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1 INTRODUCTION 

Modeling has become one of the predominant research topics in computer graphics. 

Though many techniques for modeling three-dimensional objects have been developed, 

until recently little attention has been paid to user interfaces for these techniques. Many 

techniques originated in the computer-aided design and manufacturing world, where design 

engineers used computers to model complex parts precisely. Consequently, typical users 

were very knowledgeable about the mathematical bases of these techniques, and developers 

could concentrate on the functionality of the modeling tools, rather than their user 

interfaces. Now, however, artists, illustrators, educators, animators, and others lacking in 

the mathematical sophistication have begun to use the computer to model objects. These 

people need well-designed user interfaces to use sophisticated tools in an intuitive and 

productive fashion. 

A relatively new and complex modeling method is free-form deformation, in which the user 

deforms objects by adjusting parameters to a polynomial basis in a technique akin to the 

manipulation of spline surfaces. In many commercial modeling systems, such as TDI's 

Explore Design and Softimage's Creative Environment, the user manipulates control points 

to specify the deformation. If, however, the user is not familiar with splines and their 

behavior, this may be confusing since the control points do not necessarily lie on the 

surface of the object. A more intuitive interface would allow the user to manipulate the 

surface of the object directly. This thesis presents an interface technique that allows the 

user to defme deformations through direct manipulation of the object. 

Section 2 reviews the free-form deformation modeling method and the manipulation
 

techniques for ~his method and other spline surface-modeling methods. Section 3 details
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the motivation for and internal workings of our interface. Section 4 describes the
 

implementation of the interface in a 3D modeling and animation system. Section 5
 

discusses possible future work, and section 6 gives some concluding remarks.
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2 BACKGROUND 

2.1 The Free-Form Deformation Modeling Technique 

This section summarizes the free-fonn defonnation method described by Sederberg and 

Parry, and its differences from my implementation. It assumes the reader has some 

knowledge of splines, in particular B-splines (see [Fari90, Bart8?]). We distinguish here 

between the underlying modeling technique (the mathematics of the defonnation) and the 

interface to the technique, which will be discussed further in section 3.3. Further details on 

free-form defonnations can be found in [Sede86]. 

2.1.1 Review of the Sederberg and Parry method 

The free-fonn defonnation (FFD) method defonns an object by fIrst embedding it, or a 

region of the object, into a coordinate system local to FFDs, and then applying a function 

which maps the object back into world coordinates. The local coordinate system is defIned 

by a parallelepiped-shaped lattice of control points, with one corner as the origin, (0,0,0), 

and the opposite comer labeled (1,1,1). All object points within this parallelepiped are 

transfonned into the local coordinate system through a mapping from 3-space to 3-space. 

The function which maps the object from local coordinates to world coordinates uses the 

lattice of control points to defIne that mapping. The location of an object point is 

determined by a weighted sum of the control points, therefore the location of the control 

points can change the location of the object point. The result of concatenating these 

functions is a map from 3-space to 3-space. 
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Figure I gives a simplified 2D analogy to an FFD: a square two-dimensional rubber sheet 

on which a drawing is copied. The square rubber sheet can be stretched to any shape. In 

(a), the rubber sheet is in its rest state beside a drawing of a smiling person. The rubber 

sheet is stretched to fit over the drawing, and the drawing is then copied onto the rubber 

sheet, as shown in (b). Figure l(c) shows how the drawing looks when the sheet returns 

to its rest state. Then the sheet can be stretched and bent, as shown in (d), and the drawing 

copied in an altered state (e). For free-form deformation, the analogue of the rubber sheet 

is a rectilinear volume. 

D 9 l!l 
A 

(a) (b) (c) (d) (e) 

Figure 1 

An FFD can also be described by comparison to rendering a computer model onto the 

screen. An object is described internally in world coordinate space in any unit of measure. 

The coordinates of this object are transfonned into normalized device coordinates and then 

are mapped into screen coordinates and displayed on the screen. Free-form deformation 

works in the same manner. First, the object to be deformed is represented in world 

coordinates; it is then represented in the FFD coordinate system; [mally, the object is 

assigned new world coordinates based on its FFD coordinates. 
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Now we detail the two mappings mathematically. The FFD acts on a parallelepiped; any 

point within this parallelepiped is mapped to a new location by the FFD function. We start 

by defming a local coordinate system on the parallelepiped as follows. Let the vector Qo be 

the origin of the parallelepiped, and S, T, and U be three orthogonal vectors whose origins 

are at Qo and that span the edges of the parallelepiped. Then any point Q can be written as 

the sum 

Q = Qo + sS + tT + uU 

The numbers (s, t, u), called the FFD coordinates of Q, are simply the ratio between the 

distance from Qo of the object point and the length of the parallelepiped in each dimension. 

The values of s, t, and U can be calcul~tedfronl simple linear equations: 

TxU·(Q-Qo) . SxU·(Q-Qo) SxT·(Q-Qo) 
(1)S = TxU.S t = SxU.T U= SxT.U 

Since Q is within the parallelepiped, we know that 0 ~ S, t, U ~ 1. 

We now define a map from FFD coordinates (Le., tuples of (s,t,u)) to world coordinates. 

This map is defined by taking a weighted sum of control points. In an FFD's rest state, 

i.e., when the map is the identity, the control points form a lattice that is evenly spaced in 

each dimension. The control points are denoted by Pij,k. (i = 1../, j = Lm, k = Ln): 

Pij,k. is the ilh control point in the S direction, the jlh control point in the T direction, and 

the kill control point in the U direction. Figure 2 shows the grid of control points when 

/=2, m=3, n=1. 
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Figure 2 

Each control point is assigned a weight, which is detennined by the (s,t,u) values from 

equation (1). The free-form deformation function used by Sederberg and Parry is defmed 

by a tensor-product Bernstein polynomial, and the deformed position of an arbitrary point 

with coordinates (s, t, u), called Qffd(s,t,u), is given by the formula: 

I m n 

Qffd(s,t,u) =L L L P i.j.k (DO-S)I-lSI (j)O-t)m-lrrn (~)o-u)n-lun (2) 
i=O j=O k=O 

Moving a control point influences the value of Qffd(s,t,u), to an extent determined by its 

location within the FFD parallelepiped. The control points of the FFD affect the object in 

the same way as the control points of a Bezier spline - which can be defined by the 

Bernstein polynomial- affect a curve. 

2.1.2 B.spline Based Free-Form Deformation Method 

My implementation of free-form deformation deviates from the method described by 

Sederberg and Parry in using piecewise uniform cubic B-splines as the basis, instead of 
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Bernstein polynomials. Cubic B-splines are much more computationally efficient than 

Bernstein polynomials for large numbers of control points. When Bernstein polynomials 

are used as the basis, every control point contributes to the calculation of each deformed 

point location, giving global control. In contrast, with cubic B-splines only 64 control 

points (a 4x4x4lattice) are evaluated to calculate the location of a point, giving local 

control. Not only is the evaluation of the deformation more efficient, but shaping objects 

tends to be easier with local control. Piecewise cubic B6zier splines would be just as 

efficient as piecewise cubic uniform B-splines, but the B-splines maintain C2 continuity 

automatically whereas the Bezier splines do not. 

Equation (2) is revised to reflect the change in basis in the FFD function: 

o 0 0 

¢1k(S,t,U) = L L L Pi+l,j+m,k+n B I(S) Bm(t) Bn(u) (3) 
/=-3 m=-3n=-3 

where i, j, and k are the spline segments enclosing the point and BI, B m and Bn are the 

B-spline blending functions used in each direction, namely 

Ro(u) ="6I u3
 

Rl(U) ="6I (1 + 3u + 3u2 -3u3)
 

B_2(U) ="6I (4 - 6u2 + u3) 

R3(U) = "61 
(1 - 3u + 3u2 - u3) 

It should be noted that equation (3) is evaluated for each of the x, y, and z components of Q 

and P, and that the set of blending functions is identical for each direction. 
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With B-splines as the basis, however, finding the (s, t, u) values of the object points is not 

as simple as before. To calculate the local coordinate values for an object point, we must 

first find which spline segments contain the point. Then the s, t, and u components are 

calculated by fmding the roots of the cubics in equation (3). Also, the control-point lattice 

is no longer completely uniform. In order to outline th~ deformation region exactly, each 

outer control point is given a multiplicity of three. 

2.1.3 Features of Free-Form Deformations 

There are several important features of FFDs: 

• They do not rely O!l the data type of the object: they can deform polygonal 

data, implicit surfaces, and parametric surfaces. 

• Parametric curves and surfaces remain parametric. 

• There is a class of FFDs that are volume-preserving. 

• Continuity between two abutting deformation volumes is easily achieved. 

Detailed explanations can be found in [Sede86]. 

Modeling with an "indirect" method such as free-form deformation has several advantages 

over modeling methods that directly define the geometry of an object. Ideas like "stretch 

that part a little here" and "bend that section a little there" can be handled easily with FFDs. 

This type of modeling is especially useful in animation sequences for creating squash and 

stretch effects, as well as in caricaturing objects and exaggerating motion. Since the 

underlying data type of the object to be deformed is of little consequence, FFD is also 

useful in augmenting objects already created with different modeling techniques that rely on 
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different data types. For example, with FFD an object composed of a polygonal object 

connected to a trimmed surface can be defonned as one cohesive object. 

2.2 Review of Extended Free-Form Deformation 

One restriction on free-fonn deformation is the control points must initially be configured 

as a unifonn grid. This limitation means that some shapes, such as circularly symmetric 

deformations, cannot be obtained C<XJ.uillart extends free-fonn deformation by allowing 

the lattice of control points to be arbitrarily shaped before the deformation process 

[Coqu901, pennitting a new class of defonnations to be created and making the process 

more intuitive. The user, however, must first shape the lattice into the desired fonn and 

then move the control points to achieve a defonnation. C<XJ.uillart concedes that the initial 

shape of the lattice is "of paramount importance." To shape the lattice, the user must 

manipulate each control point explicitly, and thus must have some knowledge about the 

underlying defonnation method. 

2.3 Current FFD and Spline-Based Modeling Interfaces 

The shape of free-form deformations is controlled through the placement of control points. 

To date, this placement has been done either by directly manipulating individual control 

points or by moving groups of them according to a simple function (e.g., rotating a group 

of control points around a point). Since the free-form deformation and spline-based 

modeling techniques share the same mathematical foundations and are similar in concept, 
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we can predict future enhancements to the free-form deformation interface by examining the 

interfaces developed for current spline-surface modelers. 

Some spline-surface modelers have high-level tools that move groups of control points in a 

predictable manner. These tools include functions such as bend, twist, group warp, 

flatten, and bulge [Cobb84] [Ries89]. Bend and twist modify an object precisely as their 

names indicate. Group warp moves a group of control points in response to the movement 

of a center or target point. The relative positioning of the control points in the group can be 

warped by applying a function to them as they are moved. The function can be a decay 

function, say, giving the surface manipulated an elastic behavior, the control points can be 

weighted so as further to vary the effects of the applied function. Theflatten operation 

aligns a set of control points to a plane. The direction of movement is usually along the 

plane normal, but can be user-defmed. The bulge tool disperses control points outwcrd in 

a uniform manner, so that the surface balloons out. These tools give the user fairly 

intuitive means of modeling for certain operations, but note that they all operate directly on 

the control points. An exception is the technique Forsey and Bartels use in their 

hierarchical B-spline editor [Fors88]. Points on the surface can be manipulated, but only 

those directly beneath a control point. 
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3 A Better Interface to Free-Form Deformations 

3.1 What Makes a Good User Interface? 

Foley [Fole84] describes a criteria for a good interface: "An effective interface design is 

one in which a user carries out his work with minimal conscious attention to his tools (the 

paraphernalia of the interactive tenninal and the command language) and maximal 

effectiveness. It is free of distractions and reasonably 'friendly.'" Translated to the 

cognitive level, an interface's effectiveness is inversely related to the amount of effort users 

must expend to accomplish their goals: the less mental energy necessary to manipulate the 

tools to accomplish a ta.slr.., the better the interface. 

This cognitive effort can be measured by evaluating the two aspects of human-computer 

communication: (1) the communication from human users to the computer: the commands 

and operations the user executes and performs; (2) the information the computer 

communicates to users: the output, visual or otherwise, from the computer. Hutchins 

defmes the gaps between the user's goals and a system's capacities as the Gulf of 

Execution and the Gulf of Evaluation [Hutc85]. The Gulf of Execution is the difference 

between user intent and what the interface allows; the Gulf of Evaluation is the difference 

between what the user expects to see and what the interface displays. To accomplish their 

goals with the available tools, user's must bridge the Gulf of Execution by constructing a 

correct sequence of commands in the language of the interface. The easier this is, the better 

the interface design. 
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Without proper feedback, the user is unsure what the results of her actions will be. If the 

feedback is not what the user expects or lacks pertinent information, the user must exert 

cognitive effort to interpret and analyze what feedback there is. If, on the other hand, the 

feedback is what is expected and helpful, the user can concentrate on the problem task and 

use the feedback as an affirmation of progtess. 

In many cases, actions and feedback work in conjunction to present a coherent picture to 

the user. Consider for instance, deleting a file. In some graphical user interfaces, to delete 

a file, the user drags its iconic representation into a trash bin on the screen. In this single 

process, there is a dialog between the user and the computer. First, the user selects an icon 

that represents the actual internal file. Picking the icon highlights it, confinning the user's 

choice. Next comes a continuous action/feedback loop as the user drags the pointer across 

the screen and the icon follows. When the pointer re::l.l'hes the trash bin, the bin is 

highlighted, telling the user the results of a potential action. The user releases the mouse 

button and the me disappears into the trash bin. Finally, the trash bin bulges to show that 

the file has been deposited there. Since this process relates closely to how people actually 

throw things away, the cognitive effort in learning the task is minimal. Deleting a file in a 

UNIX shell with the rm command, on the other hand, requires the user to remember the 

file name, the name of the command for deleting the me, and the proper syntax for that 

command. Furthermore, there is no feedback showing that the file is actually gone: to be 

sure, the user must issue another command to ask about the status of the fIle. Clearly, the 

direct-manipulation interface is more intuitive. 

3.2 Deficiencies of Current Free-Form Deformation Interfaces 
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Free-form deformations are defmed by control points in the same way as spline curves and 

surlaces are. The interfaces to both methods also rely on direct control-point manipulation. 

A system may provide high-level tools for moving groups of control points, as mentioned 

in section 2.3, but the focus remains on control-point manipulation. The difficulties is, of 

course, that users unfamiliar with splines may not know what the control points are. The 

difficulty is exacerbated by the fact that control points of free-form deformations do not 

approximate the surface of the object, as they do for spline surfaces. Thus, it is unclear 

what, if anything, moving a control point will do to the object. Even when moving a 

control point located on or very near the surlace, the surface usually does not move as far 

as the control point 

These apparent discrepancies arise because parameters of the function that deforms the 

object are being manipulated, not the object itself. Moving a control point dves pot shape 

the object as the user desires, nor is the visual feedback what the user expects. For 

example, if the control points originally lie on the surface of an object, then a likely 

assumption by those unfamiliar with splines is that they will continue to do so. However, 

when the user moves a control point, the surlace moves towards the control point but does 

not stay in contact with it. To make an educated guess about where to place the control 

point, the user must analyze the feedback to construct some sort of relationship between the 

control point and the surface of the object. The tool requires far more than Foley's 

"minimal conscious attention." 
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Figure 3. The same shaped curved is defined in different ways depending on the position of the hump. 
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Figure 4. A flat hump. Control points on the outer edge of the plateau 
are above the hump and those in the mid-section are at or slightly below it 

Figure 3 shows an instance of potential confusion on the user's part. A single hump is 

easily generated by moving a control point upward, as shown in (a). But creating that 

same hump in the slightly shifted position in (b) involves positioning more than one 

control point, and in a non-uniform manner. The same non-intuitive behavior arises in 

trying to create a plateau-like hump, as shown by figure 4. One might expect to create a flat 

hump by moving a series of control points upward and aligning them horizontally, but 

instead, the control points at the hump's edge must be lifted further than the ones in the 

middle. 

3.3 A Direct Manipulation Based SOlution 
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The difficulties encountered in deforming an object with current interfaces arise from the 

apparent lack of correlation between the surface of the object and the control points moved. 

Direct manipulation of the surface itself would be far more intuitive, and thus is what my 

interface allows. Direct manipulation of 3D objects is a part of many polygonal modelers 

[pare??] [Car182] [Alle89]; in fact, many of the high-level tools developed for spline-based 

modelers originated from the polygonal modelers. It was recognized that manipulating 

individual points for large-scale changes can become frustrating, tedious, and error-prone. 

Using the proper high-level tools allows users to manipulate objects in a way more in tune 

with their mental description of how the object is shaped. Unfortunately, spline-based 

modelers have shifted the focus from manipulating object points to adjusting control points, 

adding a layer of indirection. Carlson [Car182] points out that "The main problem that 

exists in the free form surface design systems IS the lack of a suitable intuitive user 

interface. On the other hand, most polygonal systems have a fairly goexi user interface, but 

lack any degree of generality." 

To gain the best of both worlds, I have developed a new interface to free-form 

deformations that allows direct manipulation of the object, and in the process have 

eliminated the need for the user to be aware of the control points. The user gains the power 

of free-form deformations with a simple click-and-drag interface. 

3.3.1 The Magnetic Tool 

Section 2.3 described several high-level tools that aid in the modeling process. All of those 

tools can be represented by one unified model, a magnetic tool, that is general enough to 

allow both pulling on and pushing against an object, and to act on a single point or on a 
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large section of an object. The general concept of magnets and magnetism is a familiar one, 

so the tool can be quickly learned and used in an intuitive manner. 

To enhance visual feedback, the magnetic tool is represented as a visible object within the 

modeling environment. Several different pieces of information can be conveyed by this 

representation. The shape of the magnet can indicate the direction in which the swface of 

an object will move in as it comes under the magnetic tool's influence. For instance, a 

cone-shaped magnetic tool implies that a region of the object will be attracted towards a 

single point, the apex of the cone, and a box-shaped tool indicates that all object points will 

move in the direction parallel to the magnetic tool's normal. (See figure 5) The size of the 

magnetic tool can suggest the size of the area the magnetic tool will affect. Once the tool 

starts to deform the object. the deformed region can easily be highlighted to tell the user 

precisely what will change, including fringe areas (the area affected by the deformation 

function, but not directly affected by the magnetic tool). 

I I
 
/!!tt\\\\ t t t t t t t
 
Figure 5. The arrows indicate the direction of attraction towards the magnetic tools. 

Like real magnets, too, the magnetic tool need not actually touch the points it affects. The 

points affected by the tool depend on the tool's realm of influence: the area in which points 

distant from the primary point selected still come under the influence of the magnetic tool. 
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representation of the realm of influence should be, to some degree, transparent, so the user 

can see what is happening to the surface of the object as it is being deformed. 

Users often would like a high-level tool that is a slight variant of one already provided. To 

take this into account, the tools in this interface also have an associated strength of 

magnetism that can be used as a parameter to augment the magnetic function of the tool. 

For example, if the magnetism exerted by a tool is a function 1/r where r is the radius of the 

realm of influence, then the strength parameter can be used to make it a function of sir, 

where s is the strength value. The greater the strength, the greater the magnitude of 

attraction. 

3.3.1.1 l"'lathematical Technique for Direct Manipulation 

In order to manipulate the object surface directly, the user must have control oyer the points 

on the object. The deformed positions of the points on the object, however, are determined 

by the positions of the control points. Thus the problem is to move the control points 

based on how the user moves an object point. Once the desired location of a key object 

point is determined, the control points must be positioned so that the surface defIned by the 

deformation moves the key object point to that location, at least within some tolerance. 

Since the deformed location of the key objec;t point is a function of many control points, 

there are many confIgurations that will yield the same location for the deformed object 

point. Instead of determining all such control-point configurations, we fInd the 

configuration that requires the least amount of control-point movement. 

Let us first note how the position of the deformed object point is obtained. Recall from 

equation (3) that the deformed object point location, Q, is a function of the control points, 
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P: Q =F(P). A new location for point Q, Qnew, is then Qncw =F(P+.1P), where dP is the 

change in position of the control points. Since F is a many-to-one function, F is not 

invertible, but If F-l were the inverse of the function F , we could determine an equation 

for dP on the basis of dQ, the change from Q to Qnew' 

Q = F(P) 

Qnew =F(P + dP) 
F-l(Q) =P 

F-l(Qnew) = P + dP 

F-l(Qncw) =F-l(Q) + dP 

dP =F-l(Qncw) - F-'(Q) 

dP = F-l(Qnew -Q) 

dP =F-l(dQ) (4) 

We are able to condense F-l(Qnew) . F-l(Q) to Fol(Qnew -Q) because the function F, and 

therefore F-l, is an affme transformation. 

To find out more about the "inverse" of F let us first examine F more closely. The 

function F transforms the control point locations, P, into a deformed object point location, 

Q. In other words, F regulates how changes to the control points affect a change in the 

location of the deformed object point. This can be expressed in a mathematical structure 

called the Jacobian, which is a matrix of partial derivatives of a function's outputs with 

respect to its inputs. Equation (3) tells us that the position of a deformed object point is a 

function of the x, y, and z components of the control points, therefore 

x(P)] 

F(P) = /y(P)~
 Z{P) 

The Jacobian of F is then (aF / ap) or, for the 64 control points that influence a single 

object point in an FFD, 

19 



J=
 

afx(p) 
apox 

a[y(p) 
apox 

a~z(p) 
Pox 

alx(p) 
apoy 

afy(p) 
apoy 

afz(p) 
apoy 

ar(p) 
POz 

atv(p) 
apoz 

afz(p) 
apoz 

afx(p) 
ap64z 
a[y(p) 
ap64z 

afz(p) 
a p64z 

There are 64*3 input values in P for each x, y, and z direction, resulting in a 3x192 matrix. 

Since F(P) is a linear function, the Jacobian is simply the matrix of coefficients of the 

control points. These coefficients are the basis functions evaluated at the s, t, and u values 

of the object point. Since s, t, and u are constants andfx(P),fy(P),fz(P) are linearly 

independent, the Jacobian reduces to 

I3.3(S)I3.3(t)I3_3(U) o o
 
o I3.3(s)I3.3(t)I3.3(u) o
J=[ BO(S)B~t)BO(U)o o I3.3(S)I3.3( t)I3.3( u) ] 

and need be computed only once for each object point. Since the weight of each control 

point is the same for each component, many values in the matrix are identical, so the 3x192 

matrix has only 64 distinct values. Equation (3) can now be expressed in matrix form as 

Q=JP (5) 

To compute!1P we would need to find the inverse of J. I3ut J is not a square matrix, and 

matrix inverses are defined only for square matrices (this corresponds to the fact that our 

original function is not invertible). Instead, we find the pseudoinverse (generalized 

inverse) J+ of J: given the system of linear equations JX = Y, the pseudoinverse J+ is the 

matrix where X =J+Y [Nobl??]. This solution is the best solution in the least-squares 

sense, which in our case is the solution with the minimum amount of change, exactly what 

we are looking for. The pseudoinverse is computed by first representing the mxn matrix J 
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in the fonn J =BC, where B is mxk and C is kxn, such that all three matrices J, B, and C 

have rank k. Then the general formula for the pseudoinverse J+ of J is given by 

(6) 

For free-fonn deformations, the rank of J, Band C is 3, (B'TB)-lBT reduces to the 

identity matrix, and C =J. Let dij be the elements of C, note that Ci+lj+l =Cij, and let 

C' be a row of C. Then (CCT)-l is the reciprocal of the magnitude of C' squared times the 

identity matrix, and CT(CCT)-l reduces to C /IIC'1I2• So, the pseudoinverse of J can now 

be found using the following equation: 

1
J+---JT (7)-IIJ'1I2 ' 

where J' is a row of J. 

Combining equations (4) and (7), we find that the appropriate location of the control points 

based on the location of the defonned object point is determine by 

Pnew =P + ~QJ+ , (8) 

where Pnew is the matrix of new locations for the control points, provided all the control 

points are free to move independently. 

On occasion, when the deformed object point lies at or near the border of the control-point 

lattice, some control points are forced to coincide with other control points because the 

outer control points have a multiplicity of three. To compute the pseudoinverse, the 

coincident control points must move together, so their respective weights are summed and 
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the control points are moved as one. To fonnulate the pseudoinverse equation properly, a 

matrix, S, which selects the proper control point position is added to equation (5), so that 

the defonned object point location is defined by 

Q=JSP 

The 192x192 matrix S is the identity matrix if all control points are allowed to move freely. 

If some of the control points must be coincident, then the one in the row for each control 

point so constrained is shifted to the column that corresponds to the control point it must 

follow. For example, in the one-dimensional case, ifP = [P-2 P-I Po PI]T, where P-2 and 

P-I do not exist and Po has a multiplicity of 3, then 

o 1 
o 1 
o 1 
o o 

The equation for the pseudoinverse J+ is now 

(9) 

For computational and space efficiency, the matrices J, J+, C, and S can all be stored and 

computed as vectors, and B need not be computed at all. 

High-level tools that move several object points at one time are computed by adding the 

appropriate rows and columns to J, P, and tJ.Q, and to the matrices derived from them. 

The only problem arises when the problem becomes over-determined, i.e. when there are 

more unknowns than equations; in that case an exact solution may be impossible to fmd. 

The simplified pseudoinverse equation (7) cannot be used, and equation (9) must be used 
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instead. This yields the best possible answer in the least-squares sense and is the most 

reasonable given the circumstances. 

3.3.1.2 Limitations 

This interface has two limitations. First, the problem can be over-constrained. Second, 

aliasing can occur so that some control points are not moved when they ought to be. 

Figure 6 shows an over-constrained situation in which no exact solution exists. The object 

points (open circles) are to be positioned by the control points (filled circles). If all the 

object points are constrained to remain stationary except for the middle one and a new goal 

position (shown by the cross) for the middle point is assigned, it is evident that there are 

too few control points to yield the undulations rc:quested. 
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Figure 6. 
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Figure 7. Aliasing because of too many control points relative to the numJy.r of objf'"cl points. 
Open circles denote object points, filled circles denote control points. No control polygon is 

drawn. (a) Initial condition. (b) Resulting control-point location when the three object points 
are moved upward. (c) Possible aliasing if the resolution of the object is dramatically increased. 

Over-constrained problems always arise because of a lack of control points. The second 

limitation has the opposite cause: there are too many control points in relation to the number 

of object points. Though a solution for the goals can certainly be reached, it is desirable for 

that general shape of the object remain the same when the tessellation or resolution of that 

object is increased. When there are too many control points, as in figure 7, not all the 

control points in the region being modified can move, due to the local control of B-splines. 

The results look correct at the resolution of the object being modeled, but aliasing occurs 

when the resolution is increased. 
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Both of these limitations arise from an inappropriate ratio between the number of control 

points and number of object points. The interface can attempt to adjust the resolution of the 

object to achieve a better ratio, but sometimes that is not desirable. In the over-constrained 

case the best least-squares solution is given, Le. a best approximation to the movement 

desired is given, considering the constraints. To eliminate the aliasing problem, the system 

may create "false" goal points to make sure all control points affecting the surface within 

the realm of influence are moved. These "false" goal points are simply goal locations that 

are interpolated from the real deformed object points being moved. 

3.3.2 Control Points 

Although the USP.T no longer needs to manipulate the control points directly in order to 

control the deformation, the location of these points are still necessary parameters to the 

deformation function. The lattice of control points serves other purposes as well. Its size 

and position as a whole define the volume of space to undergo the deformation. And the 

resolution of the lattice, that is the number of control points along each axis, determines the 

extent of the deformation created by each control point. 

If the control points are not displayed, these aspects of the control points must nevertheless 

somehow be conveyed to and controlled by the user. We do this by outlining the 

parallelepiped region under the influence of the control points in a bounding box that can be 

manipulated and positioned over the object to be deformed. An entire object need not fall 

within the bounding box. We can deform only that portion of the object within the 

bounding box, clipping the rest of the object. Once the bounding box is placed on the 

desired object, the portion of the object within it can be highlighted, telling the user which 

part of the object can be deformed. 
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The influence of each control point spans four segments in each dimension of the lattice, 

except for those near or at the ends. The more control points there are, the smaller the 

region affect by any single control point. However, if users are unaware of the control 

points, as they will be with our interface, then specifying the resolution of the control-point 

lattice makes no sense. Instead, we use a metaphor, the effect of changing lattice resolution 

changes both the size of the area being deformed and the acuteness of the curvature. So 

that the consistency of the object itself appears to change, and we speak of altering the 

taffiness of the object. Increasing the taffiness increases the resolution of the lattice, so that 

pulling on the object creates thin spikes with high curvature. Low taffmess creates a more 

gradual rise (or fall) in the deformation, and makes the object seem more rigid. (See figure 

8) Since the resolution of the lattice can be different on each axis, each dimension can have 

a separate taffiness valuator. The only problem with this is that the lattice need not be 

parallel with the object surface; indeed, it cannot be for objects-like spheres. In this case, it 

is confusing if the object has a different taffiness in three arbitrary directions, and it is 

therefore recommended that the resolution be uniform. 

(a) (b) 

Figure 8. (a) is a curve with high taffiness. (b) is a curve with low taffiness.
 
Both are pulled upward from the center.
 

Multiple lattices can be applied to a single object so that the user can apply several different 

types of deformations. Each lattice is separate from the others, and can have a different 

size, placement and resolution. Likewise, a single lattice can be used to deform multiple 

objects, so long as a portion of each object lies within the lattice boundaries. 
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3.3.3 System Compensation Due to Interface Abstraction 

Hiding the control points from the user implies that limitations visible before under user 

control must now be handled by the system. For instance, if one can see the large gap 

between control points created by extending them during a deformation, one can see that a 

thin hump between them could not be made. However, when the control points are not 

displayed one has no reason to believe this limitation exists. 

To compensate for this loss of information, the interface refmes the lattice of control points, 

fIlling in the large gaps between them, so that the user can continue to manipulate the object 

without restriction or surprise. The refinement can be done in several ways, each with its 

own disadvantages. One might fIrst think of using the Oslo algorithm [Cohe80] (or the 

"knot insertion algorithm" developed independently by Boehm [Boeh80D to subdivide the 

piecewise cubic B-splines by inserting new control points in the areas needed. Any 

number of control points can be inserted, with any interval, but in order to retain the proper 

global topology for the entire lattice, duplicate sets of control points must be added in all 

directions to maintain the grid structure. 

Figure 9 illustrates the effect of subdividing the lattice of control points using the Oslo 

algorithm. Portions of the lattice gain a higher control-point resolution than desired. 

Because of this, future deformations in those areas will have a different curvature from 

unaffected regions, leading to unsatisfactory results. 
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(a) (b) (c) 

Figure 9. Refinement using the Oslo algorithm. (a) shows the control points (filled circles) 
right after a deformation. (b) shows where new control points are desired (crosses). (c) shows all 
the control points added Shaded area is the portion of lattice that was not supposed to be rermed. 

The second method would be to extend Forsey and Bartels' hierarchical B-spline model 

[ForsSS] to three dimensions. With this solution the control points are generally added 

only in the region where they are needed, but it is nevertheless unsuitable for two reasons. 

First, the subdivision is exponential: that is, each level of refinement subdivides the region 

twice as much as the previous level. Restricting the resolution to powers of two does not 

give the flexibility needed to maintain consistent taffiness throughout the object. Second, 

some areas may be refmed when they should not be. For instance, when one area to be 

refined overlaps an existing area of refmement, the two areas must be consolidated into one 

rectilinear region, thus creating a larger than desired area of refinement. The gray areas in 

figure 10 show unintended areas refined due to consolidation. 
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Figure 10. Refinement using hierarchical B-splines. (a) Region A is a refmed portion of 
the lattice. (b) B is a refmed area added later, that overlaps region A. (c) Consolidation 

of the two regions. C, creates unintended refmed regions (shown shaded). 

The method ultimately employed is quite simple. The lattice of control points is refined by 

replacing or overlapping it with a new one. The new lattice is a regular parallelepiped of 

control points that is extended to cover the same region of the object as the old lattice did 

and uses the same spacing between control points as the old lattice. Now the entire object 

has the same taffiness as it did before, without the side effects of the other methods and 

with a minimum of new control points. Figure 11 shows how the old control-point lattice 

is replaced with the new one. 
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(a) (b) (c) 

Figure 11. (a) An object (shaded region) and its initial lattice. (b) After a defonnation. 
(c) A new lattice replaces the initial lattice with the same spacing between control points. 

3.4 Graphical User Interface 

We have described up to this point a direct surface manipulation technique to defonn 

objects and a model for its behavior. Two further elements would be necessary to complete 

the user interface, a 2D graphical user interface for parameter specification and methods for 

positioning and visually representing the lattice and magnetic tool in 3-space. However, 

graphical user interface design and 3D positioning are not within the scope of this thesis, 

and we do not discuss them further here. 
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4 IMPLEMENTATION 

The free-form defonnation method is only one of many modeling tools that should be at the 

user's disposal. It is more useful for modifying objects already created than for initial 

object creation, and is also very useful for animation. For these reasons, this modeling 

method and the interface described in this thesis have been integrated to some extent into 

BAGS, the Brown Animation Generation System [Zele91]. BAGS is a unified modeling 

and animation system that allows the creation of obj~cts, such as spheres, cubes, 

superquadrics, and ducts; more complex objects are modeled using constructive solid 

geometry (CSG). The placement, size, and orientation of those objects can be specified for 

an instant of time or over an interval of time (for creating animations). BAGS also serves 

as the testbed for research in graphics and user interface techniques 

Before implementation in BAGS, all interface functionality was tested in a 2D prototype 

environment. In the 2D test program the defonnation method at first used piecewise 

uniform cubic B-splines to deform a square object consisting of 100 to 400 connected 

points. The direct manipulation system for single and multiple constraints (object point 

positions) was then implemented, and this revealed the need for adaptive lattice refinement 

and adaptive object refmement. Both were implemented and tested to validate the 

algorithms used. The lattice is adaptively refined by replacing the old lattice of control 

points with a new lattice of control points shaped in a parallelepiped, with the same initial 

control-point spacing as the old lattice (see §3.3.3). 

The adaptive object refmement method used increased the number of vertices defining the 

surface whenever the Euclidean distance between neighboring vertices grew too large. 
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This served two purposes. First, it maintained smooth curvature throughout the object, no 

matter how acute the deformation. More importantly, however, it provided more evenly 

spaced vertices for the user to manipulate after a deformation. Without this refmement, 

stretching an object would produced long faces with few vertices for the magnetic tool to 

tug on, and the user would be unable to manipulate certain sections of the object, as shown 

in figure 12. 

(a) (b) 

Figure 12. (a) An object (shaded region) and the vertices (open circles) that 
define its surface. (b) Mter a defonnation, the vertices have large gaps betwen 

them; the arrows indicate the places where the user cannot pick a vertex. 

New object point locations are computed by first calculating their FFD coordinates, and 

then using those coordinates to compute the points' world coordinates. The FFD 

coordinates are computed by linearly interpolating the FFD coordinates of neighboring 

points. The deformation function is then applied, yielding the world coordinates for the 

point. The 2D test program also allowed the user to change the resolution of the lattice at 

any time during the deformation process. 

A useful subset of what was implemented in the 2D test program has been implemented as 

part of BAGS. The standard free-form deformation method, with piecewise cubic B­

splines as the basis, has been totally integrated into BAGS as a standard modeling method. 

Any object in BAGS can be deformed. The traditional method of explicitly moving control 
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points to specify deformations has been implemented. and those familiar with splines may 

prefer this method over the direct surface manipulation method. Some of the direct surface 

manipulation interface has also been implemented into BAGS. The multiple-constraint 

system is in place, and three tools have been developed to demonstrate the system: there is 

currently a tool that positions a single object point, a tool that flattens points to a plane 

defined by the tool, and a tool that moves a section of an object intact to one side of the tool 

(that is, it applies the same translation vector to all points within its realm of influence). 

Some aspects of the interface described here, however, are either not implemented in 

BAGS at all, or are implemented with stopgap measures. For example, the lattice of 

control points is not visually represented as a bounding box, but rather by a cube of the 

appropriate size. The lattice is positioned on the basis of a dependency between the lattice 

and the cube. The magnetic tool and its realm of lnfluence are represented with an ordinary 

object, using different colors (through CSG) for the magnet proper and the realm of 

influence. For the most part, relevant feedback was given by these stopgap measures. For 

those parts not implemented, the 2D variation implemented in the 2D test program gave a 

proof of concept and workable methods that can be extended to 3D. 
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5 FUTURE WORK 

The foundations for a direct manipulation deformation tool have been laid, but many areas 

must be expanded in order to achieve a complete, robust interface. A graphical user 

interface that handles specifying the resolution of the lattice (taffiness of the object), the 

type of tool the user wants, etc., should be built. More sophisticated 3D manipulation and 

visualization methods for the magnetic tool can be employed. For instance, 3D input 

devices such as the Polhemus, the Space Ball, or the VPL DataGlove could be used for 3D 

manipulation of the tool, instead of the 2D mouse or tablet. Better visualization techniques 

can be used to help the user see where the magnetic tool is in 3-space and in relation to the 

object to be deformed. Those techniques can include projecting shadows onto a stage, 

showing the world or object coordinate axes emanating from the magnetic tool, and (if the 

tool is confined to a plane) showing the plane and how it intersects the other objects. The 

realm of influence could also be represented more intuitively, say by a translucent disc or 

square around the tool. 

Adaptive lattice refmement and adaptive object tessellation have been implemented in the 2D 

test program, and should be expanded to the 3D environment. Close attention must be 

given to the time at which the lattice of control points is refined in the 3D environment, 

since the final shape of a deformation is unlikely to be made with a single stroke of the 

mouse, in the 2D case. Instead, since the pointer usually operates on a single plane, a 

series of "tug on the object, move the camera" operations may be required for a single 

deformation. In this case, it is undesirable to refine the lattice after each tug, as was done 

in the 2D test program, and a more flexible method will be required. 
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Adaptive object tessellation is also recommended, in order to give the new extended portion 

of the object enough object points for picking. Otherwise, making large defonnations 

cause rifts between neighboring vertices which can be much wider than the tool. Simply 

splitting the face and interpolating over the location of the existing vertices is not sufficient, 

because it does not eliminate the faceting caused by curves in low-resolution objects. 

Instead, the vertex locations are computed by applying the deformation function to 

interpolated (s, t, u) values from the neighboring vertices. Aesthetically, it is important to 

show the curvature created by the deformation. Without the tessellation, the defonnation 

may look nothing like its representation at higher resolutions, and thus may confuse the 

user. 

As users become more sophisticated in using the tools at their disposal, they often want to 

expand thr. functionality provided. If a small editor and parser were provided, the 

capabilities of the magnetic tool could be extended during run time. Users would write 

mathematical expressions for the functionality of the new tools they desired. If the editor 

or parser could read and write fIles, a complete library of tools could quickly be developed, 

and a brand-new function could be added without having to recompile or relink the 

application. 
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6 CONCLUSION 

Several advanced modeling techniques have been developed recently, but they are slow to 

reach the general user, in part because of their poor interfaces. Properly designed 

interfaces will allow these modeling techniques reach a wider audience and will become 

more important as the complexity of new modeling techniques increases. The free-form 

deformation modeling technique is used as an example of these techniques, and we have 

described an interface developed to show how improvements can be made. With current 

interfaces, users can become confused by the myriad of control points, and must expend 

undue cognitive energy to analyze how to move them properly. The interface developed 

visually eliminates the control points by allowing direct control over the shape of the object. 

The direct manipulation interface employed lets users shape objects in an inmitive fashion, 

thereby reducing their cognitive load. This technique can easily be applied to spline surface 

and curve editors, allowing direct manipulation of those modeling methods as well. 

36
 



7 ACKNOWLEDGMENTS 

I would like to thank Henry Kaufman for his invaluable technical advice, encouragement, 

and interest in my work, and professor John Hughes for his review of my writing and clear 

explanations of many mathematical details. I could not have accomplished the integration 

of my project into BAGS without the willing assistance of the BAGS guru, Bob Zeleznik. 

My attendance at Brown could not have been possible without the fmandal support 

provided by Digital Equipment COl.poration's Graduate Engineering Education Program. I 

am also grateful for all the help, comments, and cavorting from the wonderful people in the 

graphics group and professor Andries van Dam. Most of all, I am thankful for my loving 

wife, Shari, whose sacrifice, patience and encouragement over the past year and a half has 

been immeasurable. 

37
 



8 APPENDIX 

This section is written to document the integration of new research into BAGS, with the 

intent of making subsequent integration attempts easier and guiding future enhancements to 

BAGS. This section assumes that the reader is familiar with the internal workings of 

BAGS; see [Hubb91], [Conn91], and related documents referenced therein. 

8.1 Integration with BAGS 

The free-form deformation method and interface have been integrated into BAGS as a 

collection of five change operators, or chops: 

• ffdeform chop - performs the actual free-form deformation to an object. 

• resolution chop - specifies the resolution of the lattice of control points. 

• move_cntrlyt chop - specifies how a specific control point is translated. 

• magJange chop - acts as a switch by toggling the objects the magnetic 

tool will affect, if any. 

• mag_scope chop - allows the direct manipulation of the object by 

computing the placement of relevant control points. 

The first three chops, ffdeform, resolution, and move_cntrl_pt, are all that is needed to 

deform an object with the traditional control-point manipulation interface. The latter two 

chops, ma~range and mag_scope, facilitate direct surface manipulation. We discuss first 

how a deformation is set up and executed, and then how mag_range and ma~scope 

provide the direct manipulation. 
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An object is defined by the change operators (chops) contained in its state. An ffdefonn 

chop in an object's state defonns the object. The defonnation is specified by a control­

point lattice, which is an object in BAGS. The ffdefonn chop actually takes two lattices as 

parameters, one as the initial lattice configuration and the other as the fmallattice 

configuration. The two lattices are compared against one another to detennine how the 

object is defonned. 

The control-point lattice is initially configured using the resolution chop and linear 

transfonnation chops. The resolution chop defines how many control points there are in 

each dimension; for example, the lattice in figure 2 has a resolution of (2,3,4). The 

position, size, and orientation of the lattice are defmed by the linear transfonnation chops 

translate, rotate, and scale. These chops move the control points as an aggregate, Le. they 

affect the lattice as whole. Individual control points are manipulated by the move3ntrl_pt 

chop, which positions the control points with relative offsets. 

Script ordering is important to create the desired effect, since only those move_cntrl_pt 

chops that occur before the ffdefonn chop are used in the defonnation. Figure 13 shows 

the relative placements of the chops in their respective object states. The arrow indicates at 

which point the ffdefonn chop uses the lattice object (In the current implementation, the 

ffdefonn chop only uses the CTM of the initial lattice, so the initial configuration lattice can 

be the same as the fmal configuration lattice. The initial configuration lattice parameter is a 

hook for Extended FFDs). 
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Figure 13. The states of Object A and the control-point lattice.
 
Script priority increases to the right, the small circles represent chops.
 

For direct manipulation of the object, the magnetic tool is introduced. a new object that 

computes the location of control points using the mag....scope chop. The mag_scope chop's 

parameter list includes the object to be deformed, the lattice it changes, and the group to 

which the lattice belongs. In order for the mag....scope chop to work properly, the deformed 

object must include changes made by previous iterations of the mag....scope chop, and thus 

the mag_scope chop must come after the ffdeform chop in script order. The mag_scope 

chop cannot change the control points of a lattice directly because changes to the lattice 

must come before the ffdeform chop in order to take effect. Instead, the mag_scope chop 

writes out move_cntrl_pt chops into the state of the lattice before the ffdeform chop. 

Finding the proper position for a set of move_cntrl_pt chops during each iteration of the 

mag_scope command would require state traversals through potentially large states. To 

narrow the scope of the search, the lattice affected is added as a member to the group that is 

passed as a parameter to the mag_scope chop. The move_cntrLpt chops are added to the 

group, which relays them to the lattice. This has the additional benefit of duplicating the 

move_cntrl_pt chops for every lattice in the group, which is useful for creating multiple 

deformations of similar form. Defining the lattice's membership to the group at the proper 
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time guarantees proper placement of the move_cntrl_pt chops. Figure 14 shows how the 

chops from different objects interrelate with each other to perform the direct manipulation 

for FFDs. 
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Figure 14. The states of Object A, the control-point lattice, the group, and the magnet. 
Filled arrows represent parameters to various chops. Open arrow indicate chop written out by 

mag_scope. Dotted arrow represents how the move_cntrl-pt chops are passed to the lattice. 

A single object can undergo several different deformations, each defmed by a different 

lattice of control points. In the event that such multiple lattices overlap in space or come 

very close to one another, one must be able to determine which lattice of control points the 

magnetic tool is to affect. To distinguish the lattices, each is given an associated id that is 

specified in a parameter to the ma~scope chop. Which lattice the tool affects is specified 

in the mag_range chop as a bit mask of lattice ids. (The bit mask is used to let the tool 

41
 



affect more than one lattice at a time.) The ma~range chop must precede the mag_scope 

chop in script order. 

This interface utilizes two caches used solely by the free-form deformation operators, an 

applied polyhedron cache and a vertex id cache. The applied polyhedron cache is a cache 

of the polyhedron object, represented by a TRIP object, and all linear transformations 

applied to it so far. The vertex id cache stores the id of the last vertex moved by the 

magnetic tool. Like most caches in BAGS, the applied polyhedron cache is used strictly to 

increase speed, and is created immediately before the ffdeform chop. The main purpose of 

the vertex id cache, however, is its functionality. If the function of the tool is to manipulate 

a single point until that point is explicitly released, then the id of that point must be stored 

and fetched for each iteration through the ma~scope chop. Without the vertex id cache, 

the closest point to the magnetic tool would be sought at each iteration, and this might not 

be the same point each time. 

8.2 Integration Obstacles 

The FFD technique and the direct manipulation interface are implemented through a 

collection of chops. This, however, is not the only way research is integrated into BAGS. 

The FFD technique and direct manipulation interface could have been implemented together 

as a controller, for example. BAGS was still being developed concurrent to the integration 

of this research, and the strict use of chops can be attributed to BAGS's lack of maturity, 

no documentation, and the incremental design of the FFD project. Indeed, this 

implementation brought to light several deficiencies in the current framework of BAGS for 

this type of implementation. Different implementations, however, mayor may not have the 

same problems. 
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One of the drawbacks of this implementation is the lack of persistent computed data. In 

order to get a representation of the object at a particular stage, the system must traverse the 

entire state of the chop and accumulate the changes made to it up to the point of the request. 

This can become extremely inefficient for complex interactive modeling tasks like FFD, 

since each change specified in the FFD command requires a state traversal and 

accumulation of changes. For example, each time the mouse moves to change the location 

of a control point, the entire state of the object leading up to the deformation, and the 

deformation itself, are recomputed. For a complex, highly tessellated model, this 

computational expense is prohibitive. Fortunately, BAGS's caching mechanism retains 

intermediate stages of some commands and objects, and this eliminates some, though not 

all, of the recomputation. For free-form deformation, one particular cache contains the 

polyhedral object in the state just before it is def~rmed. The deformation command (the 

ffdeform chop) takes as one of its parameters a reference to a lattice of control points whose 

position defines the shape of the deformation. Since the cached polyhedral object does not 

retain any of the deformation information caused by this deformation command for any 

previous iteration, all deformations are calculated, even those done before and unaffected 

by the current changes to the lattice of control points. This potentially eliminates any 

computational efficiency gained from the local-control attribute of the cubic B-splines. 

If implemented as a controller within BAGS, the FFD interface could have operated with 

fewer state traversals. The controller would be a mini-modeler within BAGS, able to do 

whatever it wanted. However, isolating the FFD interface from the rest of the system 

creates other problems. For instance, modeling would be done without the context of other 

objects, and care would be needed in writing and updating chops so changes would be 

saved in the script. Since chops need to be written anyway, there is nothing to prevent 

creating a controller layered on top of the existing FFD implementation. 
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The change operators in BAGS are assumed to be atomic operations: the processing of a 

particular chop must complete before any other operation can begin. This prohibits 

displaying the intermediate results of a chop, which could be helpful to the user. For 

iterative constraint systems that may take significant time to compute, it would be desirable 

to show the user intermittent progress. 

Although the BAGS architecture documentation claims that caching is done only for speed, 

this is not entirely true. For example, the magnetic tool that allows the user to drag a point 

first fmds the point by looking for the closest one to the tool; it then continues to use that 

point until the user turns the magnetic tool off. To continue to move the same point, the 

vertex id is cached and retrieved on each iteration through the ma~scope command 

Without the cache, the entire object would be searched each iteration for the clo~~st vertex, 

and different ones might well be found as the tool moved along the surface of the object. 

Although, the vertex id can be stored elsewhere, e.g., as part of the TRIP object, using a 

cache was the most appropriate option at the time. 

In general, the polyhedral representation used in BAGS makes associating data with objects 

difficult. If the data is stored separately, then if on the next iteration the object is 

compressed, the link: between the object and the data will be out of sync. If the data is 

stored with the object itself, then any invalidation of that object causes the data to be lost, 

even if the reason for the invalidation does not apply to the extra data. For example, if a 

color was associated with each vertex and the geometry of the object changed, the color 

information would be lost, even though it had no correlation with the geometry of the 

object. The invalidation conversion facility can avert such problems, but its abilities are 

limited and it requires the programmer to become very intimate with the invalidation 

mechanism. Because of these invalidation problems, passing some types of data from one 
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chop to·another can be precarious. For instance, the ffdeform chop generates extra data 

and attaches it to the polyhedral object being deformed. This data is also used by the 

mag_scope chop and is passed along through the polyhedral form. It is essential that the 

data come from the ffdeform chop associated with this ma~scope chop, and no other, 

since the mag_scope chop cannot generate the data on its own. If a chop that compresses 

the TRIP object comes in between the ffdeform chop and the ma~scope chop, the data will 

be lost. This causes an interleaving of chops that the script writer must be aware of when 

dealing with multiple deformations to the same object. 

Figure 15, which shows a portion of a SCEFO script used to model a head, indicate the 

importance of script ordering. We note that the ma~range chop appears before any of the 

ffdeform chops and that the ma~scope and ffdeform chops are interleaved A closer look 

at eyelat2 shows hnw delicate the structure is. Eyelat2 deforms an eye socket of the head, 

but is not directly manipulated by the tool. Since we want the eyes to be symmetrical, we 

simply deform the other eye and place both eyelatl and eyelat2 in the same group, so that 

its move_cntrCpt chops affect eyelat2 as well by placing. We cannot, however, 

sequentially group together their ffdeform chops and place them before the mag_scope 

chop that affects the eyelatl lattice. Although the magnetic tool appears to deform both 

sockets simultaneously, two separate deformations are in fact involved. If the deformation 

for eye2 is placed in between that for eye1 and the mag_scope chop for eyelatl, the 

ffdeform chop for eye2 will corrupt the data passed from the ffdeform chop for eye1 to the 

mag_scope chop. Thus the deformation must be moved after the mag_scope chop. It 

could also be placed before the ffdeform chop for eye!, so long as the affected areas do not 

overlap. 
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The restriction in placing the ffdefonn chop for eyelat2 can be lifted if the TRIP object 

carries multiple extra data columns, one for each deformation, but that leaves open the 

possibility of increasing the size of the TRIP object without bound. 

In summary, a fIrm understanding of BAGS is needed before a well-though-out 

integration plan can be formed. Clear and comprehensive documentation is necessary for 

all those attempting to integrate their research in BAGS. The object-oriented design of 

BAGS gives you just enough rope to hang yourself, if you're not careful. 
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eyelat1 

eyelat2 

mouthlat 

head 

headlat 

headgroup 

eyegroup 

mouthgroup 

tool 

head 

tool 

head 

tool 

head 

tool 

rep o 
resolution o 
scale o 
translate o 
ctm o 

rep 0 
resolution 0 
scale 0 
translate 0 
ctm 0 

rep 0 
resolution 0 
scale 0 
translate 0 
ctm 0 

rep 0 
resolution 0 
scale 0 
translate 0 

rep 0 
resolution 0 
scale 0 
ctm 0 
translate 0 

rep 0 
member 0 

rep 0 
member 0 

rep 0 
member 0 

rep 0 
mag_range 0 
scale 0 

ffdeform 0 

mag_scope 0 

ffdeform 0 

ffdeform 0 
ffdeform 0 

[latticeClass, 0]
 
[5, 5, 2]
 
[1.0, 1.0, 1.0] (linear, 1)
 
[0.0, 0.0, 0.0] (linear, 1)
 
temp1.ctm ; 

[latticeClass, 0]
 
[5, 5, 2]
 
[1, 1, 1] (linear, 1)
 
[0, 0, 0] (linear, 1)
 
temp2.ctm 

[latticeClass, 0]
 
[7, 7, 2]
 
[1, 1, 1] (linear, 1)
 
[0, 0, 0] (linear, 1)
 
temp3.ctm 

[sphereClass, 0] 
[7]
 
[3, 4, 3]
 
[0, 0, 0]
 

[latticeClass, 0]
 
[9, 9, 4]
 
[1, 1, 1] : (linear, 1)
 
head.ctm ; 
[0, 0, 0] ; 

[groupClass, 0]
 
[Add, [headlat]]
 

[groupClass, 0]
 
[Add, [eyelat1, eyelat2]]
 

[groupClass, 0]
 
[Add, [mouthlat]]
 

[sphereClass, 0]
 
[0.5, (0*2)]
 
[0.5, 0.5, 0.5] ;
 

[headlat, headlat, 1] 

[1,head,headgroup,headlat,1,2]; 

[eyelat1, eyelat1, 1] ; 

[2,head,eyegroup,eyelat1,1,2]; 

[eyelat2, eyelat2, 1J
 
[mouthlat, mouthlat, 1]
 

[4,head,mouthgroup,mouthlat,1,2J; 

Figure 15. SCEFO script fragment for modeling a head through deformations. 
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