
BROWN UNIVERSITY

Department of Computer Science

Master's Thesis

CS-91-M2

The CARE Package for CApture and REplay of Parallel Code Sequences

by

Erik J. Morse

f -

The CARE Package

for

CApture and REplay of Parallel Code Sequences

Erik J. Morse

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for

the degree of Master of Science in the Department of

Computer Science at Brown University

May 1991

/urg:

Professor Steven P. Reiss

Advisor

The CARE Package

for

CApture and REplay

of

Parallel Code Sequences

Erik J. Morse

Box 1910, Computer Science Department

Brown University

Providence, RI 02912

January 22, 1991

Abstract

Debugging and testing of parallel programs is difficult due to the nondeterminism
introduced by parallel constructs. In this paper we discuss previously proposed so
lutions, including: static source code analysis, problem based systems that describe
and recognize problematic event occurences, reverse execution of programs, and
capture/replay tools that observe and reproduce executions of parallel programs.
The latter approach provides the parallel program developer with traditional cyclic
debugging capability. We describe a general capture and replay approach that we
have implemented. Our system provides the user with routines for interprocess
communication (ipc) via message passing and safe access to shared memory. The
capture and replay mechanisms are built into these routines. The system provides
a large amount of flexibility not found in other reproducible execution solutions.

Contents

1 Introduction	 1

1.1 The Debugging Problem	 1

1.2 The Testing Problem	 2

1.3 A Solution	 2

1.4 Types of Parallelism . .	 3

1.4.1	 Message Passing Systems. 3

1.4.2	 Shared Memory 3

1.5 Paper Overview	 4

2 Previous Systems and Approaches	 5

2.1 Static Analysis	 5

2.1.1	 START (STatic Anomaly Reporting Tool) 5

2.1.2	 Faust............ 6

2.1.3	 Static Analysis Summary. 6

2.2 Problem Based Solutions	 6

2.2.1	 EBBA (Event Based Behavioral Abstraction) and Data Path

Expressions 7

2.2.2	 Problem Based Summary 7

2.3 Capture and Replay	 7

2.3.1	 BugNet 8

2.3.2	 Deterministic Execution Debugging 9

2.3.3	 Instant Replay 9

2.3.4	 Capture and Replay Summary. 10

2.4 Reverse Execution	 10

2.4.1	 I<iOR 10

2.4.2	 Recap 11

2.4.3	 Reverse Execution Summary . 11

3 The CARE Package 13

3.1 Our Goals . 13

3.2 The Design 14

3.3 Definition of Synchronization Events 14

3.4 Limitations 15

3.5 Guaranteeing Deterministic Replay 15

3.5.1 Guaranteeing Message Receipt Replay 16

3.5.2 Guaranteeing Replay of Shared Memory Accesses 16

3.6 Overcoming Limitations 18

3.7 Additional Features . 18

4 CARE User Manual 20

4.1 General User Routines 20

4.1.1 Init 20

4.1.2 Finish . . . 21

4.1.3 FindPartner 21

4.2 Message Routines. 21

4.2.1 MsgReceive 22

4.2.2 MsgCall 23

4.2.3 MsgSend.. 23

4.2.4 MsgReply 23

4.3 Shared Memory Access 24

4.3.1 Objectlnit. 24

4.3.2 ReadEntry. 25

4.3.3 ReadExit 25

4.3.4 WriteEntry 25

4.3.5 WriteExit 26

4.4 Modes of Operation . 26

5 Performance Characteristics 28

5.1 Nonblocking send/receive (64 byte messages) . 28

5.2 Blocking calls (64 byte messages) 29

5.3 Shared Memory Accesses . 29

6 Conclusions 30

A Sample Programs 32

A.1 A Sample Client . 32

A.2 A Sample Client with Shared Memory 34

A.3 A Sample Server . 38

B Steps for Using Capture and Replay 40

B.1 Normal Capture and Replay 40

B.2 Full Information Capture and Replay 41

B.3 Checkpointing . 41

C Sample Capture Logs 43

C.1 Client! Log for CAPTURE 44

C.2 Client1 Log for FULL_CAPTURE. 44

C.3 Client2 Logs for CAPTURE 45

C.4 Client2 Log for FULL_CAPTURE. 46

C.5 Server Log for CAPTURE 47

C.6 Server Log for FULL_CAPTURE . 48

Chapter 1

Introduction

Cyclic debugging is the most common method for software programmers to find
errors in their code. Cyclic debugging is the process of running a program, locating
an error, correcting the error and then repeating the procedure until no errors
appear to exist. In traditional sequential programs the process of the debugging
cycle is fairly well understood. Each re-execution of the same program with the
same inputs results in the same code sequence being executed in the program
under scrutiny. Cyclic debugging depends on this reproducibility to isolate the
source of the error. Unfortunately, the method encounters problems when applied
to parallel programs. We use the term parallel program to describe programs that
support concurrent execution of processes in a distributed and/or multiprocessor
environment, where a process is an independent thread of control that is sequential
in nature.

1.1 The Debugging Problem

Debugging and testing of parallel programs is difficult due to the fact that the
programs are most often nondeterministic in nature and many bugs are timing re
lated. Because of this it is often hard to reproduce errors on subsequent executions
of the program, as subsequent executions may exercise different code sequences.
A programmer writing a parallel program generally has no means of isolating the
events that led to an error and no way to reproduce the events that caused the er

1

2

ror. Often the introduction of a debugger into the program will change the timing
of the events in the system and the error will disappear or mutate only to reappear
once the debugger is removed.

1.2 The Testing Problem

When writing a test for a program a user generally will invoke the program with
some defined set of inputs and then evaluate the program results to make sure they
match the expected results. Alternatively, a user may execute the program under
test manually and inspect the results. In both cases a program is determined to
be correct if the expected program results occur. Unfortunately, when a program
exhibits nondeterministic behavior, there is no guarantee that if it performed cor
rectlyon a set of inputs during one invocation that it will perform correctly on the
same set of inputs on subsequent invocations. If different invocations may execute
different code sequences then the tester must verify that each code sequence is
valid and a test designed to exercise a specific code sequence must execute that
code.

1.3 A Solution

The two problems described above are similar in nature. In order to solve both of
the problems the user must be able to execute a nondeterministic program in a de~

terministic fashion. To do this it is necessary to determine a set of synchronization
events within a program that fully describe a unique execution of the program.
Then it is necessary to capture the events as they occur during an initial run of
the program and then replay them in subsequent runs of the program. In addition
to this capture and replay type of mechanism a variety of other approaches have
attempted to deal with the problem of testing and debugging parallel programs.
Static evaluation of parallel programs have attempted to isolate potential problems
by locating concurrent accesses to shared memory and locatj':>!lS of possible non
determinism by observing the programs source code. Problem based approaches
have attempted to describe possible improper event sequences and actions to be
taken if such a sequence is recognized. Additionally, derivatives of the capture
and replay method known as reverse execution have been implemented. Reverse

3

execution allows the user to back up to a known good state in the program and
continue execution from there.

1.4 Types of Parallelism

A variety of different mechanisms for introducing parallelism into programs exist.
Some languages such as Ada [1] provide explicit parallel constructs. Other systems
offer programmers mechanisms to introduce parallelism into their programs (for
example a remote procedure call system). There are two common communication
mechanisms in both language based and general parallel systems. They are message
passing and shared memory.

1.4.1 Message Passing Systems

In a distributed environment where no two processes share the same memory space
a message passing mechanism can be used to allow processes to communicate. A
message passing systems consists of a set of primitives such as sends, calls (sends
that expect replies), blocking receives that wait for a message to arrive, and non
blocking receives that return if no message is currently pending. Processes com
municate by passing messages between them. Synchronization events within these
systems depend on the order that messages are received at each process.

1.4.2 Shared Memory

Systems that allow multiple processes to access shared data provide another type of
parallelism. In these systems synchronization events are defined by reads and writes
of the shared memory. In order for data integrity to be maintained systems must
provide some type of restricted access to the shared data. These access mechanisms
may allow for exclusive reads and writes, concurrent reads and exclusive writes or
any other access patterns that preserve data integrity.

4

1.5 Paper Overview

The goal of this paper is to examine some of the approaches that have been used
to aid in the debugging and testing of concurrent programs. We will concentrate
primarily on the debugging issue, but the majority of the discussion can be applied
to the testing problem as well. We examine each method's positive points and
inadequacies. Then we describe a system that we have implemented to aid in this
process. Our system is based on the capture and replay approach to debugging.

Chapter 2

Previous Systems and
Approaches

2.1 Static Analysis

Static analysis of a program is an attempt to understand the potential execution
of a program by examining the program source code, not the actual program exe
cution. Static analysis of parallel programs is primarily concerned with potential
memory access conflicts and with control flow operations, not the value of predi
cates that may determine the flow.

2.1.1 START (STatic Anomaly Reporting Tool)

Appelbe and McDowell in [2] define a system with the goal of preventing program
error resulting from improper concurrent access to shared data. To accomplish
this the system converts a parallel program into a compressed dataflow graph
that contains only information about synchronization events. Then corresponding
program statements are merged back into their respective places in the graph and
potential data access conflicts (e.g. deadlock) are checked. The system is limited
in focus (it is designed for the scientific community and handles only augmented
Fortran77) and exponential graph blowup is a possibility though aids to prevent
this occurrence have been added.

5

6

2.1.2 Faust

Emrath and Padua have designed a system [10] as part of the Faust programming
environment at the University of Illinois. This system attempts to locate possible
points of nondeterminism within a parallel program. This extends the START
approach in that it looks at control flow as well as data access. The system is
designed for use in multiprocessor non-distributed environment. The hope is that
the system will help the programmer recognize points of nondeterminism that were
unintended, such as a missed synchronization statement. This is accomplished by
viewing the program as a graph consisting of data dependency edges and control
flow synchronization edges. If the former exists without a matching edge of the
latter type then nondeterminism exists.

2.1.3 Static Analysis Summary

Static analysis may be expensive to implement and time consuming to run. The
examples we have seen have been limited in their focus. It often considers control
flow direction that may be impossible (due to lack of predicate evaluation) and
thus may detect errors that can not occur [18]. If the user can easily recognize
these false alarms static analysis may be helpful, but a great deal of work still
needs to be done in this area to provide the user with a truly useful tool.

2.2 Problem Based Solutions

A problem based approach to debugging involves creating a method for the pro
grammer to specify a set of primitive events that should not occur in. a given
program. These events may be as simple as the zeroing of a variable or a com
plicated sequence of event interactions. An underlying system then monitors all
events that the program produces and checks for the occurrence of a problematic
sequence. If a specified sequence is detected the system acts in some way to notify
the user.

7

2.2.1	 EBBA (Event Based Behavioral Abstraction) and
Data Path Expressions

Both systems [3] [12] employ an event definition language to allow the user to
specify events and event interactions, including parallelism. The systems maintain
a set of primitive events and whenever a primitive event occurs the system sends it
through a filtering process and then on to a recognizer. The recognizer is a finite
state automata like machine created from the the user specified events sequences
and interactions. When the system recognizes an event sequence appropriate ac
tions are performed (e.g. debugger breaks).

2.2.2	 Problem Based Summary

The main problem with these systems is that all events must be fed through a
central recognizer. The event volume is generally enormous and consequently the
systems are fairly slow. Additionally, compiler support is needed to obtain and send
all occurrences of the primitive events to the recognizer. One goal for these systems
is that they eventually be used in conjunction with a capture/replay method (see
below) to recognize erroneous event behavior and then replay it for the user to
observe.

2.3 Capture and Replay

The capture and replay method of parallel debugging involves capturing essential
synchronization points during a programs execution and then using this informa
tion to allow for reproducible deterministic execution of the program. The" syn-'
chronization points may include communication via message exchanges or accesses
of shared memory locations. The programmer may use the capture log to try to
identify a bad sequence of events (if the log contains readable information) or may
replay the execution, perhaps under debugger control.

8

2.3.1 BugNet

BugNet [21] is the system that most closely resembles our work in the area of
message passing. The goal of BugNet is to aid in the debugging of distributed C
programs within a local area Unix l network. BugNet captures interprocess com
munication (ipc) information as well as input/output activity and execution traces.
BugNet does not allow for shared memory communication. BugNet does however,
make an attempt at capturing system time stamps and replaying programs in ap
proximately the same time frame as the initial invocation. BugNet operates by
spawning tracer and trap processes (for ipc capture and i/o capture respectively)
on each node that the program may run on. A program must initially register
itself in order to connect to BugNet. While running, BugNet periodically stops
all processes in order to checkpoint their state. This allows the user to continue
execution of a process from a recently checkpointed state.

BugNet completely captures all information passed via the ipc mechanism. This
is necessary because BugNet replays messages from the capture file data instead
of waiting for the actual message to arrive. This approach has both positive and
negative points. The user has the ability to replay a single process without. wor
rying about the re-execution of the rest of the system. However, the user can not
replay the entire system and observe various processes at different points during
its execution. Another problem will arise if if there are a large number of messages
being passed in a system or if the messages are very large in size. Since BugNet
captures complete message information this could result in a fast growth in the
capture file size. BugNet uses unreliable datagrams as a base for communications
and as a consequence the system may abort when a large number of messages are
send because messages get lost. Due to the BugNet interface and separate trace
and trap processes a program may have trouble connecting when the user uses a
debugger. BugNet's logging slows ipc communication by a factor of three. BugNet
does not provide a mechanism for nonblockirig receives and this limits its use as a
general purpose ipc system;

1Unix is a trademark of AT&T Bell Laboratories.

9

2.3.2 Deterministic Execution Debugging

Carver and Tai [5] present a system for capture and replay within the confines of
the concurrent Ada language. The approach is called language based due to the
fact that the synchronization events are defined in terms of the language constructs.
The definition of these events in concurrent Ada is more difficult than in simple
message passing or shared memory systems. The reason for this is the availability
of the rendezvous construct that allows processes (called tasks in Ada) to interact in
manners different than blocking and nonblocking sends and receives. It is possible
for a calling task to rendezvous with a called task at one of a variety of different
locations in the called task.

The system works by translating the source code of a given Ada program into a
similar program that has the ability to capture the defined synchronization events,
but in no other way affects the results of the program. The new program may
then be run to capture the synchronization events. Then a second translation is
performed on the original program. This translation creates a program that, when
given the captured data, will replay the program and guarantee the results will be
the same as the program when the capture version was run.

The system has some serious limitations. Access to shared variables is not allowed,
nor are statements that reply on the system clock. Furthermore, use of several
standard Ada constructs is not allowed.

2.3.3 Instant Replay

LeBlanc's Instant Replay [16] models all corrimunication as operations on shared
data objects. Messages are modeled as operations on a shared port or mailbox.
Version numbers for each shared memory object are maintained. Each write cre~

ates a new version of the object and each read reads a particular version of the
object. The system provides routines that allow for concurrent reads and exclusive
writes. Each access must be explicitly specified by the program as ReaderEnter,
ReaderExit, WriterEnter or WriterExit. If accesses are made i,,-ithout using these
routines Instant Replay can not guarantee accurate capture and replay.

The authors claim that simply forcing each process to replay correctly will guaran
tee that the results of the entire program will be the same. This is not necessarily
the case if different processes output to the same location (file, terminal etc...).

10

During replay the order of output events may change. Monitoring needs to be in
place on output as well as input. Instant Replay depends on the virtual machine
environments to be the same during each execution. This is a similar problem
to the one described in the previous section where accesses to machine dependent
features such as the real time clock can not be replayed.

2.3.4 Capture and Replay Summary

As we can see by the systems presented here each has points that make it a good
choice for some programs and a bad choice for others. Capturing complete data
allows the user to replay a single process as desired, but may cause a blowup
in capture data size. Capturing minimal data keeps the capture log small, but
forces replay of the entire system even when it is not needed. Capturing shared
memory accesses aids in debugging local parallel systems, but not in debugging
distributed systems. Capturing only message data has the opposite result. Some
of the approaches above altered the user's original program. This forces the user to
have an understanding of the underlying capture and replay mechanisms in order
to debug the altered program.

2.4 Reverse Execution

Reverse execution attempts to address one of the major drawbacks we saw in the
capture/replay method, namely the potential preponderance of captured data. One
type of reverse execution system may periodically checkpoint the entire program
state and then only capture data until the next checkpoint. When a checkpoint is
reached all previous captured data is discarded. Upon realization of an error the
system may be rolled back to the last checkpoint and then proceed until the error
location.

2.4.1 IGOR

IGOR [4] is a prototype system that does not attempt to capture synchronization
event behavior, instead it periodically saves all dirty memory pages. When the

11

program halts IGOR can recreate a past state of the system for the user to examine.
Then the program can move forward from that state via an interpreter.

IGOR currently only handles single processes, but it is not difficult to see how this
concept could be extended for use with parallel programs. Because IGOR does
not capture synchronization behavior, backing up to a previous known good state
and then moving forward would not guarantee that in a parallel environment the
same code sequence would occur. Furthermore, since IGOR's checkpointing scheme
is potentially problematic since it revolves around dirty pages. If a program's
working page set constantly changes checkpointing has to occur often. This would
dramatically slow down, and most likely change the execution of the program versus
a run without checkpointing. IGOR required changes to the underlying operating
system in order to checkpoint with this dirty page method.

2.4.2 Recap

Recap [17] is another system that attempts to solve the parallel debugging problem
via checkpointing and reverse execution. Recap captures all system calls and shared
memory accesses. It checkpoints by saving the address space and processor state
for a process or group of processes. This is accomplished by forking a child process
and suspending it. The parent process continues in a capture mode while the child
is set to a replay mode. Replay is accomplished by continuing execution of the
child process from the checkpoint.

Recap depends on compiler modifications to capture shared memory accesse~ and
special run time library calls to capture system calls.. Though this may not be
pleasant to implement, it does guarantee capture of all shared memory accesses,
not just those that are contained within synchronization primitives. Recap only
supports replay of events from the capture log. As we saw in the other cap
ture/replay systems this means that during replay the programmer can only look
at one process at a time as the other processes are not running.

2.4.3 Reverse Execution Summary

Reverse execution solves many problems. By checkpointing periodically useless
capture data can be discarded thereby keeping the capture log small. An additional

12

advantage that checkpointing provides is the ability to replay a small amount of
the program to get to the point of error. If a program has been running for an
extended period of time (minutes, hours, etc..) the programmer may not want to
wait until the complete program replays. Optimally, we would like to see a true
reverse execution tool. One that allows the user to run a program backwards step
by step in order to determine the course of events that led to program error.

Chapter 3

The CARE Package

3.1 Our Goals

We were concerned with providing a mechanism to aid in the testing and debugging
of parallel programs. We opted to do this within the framework of the tools avail
able to us here at Brown University, namely a local area network of workstations
running Unix and serviced by NFS. All our work is in the C programming language
[14] and we make use of the Brown Threads [9] package to provide us with local
parallelism. During the course of our study in this area the tools we as develop
ers found to be most useful were those that performed some kind of capture and
replay of the parallel code sequences. We wanted to design a tool that provided
this functionality. At the same time we wanted to allow the user of our tool to be
free of any specific knowledge of the capture and replay details of the underlying
system. As was mentioned before, other systems require the user to be aware of
changes to their code in order to properly use the capture and replay mechanism.
At the same time we wanted to provide the user with a tool that impeded their
programs performance as little as possible during capture and not at all when the
capture and replay option was turned off. Our final goal was to make our system
flexible, allowing the user to choose a mode of operation that best suited the pro
gram under development. With the above in mind we decided to implement our
own interprocess communication (ipc) system and our own shared memory access
system with all capture and replay functionality resident in the underlying system.

13

14

3.2 The Design

Our system consists of two pieces, one to handle concurrent shared memory access
and one to handle distributed communication. We adapted LeBlanc's Instant
Replay model [16] to allow capture and replay of shared memory accesses. This
system allows for concurrent reads and exclusive writes of shared memory objects.

We designed our message passing system based partially on [13] and [7]. The latter
system provided nonblocking sends, blocking receives and calls (a blocking send
that expects a reply). We augmented this model to include nonblocking receives
and message capture and replay capabilities.

We wanted our system to be as flexible as possible. During the capture stage we
wanted to capture enough information to allow deterministic re-execution of the
program. The user should have the option of replaying just a single process or the
entire program. In order to allow this we designed our system with a variety of
different modes for capture and replay.

3.3 Definition. of Synchronization Events

Each process, given a specific set of inputs to that process, executes in a determin
istic fashion since the only things that can affect the execution of the process· are
the inputs. The possible inputs in a multi-threaded and/or distributed C program
therefore define the synchronization events. The possible inputs that may change
from one execution to the next in our environment are: message receipt, access of
a shared variable, file or user input and access to dynamic system variables such
as the clock, directory listings, etc... For simplicity we will always use the system
clock as the example for this class of inputs.

There is one other synchronization event that is important to note. That is file
output. If it is important for the overall system to generate the same output on
each run (if for instance two processes write to the same file or terminal window and
the order of writes is important) then this output a.lso defines a synchronization
event.

15

3.4 Limitations

Accesses to the system clock that affect the execution of a process are not allowed
as the current system does not replay system clock times. Note that this problem
is not unique to parallel programs. Sequential programs that access the system
clock will also have indeterminate results during a normal debugging or testing
situation.

We currently limit input to user input (which we trust the user to replay) and
non-shared file input (no two processes accessing the same file for input in a non
deterministic manner). We do not have a mechanism in place for capturing and
replaying shared output.

Our shared memory accesses scheme requires the use of our locking primitives. No
support is provided for capturing and replaying shared memory access that does
not make use of our locking primitives.

3.5 Guaranteeing Deterministic Replay

As a consequence of our imposed limitations we need only concentrate on guaran
teeing that each process receives its messages in the correct order and that each
access to a shared variable yields the same result it did during the initial run of
the program.

Our system may be run in six different modes. These modes are

•	 NORMAL - No capture or replay is performed.

•	 CAPTURE - Capture minimal information. Used in conjunction with the
REPLAY mode toreplay an entire program and all its interactions.

•	 FULL_CAPTURE - Capture complete information. Used in conjunction with
REPLAY_ONE to replay a single process.

•	 REPLAY - Replay an entire program.

•	 REPLAY_ONE - Replay a single process.

•	 CHECKPOINT - See additional features section below.

16

3.5.1 Guaranteeing Message Receipt Replay

Each message is stamped with a unique identifier from the system that sends it
(currently a simple incremental number is used). When the system is run in a
capture mode messages are caught by the receive thread and placed in a first in
first out (fifo) queue. Each receive request that the user issues takes the first
message out of the queue and writes the message sender and message identifier to
the capture file. If the mode is FULL_CAPTURE the complete message contents
are also logged. If the receive request is a timed receive and no message is in the
queue when the time out expires, a blank message is written to the file indicating
that a nonblocking receive timed out.

When the user program issues a receive request during REPLAY_ONE (the capture
mode must have been FULL_CAPTURE) , the system simply reads the first mes
sage out of the capture file and returns it to the user. If the user receive call timed
out during capture the replay system notices this by reading the blank message
and returns an empty message.

If the user is replaying the entire program (mode is REPLAY and capture mode
was CAPTURE), the receive thread places messages as they arrive into a queue.
Note however that this may not be the same order in which they arrived during
capture. When the user system issues a receive request the ipc system reads the
next message identifier and sender name from the capture file. If the message in
the capture file is blank, indicating a nonblocking receive timed out during the
capture phase, the receive routine simply returns a empty message. If the message
in the capture file is not blank the system searches the queue for a message that
matches the sender name and message identifier retrieved from the capture file. If
the message is found it is pulled from the queue and returned to the user. If the
message is not currently in the queue the ipc system waits until the message arrives
and then returns it to the user. This guarantees the user system sees the messages
in the same order during replay as it did during capture, even if they arrive to the
process in a different order. The user is blind to this capture and replay activity.

3.5.2 Guaranteeing Replay of Shared Memory Accesses

As was mentioned earlier we have adapted the Instant Replay system [16] for
capture and replay of shared memory accesses. The system provides four routines,

17

ReadEntry, ReadExit, WriteEntry and WriteExit. Each time a shared memory
object is accessed for reading the user must call ReadEntry prior to access and
ReadExit after the access. The user may make multiple accesses to an object
between a ReadEntry and ReadExit, but parallelism may be decreased if a large
number of other instructions are included in between the calls. During capture
the ReadEntry routine waits for any pending write on the object to complete and
then increments the number of active readers of the object. Then, if the mode is
FULL_CAPTURE, it logs the name and contents of the object to the capture file.
If the mode is simply CAPTURE it logs the name and version of the object to the
capture file. The ReadExit routine simply increments the total number of readers
for the version of the object and decrements the active number of readers.

The WriteEntry routine waits for any active readers to finish. Then, if the mode
is CAPTURE, it logs the object name, version and total readers for the version
of the object to the capture file. No additional action is taken if the mode is
FULL_CAPTURE. In both capture modes the WriteExit routine simply increments
the version of the object and zeros the total readers for the new version of the
object.

During replay if the mode is REPLAY_ONE the contents of the object are simply
retrieved from the capture file and restored into the object during a ReadEntry
call. If the mode is REPLAY then the ReadEntry routine reads the object version
from the capture file and waits to return until the correct version of the object is
available in memory.

The WriteEntry and WriteExit routines are no-ops for REPLAY_ONE, but in
REPLAY the WriteEntry routine reads from the capture file the version of the
object that it is supposed to write and the total number of readers of the previous
version of the object. It then waits until all readers of previous versions of the
object have completed their reads before writing the current version of the object
into memory. In REPLAY mode the WriteExit routine behaves as it does in the
capture case simply zeroing the objects total readers field and incrementing the
objects version number.

This method allows for concurrent readers and exclusive writers a.nd guarantees
that during replay each object read receives the same value it did during the initial
capture stage.

18

3.6 Overcoming Limitations

Our goal in writing this system was to force others to change their code as min
imally as possible. We do require the user to use our ReadEntry, ReadExit,
WriteEntry and WriteExit routines in order to guarantee that shared variable ac
cess can be captured and replayed. We don't consider this a major imposition
since some form of restricted access routines would be required if the user wishes
to safely access shared variables. A problem with this approach is that is does not
catch cases where the user mistakenly forgets to use the access routines. This is
often a point of error in the development of parallel programs. A possible solu
tion to this problem is to have either the compiler or some type of cross-referencer
check the code for unguarded uses of shared variables and generate the capture
and replay code for the variables.

We do not provide a mechanism for handling system calls that return dynamic
results. We could provide our own versions of these system routines. Our routines

\	
would log return values during capture and simply return these values during
replay.

Another limitation that we did not address is shared file access. This is a problem
when separate processes read from or write to a shared file, terminal window, etc...
We could deal with this problem with a mechanism similar to our memory access
solution. Each i/o destination could have a version associated with it. During
capture a process would log the version it used and increment the global version
number. During replay a process could not perform the i/o operation until the
correct version number was reached.

3.7 Additional Features

One of the major problems in any trace system is that the capture log may grow
to be very large. This may happen if the volume of synchronization events is very
high or if the program runs for an extended period of time before an error occurs.
In order to solve this problem we have adopted a checkpointing scheme similar
to that found in the Recap system [17]. Our method of checkpointing is for each
process to capture a user specified number of events per process before the process
checkpoints. We only allow checkpointing of individual processes and consequently

19

the mode of capture must be complete information. This means that during the
capture part of checkpointing the mode is identical to FULL_CAPTURE. During
the replay of a checkpointed process the mode is identical to REPLAY_ONE. When
the process reaches the checkpoint the capture log is emptied and the process forks
itself. This effectively creates an exact duplicate of the checkpointing process with
state maintained. The child process sets its mode to REPLAY_ONE and imme
diately suspends itself. The parent process continues in the FULL_CAPTURE
checkpoint mode. At future checkpoints the existing child is killed before the fork
and the creation of the new child. When the parent process dies due to error the
user can wake up the child process and replay the last sequence of ~vents that
led to error in the parent. When a child is wakened it immediately forks itself so
that the user can repeatedly replay this part of the program if desired simply by
awak~ping the new child.

i

.' '1

Chapter 4

CARE User Manual

4.1 General User Routines
\
j

We have developed a set of routines that provide the user with a general purpose in
terprocess communication mechanism consisting of blocking and nonblocking sends
and blocking and nonblocking receives. We also provide a set of locking primitives
that allow for concurrent reads and exclusive writes of shared memory data. All
arguments are input parameters unless designated as being of type output.

4.1.1 Init

Pinfo *Init(name)

char *namej

The Init routine initializes a process so that it may use the ipc and shared memory
access mechanisms. The name argument is the name to be used to identify this
process to other processes that wish to communicate with it (see FindPartner).
Narne must be less than MAX...NAMEJ3IZE characters or it will be truncated to
MAX...NAME_SIZE characters. Names must be unique within a, program. The Init
routine creates a receive thread to receive communications a,nd registers name as
being ready to receive communications. Init returns a process information structure
that is used as an argument to all other shared memory access and ipc routines.

20

21

4.1.2 Finish

void Finish(pinfo)
Pinfo *pinfoj

The Finish routine shuts down the ipc system. It terminates the receive capabilities
of the system and removes the calling process' name from the list of registered
systems. The pinfo argument is a pointer to the Pinfo structure returned by Init.

4.1.3 FindPartner

int FindPartner(pinfo, name)

Pinfo *pinfo;

char *name;

The FindPartner routine returns the internal identifier for the named partner. The
identifier is used to name the destination of ipc communications. If a communi
cations link to the named partner has not been established when FindPartner is
called, one is made. The FindPartner routine returns a nonnegative identifier on
success, -1 on failure. Failure will result if the partner is not currently registered for
communications (see Init). The pinfo argument is a pointer to the Pinfostructure
returned by Init.

4.2 Message Routines

Message routines may communicate with other processes on the local host or on
a remote host. No distinction is made by the routines. Messages are sent to a
named recipient and processed in the order in which they arrive. If the system is
run in a capture mode (see Modes of Operation below), the internal ipc system
traces the message information as it arrives and stores it in a file. No modifications
to the user program are needed to capture trace information La.ter the system
may be run in a replay mode. The ipc system will then repla.y the user program
guaranteeing that the messages the user program receives occur in the exact same
order as when the program was run with the capture option. Again no changes to
the user program are needed for replay.

'. ,

22

4.2.1 MsgReceive

unsigned char *MsgReceive(pinfo, host, name, messageJd,
identifier, type, time_out)

Pinfo *pinfo;
char *host; /* output */
char *namej /* output */
int *messageJdj /* output */
int *identifier; /* output */
int *type; /* output */
int time...Dutj

The MsgReceive routine returns the first available message for processing. If no
message is currently available MsgReceive blocks until a message arrives or until
the tirhe...Dut period expires. The time_out argument specifies the time (in lOOthes
of a second) to wait for a message to arrive. A negative time_out indicates wait
forever, a zero value tells the routine not to block. If the time_out period ex
pires a NULL message is returned and the other output variables are unaffected.
Otherwise, if host and/or name are non-NULL pointers (they should be character
arrays of HOST_SIZE and MAX-NAME..8IZE bytes) MsgReceive writes into these
arguments the host and the name of the sender of the message. If messageJd
and/or identifier and/or type are nonzero, MsgReceive writes into these arguments
the messageJd, the internal identifier and the type (NORMAL for non-blocking
sends, EXPECT_REP for messages that expect a reply) of the received message.
The internal identifier may be used to direct communication to the sender of the
message and the messageJd must be used in a reply to identify which message is
being replied to. The pinfo argument is a pointer to the Pinfo structure returned
by Init.

23

4.2.2 MsgCall

unsigned char *MsgCall(pinfo, identifier, message, messageJength, time_out)
Pinfo *pinfoj
int identifierj
unsigned char *messagej
int messageJengthj
int time..outj

4.2.3 MsgSend

void MsgSend(pinfo, identifier, message, messageJength)

Pinfo *pinfo;

int identifier;

unsigned char *message;

int messageJength;

4.2.4 MsgReply

void MsgReply(pinfo, identifier, message, messageJength, messageJd)

Pinfo *pinfo;

int identifier;

unsigned char *messagej

int messageJengthj

int messageJdj

The MsgCall, MsgSend and MsgReply routines all send a: ~essage of l~ngthme~~

sageJength to the process with the given internal identifier. The MsgSend routine

is a non-blocking send. The MsgReply routine is also a non-blocking send, but it

indicates that the message is a reply to the message named by the messageJd. The

MsgCall routine expects a reply. MsgCall blocks until a reply arrives or until the

time_out period expires. The time_out argument specifies the time (in lOathes of

a second) to wait for a reply to arrive. A negative time_out indicates wait forever,

a zero value tells the routine not to block. If the time_out period expires a NULL

reply is returned. The pinfo argument is a pointer to the Pinfo structure returned

by Init.

24

4.3 Shared Memory Access

All accesses to shared memory should be made within the scope of the routines
listed below. The first step to safely allowing a variable to be shared among
processes is to initialize the variable using Objectlnit. This allows the system
to recognize the variable as being shared and gives the user an object structure
containing the variable to pass to the access routines. If the user program is run
in a capture mode, information concerning the values of objects during reads and
writes is stored in a trace file. If the user later runs the program in a replay mode
the system will guarantee that each shared memory read will obtain the same value
as it did during the capture phase (see Modes of Operation below). For further
information on constructing a multi-threaded program see [9].

4.3.1 ObjectInit
\
i	 Object *ObjectInit(data, name)

char *data;
char *name;

The ObjectInit routine initializes an object for shared memory access. It must be
called before any read or write accesses to the object are made. It need only be
called once before any thread accesses the object. The data argument is a pointer
to the data that will be stored in the shared memory object. The name argument
is the name of the object and must be unique within the user program. The Object
returned is the object that will be passed to the ReadEntry, ReadExit, WriteEntry
and WriteExit routines described below. Use of these routines will allow the user
to safely perform concurrent reads and exclusive writes to shared memory data.
All references to the data in the object should be made via the Object->data field.
NOTE: The Init and the Objectlnit routines are the only ones that do not take a
pinfo argument.

25

4.3.2 ReadEntry

void ReadEntry(pinfo, object)
Pinfo *pinfoj
Object *objectj

The ReadEntry routine must be called to initiate read access to shared memory.
Upon return this routine allows concurrent reads to the shared memory object.
The pinfo argument is a pointer to the process information structure returned by
the Init routine. The object argument is the pointer to the shared memory object
returned by the Objectlnit routine.

4.3.3 ReadExit

void ReadExit(pinfo, object)

Pinfo *pinfo;

Object *object;

The ReadExit routine must be called to conclude read access to shared memory.

This routine indicates that the process is no longer reading the shared memory

object. The pinfo argument is a pointer to the process information structure re

turned by the Init routine. The object argument is the pointer to the shared

memory object returned by the Objectlnit routine.

4.3.4 WriteEntry

void WriteEntry(pinfo, object)
Pinfo *pinfoj
Object *objectj

The WriteEntry routine must be called to initiate write access to shared memory.
When it returns the user has exclusive access to the shared memory object until
the WriteExit routine is called. The pinfo argument is a pointer to the process
information structure returned by the Init routine. The object argument is the
pointer to the shared memory object returned by the ObjectInit routine.

26

4.3.5 WriteExit

void WriteExit(pinfo, object)
Pinfo *pinfoj
Object *objectj

The WriteExit routine must be called to conclude write access to shared memory.
The call to WriteExit releases exclusive access to the shared memory object named
by object (the pointer returned by the Objectlnit routine). The pinfo argument is
a pointer to the process information structure returned by the Init routine.

4.4 Modes of Operation

The user can force the underlying ipc and memory access system to capture trace

\
data relating to synchronization points within the user program. This may aid the

! user in debugging of the program. The user may observe the trace data to find
the source of a bug or may force the program to replay, executing exactly as it did
during the capture run. No timing related changes will result.

The user accomplishes capture and replay by setting the global MODE variable.
This may be set dynamically at the start of the program or may be set prior to
compilation by editing the configuration file (CAREconfig.h). MODE may be set
one of the following six values:

• NORMAL - No capture or replay is performed.

•	 CAPTURE - Capture minimal information. Used in conjunction with the
REPLAY mode to replay an entire program and all its interactions.

•	 FULL_CApTURE - Capture complete information. Used in conjunction
with REPLAY_ONE to replay a single process. In both CAPTURE and
FULL_CAPTURE modes a file is created for each process. This file contains
the captured data and is named process_nameJec, where proceSS-Ilame is the
name supplied to the Init routine for the process.

• REPLAY - Replay an entire program. In this mode messages are sent and
received just as they were in the capture phase. Suspending a process (e.g.

27

with a breakpoint) will suspend all other processes that share memory or
receive messages from the suspended process. This method is used when the
user needs to study multiple interacting processes during replay.

•	 REPLAY_ONE - Replay a single process. Each process is replayed from the
capture file. No messages are sent or received. MsgReceive calls retrieve
message information from the capture file and ReadEntry calls update the
object with the proper values from the capture file. This method is useful if
the user only needs to observe a single process at a time..

•	 CHECKPOINT - Perform FULL_CAPTURE and then REPLAY_ONE from
the last checkpoint forward. During programs that execute for extended pe
riods of time the user may wish to use the CHECKPOINT mode. This will
force each process to save its state after tracing CP_COUNT synchronization
items. CP _COUNT may be set dynamically at the start of a program or may
be set prior to compilation in the CAREconfig.h file. The user may replay
any process only from its latest checkpoint. This is accomplished by looking
in the capture file for that process. The first line indicates a process identifier
for a suspended process that, when awakened, will replay (in REPLAY_ONE
fashion) the tail end of the process. A process is awakened by sending the
shell the following command:

kill -30 pid

where 30 is the signal for SIGUSRI and pid is the process identifier retrieved
from the capture file. After re-execution of the process the user must type
the following command to terminate the process:

kill -9 pid

If a process is terminated before it reaches an initial checkpoint, it may
replay by setting the MODE to REPLAY_ONE and then executing.

Appendix A provides a simple client/server example. Appendix B illustrates how
to use the different modes of operation. Appendix C shows sample capture logs
for the different modes.

Chapter 5

Performance Characteristics

5.1 Nonblocking send/receive (64 byte messages)

Type NORMAL CAPTURE FULL_CAPTURE
remote 1330/sec 1250/sec 530/sec

local 740/sec 690/sec 370/sec

The columns of the table indicate the mode of operation. The rows indicate if the
tests were run on a single host (local) or from one host to another remote host.
For comparison sake, straight TCP allows approximately 1330 64 byte messages
per second on remote transfer. This implies that the computations of our system
in NORMAL mode do not affect the speed of message passing. The CAPTURE
mode does slow the system slightly and FULL_CAPTURE more significantly. This
is due to the i/o that takes place during these modes. An improved approach to the
logging output would aid in the performance of the capture modes. Local transfer
was slower than remote due to the fact that the send and receive processes were
sharing a single cpu.

28

29

5.2 B locking calls (64 byte messages)

Type NORMAL CAPTURE FULL_CAPTURE
remote 43/sec 43/sec 31/sec

local 43/sec 36/sec 31/sec

Blocking calls (sends that wait for replies) are much slower than their nonblocking
counterparts. This is expected. The numbers represent the number of round trip
calls. Each call consists of a send, a receive, followed by a reply send and receipt of
the reply. Only then does the next call get executed. Users should avoid making
a large number of calls if speed is important. We see here, as in the nonblocking
table, that CAPTURE only slightly affects speed and that FULL_CAPTURE has
a slightly greater impact.

5.3 Shared Memory Accesses

Type NORMAL CAPTURE FULL_CAPTURE
Reads 9090/sec 2780/sec 1820/sec
Writes 26320/sec 1560/sec N.A.

The columns of the· table represent the mode of operation and the· rows indi~
cate if the test was for reads or writes. The speed of the system in NORMAL
mode represents memory accesses surrounded by ReadEntry/ReadExit or Writ~E~
try/WriteExit pairs. The capture modes have a much greater relative i~pacion
performance for shared memory accesses than for message passing due to the rel
ative speed of the two operations. During the FULL_CAPTURE read tests, the
object consisted of a single integer. FULL_CAPTURE mode is not applicable to
writes because writes are no-ops in that mode.

CHECKPOINT modes were not tested because CHECKPOINT is a derivative of
the FULL_CAPTURE mode.

Chapter 6

Conclusions

Debugging	 distributed programs is a complicated issue and tools are needed to

\.	
aid in this task. A variety of systems have been proposed to help solve this prob
lem. Each system we have examined has its own strengths and weaknesses. The
effectiveness of the different systems varies depending on the problem presented.

We have observed that capture and replay looks like a promising mechanism to
aid in distributed debugging as well as regression testing of parallel programs.
We believe that placing the capture and replay abilities into the mechanisms that
provide parallelism is a good approach to solving this problem. This method
requires less user knowledge of the internal workings of the system and simplifies
changes to the system. The implementation was not overly difficult and requires
no external support from compilers, the operatingsystem, etc...

In addition to our goal of creating a usable system we wanted to provide flexibility.
All of the other capture and replay systems that we examined were limited in
this aspect. We wanted to include all the positive features that the other systems
provided without damaging our performance or comprehensibility. Thus we added
the various modes of operation: capture and replay of interacting processes, capture
and replay of individual processes, and checkpointing of processes that execute for
extended periods of time. All of these built into a system tha.t provides synchronous
and asynchronous message passing and safe access to shared memory.

Our system does have limitations. We have described these limitations and possi
ble means of over coming them. Perhaps the biggest problem with all the systems

30

31

encountered, including our own, is one we have not addressed. That is intrusive
logging. All forms of logging in some way affect the execution of the program under
test by changing the timing of event interactions. This intrusion may mask some
bugs that later appear when logging is turned off. This renders the debugging
system useless in determining the cause of those bugs. In loosely coupled systems
communication generally occurs infrequently due to the cost of sending a reliable
message. The process of logging events adds a relatively small amount of overhead
in this environment. In tightly couple systems the problem of logging intrusion is a
more important issue as synchronization events are likely to occur often. Our sys
tem could be improved by adding buffered output capabilities. We could maintain
a log buffer in memory and periodically write that buffer to disk. Upon unexpected
program termination signal and interrupt handlers would have to be modified to
dump the remaining buffered log information to the file. Another possible solution
is to add a separate process to handle logging. On certain systems this might aid
performance substantially.

We are pleased with what we have accomplished in this small arena, hut there is
a lot of work to be done. Hopefully, the future will bring better. tools for static
analysis and problem based error detection as well as better graphical aids for
viewing synchronization event occurrences. This technology could be integrated
with capture and replay type tools to create a truly useful environment for parallel
debugging and testing.

Appendix A

Sample Programs

A.I A Sample Client

clientl.c

#include ICAREdefs.h"

1***************************
* Sample Program - client *

***************************1
client10
{

int server_id, i;

char buffer [100] ;

Pinfo *pinfo;

char *replyj

1* Initialize *1

pinfo = InitCl client1")j

1* Find the server *1

if CCserver_id = FindPartnerCpinfo, "server")) -- -1)

{

32

33

printf("Error, server routine not accessible\n");
exit(1);

}

1*
* Send messages, alternate between nonblocking
* and blocking sends
*1

for (i = 1; i < 11; i++)
{

sprintf (buffer , "This is client1 message Yod", i);
if (i Yo 2)

MsgSend(pinfo, server_id, buffer, strlen(buffer) + 1);
else
{

\
reply = (char *)MsgCall(pinfo, server_id, buffer,

/ strlen(buffer) + 1, -1);
printf(IIReply: Yos\n", reply);

}

}

1* Clean up *1

Finish(pinfo);

}

1********
* MAIN *
********1

mainO

{

THREADgo(O, 0, client1, 0, 0, 16384,8);

}

34

A.2 A Sample Client with Shared Memory

client2.c

#include ICAREdefs.h"

\,
/

Object *obj;
/*************

* Client 2a *
*************/

client2aO
{

Pinfo *pinfo;
static struct timeval tv = {1, O};
int client2b_id, server_id,i;
char buffer [100] , *reply;

/* Initialize ourselves */
pinfo = Init(lclient2a");

/* Wait a second for client2b to register */
select(O, NULL, NULL, NULL, &tv);

/* Find the client2b */
if «client2b_id = FindPartner(pinfo, I client2b")) == -1)
{

printf("Error, client2b routine not accessible\n");
exit(1);

}

/* Find the server */
if «server_id = FindPartner(pinfo, "server")) == -1)
{

printf ("Error, server routine not accessible \n") ;
exit (1) ;

}

35

/* send messages to server and other client */

for (i = 1; i < 11; i++)

{

sprintf (buffer , "This is client2a message %d", i);

/* Nonblocking send to server */

if (i % 2)

MsgSend(pinfo, server_id, buffer, strlen(buffer) + 1);
else
{

/* write into shared object */

WriteEntry(pinfo,obj);

*(int *)obj->data = i;

WriteExit(pinfo,obj);

/* Read shared object */

ReadEntry(pinfo,obj);

printf("2a Number pre-call: %d\n", *(int *)obj->data);

ReadExit(pinfo, obj);

/* Call client 2b */
reply = (char *)MsgCall(pinfo, client2b_id, buffer,

strlen(buffer)+1, -1);
printf("2a received reply: %s\n", reply);

/* Object value changes after call as set by client2b */

ReadEntry(pinfo,obj);

printf("2a Number post-call: %d\n", *(int *)obj->data);

ReadExit(pinfo, obj);

}

}

/* Clean up */

Finish(pinfo);

}

36

1*************
* Client 2b *
*************1

client2bO
{

Pinfo *pinfo;
char name [MAX_NAME_SIZE] , host[HOST_SIZE];
int m_id, id, type, i;
unsigned char *message, reply_buffer [100] ;

pinfo = Init(" client2b");

1* Process messages from client2a and change object value *1
for (i = 50; i < 55; i++)
{

message = MsgReceive(pinfo,host,name,&m_id,&id,&type,-1);
printf(" client2b: from %s, id = %d: %s\n",

name, m_id, message);
if (type == EXPECT_REP)
{

sprintf(reply_buffer,
"c2b reply to message %d from %s on host %s",
m_id, name, host);

1* Change object value *1

WriteEntry(pinfo, obj);

(int)obj->data = i;

WriteExit(pinfo, obj);

1* Send a reply *1
MsgReply(pinfo, id, reply_buffer,

strlen(reply_buffer) + 1, m_id):
}

free(message);
}

1* This MsgReceive will time out after about 10 seconds *1
message = MsgReceive(pinfo,host,name,tm_id,tid,ttype,1000);

37

Finish(pinfo);
}

1************
* Client 2 *
************1

client20
{

static int number = 9;

static char *name = "Number";

1* Initialize object once for shared access *1

obj = ObjectInit«char *)&number, name);

1* Create two new threads *1

THREADcreate(client2a, 0, 0, 1, 16384,8);

THREADcreate(client2b, 0, 0, 1, 16384,8);

}

1********
* MAIN *
********1

main()
{

THREADgo(O, 0, client2, 0, 0, 16384,8);
}

38

A.3 A Sample Server

server.c

#include "CAREdefs.h"

/***************************
* Sample Program - server *
***************************/

void serverO
{

unsigned char *message;
char host[HOST_SIZE], name [MAX_NAME_SIZE] ;
int mid, type, id;
char reply_buffer[100];
Pinfo *pinfo;

/* Initialize */
pinfo = Init("server");

/*
* Process messages as they arrive
* If the message expects a reply send it one
*/

while (1)
{

message = MsgReceive(pinfo,host,name,&mid,&id,&type,-1);
printf("server: from Yes, id = Yed: Yes\n",

name, mid, message);
if (type == EXPECT_REP)
{

sprintf(reply_buffer,
"reply to message Yed from Yes on host Yes",
mid, name, host);

39

MsgReply(pinfo, id, reply_buffer,
strlen(reply_buffer) + 1, mid);

}

free(message)i
}

}

/********
* MAIN *
********/

mainO
{

THREADgo(O, 0, server, 0, 0, 16384, 8)i
}

Appendix B

Steps for Using Capture and
Replay

B.l Normal Capture and Replay

• Edit the CAREconfig.h file and change the MODE line to

int MODE == CAPTURE;

• Rebuild the client and server executables.

• Run the executables.

• Observe the capture files.

• Edit the CAREconfig.h file and change the MODE line to

int MODE = REPLAYj

• Rebuild the client and server executables.

• Run the executables (repeatedly if desired)

40

41

B.2 Full Information Capture and Replay

•	 Edit the CAREconfig.h file and change the MODE line to

int MODE = FULL_CAPTURE;

•	 Rebuild the client and server executables.

•	 Run the executables.

•	 Observe the capture files.

•	 Edit the CAREconfig.h file and change the MODE line to

int MODE = REPLAY_ONE;

•	 Rebuild the client and server executables.

• Run any executable (repeatedly if desired)

B.3 Checkpointing

•	 Edit the CAREconfig.h file and change the MODE line to

int MODE = CHECKPOINT;

•	 Rebuild the client and server executables.

•	 Run the executables.

•	 Obtain a process identifier from the first line of a capturp tilE'.

•	 Give the shell the command: kill -30 pid

This will execute the process from the last checkpoint forward.

·42

•	 Give the shell the command: kill-9 pid
This will kill the checkpointed process.

•	 Repeat the last three steps as desired.

•	 Kill all outstanding processes with the command: kill -9 pid

Appendix C

Sample Capture Logs

These logs were created by running the sample server program and the two sample
client programs simultaneously. The server and client2 were run on the same host
(dooley), clientl was run on a seperate host (harpo).

We do not include CHECKPOINT logs in the following sections because the con
tents are the same as the tail end of a FULL_CAPTURE log.

43

44

C.l Clientl Log for CAPTURE

clientLrec

reply from server on host dooley to message 2
reply from server on host dooley to message 4
reply from server on host dooley to message 6
reply from server on host dooley to message 8
reply from server on host dooley to message 10

C.2 Clientl Log for FULL_CAPTURE

clientLrec

reply from server on host dooley to message 2 len 46
reply to message 2 from client1 on host harpo

reply from server on host dooley to message 4 len 46
reply to message 4 from client1 on host harpo

reply from server on host dooley to message 6 len 46
reply to message 6 from client1 on host harpo

reply from server on host dooley to message 8 len 46
reply to message 8 from client1 on host harpo

reply from server on host dooley to message 10 len 47
reply to message 10 from client1 on host harpo

45

C.3 Client2 Logs for CAPTURE

client2a_rec

wrote object Number version 1 total readers 0
read object Number version 2
reply from client2b on host dooley to message 2
read object Number version 3
wrote object Number version 3 total readers 1
read object Number version 4
reply from client2b on host dooley to message 4
read object Number version 5
wrote object Number version 5 total readers 1
read object Number version 6
reply from client2b on host dooley to message 6
read object Number version 7
wrote object Number version 7 total readers 1
read object Number version 8
reply from client2b on host dooley to message 8
read object Number version 9
wrote object Number version 9 total readers 1
read object Number version 10
reply from client2b on host dooley to message 10
read object Number version 11

client2b_rec
from client2a on host dooley id 2
wrote object Number version 2 total readers 1
from client2a on host dooley id 4
wrote object Number version 4 total readers 1
from client2a on host dooley id 6
wrote object Number version 6 total readers 1
from client2a on host dooley id 8
wrote object Number version 8 total readers 1
from client2a on host dooley id 10
wrote object Number version 10 total readers 1
from - on host - id 0

46

C.4 Client2 Log for FULL_CAPTURE

client2a_rec
read object Number version 2 contents - 2
reply from client2b on host dooley to message 2 len 52

c2b reply to message 2 from client2a on host dooley
read object Number version 3 contents - 50
read object Number version 4 contents - 4
reply from client2b on host dooley to message 4 len 52

c2b reply to message 4 from client2a on host dooley
read object Number version 5 contents - 51
read object Number version 6 contents - 6
reply from client2b on host dooley to message 6 len 52

c2b reply to message 6 from client2a on host dooley
read object Number version 7 contents - 52
read object Number version 8 contents - 8
reply from client2b on host dooley to message 8 len 52

c2b reply to message 8 from client2a on host dooley
read object Number version 9 contents - 53
read object Number version 10 contents - 10
reply from client2b on host dooley to message 10 len 53

c2b reply to message 10 from client2a on host dooley
read object Number version 11 contents - 54

client2b_rec
from client2a on host dooley id 2 index 0 type 2 len 27

This is client2a message 2
from client2a on host dooley id 4 index 0 type 2 len 27

This is client2a message 4
from client2a on host dooley id 6 index 0 type 2 lEm 27

This is client2a message 6
from client2a on host dooley id 8 index 0 type 2 len 27

This is client2a message 8
from client2a on host dooley id 10 index 0 type 2 len 28

This is client2a message 10
from - on host - id 0 index 0 type 0 len 0

47

C.5 Server Log for CAPTURE

server...rec

from client1 on host harpo id 1
from client1 on host harpo id 2
from client1 on host harpo id 3
from client2a on host dooley id 1
from client1 on host harpo id 4
from client1 on host harpo id 5
from client2a on host dooley id 3
from client1 on host harpo id 6
from client1 on host harpo id 7
from client2a on host dooley id 5
from client2a on host dooley id 7
from client2a on host dooley id 9
from client1 on host harpo id 8
from client1 on host harpo id 9
from client1 on host harpo id 10

48

C.6 Server Log for FULL_CAPTURE

server..rec

from client2a on host dooley id 1 index 0 type 0 len 27

This is client2a message 1

from client2a on host dooley id 3 index 0 type 0 len 27

from client2a on host dooley id 5 index 0 type 0 len 27

from client2a on host dooley id 7 index 0 type 0 len 27

from client1 on host harpo id 1 index 1 type 0 len 26

from client2a on host dooley id 9 index 0 type 0 len 27

from client1 on host harpo id 2 index 1 type 2 len 26

from client1 on host harpo id 3 index 1 type 0 len 26

from client1 on host harpo id 4 index 1 type 2 len 26

from client1 on host harpo id 5 index 1 type 0 len 26

from client1 on host harpo id 6 index 1 type 2 len 26

from client1 on host harpo id 7 index 1 type 0 len 26

from client1 on host harpo id 8 index 1 type 2 len 26

from client1 on host harpo id 9 index 1 type 0 len 26

from client1 on host harpo id 10 index 1 type 2 len 27

This is client2a message 3

This is client2a message 5

This is client2a message 7

This is client1 message 1

This is client2a message 9

This is client1 message 2

This is client1 message 3

This is client1 message 4

This is client1 message 5

This is client1 message 6

This is client1 message 7

This is client1 message 8

This is client1 message 9

This is client1 message 10

Bibliography

[1]	 The Ada Programming Language Reference Manual, US Department of De
fense, ANSI/MILSTD 1815A Document, US Government Printing Office
(1983)

[2]	 William F. Appelbe and Charles E. McDowell, "Integrating Tools for Debug
ging and Developing Multitasking Programs," SIGPLAN Notices Vol. 24, No.
1, pp. 78-88 (January 1989)

[3]	 Peter Bates, "Debugging Heterogeneous Distributed Systems Using Event
Based Models of Behavior," SIGPLAN Notices Vol. 24, No.1, pp. 11-22
(January 1989)

[4]	 Channing B. Brown and Stuart I. Feldman, "IGOR: A System for Program
Debugging via Reversible Execution," SIGPLAN Notices Vol. 24, No.1, pp.
112-123 (January 1989)

[5]	 Richard H. Carver, Evelyn E. Obaid, K. C. Tai, "Deterministic Execution
Debugging of Concurrent Ada Programs," IEEE 0790-9157/89/0000/0102,
pp. 102-109 (1989)

[6]	 Thomas L. Casavant, James E. Lumpp, Jr., Dan C. Marinescu, Howard Jay
Siegel, "A Model for Monitoring and Debugging Parallel and Distributed Soft
ware," IEEE 0790-9157/89/0000/0081, pp. 81-88 (1989)

[7]	 D. Cheriton, Michael A. Malcolm, Lawrence S. Melen and Gary R. Sager,
"Thoth, a Portable Real-time Operating System," Communications of the
ACM, Vol. 22, No.2, pp. 105-115 (February 1979)

49

50

[8]	 Lori A. Clarke and Douglas 1. Long, "Task Interaction Graphs for Concur
rency Analysis," Proceedings, Second Workshop On Software Testing, Verifi
cation, and Analysis, pp. 134-135 (July 1988)

[9]	 Thomas W. Doeppner Jr., "A Threads Tutorial," Technical Report (CS-87
06), Department of Computer Science, Brown University (September 1988)

[HI]	 Perry A. Emrath and David A. Padua, "Automatic Detection of Nondeter
minacy in Parallel Programs," SIGPLAN Notices Vol. 24, No.1, pp. 89-99
(January 1989)

[Il]	 David Helmbold and David Luckham, "Debugging Ada Tasking Programs,"
IEEE Software, Vol. 2, No.2, pp. 47-57 (March 1985)

[12]	 Wenway Hseush and Gail E. Kaiser, "Modeling Concurrency in Parallel De
bugging," ACM 089791-950-7/90/0009/0011, pp. 11-20 (1990)

[13]	 Steven P. Reiss, "Integration Mechanisms in the FIELD Environment," Tech
nical Report (CS-88-18), Department of Computer Science, Brown University
(October 1988)

[14]	 Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1978)

[15]	 Leslie Lamport, "Time, Clocks, and the Ordering of Events in a Distributed
System," Communications of the ACM, Vol 21, No. 7pp. 558-565 (July 1978)

[16]	 Thomas J. LeBlanc and John M. Mellor-Crummey, "Debugging Parallel Pro
grams with Instant Replay," IEEE Transactions on Computers, Vol. C-96,
No.4 pp. 471-481 (April 1987)

[17]	 Mark A. Linton and Douglas Z. Pan, "Supporting Reverse Execution of Paral.,
leI Programs," SIGPLAN Notices Vol. 24, No.1, pp. 124-129 (January 1989)

[18]	 Sol M. Shatz, "Analysis of Concurrent Software," IEEE 0730-3157/89/
0000/0060, pp. 60-61 (1989)

[19]	 K. C. Tai, "Testing of Concurrent Software," IEEE 0730-3157/89/0000/0062,
pp. 62-64 (1989)

51

[20]	 Richard N. Taylor, "A General-Purpose Algorithm for Analyzing Concurrent
Programs," Communications of the ACM,· Vol. 26, No.5, pp. 362-376 (May
1983)

[21]	 Larry D. Wittie, "Debugging Distributed C Programs by Real Time Replay,"
SIGPLAN Notices Vol. 24, No.1, pp. 57-67 (January 1989)

[22]	 Stephen R. Schach and Nancy J. Wahl, "A Methodology and Distributed
Tool for Debugging Dataflow Programs," Proceedings, Second Workshop On
Softwa.re Testing, Verification, and Analysis, pp. 98-105 (July 1988)

[23]	 Stewart N. Weiss, "A Formal Framework for the Study of Concurrent Program
Testing," Proceedings, Second Workshop On Software Testing, Verification,
and Analysis, pp. 106-113 (July 1988)

CU&defs.h Wed Jan 23 13:45:27 1991 1

'include <sys/time.h> 1*

'include <sys/types.h> * Forward declarations

'include <sys/socket.h> *1

'include <sys/errno.h> Pinfo *Init();

'include <fcntl.h> unsigned char *HsgReceive();

'include <netinet/in.h> unsigned char ·receive rap(l;

'include <netdb.h> unsigned char *Hsgeallll;

'include <stdio.h> char *get host(l;

'include <thread.h> Object *Objectlnit(l;

'include <math.h>

'include <signal.h>

fifndef def
Idefine def

1*
* Header info~ation

*1
Idefine REPLY BYTE: 0 1* Byte that indicates if message is a reply *1
Idefine NORMAL 0 1* Message is a normal send *1
Idefine REPLY 1 1* Kessage is a reply *1
Idefine EXPECT REP 2 1* Kessage is a call *1
Idefine TIME BYTE 1 1* Location of message id *1
Idefine TIME-STAHl? SIZE 4 1* Size of message id *1
Idefine HOST-BYTE - 5 1* Location of sending host name *1
Idefine HOST-SIZE 11 1* Max length for host name *1
ldafine NAME-BYTE 16 1* Location of senders name *1
Idefine KkK NAME SIZE 16 1* Max size for process name *1
Idefine HEADER_SIZE 32 1* Size of entire message header *1

1*
* Hodes of operation
*1

Idefine REPLAY 1
Idefine CAPTURE 2
Idefine REPLAY ONE 3
Idefine roLL eAPTURE 4
Idefine CHECKPOINT 5

1*
* Other defs
*1

Idefine TROE 1 1* True and false defs *1
Idefine FALSE 0
Idefine HtJM CON 16 1* Initial number of connections allowed *1
ldafine RBAD SIZE 1024 1* Size for attempted reads *1
Idefine 80M CHAR ' \3' 1* Special end of message character *1
Idefine 08J:=NAME_SIZE 16 1* Kax size for an object name *1

1*
* Kacros
*1

fdefine KsgSend(P,I,K,LI (voidlsend m&ssage«PI, (I), (HI, (LI,KORMAL,-I)
Idefine KsgReply (P, I,H,L, TI (voidl send message ((PI, (II, (HI, (LI , REPLY, (TI)
Idefine get_rep(HI H[O) - ' \0' ? NORMAL : (MIO) -- 'R' ? REPLY : EXPECT_REP)

tendif

1*
* InclUde structure definitions
*1

'include ·~.tructs.h·

1 C&UatJ:Ucta . h Wed Jan 23 13:46:14 1991

f* Messaqe buffer *f
typedef struct mbuf (

struct _mbu! *next;
struct mbuf *prev;
unsiqnad char *buffer; f* messaqe contents *f
int buf size; f* messaqe size *f
int ind8x; f * connection id * f
int time stamp; f* messaqe id *f
int type; f* messaqe type *f

KBUF;

f* Messaqe queue *f
typadat struct _queue

KBUF *head;
KBUF *tail;

QUEUE;

f* Shared memory object *f
typadaf struct _object (

THREAD MONITOR mon, mon write; f* CREW access monitors
int· active read, total read; f* Active readers and total readers
int version; - f* Object version
char *data; f* Pointer to object data
char name(OBJ NJ\ME SIZE); f* Object name

Object; -

f* Connection info=ation *f I

typedet struct ci (.
int socket;- f* Socket to send to *f
char host(HOST SIZE]; f* Remote host *f
char name(KAX NAME SIZE]; f* Connector's name *f
int filled; - - f* True if this structure contains data *f
char p massaqe(READ SIZE]; f* Partially read massaqe on this con. *f
int p=read; - f* size of partially read massaqe *f

CI;

f* ProCQss information * f
typedat struct J>info {

QUEUE My_Queue, My_Rep_Q; f* Received massaqe and reply queue.. *f
char My Name[KAX NJ\ME SIZE]; f* Process name *f
char My=Host_N~(HOST_SIZE]; f* Host nama *f
CI connection(1IUN CON]; f* OUr connections *f
THREAD_MONITOR 't..-mon; f* Queue monitor *f
THREAD_MONITOR r't..-mon; f* Raply buffer monitor *f
THREAD My Rec Thread; f* Receive thread *f
fd set RFDS; - f* Read file descriptor.. *f
int Hum Cons; f* CUrrent number of connection.. *f
FILE *fp; f* File des=iptor for loqqinq *f
int cp count; f* Number of checkpoint events *f
int mode; f* Hode of operation *f
int pid; f* pid of checkpointed proces.. *f
int halt; f* THREADmnrder broken hack *f

Pinfo;

f* ArqUlllQllt.. pa....ed to receive thread *f
typed_f ..truct _wfa

int sock;
struct sockaddr
Pinfo *pinto; -

IIl"A;

{

in *nama;
f*

f*

Our own socket information *f

Our proCQss information *f

f* Globals *f
THREAD_MONITOR qhn; f* For qethostname safety

*f
*f
*f
*f
*f

*f

geDer.~_ipc.c Wed Jan 23 13:48:58 1991 1

'include -CAREdefs.h

'include -CAREconfig.h

int HAND - TRUE;

/***••***************•••****.*******

* SENDERS SIDE *
*.************************•••*******.*************••******* •••••••*••********/

/**••• **************
* Connect Routine *
*******************/

int con (host, port)

char *host; /* host to send to */

short port; /* port to send to */

I

int sock:

struct sockaddr in name;

struct hostent *h:

THREAD_MONITOR_BLOCK tmbn;

/*
* Get a socket to sand on
*/

if «sock - socket (AF_INET, SOCK_STREAM, 0) I -- -1)

I

perror(-socket-);

exit(l);

/*
* Set up sockaddr structure for connect and then connect
*/

THREADlIlOnitorentry (ghn, 'tmbn);

h - qethostbyname(host);

bcopy(b->b ac1dr, '(name.sin addr.s addr), h->b length);

THREADmonitorexit (ghn) ; -
nama.sin family - htons(AF INET);
nama.sin:port - htons(port);
if (connect(sock, 'name, sizeof(name))
(

perror(-connect-);

exit (1);

)

return (sock) ;

-

-- -1)

/***••*************
* Locate Partner *
••••**********j

int !indPartner(pinfo, routine)

Pinto *pinfo;

char *routine;

(

static int ST Index - -I;

FILE *fopen(l~ *fp;

char hostIHOST_sIZE];

short port;

int sock, i:

char file namelHAX NAME SIZE + 7];

struct t~eva1 tv;

tV.tV_S8C - 0;

tv.tv_usec - 100000:

/*
* First check if we are already connected
*/

for (i - 0; i <- ST_Index; i++)

(

if	 (strcmp(routine, pinfo->connection[i] .namel -- 0)

return Ii);

/*
* Not connected so try to find partner
*/

sprintf(file_name, -.ts-, routine):

if «fp - fopen«char *)file name, -r-)) -- NULL)

return (-1); /* Not opened return error */

else

if «fscanf(fp, -ts thd-, host, 'port)) !- 2)
(

fclose(fp);

return (-1); /* Poor format return error */

)

else
(

fclose(fp);

sock - con (host, port); /* connect to partner */

pinfo->Hua_Cons++;

FD SET (sock, 'pinfo->RFDs): /* show our interest in reading */

select(O, MOLL, NOLL, NULL, ,tv): /* make sure it shows up */

/*
* Set up array with socket, host and name information
*/

ST Index++;

pinfo->connectionIST Index] •socket - sock;

strcpy(pinfo->connection(sT Index] .host, host);

strcpy(pinfo->connectionlsT-Index] .name, routine);

/**	
** This is where we should send initial header information

** and check size and raa110c if connection array is full

**/

return(ST_Ind&x):

- -

g8neral_ipc.c Wed Jan 23 13:48:58 1991 2

PD_ZERO(&wfds) ;
/****************** PD SET(pinfo->connection(index!.socket, &wfds);
* Send a message * select (u1imit(4, 0), NULL, &wfds, NULL, NULL);

******************/ num_sent * • end (pinfo->connection (index] .socket,

int send message(pinfo, index, message, mlen, type, time_to) &tmp_message(total_sent) ,

Pinfo *plnfo; mien + HEADER_SIZE + 1 - total_sent, 0);

int index; total_sent +- DUD_sent;

char *1DQ8sage; /**

int mlen; ** This code can be used to check for broken messages

int type; /* NORMAL, REPLY, EXPECT REP */ if (num_sent !- mlen + HEADER_SIZE + 1)

int tima_to; /* Time stamp of message-we are replying to - replies only */ printf(Wnum sent - 'd, total - 'd, mlen- 'd\nW, num sent,

(total_sent,

int Dum sent; m1en + HEADER_SIZE + 1);

int tot;;:l sent; *.. /

fd set wfds; I

int sock; return(time_.tamp);

char *host;

char *name;

static int time_stamp - 0;

int ntime;

unsigned char *tmp~essage;

short port;

/*
* Thi. is a no-op for replay one

*/

if	 (t«lDE -- REPLAY_ONE)

return (0);

/*
* TRANSFORM THE MESSAGE, include My Name, My Ho.t Name, Time
* Try to do something different than the 'R'-in the fir.t character
*/

if «tlDp_message - (unsigned char *lmaHoc (HEADER_SIZE + mlen) - NULL)

(

printf(WKamory allocation error\nW);

exit (1);

I

if (type -- NORMAL)

tmp mauage(REPLY BYTE) - '\0';

else if- (type - REPLY)

tmp_massage(REPLY_BYTE) - 'R';

else

tmp measage(REPLY BYTE) - 'E';

if (typQ -- REPLY)

ntime - htonl (time_to);

el.e

ntillle - htonl(++tima stamp);

bcopy(&ntima, &tlDp_message(TIKE_BYTE), 4);

/**
** The host and name can be sent onca at connection time
** This would reduce the size of the header
**/

strcpy(&tmp_massage(HOST_BYTE}, pinfo->Ky_Host_Namel;

strcpy (&tmp_Dl8.sage(NAKE_BYTE), pinfo->Ky_Name);

bcopy(massage, &tmp massage(HEADER SIZE), mlen);

tmp_lIl8ssage(HEADER_SIZE + mlen} - EoM_CHAR;

/*
* Send the massage
* Kake sure whole message gets sent

*/

total .ent - 0;

while- (total sent < mlen + HEADER SIZE + 1)

(-	

general._ipc.c Wed Jan 23 13:48:58 1991 3

/*************************************.***************************************
* RECEIVERS SIDE *
.*.************************.***/

/*******************************
* Accept a connection routine *
*******••••********************/

void accept_connect(pinfo, l_sock)

Pinto *pinfo;

int l_sock; /* listening socket */

(

int new_sock r i;
struct sockaddr addr;
int addrlen • sizeof(addr);

/*
* Accept a new connection
*/

if «new_sock - accept(l_sock, &addr, &addrlenl) < 0)

(

perror(-accept-);

exit (1);

I
pinfo->connection[pinfo->Num Cons) .socket - new sock;

f** -
** We don't have all the information on this connection yet

** If we sent an initial message at connect time we could avoid this

**/

pinfo->Connection[pinfo->Num_Cons).filled - FALSE;

FD_SET(new_sock, &pinfo->RFDS);

/***************************
* Process message routine *
***************************/

void queue message(pinfo, buffer, buf size, index, time stamp, type)
Pinto *pinfo; -
char *buffer;
int but_size;
int index;
int time_stamp;
int type;
(

HIlUF *mbuf;

THREAD MONITOR monitor;

THREAD-MONITOR BLO~ mon block;

QUEUE *queue; -
int i;

/*
* Build a dynamic linked list of messages
* Reply type massages go in seperate queue
*/

if «mbuf - (HilUF *)malloc(sizeof(HIlUF») -- NULL)

(

printf(-Memory allocation error\n-):

exit(l);

I
if «mbut->buffer - (unsigned char *)malloc(buf_size) -- NULL)
(

printf(-Memory allocation error\n-);

exit (1);

I
(void)bcopy(buffer, mbuf->buffer, buf size);

mbuf->buf size - buf size;
mbuf->ind;x - index;
mbuf->time stamp - time stamp;

mbuf->type-- type;

if (type -- REPLY) /* reply, use reply queue */
(

monitor - pinfo->r~mon;

queue - &pinfo->Hy_Rep_Q;

J

else /* normal message, use regular queue */

(

monitor - pinfo-~mon;

queue - &pinfo->Hy_Queue;

)
THREADmonitorentry(monitor, &mon block); /* exclusive access to queue */
if (queue->nead - NULL) /* queue is empty */
(

mbuf->prev - NULL;

queue->head - mbuf;

I
else /* queue not empty put at queue tail */
(

mbuf->prev - queue->tail;

queue->tail->next • mbuf;

I
mbuf->next - NULL;

queue->tail - abut;

THREADmonitorexit(monitor);

general_ipc.c Wed Jan 23 13:48:58 1991 4

retu.rn.;
/**~**********************

* Get a message routine *
*************************/

void get message(pinfo, con idx)
Pinfo *pinfo; /*
int con_idx; * Read a message
(*/

CI *ci; /* connection array information */ while (ptr < num read)

int num_read, ptr - 0, tb_ptr, time_stamp;
 (
char buffer[READ_SIZE], tmp_buff[READ_SIZE); if (buffer [ptr] !- EOH CHAR)

[
ci - &(pinfo->Connection[con_idx]); tmp_buff[tb-ptr] - bUffer[ptr];

/* ptr++; tb-ptr++;
* Redo partially read header or message if any I
*/ else

tb-ptr - ci->p_read;
if (tb-ptr !- 0) /* partial read before */ bcopy(&tmp_bUff[TIHE_BYTEJ, &time_stamp, TIME_STAMP_SIZE);
(tim8_stamp - ntohl(time_stamp);

bcopy(ci->p_m8ssage, tmp_buff, tb-ptr); /*
ci->p_read - 0; * If we get a whole message, put it in the queue

*/
queue_m8ssage(pinfo,

/* &tmp_buff(HEADER_SIZE1, tb-ptr - HEADER_SIZE,
* We do a limited read here so that we are fair, don't want one connection con_idx, time_stamp, get_rep (tmp_buffl);
* to be the only one talking tb-ptr - 0;

*/ ptr++;

break; /* from inside while */

num read - read(ci->socket, buffer, READ SIZE);

if (num_read -- 0) - I

(if (tb-ptr !- OJ /* save partial message */

printf(-Connection dropped\n-); (

/** FIX UP THE ARRAY TOO 1111 **/ ci->p_read - tb-ptr;

FD_CLR(ci->socket, &pinfo->RFDS); bcopy(tmp_buff, ci->p_message, tb_ptr);

return; return;

/** if (ptr -- num_read) /* done with this read */
** This would be unnecessary if we send initial info once at connect time return;
**/

if (ci->filled -- FALSE)
(

strcpy(ci->host, &buffer[HOST BYTE));

strcpy(ci->name, &buffer[NAME-BYTE));

ci->filled - TRUE;

while (1)

(

/*
* Read a header
*/

if (tb-ptr < HEADER_SIZE)

{

while «ptr < num_read) " (tb-ptr < HEADER_SIZE))
(

tmp_buff(tb-ptr) - bUffer[ptr];

ptr++; tb-ptr++;

if «tb-ptr !- HEADER_SIZE) II (ptr -- num_read - 1))

\

ci->p_read - tb-ptr;

bcopy(tmp_buff, ci->p_m8ssage, tb-ptr);

5

I

genera~_ipc.c Wed Jan 23 13:48:58 1991

/ ••• ** ••••••••• ** ••
* Receive thread • /

void *receive thread (wfa)
WFA °wfa;

int sock; 10 socket to wait on °1

struct sockaddr in *nama; 10 name info for receive °1

int size - sizeOf(Oname);

fd set tlDP rfds;

int num select, max fds, idx;

struct timaval tv;

Pinfo °pinfo;

sock - wfa->sock;

nams - wfa->name;

pinfo - wfa->pinfo;
tv.tv_SQC - 0:
tv.tv usee - 100000; 1*.1 seconds °1

max fds - ulimit(4, 0);

while (1)

(

1*
* Check for new connections initiated by our side every .1 seconds
*1

tmp rfds - pinfo->RFDS;

n~select - select(max_fds, .tmp_rfds, NULL, NULL, .tv);

1°* Hack since THREADmurder doesn't seem to work 0°1
if «pinfo->halt -- TRUE) I I (MODE -- REPLAY_ONE)

return;
1**
*. If check pointing in main thread pause here until done

** Basically it would be a good idea to stop i/o here when checkpointing

*·1

if (num_select < 0)
(

perror{Wselect W) ;

exit(l);

1*
* If there is a new connection pending accept it
* If there is a message available for reading on any connection, read it
*1

if (n~select > 0)

(

if (Fe ISSET(sock, .tmp rfds))

(-

accept_connect (pinfo, sock);

pinfo->Num Cons++;

num_selQct~-:

I

for (idx - 0; (idx < pinfo->Num Consl •• (num select> 01; idx++)

I-

if (Fe_ISSET(pinfo->Conneetionlidx).socket, .tlDP_rfds)
I

get_m8ssage(pinfo, idx);
num_salect--;

J

geDer.~_ipc.c Wed Jan 23 13:48:58 1991 6

/*******************
* Receive routine *
*******************/

unsigned char *MsgRaceive(pinfo, host, name, time stamp, index, type, time out)
Pinfo *pinfo; -
char *host;
char *naJlll8l;
int *time stamp;

int *indu;

int *type;

int time out; /* lOathes of seconds */

[

unsigned char *buffer;
struct timeval tv;
static struct timeval wf - (32767, 01;
MBUF *temp;
THltEAD MONITOR BLOCK qmb;
char file_namalMAX_NAHE_SIZE + 5j;
MBUF *curr;
char e"P name[MAX NAME SIZE);
char exp-host [HOST SIZEj;

int exp_time, expj::en, i, exp_index, exp_type;

static int is open - a;

int count - 0;

QUEUE *My_Queue;

/*
* If this is a replay one just get the message from the file
*/

if (K>DE -- REPLAY_ONE)

{

if (fscanf(pinfo->fp,
"from's on host's id 'd index 'd type 'd len %d - ",
e"P name, a"P host, 'axp time, 'a"P index, 'e"P type,
'exp len) -- =1) /* receive blocks forever */

while (1)

salect(O, NULL, NULL, NULL, 'wf); /* never return */
/*

* If a blank message was written return NULL

*/

if	 (exp name[Oj -- '-')

return (NULL) ;

/*
* We have a real messaga, read it in, then return
*/

if «buffer - (unsigned char *)malloc(axp len)) -- NULL)

[-

printf("Hemory allocation error\n");

exit (1) ;

for (i	 - a; i < exp len; i++)
fscanf(pinfo->fp, "'CO, 'buffer[ij);

fscanf(pinfo->fp, "\n");

if (host !- NULL) /* return host info */

{

if «host - (char *)malloc(HOST_SIZE)) -- NULL)
[

printf("Hemory allocation arror\n");

exit(l);

)

strcpy(host, e"P_host);

if (name !- NULL) /* return nama info 0/
{

if «name - (char *)malloc(MAX_NAME_SIZE) NULL)

(

printf("Hemory allocation error\n");
exit(l);

}

strcpy(name, exp_name);

}

if (time stamp !- 0) /* return time info */
*time ~tamp - axp time;

if (index--!- 0) /* return index */

*index - exp index;

if (type !- 0) /* return type */

*type - exp_type;

return (bUffer) ;

/*
* NOT REPLAY ONE
* Set process information into local variables
*/

MY_Queue - ,pinfO->My_Queue;

tV .. tV_S9C a 0;
tv.tv_usec - laO;

/*
* Normal replay
*/

if (K>DE -- REPLAY)

(

/*
* Read message from file

*/

fscanf(pinfo->fp,	 "from's on host's id 'd\n",

exp_name, exp_host, &exp_time);

/*
* If a blank message was written return NULL

*/

if	 (exp_name[OI -- '-'I

raturn (NULL) ;

/*
* Check if message is in queue
*/

while (1) /* keep checking until we find it */

(

THltEADmonitorentry(pinfo->~mon, &qmb);

if (Hy_Queue->head -- NULL)

{

THltEADmonitorexit(pinfo-~mon);

selact(O, NULL, NULL, NULL, &tv);
}

alse
(

/*
* While not at the end of the queue and not message found keep looking

*/

curr - My_Queue->head;

while (curr !- NULL)

I

if «strcmp(exp_name, pinfo->connection[curr->index) .name) -- 0) &&

1

- -

gena~.~_ipc.c Wed Jan 23 13:~8:58 1991 7

(exp_time - curr->time_stampr &&

(strcmp(exp_host, pinfo->connection(curr->indexj .host)

if «buffer - (unsigned char *)malloc(curr->buf_size))
(

printf(WKamory allocation error\nW);
exit(l);

}

if (host !- NOLL) f* return host info *f
(

if «host - (char *)malloc(HOST SIZE») NULL)
(

printf(wH8mory allocation error\nW);
exit(l);

f
strcpy(host, pinfo->connection(curr->index).host);

f
if (name !- NOLL) f* return nama info *f
(

if «nama - (char *) malloc (MAX NAME SIZE») -- NULL)
(- -

printf(WKemory allocation error\nW);
exit (1);

I
strcpy(name, pinfo->connection(curr->indax].name);

}
if (time_stamp !- 0) f* return time info *f

*time" stamp - curr->time stamp;
if (index-f- 0) f* return index *f

*index - curr->index;
if (type !- 0) f* return type *f

*type - curr->type;
(voidlbcopy(curr->buffer, buffer, curr->buf size);
free(curr->buffer);

f*
* fix up the pointers	 in the queue
*f

if (curr->prev -- NOLL) f* if it is the head *f

(

if (curr->next -- NULL) f* and the tail too *f
(

My Queue->head - NULL;
My-Queue->tail - NULL;

}
else f* it's just the head *f
(

My Queue->head - curr->next;
My=Queue_>head->prev - NULL;

)
else if (curr->next -- NULL) f* it's just the tail *f
(

My Queue->tail - curr->prev;
My-Queue->tail->next - NULL;

)
else f* it's in-the middle *f
(

curr->next->prev - curr->prev;
curr->prev->next - curr->next;

)
fr.... (curr);
THREADmonitorexit(pinfo-~monl;

return (buLfer) ;

else
0))	 curr = curr->next;

}

NULL)	 THREADmonitorexit(pinfo-~mon);

select (0, NULL, NULL, NULL, &tv);

f*
* Not a replay mode at all
*f

else

if (time out > 0)
time=out *- TimeAdjust; f* adjust the time out to the system *f

while (1)
(

THREADmonitorentry(pinfo-~mon, &qmb);
if (My_Queue->head -- NULL) f* queue is empty *f
(

THREADmonitorexit(pinfo-~on);

select (0, NULL, NULL,	 NULL, ,tv);
f*

* if time_out expires	 return, if it's capture write a blank message to the
* file before returning
*f

if (comlt time_out)
(

if (HODE -- CAPTURE)
fprintf(pinfo->fp,-from - on host - id O\nW);

else if «HODE -- FULL_CAPTURE) II (HODE -- CHECKPOINT})
fprintf(pinfo->fp,

wfrom - on host - id 0 index 0 type 0 len 0 - W);
return (NULL) ;

}

count++;

}
else f* There is a message in the queue *f
{

if «buffer·
(unsigned char *)malloc{My_Queue->head->buf_size) -- NULL)

printf(WKemory allocation error\n-);
exit(l);

}
if (host !- NULL) f* return host info *f

strcpy(host, pinfo->Connection(My_Queue->head->index).host);
if (n.- !- NULL) f* return name info *f

strcpy(name, pinfo->connection(My Queue->head->index).name);
if (U__stamp !- 0) f* return time i~fo *f

*time stamp - My Queue->head->time stamp;
if (index-!- 0) f* return index *f

*index - My Queue->head->index;
if (type !- 0) 7* return type *f

*type - My Queue->head->type;
(voidlbcopy(My-Queue->head->buffer, buffer,

My-Queue->head->buf size);
f*

* If we are in a cpature mode log the message info
*f

if (HODE -- CAPTURE)
(

fprintf(pinfo->fp,Wfrom ts on host ts id td\nW,
pinfo->Connection(My_Queue->head->indexj .name,

qener.~_ipc.c Wed Jan 23 13:48:58 1991 8

pinfo->Connection(Hy_Queue->head->index) .host,
My_Queue->head->time_stamp);

}

else if ({~DE FULL_CAPTURE) II

(~DE CHECKPOINT))

fprintf{pinfo->fp,
-from's on host's id 'd index %d type 'd len 'd - -,
pinfo->Connection(My_Queue->head->indez! .name,
pinfo->Connection(My Queue->head->indez) .host,
My Queue->head->time-stamp, My Queue->head->index,
My=Queue->head->type; My_Queue=>head->buf_size);

/* print the message now */
for (i - 0; i < My Queue->head->buf size; i++1

fprintf(pinfo->fp, -'c-, My Queue->head->buffer[i);
fprintf(pinfo->fp, -\n-);

if (~DE -- CHECKPOINT)
(

if (pinfo->cp count - CP COllNT)
check-point(pinfo);

else
pinfo->cp_count++;

I
free(Hy Queue->head->buffer);

tamp - My QUQue->head->next;

free(Hy Queue->head);

My Queue->head - temp;

if-(My_Queue->head !- NULL)

My Queue->head->prev - HULL;
THREADmOnitorezit(pinfo-~moal;
return(buffer);

/'1****************** ••*****_
* Receive a reply routine *
*** •• **.**••••••••******••• /

unsigned char *receive rep(pinfo, message id, time out)

Pinfo *pinfo; - -
int *message_id;

int tima_out;

(

unsigned char *buffer;

struct timeval tv;

static struct timeval wf - \32767, 01;

KBUF *temp;

THREAD_MONITOR_BLOCK rqmb;

char file_naJM(MAX_NAMB_SIZE + 9);

MBUF *curr;

char ezp name(KAX IfAKE SIZE);

char ezp-host (Hosi SIZE);

int QJtp_irld, ezp_le, i;

static int is open - 0;

static int count - 0;

QUEUE *My_Rep_Q;

/*
* If this is a replay one just get the message from the file
*/

if (~DE -- REPLAY ONE)

(

if (fscanf(pinfo->fp,
-reply from's on host's to message %d len 'd - "
ezp_name, exp_host, &exp_mid, &exp_len) -- -1)

while(l) /* blocking receive never returned */
select (0, NULL, NULL, NULL, &wf);

/*
* If a blank message was written return NULL
* else return the message

*/

if	 (exp_name(O) -- '-')

return{HULL);

if «buffer - (unsigned char *)malloc(exp_len» -- NULL)
(

printf(-Mamory allocation error\n-);

exit (1);

I
for	 (i - 0; i < exp len; i++)

fscanf(pinfo->fp, -'c-, 'buffer!i);

fscanf(pinfo->fp, -\n-);

*message id - 0;

return (buffer) ;

/*
* NOT REPLAY ONE
* Set proces; information into local variables

*/

My Rep Q - 'pinfo->Hy Rep Q;

tv:tv sec - 0; -

tv.tv=usec - 100;

/*
* Normal replay
*/

if (~DE -- REPLAY)

genera1_ipc.c Wed Jan 23 13:48:58 1991 9

/*
* Read reply message from file

*/

fscanf(pinfo->fp,	 wreply from %s on host %s to message %d\n W,
exp_name, exp_host, 'QXp_mid);

/*
* If a blank message was written return NULL

*/

if	 (axp_name[O] - '-'I

return (NULL) ;

/*
* Check if message is in queue

*/

while (1)

(

THREADmonitorentry(pinfo->~mon,'rqmb);

if (Hy_Rep_Q->head -- NULL)

I

THREADmonitorexit(pinfo->r~mon);

select(O, NULL, NULL, NULL, .tv);
I
else
(

/*
* While not at the end of the queue and not message found keep looking
*/

curr - My_Rep_Q->head;

while (curr !- NULL).

(

if «strcmp(axp name, pinfo->connection[curr->indax] .namel
(exp mid ---curr->time stamp) ••
(str~(QXp_host, pinf;->connection[curr->index).host)

if «bufter - (unsigned char *)malloc(curr->buf_size))
I

printf(WHemory allocation error\nW);
exit (1);

}
*message id - curr->time stamp;
(void)bc;pYlcurr->butfer~buffer, curr->buf_size);
free(curr->buffer);

/*
* Fix up the pointers in the reply queue
*/

if Icurr->prev -- NULL) /* message is at head */

I

if (curr->next -- NULL) /* and tail too */
I

Hy_Rep_Q->head - NULL;
Hy_Rep_Q->tail - NULL;

)
else /* it's just the head */
(

Hy_Rep_Q->head - curr->n&Kt;
Hy_Rep_Q->head->prev - NULL;

,

)

else /* it's in the middle */

curr->next->prev - curr->prev;
curr->prev->next - curr->next;

I
free (curr) ;
THREADmonitorexitlpinfo->r~monl ;
return (bUffer) ;

)

elae
curr -	 curr->next;

I
THREADmonitorexitlpinfo->r~mon);

select 10, NULL, NULL, NULL, .tv);

/*
* Not a replay mode
*/

else

while (1)

(

THREADmonitorentrylpinfo->r~mon, &rqmb);
if (Hy_Rep_Q->head -- NULL) /* queue is empty */
I

THREADmonitorexit(pinfo->r~mon';

select (0, NULL, NULL, NULL, 'tv);

/*

* if time out expires return, if it's capture write a blank message to the
0) " * file before returning

*/
0)) if (count time_out)

(

NULL) if (MODE -- CAPTURE)
tprlntf(pinfo->fp,-reply from - on host - to message O\n-);

else if «MODE -- FULL CAPTURE) II (HODE -- CHECKPOINT))
fprintflpinfo->fp,

.wreply from - on host - to message 0 len 0 - -);
return (NULL) ;

count++:
I
else /* got a message */
I

if I (buffer
(unsigned char *)malloc(My_Rep_Q->head->buf_size» -- NULL)

prlntf(wMemory allocation error\n-);
&Kit(l);

I
*message ld - My Rep Q->head->time stamp;
(voidlbc;py(Hy_RQp_Q=>head->buffer~buffer,My_Rep_Q->head->buf_sizel;

/*
* It we are In a cpature state log the message lnfo

*/

If ('DUE -- CAPTURE)

(

else if (curr->naxt -- NULL) /* it's just the tail */ fprintf(pinfo->fp,wreply from %s on host %s to message %d\n-,
(plnfo->connection[Hy Rep Q->head->lndex) .name,

Hy_Rep_Q->tail - curr->prev; pinfo->connection[Hy-Rep-Q->head->index).host,
Hy_Rep_Q->tail->next - HULL; Hy_Rep_Q->head->tlme=sta;P);

genera~_i.pc.c Wed Jan 23 13:48:58 1991 10

I
else if «MODE FULL_CAPTURE) II

(MODE CHECKPOINT))

fprintf(pinfo->fp,
-reply from %s on host %s to message %d len %d - .,
pinfo->Connection(My_Rep_O->head->index) .name,
pinfo->Connection(My Rep O->head->index) .host,
My Rep O->head->time-stamp,
My=Rep=O->head->buf_;ize);

/* print the message now */
for (i - 0; i < My_Rep_O->head->buf_size; i++)

fprintf(pinfo->fp, -%c-, Hy_Rep_Q->head->buffer(i);
fprintf(pinfo->fp, -\n-);

if (MODE -- CHECKPOINT)
(

if (pinfo->cp count. -- CP·COUNT)
check-point(pinfo);

else
pinfo->cp_count++;

I
free(My_Rep_O->head->buffer);

temp - My Rep O->head->next;

free(My R8P O=>head);

My Rep Q->head - temp;

if-(My-Rep O->head !- NULL)

My-Rep-Q->head->prev - NULL;
THREADmonitorexit(pinfo->r~mon);
return(buffer);

/*****************.**.**********************~*********************************

* BOTH SIDES
***/

/**************************
* Initialization Routine
***** •••*.****************/

Pinfo -Init(whoami)
char *whoami;

int sock;

struct sockaddr_in name;

MFA *wfa;

char file name(MAX NAKE SIZE

char cfile name(MAX NAME SIZE

FILE *fopen(), *fp;-
int size - sizeof(namel;

int len;

char host name(HOST SIZE];

Pinfo *pinfo;

/*

+ 7];
+ 9);

* Make sure whoami is less than MAX NAKE SIZE characters
*/ -

if (strlen(whoami) > (MAX_NAME_SIZE - 1»
(

printf(-** WARNING name %s truncated to %.15s *-\n-. whoami. whoami);
bcopy(whoami. whoami, MAX NAME SIZE);

whoami (MAX_NAKE_SIZE - 1)-- '\0';

/*
* Get our host name
*/

if (gethostname(host name, HOST SIZE) -- -1)

(-

perror(-gethostname-);

exit(l);

/*
* Allocate a structure to hold local process info
*/

if «pinfo - (Pinfo *)malloc(sizeof(Pinfo») NULL)

(

printf(-Mamory allocation error\n-);

exit(l);

/*
* Initialize queues
*/

pinfo->My_Oueue.head NULL;

pinfo->My Queue. tail NULL;

pinfo->My-Rep O.head NULL;

pinfO->My=Rep=o.tail NULL;

/*
* Set the global for our name and host name
*/

strcpy(pinfo->My_Name, whoami);

strcpy(pinfo->My_Hoat_Name, host_name);

/** Hack since THREADmurder doesn't seem to work --/

gen.~.J._ipc.c Wed Jan 23 13:48:58 1991 11

pinfo->halt - FALSE;
f"" End hack ""f

f"
" Set the mode of operation
"f

pinfo->mode - MODE;

f"
" If capture is turned on open the capture file for writing
*f

if ((MODE CAPTlJRB) II (MODE -- FULL_CAPTlJRB) II (MODE
(

sprintf(cfile name, ·'s rec·, whoami);
if ((pinfo->fp - fopen(~file name, ·w·)) -- NULL)
(

printf(-Error opening file 's\n-, cfile_namal;
exit (1) ;

f*
* If replay i8 turned on open the capture file for reading
*f

else if ((MODE -- REPLAY) II (MODE. -- REPLAY_ONE))
(

sprintf (cfile_name, ·'s_rec··, whoamd);
if ((pinfo->fp - fopen(cfile name, ·r·)) -- NULL)
(

printf(·Error opening file 'a\n·, cfile_name);
exit (1) ;

f*
* Get a aocket and a name
*f

if ((sock - socket(AF INET, SOCK STREAM, 0)) -- -1)
(-

perror(·aock·);
exit (1);

I
name.ain family - AF INET;

name.sin-addr.a addr-- htonl(INADDR ANY);

name.ain~ort --htona(O);

f*
* Bind the socket
*f

if (bind (sock, 'n..., sizeof(name)) -- -1)
(

perror(·bind·);

exit (1);

f*
* Get port chosen
*f

len - aizeof(name);

if (getaocknama(sock, 'name, 'len) -- -1)

(

perror(·getaockn...·);
exit (1);

f*

-- CHECKPOINT) I

Of

ghn ~ THREADmonitorinit(O, NULL);

pinfo-~mon - THREADmonitorinit(O, NULL);

pinfo->r~mon - THRBADmonitorinit(O, NULL);

f*
* Zero the interesting read file deacriptor set and mark our interest
*f

FD_ZERO('pinfo->RFDS);

FD_SET(sock, 'pinfo->RFDS);

f*
* The initial number of connectiona is zero
*f

pinfo->Num Cona - 0;

f*
* Start listening for connection attempts
*f

if (listen (sock, 5) < 0)
(

perror(·listan-);

"",it (1);

f*
* Create a receive thread
* Allocate a atructure to hold argumants for the thread
*f

if ((wfa - (WFA *)malloc(sizeof(WFA)) -- NULL)

(

printf(·Hemory allocation error\n·);

"",it(l);

I
wfa->sock - sock:

wfa->name - 'name;

wfa->pinfo - pin£o;

pinfO->Ky_RaC_~~.PQad - THREADcreate(receive_thread, wfa, 0, 1, 16384, 8);

f*
* Regiater yourself to be talked to
*f

sprintf(file name, -.'a-, whoami);

if ((fp - fopen((char *)file_name, ·w-)) -- NULL)

(

printf(-Error writing routine's into database.\n-, whoami);
return((Pinfo *1-1);

I
else
(

fprintf(fp, ·'s\n'd\n·, hoat_nama, ntohs(nama.sin_port));

ffluah (fp) ;

fclose(fp);

I
return (pinfo);

* Initialize the monitor that send will use and the queue monitor

general._ipc.c Wed Jan 23 13:48:58 1991 12

/*********************
* Shut down Routine *
*********************/

void FinishCpinto)
Pinfo *pinfo;
C

char tmp [10 + HAX_NAHE_SIZE];

it Cpinfo->balt -- FALSE)

C

THREADmurderCpinto->H¥_Rec_Threadl;

/** Hack since THREADmurder doesn't seem to work **/

pinto->balt - TRUE;

/**	 End hack **/

sprintfCtmp, -DB .~s-, pinfo->H¥_Namel;

systemCtmp) ;

I

if CN:lDE ! - NORMAL)

fcloseCpinto->fp);

/****************
* Call Routine *
****************/

unsigned char *HsgCallCpinfo, id, message, mlen, time out)

Pinfo *pinto;
int id;

un"igned char *message; /* lII8ssaqe to send */

int mlen; /* messaqe length */

int time_out;

C

unsigned char *temp;

int message_id, ret_mid;

mas.age id - send DlQssageCpinto, id, massage, mlen, EXPECT REP, -1);
if CDIQ,,;age_id ----1) /* error */

returnCCunsigned char *)-1);
/*
* Block waiting for reply to this message
*/

temp - receiva_repCpinfo, 'ret_mid, time_out);

while CCret_mid !- mallSaqe_id) " Ctemp !- NULL))

C

printfC-** WARNING - received reply with wrong message id, waiting ••• **\n-);

treeCtemp);

temp - receive_repCpinfo, 'ret_mid, time_out);

I
return Ctemp) ;

/***
* Sha red memory rout ines	 •
*********.** *********************1

/***** •• ***************************************
* Initialize object tor shared memory access *
*********************.***********•••• *********/

/**
** Kay want to add a sizQ here so that we know how much data to
** write when an· Object i. saved in FULL_CAPTURE 1IlOde
**/

Object *ObjectInitCdata, name I
char .data, .nama;
(

Object *obj;

it CCobj - CObject *lmallocCsizeof(Object))) -- NULL)
(

printtC-Kemory allocation error\n-);

exit (1);

)

obj->data - data;

obj->mon write - THREADmonitorinitCO, NULL);

obj->mon-- THREADmonitorinitCO, NULL);

obj->active_read - 0;

obj->total_read - 0;

obj->version - 1;

Cvoid)strcpyCobj->name, name);

return(obj);

general_ipc.c Wed Jan 23 13:48:58 1991 13

if (pinfo->cp_count ~ CP_COUNT) /* checkpoint if it's time */
/***** •• ********•••••••• check_point (pinfo) ;

* Get read permission * elsQ
••********.***••• *•••**/ pinfo->cp_count++;

ReadEntry(pinfo, objectl
Pinfo *pinfo;
Object *object;
(/.**.**••• *••••••****.**

THREAD MONITOR BLOCK mon blk, wmon blk; * Finish read control *

char n_(OBJ NAME SIZE]; - .*.********************/

int eJtP_version; - ReadExit(pinfo, object)

struct timaval tv; Pinfo *pinfo;

Object *object;
/** (

** If mode is replay one we need to fill in the object from the file THREAD_HONITOR_BLOCtt mon_blk;
** This requires so_ knowledge of the object size and structure
** currently we only handle integers if (!«JOE -- REPLAY_ONE) /* no-op here */
**/ retuDl;

if (N)DE -- REPLAY ONE)
(- /* make sure we are the only ones incrementing and decrementing */

fscanf(pinfo->fp, wread object %s version %d contents - *, name, 'exp version); THREADmonitorentry(object->mon, 'mon_blk);
fscanf(pinfo->fp, W%d\n W, object->datal; - object->total_read++;
return: object->active read--;

) THREADmonitorezit(object->mon) ;

ebe if (MODE - REPLAY)

/*
* Read the version from the tape
* Wait until that version is active
*/

tv.tv_sec - 0;

tv.tv usec - 1000;

fscanf(pinfo->fp, wread object %s version %d\n*, name, 'exp_version);

while (object->version !- exp version)

select(O, NULL, NULL, NULL, ,tv);
)

else
(

/* make sure there is no write going on */

THREADmonitorentry(object->mon_write, 'wmon_blk);

/* make sure we are the only ones incrementing */

THREADmonitorentry(object->mon, 'mon_blkl;

object->active read++;

/** if (Object=>active_read > 1) printf(w**concurrent read**\n W); **/

THREADmonitorezit(object->mon);

THREADmonitorexit(object->mon_write);

/*
* I~ the. mode is capture log the read contents to the file

*/

if (N)DE -- CAPTURE)

fprintf(pinfo->fp, *read object %s version %d\n*, object->n~,

object->version);

ebe if «!«JOE -- rou. CAPTlJEIE) II (!«JOE -- CHECKPOINT))

(

fprintf(pinfo->fp, wread object %s version %d contents - w, object->n~,

object->version);
/**

** Log the contents - again this requires object size information
** CUrrently we only integers
**/

fprintf(pinfo->fp, w%d\nW, *(int *)object->data);

if (N)DE -- CHECKPOINT)

general_i.pc.c Wed Jan 23 13:48:58 1991 14

1***********************· 1************************
* Get write pe~ssion * * Finish write control *
************************1 ************************/

WriteEntry(pinfo, object) WriteExit(pinfo, object)
Pinfo *pinfo; Pinto *pinfo;
Object *object; Object *object;
((

THREAD MONItOR BLOCK mon blk, wmon blk; THREAD HONITOR_BLOCK mon_blk;
static-struct ti_val tv- 10, 10001;
char *exp name(OBJ NAME SIZE]; if (KlDE - REPLAY_ONE)
int ,""p_version, eip_tr; return;

..ls.. if (MODE - REPLAY)
(

if (KlDE - REPLAY_ONE) /* no-op */ obj..ct->total read - 0;
ret\lrn; THREADmonitorentry(object->mon, 'mon blk);

else if (MODE - REPLAY) obj..ct->version++; -
(

fscanf(pinfo~>fp, ·wrote object '8 version 'd total readers 'd\n·, f
THREADmonitorexit(object->monl;

..xp_name, &exp_version, ',""p_tr); else
(

/* wait for expect<>d v..rsion to become availabl.. */ object->total_r..ad - 0;
while (object->version !- exp version)

select(O, NULL, NULL, NULL, ,tv);
obj..ct->version++;
THREADmonitorexit(object->mon_write);

while (object->total_read < exp_tr)
select (0, NULL, NULL, NULL, ,tv);

I
else
(

/* gain exclusive access */
THREADmonitor8ntry(object->mon_write, 'wmon_blk);

/* l ..t active readers finish */
while (object->active_read)

select (0, NULL, NULL, NULL, ,tv);
I
/* write object name, Object version to file */
if (KlDE -- CAPTURE)

fprintf(pinfo->tp, ·wrote object '8 version td total readers 'd\n·,
object->nams, object->version, object->total_readl;

general_ipc.c Wed Jan 23 13:48:58 1991 15

**1
/********* •• ******************* 1**
* Check point signal handler *
********••********* •••• *******/

pinfo->pid - fork();

int handler() **1
(

HAND - FALSE; 1* indicate that we were called *1
1*

,. Hake sure file pointer is in correct place and read out pid
return (0); *1

sprintf(tmp_file, -'s_rec-, pinfO->Hy_Namel;
pinto->tp - topen(tmp tile, -r-);

/********* •• ********••• * tscanf(pinto->tp, -pid - 'd\n-, 'pidl;
* Check point routine * printt(-replay starts now tor pid 'd - halt 'd\n-, pid. pinfo->halt);
***********************/)

check-point(pinfo) else
I?info *pinfo: [
(

int pid;
1*
* Else we are the parent. Prepare to start capture again

char tmp_tilelHAX_IlAHE_SIZE + 5); *1
sprintf(tmp file, -'s rec-, pinfo->Hy Name);

1* pinto->fp --topen(tmp-file, -w-); -
* Get rid of last checkpoint fprintt(pinto->tp, -pId - 'd\n-, pinfo->pid);
*1 tl>DE - CIlEClU'OINT;

if (pinfo->pid !- 0) printf(-capture starts now\n-);
kill (pinfo->pid, 9); }

fclose(pinto->fp): pinfo->cp_count - 0;
1**

**
**

Probably best to prevent receive thread from doing
any i/o during fork

**1

1*
* Hake a new checkpoint
*1

pinfo->pid - fork();
1*

* It we are now the child •••
*1

if (pinfo->pid - 0)
(

1*
* Prepare
*1

for replay

1**
** This is to keep forking the child so that we can
*1O keep replaying

while (pinfo->pid - 0)
(

**1
1*

* Get rid of the childs receive thread
*1

1** THREADmurder hack **1
pinfo->halt - TRUE;
tl>DE - REPLAY ONE; 1* set child to replay mode
signal(SIGUSRl, handler); 1* wake up call *1

*1

1*
* Wait until someone tells us to replay
*1

while (HAND)
pause 0 ; 1* continue when we get the user signal *1

1**
** To allow multiple reexecutions keep forking a child
** Child goes into wait parent does replay

