then be read from or
written to during interaction. The contents of data lists are application-defined and
passed to application-defined routines during state machine traversal. Each item in a
data list can be an arbitrary pointer to an application data structure. In effect, the

tUnlike the Garnet version, the current version introduces the Running-Event interest, so that it
can be distinct from the Start-Event interest.

6

Running-Event in Running-Where

Running-Action

Start-Event

in Start-Where

Start-Action

Stop-Event

Running- Event

not in Running-Where

Outside-Action

Running-Event

in Running-Where

Stop-Event if Outside-Control is last

Back-Inside-Action

Abort-Event

Abort-Action

Abort-Action

Stop-Event if Outside-Control is Abort

Abort-Event

Abort-Action

Stop-Action, Final-Action

Stop-Action, Final-Action

Based on B. A. Myers, "Encapsulating Interactive Behaviors," in Proceedings of SIGCHI '89,
published as Human Factors in Computing Systems, May 1989, pp. 319-324.

Figure 1: Finite State Machine used by Interaction Objects

interaction objects treat data lists as typeless variables, and it is up to the application
routines to use the data lists properly when passed to them.

Assigning names to data lists and using these names (and not the lists themselves)
in interaction objects is a form of late binding. Since a particular data list may change
in size and content over time, even to the point of becoming empty, using the name
of the list will always ensure that the current contents of the list are passed during
invocation of condition or action routines.

This communication strategy supports the goals of separability, generality, and
flexibility. Since an interaction object only passes lists whose names are given by
the application, the interaction object does not assume any application functionality.
As the contents of the data lists are application-defined, generality and flexibility are
achieved.

7

Object Name

Interests

Start- Event

Running- Event

Stop-Event

Abort-Event

Conditions
Start-Where

Running-Where

Actions

Start-Action

Running-Action

Stop-Action

Abort-Action

Back-inside-Action

Final-Action

Current State of Finite State Machine

Miscellaneous Housekeeping Information

Figure 2: Structure of Interaction Objects

4.3 Parameters

Most of the parameters stored in the interaction object can be classified into three
groups: interests, conditions, and actions. This classification is reflected in the struc
ture of interaction objects, as shown in Figure 2. These interests, conditions, and
actions are also indicated on the arcs of the finite state machine shown in Figure 1.
An interest represents an interaction object's interest in a particular event type. When
certain types of interests are satisfied, conditions can be tested to qualify the event
before actions are invoked. Actions carry out the effects of the interaction such as
providing graphical feedback, moving an object on the screen, or modifying a data
structure. Each of these three groups are explained in further detail below.

4.3.1 Interests

To allow an interaction object to respond to an event, the interaction object must
express to an event manager an interest in a particular event type. There are four
types of interests used by the interaction object's finite state machine: Start- Event,
Running-Event, Stop-Event, and Abort-Event. When the interest is satisfied, the finite
state machine of the interaction object is advanced to the next state. In certain cases,
as explained in Section 4.3.2, conditions may be tested before advancing the finite
state machine.

8

An interest can be one of several predefined event types or an user-defined event
type. Predefined event types include valuator changes, button presses, and button
releases originating from hardware devices such as mice, tablets, and dials. The pre
defined event types can be augmented by user-defined event types having arbitrary
labels) thus providing extensibility and a means of creating a higher-level event type
based on a series of lower-level event types.

4.3.2 Conditions

Conditions act as event qualifiers, allowing events to be interpreted in an application
defined context. This context is determined by an application-defined condition rou
tine. When a condition is created for an interaction object, a condition routine, along
with the names of an input data list and an output data list, must be specified. The
input data list is passed to the condition routine when it is called, and the condition
routine returns a new list containing the elements of the input data list meeting a
certain condition. In a sense, conditions behave as filters by producing a new list that
is a subset of the original list.

There are two types of conditions: Start-Where and Running-Where. They corre
spond to the interest types Start-Event and Running-Event, respectively. For instance,
when a Start-Event interest is satisfied, the Start-Where condition routine (if specified)
is invoked with the specified input JatCl' list. If the output list returned by the Start
Where condition has at least one item, the state machine of the interaction object can
be advanced to the next state, the Running state. If no function is specified for the
Start-Where or Running-Where conditions, the finite state machine is always advanced
to the next state when the Start-Event or Running-Event interests are satisfied. A series
of conditions can be created by using the returned list of one condition as input to
another condition.

So that events can be interpreted in an application-specific context, a condition
routine can make inquiries about the event that led to its invocation. Information
about that event is made available by passing it to the condition routine. For example,
a mouse-down event's value might be used to determine whether the mouse click
occurred within the boundaries of an application object shown on the screen. The
event delta (or change) might also be used to determine a relative direction.

4.3.3 Actions

Actions are also supported by application-defined routines that perform the intermedi
ate or final effects of an interactive gesture. For generality, action routines can accept
an arbitrary number of input data lists, and can have a side effect of producing a new
output data list. Thus, when an action is created for an interaction object, the names
of all input lists and an optional output list, along with the action routine, must be
specified.

Depending on the current state of the finite state machine, different types of ac
tion routines are invoked when each arc of the finite state machine is traversed. This

9

arrangement enables different responses to different types of events in the same inter
active gesture. For example, a mouse-down event might highlight a screen object, and
a mouse-up event in the same gesture might unhighlight the same screen object.

As with condition routines, action routines can inquire event values or deltas during
the process of establishing an application-specific context.

4.4 Event Manager

The execution of interaction objects is controlled by an event manager. This manager
keeps track of registered input devices (such as mice, tablets, and dials) and registered
interests expressed by various interaction objects. To simplify the task of the event
manager, a distinction is made between enabled and disabled interests. Whether
a given interest is enabled depends on the current state of the associated interaction
object's finite state machine. Also, any interaction object, as a whole, can be activated
or deactivated. By supporting only enabled interests and activated objects, the scope
of attention maintained by the event manager is kept to a reasonable size.

When an event occurs, the event manager determines whether there are any en
abled interests matching the event's type. If any matching interests are found, the
interested interaction objects are processed by advancing the state of each interaction
object's finite state machine. As mentioned earlier, conditions may be tested before
advancing the finite state machine to the Running state.

By using a central event registry for an arbitrary number of interests, this design
does not suffer from the drawbacks of a hard-coded event loop. Instead, the event
loop becomes truly data-driven. The registry also allows multiple interests for a given
event, enabling multiple responses in the same interactive gesture.

Another benefit of the registry approach is the ability to support user-defined event
types. The event manager provides routines for creating and "posting" user-defined
event types. A form of sequencing control can then be achieved. For example, suppose
that a duct object can be only be created after a spline object and a cross section have
been created and selected. When these preconditions occur, an action routine can
post an user-defined event in which another interaction object has an interest. When
that interest is satisfied, the interaction object can then allow the creation of the duct
object.

4.5 An Example

To show how the representation of interaction objects, the communication mechanism,
and event manager work together, an example of a 3D object translation technique is
presented here. This gesture involves moving a pointer over an object on the screen,
pressing and holding a mouse button, dragging the mouse to translate the object, and
releasing the mouse button when the object is in the new position. As soon as the
mouse button is pressed, a ray is computed from the screen position along the camera's
at-vector. This ray is tested for intersection with any 3D objects on the screen. If the

10

ray intersects more than one 3D object, only the frontmost object should be translated.
An interaction object to support this technique can be programmed as follows:

1.	 A data list is created and initialized to contain all the 3D objects in the scene.
This list is named "Scene Objects."

2.	 A Start-Event interest in a mouse button-down event is created and installed in
the interaction object.

3. A series of two Start-Where conditions is created for the interaction object. For
the first condition, the name of the input data list is "Scene Objects," the
application-defined routine is Raylntersect, and the name of the output data
list is "Intersected Objects." Raylntersect tests for ray intersection with the
3D objects in the input data list and generates an output data list containing
the intersected objects. The second condition passes "Intersected Objects" as
the input data list to the application-defined routine FrontMostObject which
determines the frontmost object in the input data list and places that object
in an output data list named "Translate Objects." (Although this interaction
object allows only one 3D object to be translated at a time, the list name is
plural to emphasize that action routines should not make assumptions about the
size of the list.)

4. A Start-Action action	 is installed with "Translate Objects" as the name of the
input data list and the application-defined action routine HighlightObject,
which highlights the objects in the input data list.

5.	 A Running-Event interest in a mouse-movement event is created and installed.
The Running-Where condition is left unspecified because the picked object may
be translated anywhere on the screen.

6.	 For the Running-Action action, an application-defined function called MoveObj ect
is installed, along with "Translate Objects" as the name of the input data list.
MoveObject translates the object on the screen according to the change in the
mouse position.

7.	 A Stop-Event interest in a mouse button-release event is created and installed.
When this event occurs, the translation gesture is considered to be complete.

8. A Stop-Action action	 is set with an application-defined routine called Unhigh
lightObj ect and "Translate Objects" as the input data list. This routine re
verses the action of HighlightObject by unhighlighting the object in the input
data list. It is not necessary to translate the object at the end of the gesture,
because the Running-Action routine translates the object during the gesture.

When the application is running, the event manager tries to match all events with
any enabled interests. When a mouse button-down event occurs, the Start-Event inter
est of the above interaction object is satisfied, and the Raylntersect condition routine

11

is invoked. If any 3D objects were intersected, the FrontMostObject condition is in
voked with this list of ray-intersected objects to create the "Translate Objects" output
data list. If a frontmost object is found, it is highlighted by the HighlightObject
action routine.

At this point, the current state is the Running state, the Start-Event interest is
disabled, and the Running-Event and Stop-Event interests are enabled. Movements of
the mouse cause the MoveObj ect routine to be called as a Running-Action action. When
a mouse button-release event occurs, the Stop-Event interest is satisfied, the translated
object is unhighlighted by the Stop-Action action routine, and the interaction object
returns to the Start state.

4.6 A Variation

The translation technique above can be modified to have a different behavior. Instead
of translating the 3D object while dragging the mouse, an outline of the 3D object
can be drawn at the current mouse position. When the mouse button is released, the
outline is removed and the 3D object is translated to the final position of the outline.
To effect this variation, the following changes are made to the translation technique
described above:

1.	 Instead of using HighlightObject as the Start-Action action routine, another
application-defined routine called MakeOutline is invoked to create a new screen
object that is an outline of the frontmost object. This outline object is stored
in an output data list called "Outline Objects."

2.	 The Running-Action action invokes an application-defined routine named Move
Outline to move the outline stored in the "Outline Objects" input data list to
the current mouse position. The 3D object from which the outline is generated
is left intact in its original position.

3.	 The Stop-Action action invokes an application-defined routine named Remove
Outline to remove the outline from the screen, using "Outline Objects" as the
input data list.

4.	 The Final-Action action is installed with the MoveObject routine to move the
3D object in the "Translate Objects" input data list to the final position of the
outline.

The simplicity and limited scope of the modification shows the flexibility of inter
action objects.

4.7 Textual Language

Each of the above steps for creating an interaction object correspond in a straight
forward fashion to programmatic routines in a software library. (See Section 5 and
the appendix for details.) However, to support the research objective of usability, a

12

textual language is provided as a high-level and compact way to specify the behav
ior of interaction objects. This language is called ISLE, for Interaction Specification
LanguagE. This approach allows users to access, modify, and capture the behavior of
interaction objects using text files, without resorting to low-level programming. Ges
tural approaches such as visual programming and programming by example would
also contribute to usability, but they represent a separate research problem and their
application to interaction objects is left as future work.

Rather than present a formal language description of ISLE, an ISLE description of
the behavior of the translation technique example in Section 4.5 is shown in Figure 3.

iobject translate {
start {

event: mouse down ;
condition: "Screen Objects" -> RayIntersect -> "Intersected Objects",

"Intersected Objects" -> FrontMost -> "Translate Objects j

action: HighlightObject("Translate Objects") ;
}

running {
event: mouse move ;
action: MoveObject("Translate Objects")

}

stop {
event: mouse up ;
action: UnhighlightObject("Translate Objects");

}

}

Figure 3: ISLE Description of Translation Technique

Recall that, as explained in Section 4.1, interaction objects are created by speci
fying the parameters to the finite state machine. Thus, there is a dose relationship
between ISLE descriptions and the structure of interaction objects.

The text files containing ISLE descriptions are scanned by a parser during the ini
tialization step of the application by making the appropriate function calls to the IOBJ
package. The parser creates the interaction objects and establishes the parameters of
these structures based on the descriptions found in the text file.

Since the parser must be able to recognize the names of application-dependent
routines in ISLE description files, the application must register these names, as well
as the names of initialized data lists, with the parser. In the above example, Ray
Intersect and FrontMost are registered as condition routines, HighlightObj ect,
MoveObj act, and UnhighlightObj act are registered as action routines, and "Screen
Objects" is registered as an initialized data list. Thus, when the parser scans these
tokens in the text files, it will recognize the registered functions and list names, and
map these names to the actual routines and data list structures. Names of lists not

13

appearing in the parser's registry are considered to be "free" lists and are assumed
to be names of output data lists which may be subsequently used as input data lists.
"Intersected Objects" and "Translate Objects" are examples of this case.

The ISLE parser is not limited to reading description files during the initialization
phase; it can also be used to change the parameters of interaction objects while the
application is running. For this reason, ISLE descriptions require that each interac
tion object be identified by name, such as translate in the example above. Thus,
commands such as the following can be issued:

set start event of translate to mouse 1 down

set stop event of translate to mouse 1 up ;

These commands force the translate interaction object to respond only when the
left mouse button is pressed, rather than any mouse button as directed by the previous
example. This functionality contributes to a prototyping environment for more rapid
development of interaction techniques.

To further enhance usability, the language syntax of ISLE is designed to be flexi
ble. The ISLE description shown above is only one way of describing this particular
behavior. ISLE is not sensitive to extra spacing between keywords and list names,
and some of the keywords can be abbreviated to reduce the amount of typing. The
descriptions for the start, running, and stop groups can also be expressed in a i.ii-vre
context-free fashion, as shown in the next example. Also, the indentation and spacing
format used above is purely a stylistic convention to enhance readability. To illustrate
the flexibility of ISLE, an ISLE description capturing the variation of the translation
technique given in Section 4.6 is shown in Figure 4.

iobject translate-variation {
start event: mouse down;
start cond: "Screen Objects" -> Raylntersect ->

FrontMost -> "Translate Objects ;
start action: MakeOutline("Translate Objects") -> "Outline Objects" ;

run event: mouse move ;
run action: MoveOutline("0utline Objects")

stop event: mouse up ;
stop action: RemoveOutline("Outline Objects") ;

final action: MoveObject("Translate Objects") ;
}

Figure 4: ISLE Description of Variation of Translation Technique

Note how the "Intersected Objects" data list is not explicitly referenced in the
above example. Since the output data list of the RayIntersect condition routine is

14

used immediately as the input data list of FrontMost condition routine and is not
used elsewhere, it is not necessary to use an explicit name. This technique is similar
to the UNIX concept of pipes.

4.8 Application of Framework

Up to this point, interaction objects have been discussed in the singular sense. How
ever, most interactive applications do not revolve around a single interaction technique.
Instead, different interaction techniques are used at different points during an applica
tion session. Since each interaction object supports an interaction technique, a typical
application would create a number of interaction objects. As the encapsulated data
structure used by interaction objects allows easy addition and removal of interaction
techniques with minimal disruption to other interaction objects, a collection of inter
action objects can then be pieced together one at a time, as part of a "plug'n'play"
development strategy. The result is a loosely-coupled network, where each interac
tion object can enable or disable other interaction objects in response to certain user
gestures and semantic actions. Furthermore, with the event manager's support of user
defined events, an interaction object can initiate another interaction object's behavior
by posting arbitrary events.

5 ImplellH::ntation

As a proof of concept, an initial implementation of interaction objects was developed
in the BAGS software environment. BAGS is the software testbed for 3D graphics used
by the Brown University Computer Graphics Group; among other things, it provided
many utility routines for controlling input devices, memory management, hashing, and
string table management used by the implementation of interaction objects. BAGS was
also used to show that interaction objects can succeed in a 3D graphics environment.
The implementation was divided into two BAGS packages (or libraries). The first
package, called IOBJ, contained all the application-independent code such as routines
for initialization, event management, creating interaction objects, and specifying the
interests, conditions, and actions of these objects. This package represented the appli
cation programming interface (API) to interaction objects. The second package, called
BlOBJ, served as a test application of the IOBJ package. This approach to organizing
the code was intended to illustrate that the goal of separability could be achieved.

Although the initial implementation was not comprehensive or fully-polished, it
served to test the viability of the design and to identify areas for future work. Vali
dation tests indicated that interaction techniques similar to the translation technique
example (given in Section 4.5) can be supported by the design. One of the validation
tests involved the use of BIOBJ as a test application built into a BAGS modeler
animator program; a scene of 3D objects was displayed, and an interaction object
supported scene object selection by ray intersection. Further work is needed to de
termine if more complex interaction techniques can be implemented using the IOBJ
package. Based on my experience with the initial implementation, I am confident that
the design is capable of supporting a wide variety of intera.ction techniques in different

15

6

application contexts. Details about the implementation, including data structures and
the internal behavior of API routines, can be found in the appendix, "Programmer's
Guide to Interaction Objects in BAGS."

Future Work

Since interaction techniques can be complex, there is abundant room for further work;
several such areas are indicated below.

Currently, any given interest is limited to one particular event type. Adding sup
port for boolean operations on events would increase the flexibility of interaction ob
jects. For example, a Start-Event interest can be in either a mouse button-down event
or a tablet-press event. This functionality would allow a single interaction object to
respond to a variety of events in the same interest. Supporting a boolean OR operation
on events, such as a VbVc would be straightforward, but the boolean AND operation
would require more careful thought, due to the issue of timing between each operand
of the AND operation. This issue begs the question of whether the two operand events
must occur at the same instant in time, or whether they can occur at different times,
with no respect to time ordering. In the latter case, the event manager would have
to be extended so that a history of events is maintained over a time interval and used
to determine the satisfaction of boole~n AND operations. Maintaining a history of
events introduces its own concerns such as Inanaging the computational resources used
by the history to a reasonable size. An useful heuristic may be to record only those
events for which there is an enabled interest. Time-ordered AND operations such as
at; 1\ btH1 where ti < ti+l (t represents time) would be useful, but more research is
needed before implementation. This functionality would allow a certain time-ordered
sequencing of events to be recognized as an interactive gesture.

The ISLE parser can be extended by adding a type system. The names of appli
cation routines and data lists can be checked against a type system to minimize type
errors such as inadvertently using a condition routine as an action routine, or a routine
as an input data list. The type system would be supported by type declarations at
the top of an ISLE description file. Built-in functions can be also be added to ISLE for
posting events or activating and deactivating interaction objects by name.

Since the implementation only supported the textual langauge, future work can
include the development of an interactive, graphical editor as as a front-end to ISLE.
Recent research in programming-by-example systems [8,9] can be brought to bear on
this problem. Also, reasonable defaults for different properties of interaction objects
can be provided to minimize the amount of set-up work required for simple interaction
techniques.

Since the initial implementation was not comprehensive, it should be extended
and refined to cover areas not tested by the initial implementation, such as series of
conditions, the use of multiple routines in a single action, and recovery from abort
events. A variety of applications need to be tested to see if the design and the finite
state machine is general enough to support the needs of diverse interaction techniques.

16

7 Conclusions

A design for interaction objects and their specification has just been presented. The de
sign starts with a generalized representation and finite state machine based on Garnet,
resolves the drawbacks of existing BAGS packages by developing a completely data
driven approach using data lists, uses an event manager to isolate the event-handling
code, and incorporates a textual specification language to capture the behavior of in
teraction objects. Let us review how this design satisfies the four research objects of
separability, generality, flexibility, and usability.

The concept of encapsulations of interactive behaviors borrowed from the Garnet
project contributes significantly to separability. The use of an event manager that
isolates the event-handling code from the application further reinforces this separabil
ity. After creating interaction objects, the application calls only one routine to enter
an event-processing loop. This is in contrast to how earlier work, such as TDUI and
MOO, incorporated the event loop into the application. Separability also comes from
the fact that the application-defined condition and action routines are separated from
the code that directly supports interaction objects. Thus, changes to the application
routines have no impact on the interaction object code.

Generality comes from using data lists and a consistently-applied data-driven
methodology. Since condition and action routines cannot assume the !';lze of their
input data lists, the programmer is encouraged to write these routines dS generally as
possible. The fact that an interaction object can support multiple conditions and ac
tions fosters the development of general "primitive" routines (such as ray intersection,
and highlighting) that can be combined with other general routines to effect a specific
behavior. Since the design was derived from a 2D environment, and then tested in a
3D environment, the design is general enough to support both 2D and 3D interaction
techniques.

The flexibility of interaction objects again comes from using a data-driven ap
proach. Since the behavior of interaction objects is stored as data, it is easy to change
the behavior by changing the parameters stored in the interaction object, even at run
time. The emphasis on writing generic condition and action routines that could be
easily added to interaction objects contributes to their flexibility. Interaction objects
can also be enabled or disabled during runtime as an action or in response to an event,
leading to easily-configurable interaction techniques.

Usability is enhanced by the use of a textual language, ISLE, as a means of captur
ing and modifying the behavior of interaction objects, without using low-level program
ming. The user can easily modify ISLE descriptions prior to running the application or
by issuing ISLE commands at runtime to alter the behavior of an existing interaction
object. ISLE also leads to a prototyping environment where an user can create and
modify a variety of interaction objects for experimentation.

The design of interaction objects contributes to the research and development
of interaction techniques by providing a programming abstraction that is more so
phisticated than low-level event handling and does not suffer from the drawbacks of

17

prepackaged interaction techniques. Interaction objects serve as a mechanism with
as few assumptions as possible, thus keeping them general and flexible. Interaction
objects are designed to be used in many different contexts, each context implemented
by a collection of application-defined condition and action routines kept separate from
the interaction object code. The combination of the data-driven design and the spec
ification language leads to highly-dynamic interaction and brings us closer to the goal
of interaction modeling.

18

Acknowledgements

This thesis cannot be complete without sincere thanks and appreciation to my col
leagues, friends, and family.

Andries van Dam, my advisor, gave me the support and freedom for pursuing this
research project. His extraordinary teaching, leadership, and boundless energy were
always inspiring. His co-directorship of the Brown University Computer Graphics
Group with John "Spike" Hughes brought together many talented people who con
tributed their ideas and comments during the project's development. In particular,
I wish to thank Brook Conner, Henry Kaufman, Bob Zeleznick, Brian Knep, Scott
Snibbe, Tinsley Galyean, and Philip Hubbard for useful discussions. Brook also took
the time to develop an understanding of the implementation and to code the parser. I
also thank George Reilly for answering my numerous questions about IJ..TWC and T£X
(the document processing system used to produce this paper) and Mary Andrade for
helping me with many administrative tasks.

Deserving of special thanks is Christine Dunleavy, who served as my interpreter for
classes, graphics group meetings, and special trips. Her dedication and nice balance
between professionalism and personal style was a distinctive element of my classroom
and meeting experience. I also appreciate the friendship that came out of our working
together.

My close friendship with Heather Harker, who I met on the first day of classes,
enhanced my entire Brown experience. She helped me maintain perspective by re
minding me of the world outside of. the Computer Science department and she was
a wonderful companion and confidante. I also appreciate the friendship and support
of Anne McDonough, Jennifer Nelson, and Camille Beckham; by way of long-distance
phone calls, they helped keep up my spirits.

Surviving graduate school would have been impossible without the cornerstone
support and love from my family; my heartfelt thanks go to Bob and Jinny (my
parents), Adam and Julie, Ami and Jon, and Rachel.

19

References

[IJ	 Apple Computer, Inc., Inside Macintosh, Addison-Wesley, Reading, MA, 1985.

[2J	 E. A. Bier, "Snap-Dragging in Three Dimensions," in Proceedings of the 1990
Symposium on Interactive 3D Graphics, published as Computer Graphics, Vol.
24, No.2, March 1990, pp. 193-204.

[3J	 M. Chen, S. J. Mountford, and A. Sellen, "A Study in Interactive 3-D Rotation
Using 2-D Control Devices," in Proceedings of SIGGRAPH '88, published as
Computer Graphics, Vol. 22, No.4, August 1988, pp. 121-129.

[4J	 J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics:
Principles and Practice, 2nd ed., Addision-Wesley, Reading, MA, 1990.

[5J	 T. Gaylean, M. Gold, W. Hsu, H. Kaufman, and M. Stern, "Manipulation of Vir
tual Three-Dimensional Objects Using Two-Dimensional Input Devices," Brown
University Research Report, December 1989.

[6J	 M. Y. Gold, "Multi-Dimensional Input Devices and Interaction Techniques for a
Modeler-Animator," Master's thesis, Brown University, July 1990.

[7J	 P. M. Hubbard, M. M. Wloka, R. C. Zeleznick, D. G. Aliaga, and N. Huang,
"UGA: A Unified Graphics Architecture," Technical Report CS-91-30, Brown
University, 1991.

[8J	 D. L. Maulsby, I. H. Whitten, and K. A. Kittlitz, "MetaMouse: Specifying Graph
ical Procedures by Example," in Proceedings of SIGGRAPH '89, published as
Computer Graphics, Vol. 23, No.3, July 1989, pp. 127-136.

[9J	 B. Myers, Creating User Interfaces by Demonstration, Academic Press, Boston,
MA,1988.

[10J	 B. A. Myers, "Encapsulating Interactive Behaviors," in Proceedings of
SIGCHI '89, published as Human Factors in Computing Systems, May 1989,
pp. 319-324.

[I1J B. A. Myers et al., "Garnet: Comprehensive Support for Graphical, Highly Inter
active User Interfaces," Computer, Vol. 23, No. 11, November 1990, pp. 71-85.

[12J	 G. M. Nielson and D. R. Olsen, Jr., "Direct Manipulation for 3D Objects Using 2D
Locator Devices," in Proceedings of 1986 Workshop on Interactive 3D Graphics
(Chapel Hill, NC, October 23-24,1986) ACM, New York, 1986, pp. 175-182.

[13J	 Open Software Foundation, OSP/Motif Programmer's Guide, 1989.

[14J	 P. S. Strauss, "BAGS: The Brown Animation Generation System," Technical
Report CS-88-22, Brown University, 1988.

20

[15]	 P. A. Szekely, Separating the User Interface from the Functionality of Applica
tion Programs, PhD thesis, CMU-CS-88-101, Carnegie Mellon University, January
1988.

[16]	 R. C. Zeleznick, D. B. Conner, M. M. Wloka, D. G. Aliaga, N. T. Huang, P. M.
Hubbard, B. Knep, H. Kaufman, J. F. Hughes, and A. van Dam, "An Object
Oriented Framework for the Integration of Interactive Animation Techniques,"
to appear in Proceedings of SIGGRAPH '91 (Las Vegas, NV, July 28-August 2,
1991), ACM, New York, 1991.

21

A Programmer's Guide to Interaction Objects in BAGS

This appendix describes, from a programmer's point of view, the current implemen
tation of interaction objects in the Brown Animation Generation System (BAGS).
Readers of this appendix are assumed to be familiar with the high-level design of in
teraction objects, as described in this paper. Familiarity with BAGS utility packages
(such as MEM, VALU, and EVENT), BAGS software standards, and the C language is
also assumed.

A.I Programming Interface

Interaction objects are C"ll1'!ently implemented as a BAGS package, surprisingly named
IOBJ, which can be found in the BAGS source code hierarchy. This package provides
routines for initialization, creating interaction objects, and specifying the interests,
conditions, and actions of these objects. Each IOBJ routine is described in the sections
below. For each routine, the programming interface is first described. Then, the
internal behavior of the routine is described, for the benefit of programmers who want
to understand, modify, or extend the code comprising the IOBJ package.

IOBJ supports only the application-independent aspects of interaction objects. The
user of 10BJ must create a set of application-dependent routines to implement inter
action objects in a particular environment. The reason for this separation is to allow
interaction objects to be supported in different applications and graphical environ
ments. In BAGS, these application-dependent routines are in a package named BIOBJ
(for BAGS binding to 10BJ). Since BIOBJ is very BAGS-specific, it is not described
here.

A.2 Initialization

Before creating interaction objects, the IOBJ package must be initialized by calling
IDBJinit () as follows:

IOBJhandle*

IOBJinit(event_hdl, valu_id, open_flag)

EVENThandle *event_hdl;
VALUid *valu_id;
int open_flag;

22

event..hdl is the same EVENThandle* that is passed to EVENTevent~oop0 or its
derivatives, and cannot be NULL. valu-id is used for allocating temporary V.A.LUitem
structures during execution. Ifvalu_id is NULL, a new V.A.LUid is automatically created.
open..flag determines whether IOBJinit should open the following MID devices, if they
exist: MID..DI.A.L, MID-MOUSE, and MID-T.A.BLET. In a situation where input devices have
already been opened, open..flag should be zero, and IOBJregister_devices should
be called with a list of currently open devices. IOBJinito returns a handle to the
IOBl environment through an IOBJhandle*. This handle is required by many other
IOBl calls. IOBJinitO may not be called more than once.

Inside IOBJinito, the memory for the IOBJhandle is allocated and initialized.
IOBl's own event manager is initialized and the event registry table is created. The
event pipe supporting user-defined events is also created.

When the facilities provided by IOBl are no longer needed, IOBJdestroyO should
be called to deallocate the memory structures allocated in the IOBJinito function.

A.3 Object Creation

Interaction objects are created by the IOBJcreate_obj ect 0 function:

IOBJobject*
IOBJcreate_object(hdl, name)

IOBJhandle *hdl;
char *name;

hdl should be the same IOBJhandle* returned from IOBJinitO. name can be any
arbitrary string that is used as a name for the interaction object. A pointer to the
newly-created interaction object is returned as an IOBJobject*.

Inside IOBJcreate_obj ect 0, memory for the IOBJobj ect data structure is al
located and initialized. All interest types, condition types, and action types in the
data structure are initialized to NULL. A finite state machine is created, using the FSA

package, and stored in the IOBJobject data structure. t

To destroy an interaction object and deallocated associated memory structures,
call IOBJdestroy_objectO with an IOBJobject* as its sole argument.

A.4 Parameters to Finite State Machine

After creating an interaction object, you must specify the various parameters to the
finite state machine. Recall that these parameters are classified in three groups: in
terests, conditions, and actions. This classification is reflected in the structure of
interaction objects, as shown in Figure 2 on page 8. These interests, conditions, and
actions are also indicated on the arcs of the finite state machine in Figure 1 on page 7.

tNote that an entire FSA is allocated for each interaction object. This inefficient use of memory
can be corrected by changing the lOBJ code so that a single FSA is shared by all interaction objects;
in this case, only a small piece of state is stored in each interaction object.

23

A.4.1 Interests

To specify an interest for a given interaction object, use lOBJseLinterest 0:

void
lOBJset_interest(obj, type, event, event_id)

lOBJobject *obj;
lOBJinterests type;
lOBJevents event;
IOBJevent_id event_id;

obj is an interaction object returned by IOBJcreate_obj ect O. The type argu
ment specifies the type of interest; it can be one of:

IOBJ_START_EVENT IOBJ_STOP_EVENT

IOBJ_RUNNING_EVENT IOBJ_ABORT_EVENT

The event argument can be one ofIOBJ's predefined event types or an user-defined
event type. The predefined event types are:

lOBJ_MOUSE_ANY_DOWN IOBJ_TABLET_ANY_DOWN IOBJ_DIAL_ANY_CRG
lOBJ_MOUSE_ANY_UP lOBJ_TABLET_ANY_UP IOBJ_DIAL_1_CRG
lOBJ_MOUSE_1_DOWN lOBJ_TABLET_1_DOWN lOBJ_DIAL_2_CHG
IOBJ_MOUSE_1_UP IOBJ_TABLET_1_UP lOBJ_DlAL_3_CRG
IOBJ_MOUSE_2_DOWN IOBJ_TABLET_2_DOWN lOBJ_DlAL3_CRG
lOBJ_MOUSE_2_UP IOBJ_TABLET_2_UP IOBJ_DIAL_5_CRG
lOBJ_MOUSE_3_DOWN IOBJ_TABLET_3_DOWN IOBJ_DIAL_6_CRG
lOBJ_MOUSE_3_UP IOBJ_TABLET_3_UP IOBJ_DIAL_7_CRG
lOBJ_MOUSE_CRG IOBJ_TABLET_CRG IOBJ_DIAL_8_CHG

IOBJ_DlAL_9_CHG

These predefined event types correspond to the MID devices known by IOBJ. User
defined event types are created by the IOBJcreate_event 0 function; if you use an
user-defined event type, use the IOBJ_USER-DEFINED constant for the event argument,
and the IOBJevent-id returned by IOBJcreate_event () for the event_id argument.
If you use a predefined event type, event-id should be NULL.

Note that the interest does not become active until the interaction object is acti
vated by lOBJactivate...obj ectO.

Inside lOBJset-interest (), an IOBJinterest data structure is allocated and ini·
tialized. The interest type, event type, and event id (if the IOBJ_USER-DEFINED event
type is used) are stored in the data structure. If an interest for the given interest type
already exists in the given interaction object, it is destroyed and replaced with the
new interest.

The next and prev fields in the IOBJinterest data structure are used only by
IOBJ's event manager, where all interests of the same interest type are kept together in

a linked list. These fields should not be misunderstood as allowing a single interaction

24

object to be interested in one of several event types (or a combination) in the same
interest. This functionality, while desirable, is not yet implemented.

A.4.2 Conditions

To specify a condition for a given interaction object, use lOBJset_conditionO:

void
lOBJset_conditionCobj, cond_type, func, in, out)
lOBJobject *obj;
lOBJconditions cond_type;
lOBJvalfn func;
char *in, *out;

obj specifies the interaction object to which the condition is added. cond_type
can be one of two condition types: IOBJ...sTARLWHERE and lOBJ.RUNNlNG_WHERE. If
an interest of type lOBJ ...sTART-EVENT is satisfied, the lOBJ...sTARLWHERE condition
is invoked, if it exists. Similarly, the lOBJ....R.UNNlNG_WHERE condition corresponds to
the lOBJ....R.UNNING-.EVENT interest type. func is a pointer to a condition routine that
returns a VALUitem*. The behavior of condition routines is described in Section A.5.
in is the name of the data list used as input to the condition routine; the actual data
list is retrieved. by an implicit call to IOBJget~ist() just before the condition routine
is called. out IS the name used when the VALUitem* returned by the condition routine
is stored as a data list. in and out may be the same, in which case the input list is
replaced by the output list after the. condition routine is completed.

IOBJset_conditionO allocates and initializes an IOBJcondition data structure.
The in and out strings are copied into this data structure, so that these programmer
supplied strings can be deallocated after the call. The data structure is then installed
in the proper row of the condition table in the lOBJobject data structure specified
by the obj argument.

While there is a next field in the IOBJcondition data structure, the current im
plementation does not support a linked list of conditions. This is a very desirable
feature, and should be implemented.

A.4.3 Actions

To specify an action for a given interaction object, use IOBJset_actionO:

void
IOBJset_actionCobj, action_type, func, arg_list, out)

IOBJobject *obj;
IOBJactions action_type;
IOBJvalfn func;
IOBJarglist *arg_list;
char *out;

25

obj specifies the interaction object to which the action is added. action_type
specifies the type of action; the value can be one of:

IOBJ_START_ACTION IOBJ_OUTSIDE_ACTION
IOBJ_RUNNING_ACTION IOBJ_BACK_IN_ACTION
IOBJ_STOP_ACTION IOBJ_FINAL_ACTION
IOBJ_ABORT_ACTION

func is a pointer to an action routine that returns a VALUitem*. The behavior
of functions used for actions is described in Section A.6. arg...list is a pointer to an
IOBJarglist data structure that contains a list of names of the data lists used as ar
guments to the action routine specified by func. Arglists are described in Section A.7.
As with IOBJset_conditionO, out is the name used when the VALUitem* returned
by the action routine is stored as a data list. If a data list by that name already exists,
it is replaced by the new data list.

The internal behavior of IOBJset_actionO is similar to that of IOBJset_condi
tionO: it allocates, initializes an IOBJaction data structure, and installs the pointer
to the data structure in the proper row of obj's action table. Unlike the in argument
in IOBJset_conditionO, arg...list is not copied into the IOBJaction data structure.
Also, the out argument string is not copied to the IOBJaction data structure; this is
a programming oversight and shoulc_ be corrected so that the behavior is consistent
with IOBJset_conditionO.

Note that the finite state machine shown in Figure 1 contains two Stop-Event
arcs from the Outside state to the Start state; these arcs are disambiguated by the
value of Outside-Control. To set this parameter of an interaction object, use the
IOBLOBLOUTSIDEO macro, which takes as its arguments an IOBJobj ecU and an
IOBJoutsides constant.

While most action routines are intended to manipulate graphical objects during
interaction, the Final-Action routine is intended to be an application callback function.

A.5 Condition Routines

Recall that condition routines are application-defined functions that act as event
qualifiers. For example, a condition routine might check if a ray emanating from
the screen position of a mouse button press intersects with any 3D objects in a
display list. When installed as a condition in an interaction object, the condition
routine is invoked when its associated interest is satisfied. For a condition of type
IOBJ-STARLWHERE, the associated interest type is IOBJ-START.EVENT, and for a condi
tion of type IOBJ-.RUNNING_WHERE, the associated interest type is IOBJ-.RUNNING.EVENT.

The argument list of a condition routine is as follows:

26

VALUitem*
condition_rtn(hdl. iobj. in_list)

IOBJhandle *hdl;
IOBJobject *iobj;
VALUitem *in_list;

Inside a condition routine, there are three sources of data:

•	 the locator values of the event, which can be accessed from the hdl and iobj
arguments by use of the following public macros:

IOBJ_EVENT_VAL IOBJ_OBJ_EVENT_VAL
IOBJ_EVENT_DELTA IOBJ_OBJ_EVENT_DELTA
IOBJ_NUM_EVENT_VALS IOBJ_OBJ_NUM_EVENT_VALS

•	 the in~ist argument, represented as a VALUitem*. Just before the condition
routine is called, IOBl's event manager retrieves the data list associated with
the in name specified as an argument to IOBJset_conditionO, and passes this
list to the condition routine. The contents of this list is application-defined, to
allow flexibility. The VALU public macros can be used to access the contents of
this list.

•	 other data lists accessible through the IOBJget~ist0 function; these lists may
be either global or local in scope. As with in~ist, use the VALU public macros
to access the contents of these 'data lists.

Typically, a condition routine iterates through the elements of the data list passed
in the in~ist argument, generates a new list containing elements of the in~ist

that satisfy a certain condition, and returns the new list. Especially if you use the
VALUJ.IST..FDREACH-ITEM macro to iterate over the in~ist, you should not delete or
overwrite any element in the in~ist argument. To generate the new list, call the
VALUnev~ist() function, using IOBJ_VALU-ID(hdl) as the VALUid argument. To add
a new item to the VALUitem* serving as the data list, use the VALUadd_to~istO

function. When the new list is returned by the condition routine, it may replace the
data list used as the in~ist.

When the condition routine returns, IOBl's event manager checks the return value
to see whether it is NULL. If not, the return value is considered to be a data list, and
becomes associated with the out name specified as an argument to IOBJset_condi
tionO. In this case, the condition is considered to be satisfied. If the return value
is NULL, the condition is not satisfied, and the finite state machine of the interaction
object containing the condition is not advanced.

A.6 Action Routines

Action routines are also application-defined functions that perform the intermediate or
final effects of an interactive gesture. While they are similar in behavior to condition

27

routines, action routines have one key difference: the action routine can receive an
arbitrary number of data lists, rather than a single data list.

The argument list of an action routine is as follows:

VALUitem*
action_rtnChdl. iobj. in_list)

IOBJhandle *hdl;
IOBJobject *iobj;
VALUitem *arg_list;

When an action is invoked, IOBJ's event manager generates a VALUitem list con
taining the data list for each name in the IOBJarglist data structure specified as an
argument to IOBJset_actionO. This list is passed to the action routine as arg~ist.

Thus, the number of data lists depends on the number of names specified in the
IOBJarglist data structure.

Since action routines receive a list of data lists, you need to use the VALU...LIST_ITEM
or VALUJ.ISLFOREACH..ITEM macros to access the individual data lists.

The action routine can generate and return a new data list, but this is not required.
For example, an action routine that adds screen objects to a selection set generates
and retllrns a new data list containing the new selection set. IT IOBJ's event manager
dt:t",ds a returned list from an action routine, the data list is associated with the out
name specified as an argument to IOBJset-actionO. Another action routine that
merely translates screen objects may: not return a new list; in this case, NULL should
be returned. As with condition routines, the new data list returned by the action
routine can overwrite a data list used as an input list, if the name is the same.

A.7 Arglists

To allow action routines to be called with a variable number of arguments, the IOBJ
arglist data structure is used to collect names of data lists used as input. Note that
the names of the data lists, rather than the data lists themselves, are stored in the
data structure; this enables late binding, so that the contents of the data lists are up
to date when used.

To create an arglist, use IOBJcreate-arglistO:

IOBJarglist*
IOBJcreate_arglistChdl, num)

IOBJhandle *hdlj
int num;

num is the number of data list names to be stored in the IOBJarglist data struc
ture. hdl is needed so that the data structure can be allocated from the private MEM
pool stored inside hdl. The table of char pointers used to store the names is allocated
using mallocO because the size of the table will vary with the number of data lists
stored in the arglist.

28

IOBJcreate.-arglist 0 returns a new, but empty, IOBJarglist data structure.
After adding the names of data lists to this arglist, the data structure is passed as the
arg-list argument to IOBJset_actionO.

To set the names of the data lists in a given arglist, use IOBJset.-argO:

void
IOBJset_arg(arglist. num. name)

IOBJarglist *arglist;
int num;
char *name;

arglist is an IOBJarglist* returned by IOBJcreate.-arglist O. The name ar
gument is duplicated and stored inside the arglist, so that the argument string can be
deallocated after the call.

A.S Data Lists

Data lists are used as input to condition and action routines, as a way of communi
cating the application data structures to the interaction objects. Typically, a data list
is created by the application, using the VALU package (see Section A.12.7). To allow
conditions and actions to refer to a. data list, a name must be assigned to the data list;
this name is then specified in the calls to IOBJset_conditionO, IOBJset_action,
and IOBJset.-argO. This can be done by using IOBJput~istO:

void
IOBJput_list(hdl. iobj, list, name)

IOBJhandle *hdl;
IOBJobject *iobj;
VALUitem *list;
char *name;

If hdl is non-NULL, the name has global scope. If iobj is non-NULL, the name is
considered to be local to the given interaction object. list is the data list that will be
assigned the string specified by name. If a data list already exists for the given name,
it is automatically freed and replaced by the new data list. For this reason, make sure
that your VALUitems can be correctly freed by the standard routines associated with
the VALUid. In special cases, you may have to use your own VALUid when creating
new VALUitems.

In general, global scope is sufficient, but local scoping can be useful in certain
situations. For example, you can have different interaction objects maintain their own
private selection sets. The different selection sets might have the same name, but can
be distinguished by local scope.

Inside IOBJput~ist0, the necessary STRPOOLid is created, if it does not exist,
in the interaction object or the IOBJhandle (depending on local or global scope, re
spectively). The string pool is looked up, using STRPOOL routines, to see if the name

29

is already installed. If so, the associated data list is freed. Then, list (the new data
list) is installed in the string pool.

Data lists can be retrieved by name with the IOBJget~ist0 function:

VALUitem*

IOBJget_list(hdl, iobj, name)

IOBJhandle *hdl;
IOBJobject *iobj;
char *name;

As with IOBJput~ist(), the distinction global and local scope is determined
by whether iobj is non-NULL. If so, the name is looked up in the local scope of the
interaction object. Otherwise, the name is looked up in the global scope of the hdl.
The data list, if found, is returned by IOBJget~ist O. NULL is returned if the name
did not have an associated data list.

Inside IOBJget~ist 0, STRPOOL routines are used to look up the given name in
the STRPOOLid associated with the interaction object or the IOBJhandle, depending
on whether or not iobj is non-NULL.

The motivation for using data lists and names is to allow late binding. The contents
of data lists change over time, especially in an interactive environment. In some cases,
a data list may be replaced in its entirety by a new data. li:;t; for example, a selection
set is reset or changed to a new set of screen objects. There may be many condition
and action routines that use the same data list; if names are used and evaluated at
the last possible moment before use,· the data lists reflect the current contents.

A.9 Running Interaction Objects

When interaction objects are created, they are not immediately activated. To acti
vate interaction objects, call the function IOBJactivate_objectO, which requires an
IOBJobjecU as an argument. An interaction object can be deactivated by calling
IOBJdeactivate_obj ect 0 with an IOBJobj ecU as its argument.

IOBJactivate_objectO works by enabling the IOBJ...5TART..EVENT interest and
disabling all other interests of the given interaction object. The finite state machine
is also reset, the active field of the interaction object is set to TRUE, and the running
field is set to FALSE (since the interaction object is not in the running state).

IOBJdeactivate_obj ect 0 simply disables all the interests of the given interactive
objects and sets the active and running fields to FALSE.

After creating and activating interaction objects, EVENTevent~oop0 must be
called with the same EVENThandle* used in the IOBJinitO function call. (There
are low-level EVENT routines you can use in place of EVENTevent~oop, but this
is beyond the scope of this document; see the EVENT man page for details.) The
EVENTevent~oop0 routine ensures that IOBJ's own event manager is notified of
events occurring on MID devices registered with IOBJ.

30

A.10 Event Handling

A.IO.I Background

Some background is helpful for understanding how the event manager is designed. To
provide a strong event-handling facility, various types of low-level device events need
to be handled in a consistent and efficient manner. One approach is to sample input
devices at frequent intervals, comparing the sampled value with an application-stored
value to determine if the value of an input device has changed. This operation is called
polling or sampling, which must be executed continuously to minimize user interface
latency. This method is inefficient because substantial CPU time must be spent in
tight polling loops waiting for a input device's value to change, even if the user is not
manipulating the input device.

To avoid this inefficiency, an event-driven approach is used. In this approach, the
application requests that the graphics package or operating system place input device
events on an event queue, in temporal order, as they occur. The application then
checks the event queue to see if any events have occurred. If there is an event waiting
at the head of the queue, it is removed from the queue and appropriate action is
taken depending on the type of event. If there are no events waiting in the queue, the
application enters a wait state, remaining there until the next event occurs or until a
timer interval elapses. This process is repeated until the application is terminated.

The original device handling package in BAGS, called DIIO,: was based on the
polling approach, which led to inefficient performance especially in a multitasking
environment, such as UNIX. To imi>rove efficiency, a new package called MID§ was
written using the event-driven approach. This package is flexible in the sense that an
arbitrary callback function can be registered for each distinct event type or for all event
types. As each event is removed from the queue, the callback function associated with
the event's type is invoked. This leads to a callback-driven model of execution where
the application is informed of device events wholly through callback functions. The
event information is passed to the callback functions in a consistent fashion, regardless
of the event's type or source. Efficiency is achieved by using the EVENT package, which
is described below.

Many graphics packages, such as PHIGS, provide a function that awaits events from
supported devices; thus, the application can enter a wait state that does not consume
CPU time. The drawback of such functionality is that the application can await events
only from devices supported by the graphics package. More generality is needed in
the BAGS environment to handle events occurring on devices not directly supported
by the graphics package (such as network sockets). The EVENT package was written
to provide this generality. This package takes advantage of the fact that all input
devices used in BAGS are accessed and controlled through the UNIX file descriptor
abstraction. Using this abstraction allows the use of the UNIX select () system call
to await events on a set of file descriptors. Since file descriptors are used for various

10IIO sta.nds for Device-Independent Input/Output.

§MID stands for Manager of Input Devices.

31

kinds of input devices, streams, sockets, pipes, and files, EVENT provides a consistent
mechanism for handling event sources. This mechanism is also efficient because the
select 0 system call brings the application into a wait state when there are no events
waiting to be processed.

A.I0.2 Event Manager Routines

Since the event manager is based on the EVENT package, you must call EVENT

event~oop 0 after creating and initializing interaction objects. If you open your own
MID devices and want to register them with the event manager, use the IOBJregis
ter_devices 0 function:

void
IOBJregister_devices(hdl, devices, num_devices)

IOBJhandle *hdli
MIDdevice **devices;
int num_devicesi

devices is a table of pointers to MIDdevice data structures, and num_devices is
the number of devices in the devices table. This function should be used if you do
not specify that MID devices are to be opened in the IOBJinito call.

To create a new lll:er-defined event in which an interaction object can be interested,
use IOBJcreate_event 0:

IOBJevent_id
IOBJcreate_event(hdl, name)

IOBJhandle *hdl;
char *name;

name can be any string you choose, and it should be unique so that each user-defined
event has an unique IOBJevent-.id. The IOBJevent_id is used for IOBJset_inter
est 0 and can be posted by using IOBJpost _event 0 :

void
IDBJpost_event(hdl, event_id)

IOBJhandle *hdl;
IOBJevent_id event_id;

A.I0.3 Inside the Event Manager

The event manager depends on MID and EVENT for receiving events from input de
vices. If IOBJinitO is called with open-flag set to a non-zero value, the inter
nal function IOBJ _open_devices 0 is called to open the MID devices for use by the
event manager. IOBJregister-devices 0 also takes control of input devices spec
ified by the application. The application callback for the registered MID devices is
the IOBJ_event_callbackO event manager routine, so all registered input devices are
under the control of the event manager.

32

IOBJinito also sets up the event pipe used for user-defined events by calling
IOBJ_init_eventpipeO. The event pipe takes advantage of the fact that EVENT
sources can be any file descriptor. Thus, the event pipe's file descriptor for the reading
end is added as a source to EVENT, and has its own callback so that IOBl's event
manager can perform the appropriate actions when an user-defined event is posted.

The event manager depends on an important data structure, the event registry. It
is a table of pointers to IOBJinterest data structures. The table is indexed by event
type (IOBJevents), and contains only enabled interests to keep the scope of attention
to a reasonable size. When an interaction object is activated, the Start-Event interest
becomes enabled. As the finite state machine of an interaction object goes through
different states, various interests become enabled and disabled. If an interaction object
is deactivated, any enabled interests are disabled, and thus removed from the event
registry.

To show how the event manager works, let's trace its behavior when an input
device event occurs. The EVENT package, by use of the selectO system call, first
detects the new event on an input device, and calls a MID callback function (since
the input device is registered with MID). MID converts the event to its abstraction,
and calls the registered callback function IOBJ _event_callback O. This function then
converts the MID event to an IOBl abstraction, and calls IOBJ...process_event 0 with
one of the IOBJ events enumerated constants. IOEJ..p:t-ocess_event 0 indexes into the
event registry, using the IOBJevents argument; if there are any interests registered for
that event type, they are processed by executing any associated conditions and calling
FSAprocess-aymbolO to advance the finite state machines of interested interaction
objects.

FSAprocess-aymbolO takes advantage of the fact that the interaction object is
equipped with an FSA that contains any action routines installed as parameters to
the interaction object. Besides calling the action routines, the FSA routines also enable
and disable various interests depending on the state of the finite state machine.

A.II ISLE Parser

The parser for Interaction Specification LanguagE (ISLE) is implemented by using the
UNIX yacc and lex tools. You can read the yacc and lex specification files for a formal
description of ISLE. At this point, only the parser input routine, IOBJ_parse...fileO,
is written. This function accepts the name of a file containing ISLE descriptions, and
should be called by the application during its initialization step. The code to transform
ISLE descriptions into programmatic calls is not yet written.

A.I2 Data Structures

IOBl defines the following public data structures:

IOBJhandle IOBJobject IOBJinterest
IOBJcondition IOBJaction IOBJarglist

33

The BAGS software standards dictate that package data structures are to be treated
in an object-oriented fashion. Knowledge ofthe internal structure of public data struc
tures should not be exploited in writing a BAGS programj there are public macros
available for accessing the internal contents of public data structures. However, these
data structures are explained in detail below to provide greater insight into the func
tioning of the IOBJ package. Programmers intending to modify or extend this package
will find these details useful.

IOBJ also makes use of public data structures defined by other BAGS packages. The
most important such data structure is the VALUitem, and the motivation for using this
type is explained in Section A.12.7.

A.12.1 IOBJhandle

The IOBJhandle collects global information into a single data structure that is used
by many IOBJ routines. It is allocated and initialized in the IOBJinito function.
The role of each field in the IOBJhandle data structure is as follows:

event..hdl contains the EVENThandle* passed to IOBJinit O. This event..hdl is used
when registering MID devices and registering the UNIX pipe that handles user
defined event types. The IOBJ.EVENTJiDL private macro accesses this field.

event...registry is a table of pointers to IOBJinterest data structures. This table
is used by IOBJ's event manager to keep track of enabled interests. It is in
dexed by event type (IOBJevents), and the size of this table is determined by
the number of predefined event types, also known as IOBJ...NUM.EVENTS. After
initialization, this table is empty, signifying that there are no enabled interests.
The IOBJ...REGISTRY private macro accesses this field.

mem_pooLid is a private MEM pool used for allocating the following IOBJ data struc
tures: IOBJinterest, IOBJcondition, IOBJaction, and IOBJarglist. Only
the memory allocated for the event...registry and the IOBJhandle is allocated
from MEM's shared pool. Using a private MEM pool simplifies the task of
IOBJdestroyO. The IOBJ.1'IEM...POOL private macro accesses this field.

event_val is an array of float that stores the values of the most recent event detected
by MID. When an event occurs, this array is updated with the values of the event.
Thus, a condition or action routine can inquire the event's values when called.
This field can be accessed by the IOBJ.EVENLVAL or IOBJ_OBJ....EVENLVAL public
macros.

event_delta plays the same role as event_val, except that event deltas, rather than
absolute values, are stored. This field can be accessed by the IOBJ.EVENT.DELTA
or the IOBJ_OBJ.EVENT.DELTA public macros.

num_events indicates the number of locater values available in the most recent event.
For example, a dial event contains one locator value, and a mouse or tablet
event contains two locator values. This field can be accessed by the IOBJ...NUM....E
VENLVALS or IOBJ_OBJ...NUM...EVENLVALS public macros.

34

data_pool contains the STRPOOLid of a string pool, which is used for mapping the
names of data lists to the data lists themselves. There is also a string pool
in the IOBJobj ect data structure, to allow the possibility of scoping. This
field is initia.lly set to NULL, and a STRPOOLid is created only when needed.
IOBJput~ist 0 and IOBJget~ist0 are the only functions that create or mod
ify the string pool. The private macro IOBJ..DATA.POOL is used to access this field.

user_evts contains the STRPOOLid of a string pool that maps the name of an user
defined event type to a list of interests. This field is initialized by IOBJcreate_e
vent 0, when ca.lled for the first time. This string pool is used by IOBJ's event
manager to process user-defined events as they occur. This field can be accessed
by the IOBJ_USER.EVTS private macro.

pipe_write indicates the file descriptor used for writing to the user-defined event pipe.
This field can be accessed by the IOBJ.PIPE_WRITE private macro.

pipe...read indicates the file descriptor used for reading from the user-defined event
pipe. This field can be accessed by the IOBJ .PIPE..READ private macro.

write~p caches a FILE pointer leading to the pipe_write file descriptor. This is used
as an optimization by the IOBJpost_event 0 function to flush the event pipe
after an event has been posted. This field can be accessed by the IOBJ .PIPEJILE
private macro.

valu_id stores the VALUid pointer used in the IOBJinito function, which may have
been supplied by the programmer or automatica.lly created. valu-id is used for
allocating temporary VALUitem structures during execution. It can be accessed
by the IOBJ_VALU~D public macro.

A.12.2 IOBJobj ect

Each interaction object is represented by the IDBJobj act data structure. The role of
each field in this data structure is as follows:

name is a copy of the character string specified in the IDBJcreate_obj ect 0 call. This
field is used primarily for debugging information. This field can be accessed by
the IOBJ_OBJ..NAME private macro.

interest is an array of pointers to IOBJinterest data structures. This table is
indexed by interest type (IOBJinterests), and the table size is determined by
the number of predefined interest types, also known as IOBJ..NUM_INTERESTS.
When an interest is created for a given interaction object, it is stored in this
table. Each interest in this table can be accessed by the IOBJ_OBJ~TSTmacro.

condition is an array of pointers to IOBJcondition data structures. This table is
indexed by condition type IOBJconditions, and the table size is determined by
the number of predefined condition types, also known as IOBJ..NUM_CONDITIONS.
When a condition is created for a given interaction object, it is stored in this
table. Each condition in this table can be accessed by the IOBJ_DBJ _CONO macro.

35

action is an array of pointers to IOBJaction data structures. This table is indexed
by action type (IOBJactions), and the table size is determined by the number
of predefined action types, also known as IOBJ...NUM~CTIONS. When an action is
created for a given interaction object, it is stored in this table. Each action in
this table can be accessed by the IOBJ_OBJ~CTIONmacro.

outside disambiguates the two Stop-Event arcs from the Outside state to the Start
state in the finite state machine shown in Figure 1. This field is set by the
IOBJ...DBJ_OUTSIDE public macro, and can contain one of the IOBJoutsides con
stants: IOBJ..ABORT or IOBJ.LAST.

active indica.tes whether the interaction object is activated. This field is set to
FALSE when the interaction object is created, and becomes TRUE when IOBJac
tivate_objectO is invoked. The IOBJ_OBJ~CTIVEprivate macro can be used
to access this field.

running indicates whether the interaction object is running. This field is set to FALSE
when the interaction object is created, and becomes TRUE when the finite state
machine of the interaction object enters the Running state. This field is used
to optimize the code that handles the Running state. The IOBJ_OBJ-RUNNING
private macro can be used to access this field.

hdl refers to the IOBJhandle* specified as an argument to IOBJcreate_obj ect O.
This information provides the context for the given interaction object. This field
can be accessed by the IOBJ_OBJ...HDL private macro.

fsa contains the FSAhandle* representing the finite state machine for the interac
tion object. The FSAhandle* is allocated by calls to the FSA package from
the IOBJcreate_obj ect 0 function. In the current implementation, a separate
FSAhandle data structure is allocated for each interaction object, leading to in
efficient use of memory. This "feature" should be changed so that all interaction
objects share the same FSAhandle data structure; each interaction object would
then store a small piece of data to represent the current state of the FSA for that
particular interaction object. The fsa field can be accessed by the IOBJ_OBJJ'SA
private macro.

sym is a table of FSAsymbol containing the results of calls to FSAcreate-symbolO.
The FSA package uses these symbols to support the FSA implementation, and
requires them in calls to FSAprocess-symbolO. The IOBJ_OBJ...sYMBOL private
macro can be used to access symbols in this table.

data_pool is similar to the role of data_pool in the IOBJhandle data structure; it is
used to map the names of data lists to the data lists themselves. Having two
different data_pools allows the possibility of scoping. This field is initially set
to NULL, and a STRPOOLid is created only when needed. IOBJput~istO and
IOBJget~ist0 are the only functions that create or modify the string pool.
The private macro IOBJ....DATA...POOL is used to access this field.

36

A.12.3 IOBJinterest

Each interest in a particular event type is represented by the IOBJinterest data
structure. The role of each field in this data structure is as follows:

object refers to the IOBJobject data structure that "owns" the given interest. When
a particular interest is satisfied by a matching event type, the corresponding
interaction object can be easily found and used in testing for conditions and
executing actions. This field can be accessed by the IOBJ-ITSLOBJ private
macro.

active indicates whether the given interest is active. When IOBJset-interest 0 is
called, active is set to FALSE. When the interest is enabled, active becomes
TRUE, and when the interest is disabled,active becomes FALSE. If an inter
est is active, it can be found in the event registry stored in the IOBJhandle,
which is used by IOBJ's event manager. This field can be accessed by the
lOBJ-ITSLACTIVE private macro.

event stores the event type specified as an argument to IOBJset_interest O. It may
be one of rOBJ's predefined event types (IOBJevents) or IOBJ_USER..DEFINED.
In the latter case, the next field, event_id, indicates the user-defined type. This
field can be accessed by the IOBJ-ITST...EVENT private macre.

event_id stores the event ID specified as an argument to IOBJset-interest 0 I if
lOBJ_USER...DEFINED was specified as the event type. This field can be accessed
by the IOBJ-ITST...EVENLID private macro.

type	 indicates the type of interest (as in IOBJinterests). This field is specified as
an argument to IOBJset-interest 0 and affects the code that handles traver
sal of the finite state machine. It also serves as an index into the interest
table inside the IOBJobj ect data structure. This field can be accessed by the
IOBJ-ITSLTYPE private macro.

next, prev are used by rOBJ's event manager to link several interests involving the
same event type. As each row in the event registry table in the IOBJhandle data
structure points to a linked list of interests, the next and prev fields are used to
make the linked lists. The IOBJ-ITST...NEXT and IOBJ-ITST...PREV private macros
can be used to access these fields.

Although the IOBJhandle pointer is not explicitly stored in this data structure, it
is available through the IOBJ-ITST...HDL private macro.

A.12.4 IOBJcondition

Each condition tested during traversal of an interaction object's finite state machine is
represented by the IOBJcondition data structure. The role of each field in this data
structure is as follows:

37

condfn stores the func argument specified to IOBJset_conditionO. It is a pointer
to a function that returns a VALUitem*. The behavior of condition routines is
described in Section A.5. The motivation for using the VALUitem data structure
is described in Section A.12.7. This field can be accessed by the IOBJ_COND...FN
private macro.

in is	 a copy of the name of the input data list specified as an argument to IOBJ
set_conditionO. The actual data list is retrieved by an implicit call to IOBJ
get~ist0 just before condfn is called. This field can be accessed by the
IOBJ_COND-IN private macro.

out is a copy of the name of the output data list created from the VALUitem* re
turned by condfn. in and out may be the same, in which case the input list is
replaced by the output list after condfn returns. This field can be accessed by
the IOBJ_COND_OUT private macro.

next	 is used to link conditions into a linked list. The current implementation does
not support multiple conditions, so this field is not currently used. This field
can be accessed by the IOBJ_COND...NEXT private macro.

A.12.5 IOBJaction

Each a.ction invoked during traversal of an interaction object's finite state machine
is represented by the IOBJaction data structure. The role of each field in this data
structure is as follows:

actfn stores a pointer to a function that returns a VALUitem*. This pointer is the
same as the func argument specified to IOBJset_actionO. Action routines are
described in Section A.6. This field can be accessed by the IOBJ...ACTION...FN
private macro.

arg~ist stores the pointer to an IOBJarglist structure specified as an argument
to IOBJset_actionO. The IOBJarglist data structure is described in Section
A.12.6. arg~ist is passed to actfn when actfn is invoked. This field can be
accessed by the IOBJ...ACTION-ARG...LIST private macro.

out stores the character string specified as the out argument to IOBJset_actionO.
When actfn returns with the VALUitem*, a data list containing the VALUitem*
is created with the out string as its name. This field can be accessed by the
IOBJ-ACTION_OUT private macro.

next	 is used to link actions into a linked list. The current implementation does not
support multiple actions, so this field is not currently used. This field can be
accessed by the IOBJ...ACTION...NEXT private macro.

A.12.6 IOBJarglist

Arglists used in actions are stored in an IOBJarglist data structure. The role of each
field in this data structure is as follows:

38

hdl is the hdl specified as an argument to IOBJcreate..arglist O. The mem_pool..:id
inside the hdl data structure is used as the source of memory allocated to the
arglist. This field can be accessed by the IOBJ ...ARGLIST.HDL private macro.

num is the number of names stored in this arglist. It is specified as an argument to
IOBJcreate..arglist O. This value also determines the size of the names table.
This field can be accessed by the IOBJ...ARGLIST...NUM private macro.

names is a pointer to a table of char pointers. The size of this table is determined
by the num field. This field can be accessed by the IOBJ...ARGLIST..NAMES private
macro, and each entry in the table can be accessed by the IOBJ...ARGLIST..NAME
macro.

A.12.7 VALUitem

Data lists used inside condition and action routines are represented as VALUitem data
structures. VALU provides a "typeless" system of collecting various items of arbitrary
types into a list. This provides the generality needed to support various application
dependent environments. The VALU package is fully documented in the man pages,
but here are the most important calls and macros that you'll want to use:

VALUnew~ist creates a VALUii:am of type VALU_T...LIST to which an arbitrary number
of elements of arbitrary type can be added.

VALUnew-pointer creates a new VALUitem that can store a char pointer. You can
add this VALUitem to a list. There are also other element creation routines for
different types, such as atoms.

VALU...5ET-POINTER sets the contents of the VALUitem to the given pointer. There are
also other macros that set the contents of different typed VALUitems.

VALUadd_to~ist adds a VALUitem to a list; the list expands automatically if neces
sary.

VALU...LIST..FOREACH.J:TEM iterates over all elements of the given list.

VALU...LIST.J:TEM accesses a given element in the given list.

VALUfree..:item deallocates the space consumed by the given item.

39

