
BROWN UNIVERSITY

Department of Computer Science

Master's Thesis

CS-91-M3

Heuristics for Cost-based Abduction in Belief Networks for Story Understanding

by

Saadia Husain

Heuristics for Cost-based Abduction in

in Belief Networks for Story Understanding

by
Saadia Husain

S.B. Massachusetts Institute of Technology, 1989

Project

Submitted in partial fullfilment of the requirements for the

degree of Master of Science in the Department of Computer Science at

Brown University.

May 1991

Eugene Charniak (advisor) [; r~/\Io..J"(~b~~C_~~· ~.....=.::.~"vY':1--a~=~J::z' _

Heuristics for Cost-based Abduction in Belief Networks
for Story Understanding

Masters Project
Saadia Husain

SUMMARY OF PROJECT:

---Cost based abduction vs. probability calculations on belief net

The rule-based system is represented as a weighted and/or DAG

which corresponds to a belief network.

Anything that can be done with cost-based abduction on the and/or graph

can also be done with probability calculations on the belief net.

---What the belief net looks like: pforms , stms (and/or)

Rules are pforms (probability forms), and-nodes

Belief statements are stms, or-nodes

Cost of assuming a root node is -log(P(node))

---Why old heuristic was too slow: no heuristic, no estimate

The minimal cost proofs were found using a best-first search scheme.

The "best" partial expansion at any point in the proof was the one

with lowest cost. In the original scheme ,this cost was a measure of

the rule costs traversed so far, without any indication of what

costs lay ahead.

---What did it explore that was not needed

A path in the expansion could lead up to an assumption node with very

high cost which would not be discovered until the last step of the

expansion. There was no indicator of that high cost at earlier stages

of the partial expansion.

--- Need for a better heuristic

A better heuristic would have some estimate of how expensive it is

to expand along a certain rule. This has to be more than just the rule's

cost, but also a reflection of the expense of the the root nodes that

could be reached by using that rule.

---First tried pushing along single child stms -Not too much improvement.

The first heuristic tried was used in areas where an exact estimate

of cost could be pushed down as far as possible. This occurs when a stm

has only one relevant child pform (only one rule can expand to that

stm). That node can push down its entire cost to its child.

The cost pushed down to a rule is the minimum of the costs its parent

nodes are trying to push down. Once you know every node above a

certain node has pushed down its exact cost, there is no need to

expand above that node when the minimal cost proof is being constructed.

However this heuristic did not lead to a reduction of the large numbers

of expanisions since there are very few areas where such pushing down

can be carried out. Specifically, it took 2 expansions instead of 4 to

assign beliefs for the network constructed after entering "Jack .. ".

But for networks larger than that, there were no major areas where this

push down would save expansions.

The current sharing heuristic
The current sharing heuristic involves passing down the costs of root nodes.
The cost of an expansion is initialized as the estimate obtained
after passing down the costs from the assumption nodes, through the
rules in network, down to the evidence statements.
Then this estimate is updated as the evidence statements are expanded to
other nodes.

--- How costs are passed down
Stms divide their cost equally among their children, in case of the
optimistic situation where each of those children would require
that stm and would share in bearing its c03t.
The cost passed down a pform is the minimum cost of the parent stms.

---Sharing heuristic only looks at pass-dawn-figure
The relevant costs are the costs of the assumptions and the costs of
the rules (the pform and-nodes). After the passing down is initially
completed, only the pass-dawn-figures of the stms and pforms are important.
The pass-dawn-figure of any rule or statement can be seen as an optimistic
estimate of the costs that remain above that node (not just the
personal cost of that node)

---The cost formula
Cost = Partial-cost + (Pass-dawn-figure pform)

- (Pass-dawn-figure stm)* children / Need-figure

When the minimum cost proof is costructed, the estimate is updated
each time a rule is traveresed to reach a new stm
Always optimistic estimate.

---Pessimistic cost helps weed out impossible partial candidates
The cost of the minimal cost proof is the sum of the costs of the
assumptions necessary for the proof plus the cost of the rules.
Not all assumptions and rules in the net will necessarily be used in
the expansion of the evidence nodes. Therefore the
worst possible cost for an expansion of the network is equal to
the costs of all the assumptions plus the costs of all the rules (pforms).
If at any point, the cost of a partial expansion is greater than this
pessimistic estimate, that partial can be discarded from the agenda.
This keeps the maintence of a sorted agenda from being slowed down by

\ partials with extremely high costs.

----Ordering by level

Each partial expansion has a list of stms that have yet to be expanded.

When the sharing heuristic is used, it is necessary to restrict which

stms can be expanded next to those whose children stms have all been

expanded already. This is enforced by ordering the partial-open list

by the level of the stms: Levell stms are evidence and all other stms

have level = level of highest child + 1.

The lowest level stms appear first in the open list and are expanded first.

---Keeping open sorted, and effect on number of expansions

This constraint on the order in which stms are expanded has affects the

number of expansions for the network.

---Stms more than once in no-share open

It is necessary to keep track of how many times a particular stm

has been expanded to by some rule. In the best case, all of the stms

children would require it, and share the burden of its cost, as anticipated.

In the worst case, only one of the children would have to bear the whole

cost, making the cost of that expansion worse than expected.

---Removing duplicates

It is possible to arrive at the same partial expansion in more than

one way. To avoid continuing further identical expansions of each of these,

we must remove duplicates.

---Advantage of binary tree over heap

The agenda of partial expansions is stored in a binary tree sorted by

the partial's cost.

When a new expansion of cost c is inserted in the tree, its cost is

automatically compared with all other expansions of cost c in the
agenda. This is where partials with same cost and same open-list, same
stm-list can be deleted.

---Cases where non-sharing is better in # of expansions than sharing

Found case where there are fewer expansions without sharing than
with sharing because of the constraints on the open-list
Examined what was happening with expansions with sharing, to see
what wrong branches were being taken
By chance discovered the case where there can be duplicate partials
which lead to redundancies
Put in code to remove duplicates as they are about to be inserted in
to binary tree agenda.
With this duplicate removing, even more cases had fewer in non-sharing

In the test-suite, the construction that gives this problem is
Jack took a bus to the park.
Fred took a taxi to ...

(more description) ..

--Where did we get time improvements and expansion # improvements
**Ok-extension function
Certain rules can only be expanded only if certain statments
are not already in the expansions (pform-outs)
Check if
Stm you want to expand is not an out of some rule already used
Rule to be expanded along has no outs already in partial
None of the parents of that pform are outs of some rule already used

Putting in this third check reduces the number of expansions

**dstr-hack

**Agenda was put on binary tree to speed up management of insertion
and sorting

** Forget about partial with> pessimistic cost.

THis makes the agenda smaller, and speeds up insertion of new

partials into tree

---Timing Results

The time spent is dependent on the number of partial expansions

in the agenda.

I used the lisp time function to time the assign-beliefs function

and rpg's probability calculations on the net.

Most of it takes less than a second, with or without sharing

Fewer than 50 expansions generally take less than a second

with or without sharing, while the prob. calculations for those

cases take several seconds (up to 15 sec)

The cases where there are fewer expansions without sharing

have a "+" next to the times.

As loaded, the sharing heuristic is turned on .
(the variable *share* is t)
Do (setq *share* nil) to turn it off.

a1 Fri Oct 12 00:55:37 1990 1

Key:
+ ••• Fewer expansions without sharing than with sharing

**** •••• ** •• ********* ••• **-**********************

<--- Prob. calcs. on belief net are significantly faster Bill went to the supermarket.
than MAP calc. with sharing. He paid for some milk .

••••••••• *** •••••• **._ •• -* ••• -._ ••• -._-_._-_ •• _-

•••••• - •••••••••• *.* •••••••••••• -.** ...•....•.••..••••.-•.•••..- WITH SHARING WITHOUT SHARING
Jack went to the supermarket. 'exp MAP BNET 'exp MAP
He found some milk on the shelf. ---
He paid for it.

--- •••• * •••••••••• _* •••• * •••••••••••••••••• -_ ••••••••• _._._ •• _.

WITH
'exp

SHARI
MAP

NG
BNET

WITH
'exp

OUT SHAR
MAP

ING
8

0.10
0.10

0.13
0.21

sec 0.27
0.28

3.16
3.66

sec 4

14

0.03
0.08

0.12
0.12

sec

0.67
1.19

sec 0.66
0.64

seconds 0.35
0.03

seconds 11 0.19
0.21

4.68
4.67

34 0.15
0.15

8 0.14
0.14

3.60
3.63

0.23
0.11

14 96 2.15
0.79

18.87
17.33

125 0.89
0.34

11 0.19
0.20

4.70
4.69

34 0.14
0.13

8 0.50
0.15

3.05
3.05

10 0.11
0.12

96 4.09
2.14

19.43
17.82

125 0.55
0.38

20 0.19
0.21

5.66
5.68

22 O. 14
0.12

8 0.13
0.14

3.05
3.05

10 0.10
0.09

336 1.88
3.25

20.30
20.34

443 4.23
1. 53

20 0.22
0.25

5.68
6.55

22 0.13
0.14

53 0.86
0.51

11. 94
11.11

92 0.56
0.28

377 2.03
2.03

22.48
20.29

443 4.22
1.49

119 1.14
1.45

6.95
7.14

425 6.13
2.49

570 3.57
7.59

24.45
24.42

1991 76.61
9.38

91 1. 77
0.94

8.54
6.67

382 5.78
2.43

0.10
0.11

0.60
0.48

0.08
0.07

36 0.49
0.84

15.82
14.73

102 0.55
0.39

6 0.12
0.11

1. 89
2.42

7 0.09
0.08

20 0.70
0.22

5.78
5.65

22 0.13
0.13

23 0.23
0.22

1. 55
1. 54

25 0.14
0.13

199 4.39
2.36

33.17
30.51

1941 37.73
45.36

http:������-����������*.*������������-.**...�....�.��..����.-�.���

a2 Fri Oct 12 00:55:38 1990 1

••••••••••••••••••••• ** •••••••• **************.*** -._---- -.-_ ... _*_.--_._.--_._-* .. __ ... -
Jack gave the busdriver a token.
He got off at the supermarket.

-_ ••• _--_._ ••••••••••••••• _••••• _-_ •••••• *_ ••• *. .
Jack went to the liquor-store.
He found some bourbon on the shelf.

_ -.---_._-_.*----_ __ .. --* ..
WITH SHARING WITHOUT SHARING WITH SHARING WITHOUT SHARING
'exp MAP BNET fexp MAP 'exp MAP BNET fexp MAP

0.10 sec 0.28 sec 0.07 sec 0.13 sec 0.70 sec 4 0.08 sec
0.10 0.54 O.ll 0.70

8 0.13 1.08 9 0.10 8 0.19 3.18 14 0.34
0.14 1. 07 0.16 3.16

11 0.18 5.06 21 0.12 II 1. 24 5.27 34 0.15
0.19 4.96 0.20 4.69

2114 42.27 96.20 2405 48.40 96 3.21 17.58 125 0.45
31.21 95.71 0.78 18.97

2655 50.80 93.47 2479 47.58 + 8 0.16 3.07 10 0.10
43.88 99.80 0.16 3.28

11060 216.13 172.84 <--- 13949 717.59 20 0.23 5.68 22 0.14
208.99 150.94 0.36 5.92

16 1.09 6.00 18 0.11 377 2.89 21. 4 2 443 1. 45
0.44 5.16 2.04 20.18

24 0.30 10.05 33 0.16 575 3.68 27.02 1921 7.73
0.27 9.70 7.18 25.47

35 0.65 12.01 59 0.29 5 0.14 1.23 5 0.09
1.30 12.82 0.11 0.74

75 1. 76 13.43 181 0.99 36 0.53 14.76 102 0.33
0.95 13.29 0.50 16.27

264 8.64 22.46 1956 26.27
7.61 24.32

a3 Wed Oct 31 09:38:11 1990 1

••••• ******************** •• **********************

Bill gave the busdriver a token. Fred robbed the liquor-store.
w************.*********.************************. Fred pointed a gun at the owner.

.****************************.*******************

WITH SHARING WITHOUT SHARING
fexp MAP BNET fexp MAP WITH SHARING WITHOUT SHARING

'exp MAP BNET fexp MAP

0.14 sec 0.28 sec 4 0.11 sec
0.11 0.30

0.04 sec 0.32 sec 4 0.11 sec
8 0.17 1. 03 9 0.11 0.64 1.12

0.15 1. 09
8 0.12 0.73 9 0.10

11 0.25 5.49 21 0.16 0.14 1. 08
0.17 5.94

8 0.10 0.84 9 0.39
2114 40.55 97.99 2405 47.39 0.14 1.17

46.00 96.83
6 0.12 1. 37 7 0.11

2655 46.28 93.06 2479 46.69 + 0.12 2.47
51.19 1 102.18

20 0.39 4.07 22 0.15
11060 214.58 150.21 <---- 13949 736.86 0.23 5.72

211.91 156.31
36 0.37 5.18 62 O.T!

1. 45 8.95

94 0.63 9.88 176 0.60
0.75 13.79

0.10 0.36 5 0.09
0.11 0.49

580 9.97 24.33 1658 14.59
23.97 34.92

a4 Fri Oct 12 00:55:38 1990 1

Jack took the bus to the airport.
He bought a ticket. • ••• ***

*** •••••• Bill packed a suitcase.
He went to the airport.

WITH SHARING WITHOUT SHARING ***

fexp MAP BNET fexp MAP
WITH SHARING WITHOUT SHARING
fexp MAP BNET 'exp MAP

0.03 sec 0.20 sec 0.09 sec	 ---
0.11 0.57

0.11 sec 0.57 sec 4 0.10 sec
8 0.14 2.28 14 0.30	 0.11 1.05

0.16 3.17
8 0.14 1. 03 9 0.12

43 0.23 5.31 30 0.20 +	 0.14 1.15
0.30 7.61

7 0.13 1.08 8 0.12
68 0.35 6.82 40 0.24 +	 0.13 1. 28

0.54 9.78
8 0.21 3.23 10 0.12

135 0.85 12.42 59 0.34 + 0.15 3.06
0.60 8.94

24 0.25 5.95 36 0.16
135 1.30 9.81 59 0.42 + 0.26 5.99

0.65	 12.42

237 1. 61 12.98 733 3.78

10 0.16 1. 37 15 0.13 +	 4.10 14 .09
0.17 1. 73

953 6.75 24.91 1946 22.86
652 4.07 17.88 1551 24.15 6.49 29.98

5.41	 25.07
1909 18.99 47.85 8894 295.23

8 0.13 2.21 10 0.12	 20.06 47.55
0.15 3.10

20 0.19 4.09 22 0.14
0.24 5.65

940 5.37 20.00 1643 18.82
6.03 28.10

2530 21. O"J 24.21 6702 116.21
49.85 32.71

a5 Fri Oct 12 00:55:38 1990 1

•••••• *** •••••••••••••••••••••• ***** •••••••••••••
Jack went to a restaurant.
He got a mi1kshake.

••••••••••••••••••• ********.** ••••••••••••••••••••

• •••••••••••••••••••• ** ••••••••••••••• ***********

Bill drank a mi1kshake with a straw •
• •••• ** ••••• *************************************

WITH SHARING WITHOUT SHARING WITH SHARING WITHOUT SHARING
fexp MAP BNET fexp MAP fexp MAP BNET fexp MAP

0.12 sec 0.27 sec 0.12 sec 0.49 sec 0.79 sec 0.03 sec
0.11 0.57 0.57 1. 21

8 0.16 3.17 14 0.16 8 0.22 1. 45 9 0.11
0.15 3.14 0.13 1.17

11 0.20 4.69 34 0.17 8 0.16 1.17 9 0.11
0.17 4.68 2.79 4.13

84 0.68 13.94 125 0.45 24 0.51 13.77 62 0.31
1. 70 14.16 0.54 8.59

8 0.27 3.15 10 0.12 0.156 0.56 0.11
0.15 3.05 0.12 0.92

20 0.26 6.08 22 0.16 28 4.06 10.27 66 0.30
0.25 5.74 0.59 10.46

803 4.40 28.82 802 3.50 + 24 0.36 10.28 88 0.53
7.52 29.29 0.43 10.50

3812 63.12 38.41 <---- 6206 122.27
58.58 38.64

8837 243.65 29.16 <---
233.11 27.10

a6 Fri Oct 12 00:55:38 1990 1

•••••••••••••••••••••• * •••••••••••••••• * •••••••••
** •••• *** •• **** ••• *** •• ** ••••••••••••••• * •••••••• Bill got on a bus.

Janet put a straw in a mi1kshake. He got ott at a restaurant.
** •• - •••••• He drank a milkshake with a straw••••...................................

WITH SHARING WITHOUT SHARING
fexp MAP BNET 'exp MAP WITH SHARING WITHOUT SHARING
-- fexp MAP BNET 'exp MAP

4 0.11 sec 0.55 sec 4 0.04 sec
0.11 0.29 0.10 0.11 sec 0.27 sec 0.04 sec

0.10 0.59
8 0.16 1.07 9 0.11

0.13 1. 04 0.20 8 0.14 1. 75 9 0.11
0.13 1.06

8 0.16 3.54 14 0.12
0.15 3.16 0.30 8 0.42 1. 49 9 0.09

0.14 1.19
79 0.60 8.07 143 0.52

0.61 8.04 1. 24 419 6.43 31.43 985 8.16
10.06 35.81

5 0.11 0.50 5 0.09
0.12 0.49 0.10 590 4.21 38.86 1231 9.00

6.08 36.49
346 8.00 21.70 1128 10.06

4. 70 19.85 8 0.16 3.07 10 O. J J
0.16 3.06

802 10.34 35.18 2459 21.23
34.43 37.91 20 0.21 5.68 22 0.17

0.24 5.66

5855 77.58 51.98 <--- 8869 160.27
85.08 53.18

160 3.17 22.85 408 2.43
2.16 19.98

301 6.78 13.66 2396 36.16
5.84 13.11

6 0.13 1. 88 7 0.10
0.15 1.88

20 0.25 5.69 22 0.17
0.23 5.66

738 8.90 22.62 4918 63.61
8.58 17.87

3379 52.15 29.69 <---- 17785 535.85
58.21 24.64

247 7.36 10.47 1056 23.09
5.20 10.18

5 0.13 0.76 5 0.11
0.17 0.79

28 0.36 9.59 66 0.32
1. 43 10.60

24 0.47 10.65 88 0.43
0.38 10.22

a7 Fri Oct 12 00:55:38 1990 1

._-** .. *_ •• *-** ••• _•••• *-*.* •••••• _••• _•••••• _* ..
Jack took a taxi to the park._.* __ _ _*. __ .._...•.. _ .

---_•••••••_••••.•.•...•. *.**._--- •••• * ••••••• _-.
Fred took a taxi to the bus-station .
He got on a bus •

•• __ •••• __ ._ •••••••••• _••• ** ••• * •••• - •••••••••••

WITH SHARING
fexp MAP BNET

WITHOUT SHARING
fexp MAP

WITH
fexp

SHARING
MAP BNET

WITHOUT SHARING
fexp MAP

0.12
0.13

sec 0.90
0.28

sec 4 0.03 sec 0.12
0.13

sec 0.27
0.29

sec 0.05 sec

8 0.69
0.17

3.88
3.19

14 0.12 8 0.15
0.17

3.16
3.20

14 0.13

43 0.31
0.35

7.60
8.47

30 0.17 43 0.39
0.34

8.63
7.59

30 0.18 +

68 0.41
0.96

9.40
9.32

40 0.20 68 0.89
0.41

14 .35
9.35

40 0.23 +

135 0.79
0.68

14.12
12.42

59 0.89 135 0.69
0.68

12.42
12.47

59 0.25 +

135 1. 06
0.68

12.56
12.43

59 0.28 135 0.68
1. 73

14.29
12.94

59 0.28

10 0.18
0.19

1. 99
1. 72

15 0.10 10 0.95
0.20

1.72
1. 69

15 0.10

158 1. 20
1. 61

12.46
12.89

317 1. 45 154 1.32
1.18

12.0,
12.03

327 1. 32

.* ••••• _••••• _•••••••••• _._.- ••••••• _•••••• _-_ •••
Bill took a taxi... _.. __ .._._----_ _._--_ _ .

WITH SHARING
fexp MAP BNET

WITHOUT SHARING
fexp MAP

8

20

240

0.16
0.16

0.24
0.24

3.43
2.49

3.05
3.05

5.67
5.68

17.41
16.22

10

22

349

0.12

0.15

1. 20

0.11
0.13

sec 0.31
0.31

sec 4 0.03 sec 2682 41.62 38.29 <--- 3819 91.19

8 0.23
0.16

3.23
3.17

14 0.12

33 0.29
0.29

6.75
6.73

20 0.11 +

51 0.31
0.33

6.25
6.55

45 0.17 +

costs.J.isp Fri Oct 12 20:39:51 1990 1

II -*-Mode: Lisp; Package: frail; Base:10.; Syntax: Common-Lisp -*
;; Sccsid(@(#)costs.lisp

;;**
..I **I

;; Code for pushing down costs in belief net
;;**
I..I **

(in-package 'frail)

;##

(defstruct (partial

(:print-function

(lambda (p sm i)

(declare (ignore i»

(let (assumed rest)

(loop	 for pf in (partial-pforms p)
for s = (pform-child pf)
do (if (null (pform-parents pf» (push s assumed)

(push s rest»)
(format sm

"#P[cost: -S -% open: -S -% stms: -S -% assumed: -S -%]"
(partial-cost p) (partial-open p) (partial-stms p)
assumed)))))

cost open stms pforms outs)

;##

(defvar *cost-fudge* .5)

(defvar *share* t) ;; Can be set for sharing or non-sharing

(defvar *pessimistic-cost* 0)

;--------- Additional fields for PFORMS and STMS----------

(defmacro pform-cost (pf) '(first (pform-unused ,pf»)

(defmacro pform-pass-down-figure (pf) '(second (pform-unused ,pf»)

(defmacro pform-outs (pf) '(third (pform-unused ,pf»)

(defmacro stm-rel-pforms (stm) '(first (stm-unused ,stm»)

(defmacro stm-rel-child-pforms (stm) '(second (stm-unused ,stm»)

(defmacro stm-pass-down-figure (stm) '(third (stm-unused ,stm»)

(defmacro stm-level (stm) '(fourth (stm-unused ,stm»)

(defun assign-beliefs (stms)

(format t "-&Entered assign-beliefs-%")

(setq *pessimistic-cost* 0)

(loop for stm in stms do (setf (stm-unused stm) (make-list 4»)

(setq	 stms (fix-for-costs stms»
(loop	 with stm-list = stms

for nxt = (a-next-level-stm stm-list) ;for each stm with pars done
while nxt
do (setq stm-list (remove nxt stm-list»
do (set-aprx-costs nxt»

costs.~isp Fri Oct 12 20:39:51 1990 2

; -------Push Down Costs-------
(if *share* (push-down-costs stms))

(beliefs-from-aprx-costs stms))

(defun add-rel-pform (pf)

(loop for par in (pform-parents pf)

do (push pf (stm-rel-child-pforms par)))

(push pf (stm-rel-pforms (pform-child pf))))

(defun del-rel-pform (pf)

(loop for par in (pform-parents pf)

do (setf (stm-rel-child-pforms par)

(delete pf (stm-rel-child-pforms par))))

(setf (stm-rel-pforms (pform-child pf))

(delete pf (stm-rel-pforms (pform-child pf)))))

;##

" The stms in the net are given stm-rel-pforms and stm-rel-child-pforms

;; which are the rules relevant to the current calculations.

(defun fix-for-costs (stms)

(loop for stm in stms

do (loop for pf in (rel-pforms stm stms)

do (add-rel-pform pf)))

;; Handle Diamond Centers
(setq stms (create-diamond-hacks stms))

;; Added to deal with same-type
(setq stms (create-same-types stms)))

(defun create-same-types (stms)
(loop for stm in stms

do (loop for pf in (stm-rel-pforms stm)
do (let (bl b2 st pro)

(when (setq st
(loop for par in (pform-parents pf)

thereis (and (eq (car (stm-pat par)) 'same-type)
par)))

(setq pro (same-type-prob pf))
;; same-type node st has two parents: bl and b2
(setq bl (car (pform-parents (car (stm-rel-pforms st)))))
(setq b2 (cadr (pform-parents (car (stm-rel-pforms st)))))

(cond
; The case where st is :necessary
«and (null bl) (null b2))
(setf (pform-prob pf)

(process-prob '((t t ,pro)) (list (pform-child pf)))))
(t

(loop for pfo in (stm-rel-child-pforms st)
do (del-rel-pform pfo))

(loop for pfo in (stm-rel-pforms st)
do (del-rel-pform pfo))

(add-rel-pform
(make-pform :parents (list bl b2)

:child stm
:unused (make-list 3)

costs.lisp Fri Oct 12 20:39:51 1990 3

:prob (process-prob '«t t t ,pro»
(list bl b2»»

(setq stms (remove st stms»»»»
stms)

(defun create-diamond-hacks (stms)
(loop for stm in stms

do (let (already-dh)

If stm has more than one diamond center parent, create
only one diamond-hack.

(loop for pf in (stm-rel-pforros stm)
do (let (dc new=stm npfl npf2)

(when (setq dc (loop for par in (pforro-parents pf)
thereis (and (eq (car (stm-pat par»

, diamond-center)
par)))

; If diamond hack already exists for stm...
(cond (already-dh

(setq npfl (car (stm-rel-child-pforros stm»)
(setq new=stm (pforro-child npfl»

(setf (pforro-outs (car	 (stm-rel-child-pforros stm»)
(append

(pforro-outs (car (stm-rel-child-pforros stm»)
(list (gate-equality dc»»

(setq npf2 (make-pforro
:parents (list stm (non-gate-equality dc»
:child new=stm
:unused (make-list 3)
:prob (process-prob

, «t ttl»
(list stm (non-gate-equality dc»»)

(add-rel-pforro npf2»

(t
(setq already-dh t)
(setq new=stm (make-stm :pat (list 'diamond-hack* stm)

:unused (make-list 4»)
(push new=stm stms)
(setf (stm-evidence new=stm) (stm-evidence stm»
(setf (stm-evidence stm) nil)

;; Substitute new=stm into children
(loop for pf in (stm-rel-child-pforros stm)

do (setf (pforro-parents pf)
(substitute new=stm stm (pforro-parents pf»»

(setf (stm-rel-child-pforros new=stm)
(stm-rel-child-pforms stm»

(setf (stm-rel-child-pforms stm) nil)

;;remove-oldstm-from-pforro
(setq npfl (make-pforro	 :parents (list stm)

:child new=stm
:unused (make-list 3)
:prob (process-prob

, «t t 1»
(list stm»»

costs.~isp Fri Oct 12 20:39:51 1990 4

(setf (pform-outs npfl)· (list (gate-equality dc»)
(setq npf2 (make-pform

:parents (list stm (non-gate-equality dc»
:child new=stm
:unused (make-list 3)
:prob (process-prob

, «t ttl»
(list stm (non-gate-equality dc»»)

(add-rel-pform npfl)
(add-rel-pform npf2»»»»

stms)

(defun same-type-prob (pf)
(loop for ent in (pform-prob pf)

thereis (and	 (eq (car ent) :true)

(eq (cadadr ent) :necessary)

(caddr ent»»

(defun gate-equality (dc) (car (pform-parents (car (stm-pforms dc»»)
(defun non-gate-equality (dc) (cadr (pform-parents (car (stm-pforms dc»»)

(defun rel-pforms (stm net)
(cons (make-pform :child stm :unused (make-list 3»

(loop for pf in (stm-pforms stm)
when (loop for par in (pform-parents pf)

always (member par net»
collecting (copy-pform pf»»

(defun copy-pform (pf) (make-pform :parents (pform-parents pf)
:child (pform-child pf)
:prob (pform-prob pf)
:unused (make-list 3»)

(defun a-next-level-stm (stms)

(loop for stm in stms

thereis (and (pars-done stm) stm»)

(defun pars-done (stm)

(every i' (lambda (pf)

(every i' (lambda (par)

(loop for p in (stm-rel-pforms par)

always (pform-cost p»)

(pform-parents pf»)

(stm-rel-pforms stm»)

(defun set-aprx-costs (stm)

(loop for pf in (stm-rel-pforms stm)

do (setf (pform-cost pf) (calculate-pf-cost pf»)

;;Any pform who's cost is >= just assuming stm can be pruned.

;; (This is relevant if stm is evidence)

(let* «assum (loop for pf in (stm-rel-pforms stm)

thereis (and (null (pform-parents pf» pf»)

(a-cost (if assum (pform-cost assum»»

(when assum

(loop for pf in (stm-rel-pforms stm)

costs. lisp Fri Oct 12 20:39:51 1990 5

when (and (not (eq pf assum))

(>= (pform-cost pf) a-cost))

do (del-rel-pforro pf))))

(setf (stm-pass-down-figure stm) 0))

(defun calculate-pf-cost (pf)

(cond «pforro-parents pf) (prim-pforro-cost pf))

«and (eq (stm-evidence (pforro-child pf)) :true)

(not (real-evidence (pforro-child pf)))) 0)

(t (stm-cost (pforro-child pf)))))

;**

;PUSH-DOWN COSTS

I.**

II Push the costs down along the pforros and stms, starting at assumptions,

;; down to evidence.

(defun push-down-costs (stms)

(let «br (breadth-first-traversal stms)))

(loop for n in br ; n will be a stm or a pform

do (cond

«stm-p n)

(stm-push-down n))

«pforro-p n)

(pforro-push-down n))))))

II Get a list of the stms and pforros in the net, in a breadth-first

;; ordering going from assumptions down to evidence

(defun breadth-first-traversal (stms)

(let «breadth ())

(temp ()))

II Start at the nodes with no children: level 1 stms.

(loop for stm in stms

do (cond «null (stm-rel-child-pforros stm))

(setf (stm-level stm) 1)

(push stm temp))))

; And-nodes are pforms, Or-nodes are stms
(loop	 for node = (pop temp)

while node
i Put children at end of queue if not already there
do (let «in-breadth (member node breadth)) ; Already processed

(in-temp (member node temp))) i Already awaiting processing
(cond

«stm-p node)
(cond

(in-breadth
(setq breadth {cons node (remove node breadth)))
(setq temp (append temp (stm-rel-pforms node))))
«not in-temp)
(push node breadth)
(setq temp (append temp (stm-rel-pforros node)))))

(cond
(*share*
(setf (stm-pass-down-figure node) (stm-cost node))

costs.lisp Fri Oct 12 20:39:51 1990 6

The parent stms should have their stm-level set
(set-stm-level (stm-rel-pforms node)

(+ (stm-level node) 1»»)

((pform-p node)

(cond

(in-breadth
(setq breadth (cons node (remove node breadth »)
(setq temp (append temp (pform-parents node»»

((not in-temp)
(push node breadth)
(setq temp (append temp (pform-parents node»»)

(if *share*

(setf (pform-pass-down-figure node)

(pform-cost node»»»)

breadth»

" Every next level stm gets its parents number + 1, even if it already

" had a number.

(de fun set-stm-level (pforms lev)

(loop for pf in pforms

do (loop for stm in (pform-parents pf)

do (setf (stm-level stm) lev»»

;; Push the cost of a stm down by dividing cost among the children pforms

(defun stm-push-down (stm)

(let ((kids (length (stm-rel-child-pforms stm»»

; If stm is an assumption, then add its cost to pessimistice estimate
(if (null (cdr (stm-rel-pforms stm»)

(incf *pessimistic-cost* (stm-pass-down-figure stm»)
(cond

(> kids 0)
(loop for child in (stm-rel-child-pforms stm)

do (setf (pform-pass-down-figure child)
(+ (pform-pass-down-figure child)

(/ (stm-pass-down-figure stm) kids»»»»

;; Push down the cost of a pform to its child stm

(de fun pform-push-down (pf)

(let ((child (pform-child pf»

(pdf (pform-pass-down-figure pf»)

Add the cost of each pform in the net to the pessimistic cost

(if (pform-parents pf) (incf *pessimistic-cost* (pform-cost pf»)

(if (or « pdf (stm-pass-down-figure child»
(= (stm-pass-down-figure child) 0» i; check this out LATER***

(setf (stm-pass-down-figure child) pdf»»

,.**
; Expansions

,.**

costs.lisp Fri Oct 12 20:39:51 1990 7

" Discard expansions that come from extend-partial that have
" cost greater than estimate + all the costs of the possible pforms.

(defun beliefs-from-aprx-costs (stms)

(let* (evs (evidence-used stms))

(agenda (insert-tree (make-partial

:open (make-open-pairs evs)

:cost (if *share*

(loop for e in evs
summing (stm-pass-down-figure e))

0)) nil)))

;; The Agenda is kept in binary tree, sorted by Partial-cost

(loop	 for partial (poptree-least agenda)

while partial

with completed = nil and expansions 0

do (incf expansions)

do (interum-report expansions)

do (cond

«completed-p partial)
(setq completed (merge 'list (list partial) completed

#'< :key #'partial-cost)))
(t

(loop for e in (extend-partial partial)
do (setq agenda (insert-tree e agenda)))))

until (have-best completed agenda)
finally (let «bests (loop for c in completed

when « (partial-cost c)
(+ (partial-cost (car completed))

cost-fudge))
collecting c)))

(loop for s in stms
when (eq (car (stm-pat s)) 'diamond-hack*)

do (setf (stm-evidence (cadr (stm-pat s)))
(stm-evidence s)))

(print expansions)))))
; (print-info completed agenda bests expansions)))))

(defun evidence-used (stms)

(loop for stm in stms

when (real-evidence stm) collecting stm))

(defun interum-report (n)

(when (= (denominator (/ n 100)) 1) (format t ". ")))

(defun real-evidence (stm)
(and	 (eq (stm-evidence stm) :true) stm-evidence true

(null (stm-rel-child-pforms stm)) no child pforms

(loop for par in (stm-rel-pforms stm)

thereis (pform-parents par))))

(defun have-best (completed agenda)
(cond	 «null completed) nil) ;; nothing completed

«or (null agenda) (null (car agenda))) t) ;; nothing on agenda
(t « (+ (partial-cost (car completed)) *cost-fudge*)

(partial-cost (tree-least agenda))))))

(defun completed-p (p)

costs.lisp Fri Oct 12 20:39:51 1990 8

(when (null (partial-open p))

(if (partial-pforms p)

(if (not *share*)

(setf (partial-cost p)

(loop for pf in (partial-pforms p)

summing (pform-pushed-cost pf)))

(partial-cost p))

(partial-cost p))))

(defun pform-pushed-cost (pf)

(if *share* (pform-pass-down-figure pf)

(pform-cost pf)))

(defun print-info (completed agenda bests num-exps)

(format t "-2%Total number of expansions: -S-%Total completed: -S"

num-exps (length completed))

(format t "-%Best cost: -S" (partial-cost (car completed)))

(format t "-%Number of trees with about the same cost: -S"

(length bests))

(multiple-value-bind

(in-all not-in-all) (partial-disagreement bests #'partial-stms)
(format t "-%The following stms where in everyone of them:-%")
(loop for stm in in-all do (format t "-S-%" stm))

(when (cdr bests)
(if not-in-all (format t "-%They disagreed on -S-&" not-in-all)

(multiple-value-bind
(in-all not-in-all) (partial-disagreement bests #'partial-pforms)
(declare (ignore in-all))
(format t "-%Agreed on stms, disagreed on pforms: -S-&"

not-in-all))))

(check-ptrace completed agenda)))

(defun partial-disagreement (bests fn)
(let ((in-all (loop	 with ans = (funcall fn (car bests))

for b in (cdr bests)

do (setq ans (intersection ans (funcall fn b)))

finally (return ans))))

(values in-all
(loop	 with ans = nil

for b in bests

do (setq ans (union ans

(set-difference (funcall fn b) in-all)))
finally (return ans)))))

i*** ***********

Extend a partial expansion from a stm

I.**

II Extend a partial	 expansion

ii Pop off the lowest level stm = the first thing in list

ii For sharing, the open list is sorted in increasing order of stm-level

(de fun extend-partial (p)

(let* ((stm (car (car (partial-open p)))))

(cond

((not (member stm (partial-stms p)))

(cond

costs.~isp Fri Oct 12 20:39:51 1990 9

(*share*
(loop	 for pf in (stm-rel-pforros stm)

when (ok-extension p pf stm)
collecting (make-extended-shared-partial p pf stm)))

(t
(loop	 for pf in (stm-rel-pforros stm)

when (ok-extension p pf stm)
collecting (make-extended-partial p pf stm)))))

(t	 (pop (partial-open p))

(list p)))))

;; Pairs to put on the open list: stm used once

(defun make-open-pairs (stms)

(mapcar tt' (lambda (s) (cons s 1)) stms))

" *********** Extending a partial with NO SHARING **********

" Add new open stms to be expanded to end of partial-open list

" Cost calculated by just adding on cost of the rule (pform traversed)

(defun make-extended-partial (p pf stm)
(make-partial	 :stms (cons stm (partial-stms p))

:outs (append (pforro-outs pf) (partial-outs p))

:pforms (cons pf (partial-pforros p))

:open (append (cdr (partial-open p))

(make-open-pairs (pforro-parents pf»))
:cost (+ (partial-cost p) (pforro-cost pf))))

" *********** Extending a partial with SHARING **********

" Differences from non-sharing: stms that still need to be expanded

;; are merged into the open list according to their level in net, and

" no duplicates are allowed in partial-open.

" Cost of partial is calculated using pass-dawn-figures

(defun make-extended-shared-partial (p pf stm)
(make-partial :strns (cons stm (partial-stms p)

:outs (append (pforro-outs pf) (partial-outs p)
:pforms (cons pf (partial-pforms p))
:open (insert-open (cdr (partial-open p)) (pforro-parents pf)

;---
; Cost =	 Partial-cost + (Pass-dawn-figure pform)

- (pass-dawn-figure stm) * children / Need-figure
;---
:cost (+ (partial-cost p)

(- (pforro-pass-down-figure pf)
(* (/ (stm-pass-down-figure stm)

(if	 (null (stm-rel-child-pforros stm)
1
(length (stm-rel-child-pforms stm))))

(cdr (car (partial-open p))))))))

;; partial-open list is kept sorted in increasing order of stm-Ievel
" Each entry in open consists of a [stm need] pair, where
;; need is the number of children stms that need that need that stm in
:, the partial so far.

costs.lisp	 Fri Oct 12 20:39:51 1990 10

(defun insert-open (open new-stms)
(let «new-open (copy-tree open»)

(loop	 for new in new-stms

for pos = (assoc new new-open

do (cond

; If stm is not already on open, merge according to level
«null pos)
(setq new-open (merge 'list new-open

(list (cons new 1» #'<
:key #' (lambda (x) (stm-level (ca r x»»»

; If already there, one more stm needs it: increase need 4/0

(t
(incf (cdr pos»»)

new-open))

(de fun ok-extension (p pf stm)
(and

; Don't bother expanding to something worse than worst possible cost
(if *share* «= (pform-pass-down-figure pf) *pessimistic-cost*)

«= (pform-cost pf) 1000» hack so no-share doesnt run out of
; control stack for agenda

; Stm you want to expand is not an out

(not (member stm (partial-outs p) »

; Pforro to be expanded along has no outs already in partial

(loop for out in (pform-outs pf)

always (not (member out (partial-stms p»»

; None of the parents of that pform are outs

(loop for par in (pforro-parents pf)

always (not (member par (partial-outs p»»»

(de fun prim-pform-cost (pf)

(loop for ent in (pform-prob pf)

thereis (and (all-true-case ent)

(prob-to-cost (decode-prob pf (car (last ent»»»)

(defun prob-to-cost (v) (- (log v»)

(defun all-true-case (ent)

(and (member (pop ent) '(:true :necessary»

(loop for rst on ent

always (or (null (cdr rst»

(member (cadar ent) , (:true :necessary»»»

(defun decode-prob (pf entry)
(let «ans (cond	 «numberp entry) entry)

«eq entry :p) (stm-cost (pform-child pf)))

«functionp entry) (funcall entry pf»

«and (consp entry) (functionp (car entry»)

(eval (cons (car entry)

(loop for ent in (cdr entry)

collecting

(decode-prob pf ent»»»»

(if (numberp ans) ans

(error "Could not get pform posterior for -S" entry»»

(defun stm-cost (stm)

costs.lisp Fri Oct 12 20:39:51 1990 11

(let ((pat (stm-pat stm))

(pdf (stm-pass-down-figure stm)))

(cond

((and *share* pdf) pdf)

(t

(int-more-exp stm

(prob-to-cost

(case (car pat)

(inst (get (caddr pat) :inst-prior))

(word-inst (get 'thing- :equality-prior))

((has-referent has-reflex-referent)

(has-ref-hack stm))

(same-type 1)
(diamond-hack* 1.Oe-10) ;; changed from le-100
(otherwise (get 'thing- :equality-prior)))))))))

(defun int-more-exp (stm c)

(cond ((cdr (stm-rel-pforms stm))

(+ c 1000))

(t c)))

(defun has-ref-hack (stm)
(case (kind-of-justification stm)

(pronoun .0001)

(pp .01)

(propernoun .02)

(reflexive .00001)

(else (get 'thing- :equality-prior))))

(defun kind-of-justification (stm)
(loop for ch in (chs stm)

thereis (let ((pat (stm-pat ch)))
(cond ((member (fourth pat) '(pronoun propernoun reflexive))

(fourth pat))
((eq (second pat) 'pp) 'pp)))))

(defvar *ptrace-list* ())

(defmacro ptrace (&rest pats) '(ptrace-e ',pats))

(defun ptrace-e (pats)

(push pats *ptrace-list*))

(defmacro unptrace (&rest pats) '(unptrace-e ',pats))

(defun unptrace-e (pats)
(setq *ptrace-list*

(if (null pats) nil (delete (loop for pts in *ptrace-list*
thereis (and (equal pts pats) pts))

ptrace-list))))

(defun check-ptrace (completed agenda)

(loop for pats in *ptrace-list*

do (let ((varbinds (retrieve (cons 'and pats))))

(cond	 ((null varbinds))

((cdr varbinds) (break "too many var binds"))
(t (check-pats-ptrace (varsub-lst pats (car varbinds))

completed agenda))))))

(defun check-pats-ptrace (pats completed agenda)

(let ((rel-partial (or (find-reI-partial pats completed)

(find-rel-agenda-partial pats agenda))))

costs.lisp Fri Oct 12 20:39:51 1990 12

(when reI-partial

(format t "-&Best partial for -S: -%-S" pats reI-partial)

(compare-costs reI-partial

(cond	 ((not (eq reI-partial (car completed)))
(car completed»

((cdr completed) (cadr completed»
(t (tree-least agenda»»»)

(defun find-reI-partial (pats partials)

(loop for p in partials

thereis (and (loop for pat in pats

always (loop for s in (partial-stms p)

thereis (equal pat (stm-pat s»»

p»)

(defun find-rel-agenda-partial (pats agenda) nil)

(defun compare-costs (p1 p2)
(loop	 for pf1 in (partial-pforms p1)

for s1 = (pform-child pf1)

for pf2 = (has-same-child pf1 p2)

do (cond (eq pfl pf2)

(t (format t "-&-S: -S -S"
s1 (if *share* (pform-pass-down-figure pf1)

(pform-pushed-cost pf1))
(if pf2 (if *share* (pform-pass-down-figure pf2)

(pform-pushed-cost pf2» '-»»
finally (loop	 for pf2 in (partial-pforms p2)

when (not (has-same-child pf2 p1»
do (format t "-&-S: - -S" (pforro-child pf2)

(if *share* (pform-pass-down-figure pf2)
(pform-pushed-cost pf2»»»

(defun has-same-child (pf partial)
(loop	 for pf2 in (partial-pforms partial)

with c = (pforro-child pf)

thereis (and (eq (pform-child pf2) c) pf2»)

tree. lisp Thu Oct 11 21:40:23 1990 1

i; -*-Mode: Lisp; Package: frail; Base:10.; Syntax: Common-Lisp -*
" Sccsid(@(#)tree.lisp

;;**
;; This is the code for the binary tree that is used to store
;; the agenda of partials to be expanded .
, , .. **

(in-package 'frail)

;; Everything in the left-subtree has lower cost than root's cost
(defun left-subtree (tree)

(cond «null tree) nil) (t (cadr tree))))

;; Everything in the right-subtree has cost greater than or to root's cost
(defun right-subtree (tree)

(cond «null tree) nil) (t (cddr tree))))

;; Insert a partial into the tree according to its cost, and return the
i; new tree
(defun insert-tree (n tree)

(let «nopen (if n (partial-open n) nil))

(nstms (if n (partial-stms n) nil))

(topen (if (car tree) (partial-open (car tree)) nil))

(tstms (if (car tree) (partial-stms (car tree)) nil)))

(cond

«null n) tree)

; If nothing in tree, create one

«or (null tree) (null (car tree)))

(cons n (cons nil nil)))

; If cost of new partial is less than root, insert into left

; subtree.

«< (partial-cost n) (partial-cost (car tree)))

(setf (cadr tree)

(insert-tree n (left-subtree tree)))

tree)

; If cost is = to cost of root, see if identical partial have
; been found: no need to insert new one.
«and (= (partial-cost n) (partial-cost (car tree)))

(= (length nopen) (length topen))
(= (length nstms) (length tstms))
(subsetp nopen topen :test #'equalp)
(subsetp nstms tstms #'equalp))

tree)

; If cost of new partial is >= to root's cost, insert into
; right subtree.
(t
(setf (cddr tree)

(insert-tree n (right-subtree tree)))

tree))))

;; Return the partial with the least cost in the the tree

(without removing it). This is the left-most leaf in the tree.

(defun tree-least (tree)

(cond

«or (null tree) (null (car tree)))

nil)

II

tree.lisp Thu Oct 11 21:40:23 1990 2

((null (left-subtree tree»

(car tree»

(t

(tree-least (left-subtree tree) »»

;; Remove and return the partial with the least cost in the tree.
(defun poptree-least (tree)

(cond

((or (null tree) (null (car tree») nil)

((null (left-subtree tree»

(prog1	 (car tree)
(setf (car tree) (car (right-subtree tree»))
(setf (cdr tree) (cdr (right-subtree tree)))

;If next level down has no left subtree, then stop now

((null (left-subtree (left-subtree tree»)

(prog1 (car (left-subtree tree»

(setf (cadr tree) (right-subtree (left-subtree tree»»)

;Otherwise get the least-cost item in the left-subtree
(t (poptree-least (left-subtree tree»)))

