
BROWN UNIVERSITY

Department of Computer Science

Master's Thesis

CS-91-MIO

A Direct Manipulation Interface to Free-Fonn Defonnations

by

William M. Hsu

__

A Direct Manipulation Interface to Free-Form

Deformations

l,3y

William M Hsu

Submitted to the faculty of Brown University as partial fulfillment of the

requirements for the Sc.M. degree

May 1991

\\, tl(l: __ XI..J(

irofessor J~~ F. Hughes, Advisor

1 INTRODUCTION

Modeling has become one of the predominant research topics in computer graphics.

Though many techniques for modeling three-dimensional objects have been developed,

until recently little attention has been paid to user interfaces for these techniques. Many

techniques originated in the computer-aided design and manufacturing world, where design

engineers used computers to model complex parts precisely. Consequently, typical users

were very knowledgeable about the mathematical bases of these techniques, and developers

could concentrate on the functionality of the modeling tools, rather than their user

interfaces. Now, however, artists, illustrators, educators, animators, and others lacking in

the mathematical sophistication have begun to use the computer to model objects. These

people need well-designed user interfaces to use sophisticated tools in an intuitive and

productive fashion.

A relatively new and complex modeling method is free-form deformation, in which the user

deforms objects by adjusting parameters to a polynomial basis in a technique akin to the

manipulation of spline surfaces. In many commercial modeling systems, such as TDI's

Explore Design and Softimage's Creative Environment, the user manipulates control points

to specify the deformation. If, however, the user is not familiar with splines and their

behavior, this may be confusing since the control points do not necessarily lie on the

surface of the object. A more intuitive interface would allow the user to manipulate the

surface of the object directly. This thesis presents an interface technique that allows the

user to defme deformations through direct manipulation of the object.

Section 2 reviews the free-form deformation modeling method and the manipulation

techniques for ~his method and other spline surface-modeling methods. Section 3 details

1

the motivation for and internal workings of our interface. Section 4 describes the

implementation of the interface in a 3D modeling and animation system. Section 5

discusses possible future work, and section 6 gives some concluding remarks.

2

2 BACKGROUND

2.1 The Free-Form Deformation Modeling Technique

This section summarizes the free-fonn defonnation method described by Sederberg and

Parry, and its differences from my implementation. It assumes the reader has some

knowledge of splines, in particular B-splines (see [Fari90, Bart8?]). We distinguish here

between the underlying modeling technique (the mathematics of the defonnation) and the

interface to the technique, which will be discussed further in section 3.3. Further details on

free-form defonnations can be found in [Sede86].

2.1.1 Review of the Sederberg and Parry method

The free-fonn defonnation (FFD) method defonns an object by fIrst embedding it, or a

region of the object, into a coordinate system local to FFDs, and then applying a function

which maps the object back into world coordinates. The local coordinate system is defIned

by a parallelepiped-shaped lattice of control points, with one corner as the origin, (0,0,0),

and the opposite comer labeled (1,1,1). All object points within this parallelepiped are

transfonned into the local coordinate system through a mapping from 3-space to 3-space.

The function which maps the object from local coordinates to world coordinates uses the

lattice of control points to defIne that mapping. The location of an object point is

determined by a weighted sum of the control points, therefore the location of the control

points can change the location of the object point. The result of concatenating these

functions is a map from 3-space to 3-space.

3

Figure I gives a simplified 2D analogy to an FFD: a square two-dimensional rubber sheet

on which a drawing is copied. The square rubber sheet can be stretched to any shape. In

(a), the rubber sheet is in its rest state beside a drawing of a smiling person. The rubber

sheet is stretched to fit over the drawing, and the drawing is then copied onto the rubber

sheet, as shown in (b). Figure l(c) shows how the drawing looks when the sheet returns

to its rest state. Then the sheet can be stretched and bent, as shown in (d), and the drawing

copied in an altered state (e). For free-form deformation, the analogue of the rubber sheet

is a rectilinear volume.

D 9 l!l
A

(a) (b) (c) (d) (e)

Figure 1

An FFD can also be described by comparison to rendering a computer model onto the

screen. An object is described internally in world coordinate space in any unit of measure.

The coordinates of this object are transfonned into normalized device coordinates and then

are mapped into screen coordinates and displayed on the screen. Free-form deformation

works in the same manner. First, the object to be deformed is represented in world

coordinates; it is then represented in the FFD coordinate system; [mally, the object is

assigned new world coordinates based on its FFD coordinates.

4

Now we detail the two mappings mathematically. The FFD acts on a parallelepiped; any

point within this parallelepiped is mapped to a new location by the FFD function. We start

by defming a local coordinate system on the parallelepiped as follows. Let the vector Qo be

the origin of the parallelepiped, and S, T, and U be three orthogonal vectors whose origins

are at Qo and that span the edges of the parallelepiped. Then any point Q can be written as

the sum

Q = Qo + sS + tT + uU

The numbers (s, t, u), called the FFD coordinates of Q, are simply the ratio between the

distance from Qo of the object point and the length of the parallelepiped in each dimension.

The values of s, t, and U can be calcul~tedfronl simple linear equations:

TxU·(Q-Qo) . SxU·(Q-Qo) SxT·(Q-Qo)
(1)S = TxU.S t = SxU.T U= SxT.U

Since Q is within the parallelepiped, we know that 0 ~ S, t, U ~ 1.

We now define a map from FFD coordinates (Le., tuples of (s,t,u)) to world coordinates.

This map is defined by taking a weighted sum of control points. In an FFD's rest state,

i.e., when the map is the identity, the control points form a lattice that is evenly spaced in

each dimension. The control points are denoted by Pij,k. (i = 1../, j = Lm, k = Ln):

Pij,k. is the ilh control point in the S direction, the jlh control point in the T direction, and

the kill control point in the U direction. Figure 2 shows the grid of control points when

/=2, m=3, n=1.

5

Figure 2

Each control point is assigned a weight, which is detennined by the (s,t,u) values from

equation (1). The free-form deformation function used by Sederberg and Parry is defmed

by a tensor-product Bernstein polynomial, and the deformed position of an arbitrary point

with coordinates (s, t, u), called Qffd(s,t,u), is given by the formula:

I m n

Qffd(s,t,u) =L L L P i.j.k (DO-S)I-lSI (j)O-t)m-lrrn (~)o-u)n-lun (2)
i=O j=O k=O

Moving a control point influences the value of Qffd(s,t,u), to an extent determined by its

location within the FFD parallelepiped. The control points of the FFD affect the object in

the same way as the control points of a Bezier spline - which can be defined by the

Bernstein polynomial- affect a curve.

2.1.2 B.spline Based Free-Form Deformation Method

My implementation of free-form deformation deviates from the method described by

Sederberg and Parry in using piecewise uniform cubic B-splines as the basis, instead of

6

Bernstein polynomials. Cubic B-splines are much more computationally efficient than

Bernstein polynomials for large numbers of control points. When Bernstein polynomials

are used as the basis, every control point contributes to the calculation of each deformed

point location, giving global control. In contrast, with cubic B-splines only 64 control

points (a 4x4x4lattice) are evaluated to calculate the location of a point, giving local

control. Not only is the evaluation of the deformation more efficient, but shaping objects

tends to be easier with local control. Piecewise cubic B6zier splines would be just as

efficient as piecewise cubic uniform B-splines, but the B-splines maintain C2 continuity

automatically whereas the Bezier splines do not.

Equation (2) is revised to reflect the change in basis in the FFD function:

o 0 0

¢1k(S,t,U) = L L L Pi+l,j+m,k+n B I(S) Bm(t) Bn(u) (3)
/=-3 m=-3n=-3

where i, j, and k are the spline segments enclosing the point and BI, B m and Bn are the

B-spline blending functions used in each direction, namely

Ro(u) ="6I u3

Rl(U) ="6I (1 + 3u + 3u2 -3u3)

B_2(U) ="6I (4 - 6u2 + u3)

R3(U) = "61
(1 - 3u + 3u2 - u3)

It should be noted that equation (3) is evaluated for each of the x, y, and z components of Q

and P, and that the set of blending functions is identical for each direction.

7

With B-splines as the basis, however, finding the (s, t, u) values of the object points is not

as simple as before. To calculate the local coordinate values for an object point, we must

first find which spline segments contain the point. Then the s, t, and u components are

calculated by fmding the roots of the cubics in equation (3). Also, the control-point lattice

is no longer completely uniform. In order to outline th~ deformation region exactly, each

outer control point is given a multiplicity of three.

2.1.3 Features of Free-Form Deformations

There are several important features of FFDs:

• They do not rely O!l the data type of the object: they can deform polygonal

data, implicit surfaces, and parametric surfaces.

• Parametric curves and surfaces remain parametric.

• There is a class of FFDs that are volume-preserving.

• Continuity between two abutting deformation volumes is easily achieved.

Detailed explanations can be found in [Sede86].

Modeling with an "indirect" method such as free-form deformation has several advantages

over modeling methods that directly define the geometry of an object. Ideas like "stretch

that part a little here" and "bend that section a little there" can be handled easily with FFDs.

This type of modeling is especially useful in animation sequences for creating squash and

stretch effects, as well as in caricaturing objects and exaggerating motion. Since the

underlying data type of the object to be deformed is of little consequence, FFD is also

useful in augmenting objects already created with different modeling techniques that rely on

8

different data types. For example, with FFD an object composed of a polygonal object

connected to a trimmed surface can be defonned as one cohesive object.

2.2 Review of Extended Free-Form Deformation

One restriction on free-fonn deformation is the control points must initially be configured

as a unifonn grid. This limitation means that some shapes, such as circularly symmetric

deformations, cannot be obtained C<XJ.uillart extends free-fonn deformation by allowing

the lattice of control points to be arbitrarily shaped before the deformation process

[Coqu901, pennitting a new class of defonnations to be created and making the process

more intuitive. The user, however, must first shape the lattice into the desired fonn and

then move the control points to achieve a defonnation. C<XJ.uillart concedes that the initial

shape of the lattice is "of paramount importance." To shape the lattice, the user must

manipulate each control point explicitly, and thus must have some knowledge about the

underlying defonnation method.

2.3 Current FFD and Spline-Based Modeling Interfaces

The shape of free-form deformations is controlled through the placement of control points.

To date, this placement has been done either by directly manipulating individual control

points or by moving groups of them according to a simple function (e.g., rotating a group

of control points around a point). Since the free-form deformation and spline-based

modeling techniques share the same mathematical foundations and are similar in concept,

9

we can predict future enhancements to the free-form deformation interface by examining the

interfaces developed for current spline-surface modelers.

Some spline-surface modelers have high-level tools that move groups of control points in a

predictable manner. These tools include functions such as bend, twist, group warp,

flatten, and bulge [Cobb84] [Ries89]. Bend and twist modify an object precisely as their

names indicate. Group warp moves a group of control points in response to the movement

of a center or target point. The relative positioning of the control points in the group can be

warped by applying a function to them as they are moved. The function can be a decay

function, say, giving the surface manipulated an elastic behavior, the control points can be

weighted so as further to vary the effects of the applied function. Theflatten operation

aligns a set of control points to a plane. The direction of movement is usually along the

plane normal, but can be user-defmed. The bulge tool disperses control points outwcrd in

a uniform manner, so that the surface balloons out. These tools give the user fairly

intuitive means of modeling for certain operations, but note that they all operate directly on

the control points. An exception is the technique Forsey and Bartels use in their

hierarchical B-spline editor [Fors88]. Points on the surface can be manipulated, but only

those directly beneath a control point.

10

3 A Better Interface to Free-Form Deformations

3.1 What Makes a Good User Interface?

Foley [Fole84] describes a criteria for a good interface: "An effective interface design is

one in which a user carries out his work with minimal conscious attention to his tools (the

paraphernalia of the interactive tenninal and the command language) and maximal

effectiveness. It is free of distractions and reasonably 'friendly.'" Translated to the

cognitive level, an interface's effectiveness is inversely related to the amount of effort users

must expend to accomplish their goals: the less mental energy necessary to manipulate the

tools to accomplish a ta.slr.., the better the interface.

This cognitive effort can be measured by evaluating the two aspects of human-computer

communication: (1) the communication from human users to the computer: the commands

and operations the user executes and performs; (2) the information the computer

communicates to users: the output, visual or otherwise, from the computer. Hutchins

defmes the gaps between the user's goals and a system's capacities as the Gulf of

Execution and the Gulf of Evaluation [Hutc85]. The Gulf of Execution is the difference

between user intent and what the interface allows; the Gulf of Evaluation is the difference

between what the user expects to see and what the interface displays. To accomplish their

goals with the available tools, user's must bridge the Gulf of Execution by constructing a

correct sequence of commands in the language of the interface. The easier this is, the better

the interface design.

11

Without proper feedback, the user is unsure what the results of her actions will be. If the

feedback is not what the user expects or lacks pertinent information, the user must exert

cognitive effort to interpret and analyze what feedback there is. If, on the other hand, the

feedback is what is expected and helpful, the user can concentrate on the problem task and

use the feedback as an affirmation of progtess.

In many cases, actions and feedback work in conjunction to present a coherent picture to

the user. Consider for instance, deleting a file. In some graphical user interfaces, to delete

a file, the user drags its iconic representation into a trash bin on the screen. In this single

process, there is a dialog between the user and the computer. First, the user selects an icon

that represents the actual internal file. Picking the icon highlights it, confinning the user's

choice. Next comes a continuous action/feedback loop as the user drags the pointer across

the screen and the icon follows. When the pointer re::l.l'hes the trash bin, the bin is

highlighted, telling the user the results of a potential action. The user releases the mouse

button and the me disappears into the trash bin. Finally, the trash bin bulges to show that

the file has been deposited there. Since this process relates closely to how people actually

throw things away, the cognitive effort in learning the task is minimal. Deleting a file in a

UNIX shell with the rm command, on the other hand, requires the user to remember the

file name, the name of the command for deleting the me, and the proper syntax for that

command. Furthermore, there is no feedback showing that the file is actually gone: to be

sure, the user must issue another command to ask about the status of the fIle. Clearly, the

direct-manipulation interface is more intuitive.

3.2 Deficiencies of Current Free-Form Deformation Interfaces

12

Free-form deformations are defmed by control points in the same way as spline curves and

surlaces are. The interfaces to both methods also rely on direct control-point manipulation.

A system may provide high-level tools for moving groups of control points, as mentioned

in section 2.3, but the focus remains on control-point manipulation. The difficulties is, of

course, that users unfamiliar with splines may not know what the control points are. The

difficulty is exacerbated by the fact that control points of free-form deformations do not

approximate the surface of the object, as they do for spline surfaces. Thus, it is unclear

what, if anything, moving a control point will do to the object. Even when moving a

control point located on or very near the surlace, the surface usually does not move as far

as the control point

These apparent discrepancies arise because parameters of the function that deforms the

object are being manipulated, not the object itself. Moving a control point dves pot shape

the object as the user desires, nor is the visual feedback what the user expects. For

example, if the control points originally lie on the surface of an object, then a likely

assumption by those unfamiliar with splines is that they will continue to do so. However,

when the user moves a control point, the surlace moves towards the control point but does

not stay in contact with it. To make an educated guess about where to place the control

point, the user must analyze the feedback to construct some sort of relationship between the

control point and the surface of the object. The tool requires far more than Foley's

"minimal conscious attention."

13

9t
I
I \

\
I \ ' I \ "

I \I \
I \I \ , \ I \

I \

.--....--=-­ .----~

(b)(a)

Figure 3. The same shaped curved is defined in different ways depending on the position of the hump.

9t...... ~.

\
\ \

. --.

~ \

" " \

.--......>'..."-..........'=""='lr~;...,,,.. "
\
\
\
\
\
\
\

Figure 4. A flat hump. Control points on the outer edge of the plateau
are above the hump and those in the mid-section are at or slightly below it

Figure 3 shows an instance of potential confusion on the user's part. A single hump is

easily generated by moving a control point upward, as shown in (a). But creating that

same hump in the slightly shifted position in (b) involves positioning more than one

control point, and in a non-uniform manner. The same non-intuitive behavior arises in

trying to create a plateau-like hump, as shown by figure 4. One might expect to create a flat

hump by moving a series of control points upward and aligning them horizontally, but

instead, the control points at the hump's edge must be lifted further than the ones in the

middle.

3.3 A Direct Manipulation Based SOlution

14

The difficulties encountered in deforming an object with current interfaces arise from the

apparent lack of correlation between the surface of the object and the control points moved.

Direct manipulation of the surface itself would be far more intuitive, and thus is what my

interface allows. Direct manipulation of 3D objects is a part of many polygonal modelers

[pare??] [Car182] [Alle89]; in fact, many of the high-level tools developed for spline-based

modelers originated from the polygonal modelers. It was recognized that manipulating

individual points for large-scale changes can become frustrating, tedious, and error-prone.

Using the proper high-level tools allows users to manipulate objects in a way more in tune

with their mental description of how the object is shaped. Unfortunately, spline-based

modelers have shifted the focus from manipulating object points to adjusting control points,

adding a layer of indirection. Carlson [Car182] points out that "The main problem that

exists in the free form surface design systems IS the lack of a suitable intuitive user

interface. On the other hand, most polygonal systems have a fairly goexi user interface, but

lack any degree of generality."

To gain the best of both worlds, I have developed a new interface to free-form

deformations that allows direct manipulation of the object, and in the process have

eliminated the need for the user to be aware of the control points. The user gains the power

of free-form deformations with a simple click-and-drag interface.

3.3.1 The Magnetic Tool

Section 2.3 described several high-level tools that aid in the modeling process. All of those

tools can be represented by one unified model, a magnetic tool, that is general enough to

allow both pulling on and pushing against an object, and to act on a single point or on a

15

large section of an object. The general concept of magnets and magnetism is a familiar one,

so the tool can be quickly learned and used in an intuitive manner.

To enhance visual feedback, the magnetic tool is represented as a visible object within the

modeling environment. Several different pieces of information can be conveyed by this

representation. The shape of the magnet can indicate the direction in which the swface of

an object will move in as it comes under the magnetic tool's influence. For instance, a

cone-shaped magnetic tool implies that a region of the object will be attracted towards a

single point, the apex of the cone, and a box-shaped tool indicates that all object points will

move in the direction parallel to the magnetic tool's normal. (See figure 5) The size of the

magnetic tool can suggest the size of the area the magnetic tool will affect. Once the tool

starts to deform the object. the deformed region can easily be highlighted to tell the user

precisely what will change, including fringe areas (the area affected by the deformation

function, but not directly affected by the magnetic tool).

I I

/!!tt\\\\ t t t t t t t

Figure 5. The arrows indicate the direction of attraction towards the magnetic tools.

Like real magnets, too, the magnetic tool need not actually touch the points it affects. The

points affected by the tool depend on the tool's realm of influence: the area in which points

distant from the primary point selected still come under the influence of the magnetic tool.

16

representation of the realm of influence should be, to some degree, transparent, so the user

can see what is happening to the surface of the object as it is being deformed.

Users often would like a high-level tool that is a slight variant of one already provided. To

take this into account, the tools in this interface also have an associated strength of

magnetism that can be used as a parameter to augment the magnetic function of the tool.

For example, if the magnetism exerted by a tool is a function 1/r where r is the radius of the

realm of influence, then the strength parameter can be used to make it a function of sir,

where s is the strength value. The greater the strength, the greater the magnitude of

attraction.

3.3.1.1 l"'lathematical Technique for Direct Manipulation

In order to manipulate the object surface directly, the user must have control oyer the points

on the object. The deformed positions of the points on the object, however, are determined

by the positions of the control points. Thus the problem is to move the control points

based on how the user moves an object point. Once the desired location of a key object

point is determined, the control points must be positioned so that the surface defIned by the

deformation moves the key object point to that location, at least within some tolerance.

Since the deformed location of the key objec;t point is a function of many control points,

there are many confIgurations that will yield the same location for the deformed object

point. Instead of determining all such control-point configurations, we fInd the

configuration that requires the least amount of control-point movement.

Let us first note how the position of the deformed object point is obtained. Recall from

equation (3) that the deformed object point location, Q, is a function of the control points,

18

P: Q =F(P). A new location for point Q, Qnew, is then Qncw =F(P+.1P), where dP is the

change in position of the control points. Since F is a many-to-one function, F is not

invertible, but If F-l were the inverse of the function F , we could determine an equation

for dP on the basis of dQ, the change from Q to Qnew'

Q = F(P)

Qnew =F(P + dP)
F-l(Q) =P

F-l(Qnew) = P + dP

F-l(Qncw) =F-l(Q) + dP

dP =F-l(Qncw) - F-'(Q)

dP = F-l(Qnew -Q)

dP =F-l(dQ) (4)

We are able to condense F-l(Qnew) . F-l(Q) to Fol(Qnew -Q) because the function F, and

therefore F-l, is an affme transformation.

To find out more about the "inverse" of F let us first examine F more closely. The

function F transforms the control point locations, P, into a deformed object point location,

Q. In other words, F regulates how changes to the control points affect a change in the

location of the deformed object point. This can be expressed in a mathematical structure

called the Jacobian, which is a matrix of partial derivatives of a function's outputs with

respect to its inputs. Equation (3) tells us that the position of a deformed object point is a

function of the x, y, and z components of the control points, therefore

x(P)]

F(P) = /y(P)~
 Z{P)

The Jacobian of F is then (aF / ap) or, for the 64 control points that influence a single

object point in an FFD,

19

J=

afx(p)
apox

a[y(p)
apox

a~z(p)
Pox

alx(p)
apoy

afy(p)
apoy

afz(p)
apoy

ar(p)
POz

atv(p)
apoz

afz(p)
apoz

afx(p)
ap64z
a[y(p)
ap64z

afz(p)
a p64z

There are 64*3 input values in P for each x, y, and z direction, resulting in a 3x192 matrix.

Since F(P) is a linear function, the Jacobian is simply the matrix of coefficients of the

control points. These coefficients are the basis functions evaluated at the s, t, and u values

of the object point. Since s, t, and u are constants andfx(P),fy(P),fz(P) are linearly

independent, the Jacobian reduces to

I3.3(S)I3.3(t)I3_3(U) o o

o I3.3(s)I3.3(t)I3.3(u) o
J=[BO(S)B~t)BO(U)o o I3.3(S)I3.3(t)I3.3(u)]

and need be computed only once for each object point. Since the weight of each control

point is the same for each component, many values in the matrix are identical, so the 3x192

matrix has only 64 distinct values. Equation (3) can now be expressed in matrix form as

Q=JP (5)

To compute!1P we would need to find the inverse of J. I3ut J is not a square matrix, and

matrix inverses are defined only for square matrices (this corresponds to the fact that our

original function is not invertible). Instead, we find the pseudoinverse (generalized

inverse) J+ of J: given the system of linear equations JX = Y, the pseudoinverse J+ is the

matrix where X =J+Y [Nobl??]. This solution is the best solution in the least-squares

sense, which in our case is the solution with the minimum amount of change, exactly what

we are looking for. The pseudoinverse is computed by first representing the mxn matrix J

20

in the fonn J =BC, where B is mxk and C is kxn, such that all three matrices J, B, and C

have rank k. Then the general formula for the pseudoinverse J+ of J is given by

(6)

For free-fonn deformations, the rank of J, Band C is 3, (B'TB)-lBT reduces to the

identity matrix, and C =J. Let dij be the elements of C, note that Ci+lj+l =Cij, and let

C' be a row of C. Then (CCT)-l is the reciprocal of the magnitude of C' squared times the

identity matrix, and CT(CCT)-l reduces to C /IIC'1I2• So, the pseudoinverse of J can now

be found using the following equation:

1
J+---JT (7)-IIJ'1I2 '

where J' is a row of J.

Combining equations (4) and (7), we find that the appropriate location of the control points

based on the location of the defonned object point is determine by

Pnew =P + ~QJ+ , (8)

where Pnew is the matrix of new locations for the control points, provided all the control

points are free to move independently.

On occasion, when the deformed object point lies at or near the border of the control-point

lattice, some control points are forced to coincide with other control points because the

outer control points have a multiplicity of three. To compute the pseudoinverse, the

coincident control points must move together, so their respective weights are summed and

21

the control points are moved as one. To fonnulate the pseudoinverse equation properly, a

matrix, S, which selects the proper control point position is added to equation (5), so that

the defonned object point location is defined by

Q=JSP

The 192x192 matrix S is the identity matrix if all control points are allowed to move freely.

If some of the control points must be coincident, then the one in the row for each control

point so constrained is shifted to the column that corresponds to the control point it must

follow. For example, in the one-dimensional case, ifP = [P-2 P-I Po PI]T, where P-2 and

P-I do not exist and Po has a multiplicity of 3, then

o 1
o 1
o 1
o o

The equation for the pseudoinverse J+ is now

(9)

For computational and space efficiency, the matrices J, J+, C, and S can all be stored and

computed as vectors, and B need not be computed at all.

High-level tools that move several object points at one time are computed by adding the

appropriate rows and columns to J, P, and tJ.Q, and to the matrices derived from them.

The only problem arises when the problem becomes over-determined, i.e. when there are

more unknowns than equations; in that case an exact solution may be impossible to fmd.

The simplified pseudoinverse equation (7) cannot be used, and equation (9) must be used

22

instead. This yields the best possible answer in the least-squares sense and is the most

reasonable given the circumstances.

3.3.1.2 Limitations

This interface has two limitations. First, the problem can be over-constrained. Second,

aliasing can occur so that some control points are not moved when they ought to be.

Figure 6 shows an over-constrained situation in which no exact solution exists. The object

points (open circles) are to be positioned by the control points (filled circles). If all the

object points are constrained to remain stationary except for the middle one and a new goal

position (shown by the cross) for the middle point is assigned, it is evident that there are

too few control points to yield the undulations rc:quested.

.- --'- ---­: ------.
I \

I \ \

I \ \
"

I

~

\

" ~ \\

Figure 6.

23

• •• 0 •••••• 0 ••••••0 ••

(a)

~.-. .,--. ~--.
I • I •

I ' \I
• I

, ,. \ I :\\ I
, I

, I
\

•
\ I '. ,. ,

\ I '•.-e--.-.' • --.--+-..

(b)

~.-. ,.--~
I ' I \I \ I ,

I ' I \
I \ I •

I ' I \I \ I' ,I '

(c)

Figure 7. Aliasing because of too many control points relative to the numJy.r of objf'"cl points.
Open circles denote object points, filled circles denote control points. No control polygon is

drawn. (a) Initial condition. (b) Resulting control-point location when the three object points
are moved upward. (c) Possible aliasing if the resolution of the object is dramatically increased.

Over-constrained problems always arise because of a lack of control points. The second

limitation has the opposite cause: there are too many control points in relation to the number

of object points. Though a solution for the goals can certainly be reached, it is desirable for

that general shape of the object remain the same when the tessellation or resolution of that

object is increased. When there are too many control points, as in figure 7, not all the

control points in the region being modified can move, due to the local control of B-splines.

The results look correct at the resolution of the object being modeled, but aliasing occurs

when the resolution is increased.

24

Both of these limitations arise from an inappropriate ratio between the number of control

points and number of object points. The interface can attempt to adjust the resolution of the

object to achieve a better ratio, but sometimes that is not desirable. In the over-constrained

case the best least-squares solution is given, Le. a best approximation to the movement

desired is given, considering the constraints. To eliminate the aliasing problem, the system

may create "false" goal points to make sure all control points affecting the surface within

the realm of influence are moved. These "false" goal points are simply goal locations that

are interpolated from the real deformed object points being moved.

3.3.2 Control Points

Although the USP.T no longer needs to manipulate the control points directly in order to

control the deformation, the location of these points are still necessary parameters to the

deformation function. The lattice of control points serves other purposes as well. Its size

and position as a whole define the volume of space to undergo the deformation. And the

resolution of the lattice, that is the number of control points along each axis, determines the

extent of the deformation created by each control point.

If the control points are not displayed, these aspects of the control points must nevertheless

somehow be conveyed to and controlled by the user. We do this by outlining the

parallelepiped region under the influence of the control points in a bounding box that can be

manipulated and positioned over the object to be deformed. An entire object need not fall

within the bounding box. We can deform only that portion of the object within the

bounding box, clipping the rest of the object. Once the bounding box is placed on the

desired object, the portion of the object within it can be highlighted, telling the user which

part of the object can be deformed.

25

The influence of each control point spans four segments in each dimension of the lattice,

except for those near or at the ends. The more control points there are, the smaller the

region affect by any single control point. However, if users are unaware of the control

points, as they will be with our interface, then specifying the resolution of the control-point

lattice makes no sense. Instead, we use a metaphor, the effect of changing lattice resolution

changes both the size of the area being deformed and the acuteness of the curvature. So

that the consistency of the object itself appears to change, and we speak of altering the

taffiness of the object. Increasing the taffiness increases the resolution of the lattice, so that

pulling on the object creates thin spikes with high curvature. Low taffmess creates a more

gradual rise (or fall) in the deformation, and makes the object seem more rigid. (See figure

8) Since the resolution of the lattice can be different on each axis, each dimension can have

a separate taffiness valuator. The only problem with this is that the lattice need not be

parallel with the object surface; indeed, it cannot be for objects-like spheres. In this case, it

is confusing if the object has a different taffiness in three arbitrary directions, and it is

therefore recommended that the resolution be uniform.

(a) (b)

Figure 8. (a) is a curve with high taffiness. (b) is a curve with low taffiness.

Both are pulled upward from the center.

Multiple lattices can be applied to a single object so that the user can apply several different

types of deformations. Each lattice is separate from the others, and can have a different

size, placement and resolution. Likewise, a single lattice can be used to deform multiple

objects, so long as a portion of each object lies within the lattice boundaries.

26

3.3.3 System Compensation Due to Interface Abstraction

Hiding the control points from the user implies that limitations visible before under user

control must now be handled by the system. For instance, if one can see the large gap

between control points created by extending them during a deformation, one can see that a

thin hump between them could not be made. However, when the control points are not

displayed one has no reason to believe this limitation exists.

To compensate for this loss of information, the interface refmes the lattice of control points,

fIlling in the large gaps between them, so that the user can continue to manipulate the object

without restriction or surprise. The refinement can be done in several ways, each with its

own disadvantages. One might fIrst think of using the Oslo algorithm [Cohe80] (or the

"knot insertion algorithm" developed independently by Boehm [Boeh80D to subdivide the

piecewise cubic B-splines by inserting new control points in the areas needed. Any

number of control points can be inserted, with any interval, but in order to retain the proper

global topology for the entire lattice, duplicate sets of control points must be added in all

directions to maintain the grid structure.

Figure 9 illustrates the effect of subdividing the lattice of control points using the Oslo

algorithm. Portions of the lattice gain a higher control-point resolution than desired.

Because of this, future deformations in those areas will have a different curvature from

unaffected regions, leading to unsatisfactory results.

27

(a) (b) (c)

Figure 9. Refinement using the Oslo algorithm. (a) shows the control points (filled circles)
right after a deformation. (b) shows where new control points are desired (crosses). (c) shows all
the control points added Shaded area is the portion of lattice that was not supposed to be rermed.

The second method would be to extend Forsey and Bartels' hierarchical B-spline model

[ForsSS] to three dimensions. With this solution the control points are generally added

only in the region where they are needed, but it is nevertheless unsuitable for two reasons.

First, the subdivision is exponential: that is, each level of refinement subdivides the region

twice as much as the previous level. Restricting the resolution to powers of two does not

give the flexibility needed to maintain consistent taffiness throughout the object. Second,

some areas may be refmed when they should not be. For instance, when one area to be

refined overlaps an existing area of refmement, the two areas must be consolidated into one

rectilinear region, thus creating a larger than desired area of refinement. The gray areas in

figure 10 show unintended areas refined due to consolidation.

28

A I

B

(a) (b)

A
.. - - ~-'-'-'-"""""I
I •

B
..,..,....,...,..,...~..,,' _I

(c)

Figure 10. Refinement using hierarchical B-splines. (a) Region A is a refmed portion of
the lattice. (b) B is a refmed area added later, that overlaps region A. (c) Consolidation

of the two regions. C, creates unintended refmed regions (shown shaded).

The method ultimately employed is quite simple. The lattice of control points is refined by

replacing or overlapping it with a new one. The new lattice is a regular parallelepiped of

control points that is extended to cover the same region of the object as the old lattice did

and uses the same spacing between control points as the old lattice. Now the entire object

has the same taffiness as it did before, without the side effects of the other methods and

with a minimum of new control points. Figure 11 shows how the old control-point lattice

is replaced with the new one.

29

(a) (b) (c)

Figure 11. (a) An object (shaded region) and its initial lattice. (b) After a defonnation.
(c) A new lattice replaces the initial lattice with the same spacing between control points.

3.4 Graphical User Interface

We have described up to this point a direct surface manipulation technique to defonn

objects and a model for its behavior. Two further elements would be necessary to complete

the user interface, a 2D graphical user interface for parameter specification and methods for

positioning and visually representing the lattice and magnetic tool in 3-space. However,

graphical user interface design and 3D positioning are not within the scope of this thesis,

and we do not discuss them further here.

30

4 IMPLEMENTATION

The free-form defonnation method is only one of many modeling tools that should be at the

user's disposal. It is more useful for modifying objects already created than for initial

object creation, and is also very useful for animation. For these reasons, this modeling

method and the interface described in this thesis have been integrated to some extent into

BAGS, the Brown Animation Generation System [Zele91]. BAGS is a unified modeling

and animation system that allows the creation of obj~cts, such as spheres, cubes,

superquadrics, and ducts; more complex objects are modeled using constructive solid

geometry (CSG). The placement, size, and orientation of those objects can be specified for

an instant of time or over an interval of time (for creating animations). BAGS also serves

as the testbed for research in graphics and user interface techniques

Before implementation in BAGS, all interface functionality was tested in a 2D prototype

environment. In the 2D test program the defonnation method at first used piecewise

uniform cubic B-splines to deform a square object consisting of 100 to 400 connected

points. The direct manipulation system for single and multiple constraints (object point

positions) was then implemented, and this revealed the need for adaptive lattice refinement

and adaptive object refmement. Both were implemented and tested to validate the

algorithms used. The lattice is adaptively refined by replacing the old lattice of control

points with a new lattice of control points shaped in a parallelepiped, with the same initial

control-point spacing as the old lattice (see §3.3.3).

The adaptive object refmement method used increased the number of vertices defining the

surface whenever the Euclidean distance between neighboring vertices grew too large.

31

This served two purposes. First, it maintained smooth curvature throughout the object, no

matter how acute the deformation. More importantly, however, it provided more evenly

spaced vertices for the user to manipulate after a deformation. Without this refmement,

stretching an object would produced long faces with few vertices for the magnetic tool to

tug on, and the user would be unable to manipulate certain sections of the object, as shown

in figure 12.

(a) (b)

Figure 12. (a) An object (shaded region) and the vertices (open circles) that
define its surface. (b) Mter a defonnation, the vertices have large gaps betwen

them; the arrows indicate the places where the user cannot pick a vertex.

New object point locations are computed by first calculating their FFD coordinates, and

then using those coordinates to compute the points' world coordinates. The FFD

coordinates are computed by linearly interpolating the FFD coordinates of neighboring

points. The deformation function is then applied, yielding the world coordinates for the

point. The 2D test program also allowed the user to change the resolution of the lattice at

any time during the deformation process.

A useful subset of what was implemented in the 2D test program has been implemented as

part of BAGS. The standard free-form deformation method, with piecewise cubic B­

splines as the basis, has been totally integrated into BAGS as a standard modeling method.

Any object in BAGS can be deformed. The traditional method of explicitly moving control

32

points to specify deformations has been implemented. and those familiar with splines may

prefer this method over the direct surface manipulation method. Some of the direct surface

manipulation interface has also been implemented into BAGS. The multiple-constraint

system is in place, and three tools have been developed to demonstrate the system: there is

currently a tool that positions a single object point, a tool that flattens points to a plane

defined by the tool, and a tool that moves a section of an object intact to one side of the tool

(that is, it applies the same translation vector to all points within its realm of influence).

Some aspects of the interface described here, however, are either not implemented in

BAGS at all, or are implemented with stopgap measures. For example, the lattice of

control points is not visually represented as a bounding box, but rather by a cube of the

appropriate size. The lattice is positioned on the basis of a dependency between the lattice

and the cube. The magnetic tool and its realm of lnfluence are represented with an ordinary

object, using different colors (through CSG) for the magnet proper and the realm of

influence. For the most part, relevant feedback was given by these stopgap measures. For

those parts not implemented, the 2D variation implemented in the 2D test program gave a

proof of concept and workable methods that can be extended to 3D.

33

5 FUTURE WORK

The foundations for a direct manipulation deformation tool have been laid, but many areas

must be expanded in order to achieve a complete, robust interface. A graphical user

interface that handles specifying the resolution of the lattice (taffiness of the object), the

type of tool the user wants, etc., should be built. More sophisticated 3D manipulation and

visualization methods for the magnetic tool can be employed. For instance, 3D input

devices such as the Polhemus, the Space Ball, or the VPL DataGlove could be used for 3D

manipulation of the tool, instead of the 2D mouse or tablet. Better visualization techniques

can be used to help the user see where the magnetic tool is in 3-space and in relation to the

object to be deformed. Those techniques can include projecting shadows onto a stage,

showing the world or object coordinate axes emanating from the magnetic tool, and (if the

tool is confined to a plane) showing the plane and how it intersects the other objects. The

realm of influence could also be represented more intuitively, say by a translucent disc or

square around the tool.

Adaptive lattice refmement and adaptive object tessellation have been implemented in the 2D

test program, and should be expanded to the 3D environment. Close attention must be

given to the time at which the lattice of control points is refined in the 3D environment,

since the final shape of a deformation is unlikely to be made with a single stroke of the

mouse, in the 2D case. Instead, since the pointer usually operates on a single plane, a

series of "tug on the object, move the camera" operations may be required for a single

deformation. In this case, it is undesirable to refine the lattice after each tug, as was done

in the 2D test program, and a more flexible method will be required.

34

Adaptive object tessellation is also recommended, in order to give the new extended portion

of the object enough object points for picking. Otherwise, making large defonnations

cause rifts between neighboring vertices which can be much wider than the tool. Simply

splitting the face and interpolating over the location of the existing vertices is not sufficient,

because it does not eliminate the faceting caused by curves in low-resolution objects.

Instead, the vertex locations are computed by applying the deformation function to

interpolated (s, t, u) values from the neighboring vertices. Aesthetically, it is important to

show the curvature created by the deformation. Without the tessellation, the defonnation

may look nothing like its representation at higher resolutions, and thus may confuse the

user.

As users become more sophisticated in using the tools at their disposal, they often want to

expand thr. functionality provided. If a small editor and parser were provided, the

capabilities of the magnetic tool could be extended during run time. Users would write

mathematical expressions for the functionality of the new tools they desired. If the editor

or parser could read and write fIles, a complete library of tools could quickly be developed,

and a brand-new function could be added without having to recompile or relink the

application.

35

6 CONCLUSION

Several advanced modeling techniques have been developed recently, but they are slow to

reach the general user, in part because of their poor interfaces. Properly designed

interfaces will allow these modeling techniques reach a wider audience and will become

more important as the complexity of new modeling techniques increases. The free-form

deformation modeling technique is used as an example of these techniques, and we have

described an interface developed to show how improvements can be made. With current

interfaces, users can become confused by the myriad of control points, and must expend

undue cognitive energy to analyze how to move them properly. The interface developed

visually eliminates the control points by allowing direct control over the shape of the object.

The direct manipulation interface employed lets users shape objects in an inmitive fashion,

thereby reducing their cognitive load. This technique can easily be applied to spline surface

and curve editors, allowing direct manipulation of those modeling methods as well.

36

7 ACKNOWLEDGMENTS

I would like to thank Henry Kaufman for his invaluable technical advice, encouragement,

and interest in my work, and professor John Hughes for his review of my writing and clear

explanations of many mathematical details. I could not have accomplished the integration

of my project into BAGS without the willing assistance of the BAGS guru, Bob Zeleznik.

My attendance at Brown could not have been possible without the fmandal support

provided by Digital Equipment COl.poration's Graduate Engineering Education Program. I

am also grateful for all the help, comments, and cavorting from the wonderful people in the

graphics group and professor Andries van Dam. Most of all, I am thankful for my loving

wife, Shari, whose sacrifice, patience and encouragement over the past year and a half has

been immeasurable.

37

8 APPENDIX

This section is written to document the integration of new research into BAGS, with the

intent of making subsequent integration attempts easier and guiding future enhancements to

BAGS. This section assumes that the reader is familiar with the internal workings of

BAGS; see [Hubb91], [Conn91], and related documents referenced therein.

8.1 Integration with BAGS

The free-form deformation method and interface have been integrated into BAGS as a

collection of five change operators, or chops:

• ffdeform chop - performs the actual free-form deformation to an object.

• resolution chop - specifies the resolution of the lattice of control points.

• move_cntrlyt chop - specifies how a specific control point is translated.

• magJange chop - acts as a switch by toggling the objects the magnetic

tool will affect, if any.

• mag_scope chop - allows the direct manipulation of the object by

computing the placement of relevant control points.

The first three chops, ffdeform, resolution, and move_cntrl_pt, are all that is needed to

deform an object with the traditional control-point manipulation interface. The latter two

chops, ma~range and mag_scope, facilitate direct surface manipulation. We discuss first

how a deformation is set up and executed, and then how mag_range and ma~scope

provide the direct manipulation.

38

An object is defined by the change operators (chops) contained in its state. An ffdefonn

chop in an object's state defonns the object. The defonnation is specified by a control­

point lattice, which is an object in BAGS. The ffdefonn chop actually takes two lattices as

parameters, one as the initial lattice configuration and the other as the fmallattice

configuration. The two lattices are compared against one another to detennine how the

object is defonned.

The control-point lattice is initially configured using the resolution chop and linear

transfonnation chops. The resolution chop defines how many control points there are in

each dimension; for example, the lattice in figure 2 has a resolution of (2,3,4). The

position, size, and orientation of the lattice are defmed by the linear transfonnation chops

translate, rotate, and scale. These chops move the control points as an aggregate, Le. they

affect the lattice as whole. Individual control points are manipulated by the move3ntrl_pt

chop, which positions the control points with relative offsets.

Script ordering is important to create the desired effect, since only those move_cntrl_pt

chops that occur before the ffdefonn chop are used in the defonnation. Figure 13 shows

the relative placements of the chops in their respective object states. The arrow indicates at

which point the ffdefonn chop uses the lattice object (In the current implementation, the

ffdefonn chop only uses the CTM of the initial lattice, so the initial configuration lattice can

be the same as the fmal configuration lattice. The initial configuration lattice parameter is a

hook for Extended FFDs).

39

--8~-­

-§- -e-V t
lU­• • • . • • • cntrl

tton

Figure 13. The states of Object A and the control-point lattice.

Script priority increases to the right, the small circles represent chops.

For direct manipulation of the object, the magnetic tool is introduced. a new object that

computes the location of control points using the mag....scope chop. The mag_scope chop's

parameter list includes the object to be deformed, the lattice it changes, and the group to

which the lattice belongs. In order for the mag....scope chop to work properly, the deformed

object must include changes made by previous iterations of the mag....scope chop, and thus

the mag_scope chop must come after the ffdeform chop in script order. The mag_scope

chop cannot change the control points of a lattice directly because changes to the lattice

must come before the ffdeform chop in order to take effect. Instead, the mag_scope chop

writes out move_cntrl_pt chops into the state of the lattice before the ffdeform chop.

Finding the proper position for a set of move_cntrl_pt chops during each iteration of the

mag_scope command would require state traversals through potentially large states. To

narrow the scope of the search, the lattice affected is added as a member to the group that is

passed as a parameter to the mag_scope chop. The move_cntrLpt chops are added to the

group, which relays them to the lattice. This has the additional benefit of duplicating the

move_cntrl_pt chops for every lattice in the group, which is useful for creating multiple

deformations of similar form. Defining the lattice's membership to the group at the proper

40

••

time guarantees proper placement of the move_cntrl_pt chops. Figure 14 shows how the

chops from different objects interrelate with each other to perform the direct manipulation

for FFDs.

---18.....--­
t

... ~... -
-
-•
••
v

mem­
ber •• • cntrl-@- -e­
~ ~ ...
~ ~

Figure 14. The states of Object A, the control-point lattice, the group, and the magnet.
Filled arrows represent parameters to various chops. Open arrow indicate chop written out by

mag_scope. Dotted arrow represents how the move_cntrl-pt chops are passed to the lattice.

A single object can undergo several different deformations, each defmed by a different

lattice of control points. In the event that such multiple lattices overlap in space or come

very close to one another, one must be able to determine which lattice of control points the

magnetic tool is to affect. To distinguish the lattices, each is given an associated id that is

specified in a parameter to the ma~scope chop. Which lattice the tool affects is specified

in the mag_range chop as a bit mask of lattice ids. (The bit mask is used to let the tool

41

affect more than one lattice at a time.) The ma~range chop must precede the mag_scope

chop in script order.

This interface utilizes two caches used solely by the free-form deformation operators, an

applied polyhedron cache and a vertex id cache. The applied polyhedron cache is a cache

of the polyhedron object, represented by a TRIP object, and all linear transformations

applied to it so far. The vertex id cache stores the id of the last vertex moved by the

magnetic tool. Like most caches in BAGS, the applied polyhedron cache is used strictly to

increase speed, and is created immediately before the ffdeform chop. The main purpose of

the vertex id cache, however, is its functionality. If the function of the tool is to manipulate

a single point until that point is explicitly released, then the id of that point must be stored

and fetched for each iteration through the ma~scope chop. Without the vertex id cache,

the closest point to the magnetic tool would be sought at each iteration, and this might not

be the same point each time.

8.2 Integration Obstacles

The FFD technique and the direct manipulation interface are implemented through a

collection of chops. This, however, is not the only way research is integrated into BAGS.

The FFD technique and direct manipulation interface could have been implemented together

as a controller, for example. BAGS was still being developed concurrent to the integration

of this research, and the strict use of chops can be attributed to BAGS's lack of maturity,

no documentation, and the incremental design of the FFD project. Indeed, this

implementation brought to light several deficiencies in the current framework of BAGS for

this type of implementation. Different implementations, however, mayor may not have the

same problems.

42

One of the drawbacks of this implementation is the lack of persistent computed data. In

order to get a representation of the object at a particular stage, the system must traverse the

entire state of the chop and accumulate the changes made to it up to the point of the request.

This can become extremely inefficient for complex interactive modeling tasks like FFD,

since each change specified in the FFD command requires a state traversal and

accumulation of changes. For example, each time the mouse moves to change the location

of a control point, the entire state of the object leading up to the deformation, and the

deformation itself, are recomputed. For a complex, highly tessellated model, this

computational expense is prohibitive. Fortunately, BAGS's caching mechanism retains

intermediate stages of some commands and objects, and this eliminates some, though not

all, of the recomputation. For free-form deformation, one particular cache contains the

polyhedral object in the state just before it is def~rmed. The deformation command (the

ffdeform chop) takes as one of its parameters a reference to a lattice of control points whose

position defines the shape of the deformation. Since the cached polyhedral object does not

retain any of the deformation information caused by this deformation command for any

previous iteration, all deformations are calculated, even those done before and unaffected

by the current changes to the lattice of control points. This potentially eliminates any

computational efficiency gained from the local-control attribute of the cubic B-splines.

If implemented as a controller within BAGS, the FFD interface could have operated with

fewer state traversals. The controller would be a mini-modeler within BAGS, able to do

whatever it wanted. However, isolating the FFD interface from the rest of the system

creates other problems. For instance, modeling would be done without the context of other

objects, and care would be needed in writing and updating chops so changes would be

saved in the script. Since chops need to be written anyway, there is nothing to prevent

creating a controller layered on top of the existing FFD implementation.

43

The change operators in BAGS are assumed to be atomic operations: the processing of a

particular chop must complete before any other operation can begin. This prohibits

displaying the intermediate results of a chop, which could be helpful to the user. For

iterative constraint systems that may take significant time to compute, it would be desirable

to show the user intermittent progress.

Although the BAGS architecture documentation claims that caching is done only for speed,

this is not entirely true. For example, the magnetic tool that allows the user to drag a point

first fmds the point by looking for the closest one to the tool; it then continues to use that

point until the user turns the magnetic tool off. To continue to move the same point, the

vertex id is cached and retrieved on each iteration through the ma~scope command

Without the cache, the entire object would be searched each iteration for the clo~~st vertex,

and different ones might well be found as the tool moved along the surface of the object.

Although, the vertex id can be stored elsewhere, e.g., as part of the TRIP object, using a

cache was the most appropriate option at the time.

In general, the polyhedral representation used in BAGS makes associating data with objects

difficult. If the data is stored separately, then if on the next iteration the object is

compressed, the link: between the object and the data will be out of sync. If the data is

stored with the object itself, then any invalidation of that object causes the data to be lost,

even if the reason for the invalidation does not apply to the extra data. For example, if a

color was associated with each vertex and the geometry of the object changed, the color

information would be lost, even though it had no correlation with the geometry of the

object. The invalidation conversion facility can avert such problems, but its abilities are

limited and it requires the programmer to become very intimate with the invalidation

mechanism. Because of these invalidation problems, passing some types of data from one

44

chop to·another can be precarious. For instance, the ffdeform chop generates extra data

and attaches it to the polyhedral object being deformed. This data is also used by the

mag_scope chop and is passed along through the polyhedral form. It is essential that the

data come from the ffdeform chop associated with this ma~scope chop, and no other,

since the mag_scope chop cannot generate the data on its own. If a chop that compresses

the TRIP object comes in between the ffdeform chop and the ma~scope chop, the data will

be lost. This causes an interleaving of chops that the script writer must be aware of when

dealing with multiple deformations to the same object.

Figure 15, which shows a portion of a SCEFO script used to model a head, indicate the

importance of script ordering. We note that the ma~range chop appears before any of the

ffdeform chops and that the ma~scope and ffdeform chops are interleaved A closer look

at eyelat2 shows hnw delicate the structure is. Eyelat2 deforms an eye socket of the head,

but is not directly manipulated by the tool. Since we want the eyes to be symmetrical, we

simply deform the other eye and place both eyelatl and eyelat2 in the same group, so that

its move_cntrCpt chops affect eyelat2 as well by placing. We cannot, however,

sequentially group together their ffdeform chops and place them before the mag_scope

chop that affects the eyelatl lattice. Although the magnetic tool appears to deform both

sockets simultaneously, two separate deformations are in fact involved. If the deformation

for eye2 is placed in between that for eye1 and the mag_scope chop for eyelatl, the

ffdeform chop for eye2 will corrupt the data passed from the ffdeform chop for eye1 to the

mag_scope chop. Thus the deformation must be moved after the mag_scope chop. It

could also be placed before the ffdeform chop for eye!, so long as the affected areas do not

overlap.

45

The restriction in placing the ffdefonn chop for eyelat2 can be lifted if the TRIP object

carries multiple extra data columns, one for each deformation, but that leaves open the

possibility of increasing the size of the TRIP object without bound.

In summary, a fIrm understanding of BAGS is needed before a well-though-out

integration plan can be formed. Clear and comprehensive documentation is necessary for

all those attempting to integrate their research in BAGS. The object-oriented design of

BAGS gives you just enough rope to hang yourself, if you're not careful.

46

eyelat1

eyelat2

mouthlat

head

headlat

headgroup

eyegroup

mouthgroup

tool

head

tool

head

tool

head

tool

rep o
resolution o
scale o
translate o
ctm o

rep 0
resolution 0
scale 0
translate 0
ctm 0

rep 0
resolution 0
scale 0
translate 0
ctm 0

rep 0
resolution 0
scale 0
translate 0

rep 0
resolution 0
scale 0
ctm 0
translate 0

rep 0
member 0

rep 0
member 0

rep 0
member 0

rep 0
mag_range 0
scale 0

ffdeform 0

mag_scope 0

ffdeform 0

ffdeform 0
ffdeform 0

[latticeClass, 0]

[5, 5, 2]

[1.0, 1.0, 1.0] (linear, 1)

[0.0, 0.0, 0.0] (linear, 1)

temp1.ctm ;

[latticeClass, 0]

[5, 5, 2]

[1, 1, 1] (linear, 1)

[0, 0, 0] (linear, 1)

temp2.ctm

[latticeClass, 0]

[7, 7, 2]

[1, 1, 1] (linear, 1)

[0, 0, 0] (linear, 1)

temp3.ctm

[sphereClass, 0]
[7]

[3, 4, 3]

[0, 0, 0]

[latticeClass, 0]

[9, 9, 4]

[1, 1, 1] : (linear, 1)

head.ctm ;
[0, 0, 0] ;

[groupClass, 0]

[Add, [headlat]]

[groupClass, 0]

[Add, [eyelat1, eyelat2]]

[groupClass, 0]

[Add, [mouthlat]]

[sphereClass, 0]

[0.5, (0*2)]

[0.5, 0.5, 0.5] ;

[headlat, headlat, 1]

[1,head,headgroup,headlat,1,2];

[eyelat1, eyelat1, 1] ;

[2,head,eyegroup,eyelat1,1,2];

[eyelat2, eyelat2, 1J

[mouthlat, mouthlat, 1]

[4,head,mouthgroup,mouthlat,1,2J;

Figure 15. SCEFO script fragment for modeling a head through deformations.

47

References

[Alle89] Allen, lB., Wyvill, B., and Witten, I.H., "A Method for Direct Manipulation of
Polygon Meshes", Proceedings o/Computer Graphics International '89, Earnshaw
and Wyvill, eds., pp. 451-469, 1989.

[Bart87] Bartels, RH., Beatty, J.C., and Barsky, B.A., An Introduction to Splines for
Use in Computer Graphics and Geometric Modeling. Morgan Kaufmann
Publishers, 1987.

[Boeh80] Boehm, W., "Inserting New Knots into B-spline Curves", Computer-Aided
Design, Vol 12 No 4, pp. 199-202. July 1980.

[CarI82] Carlson, W.E., "Techniques for the Generation ofThree Dimensional Data for
Use in Complex Image Synthesis", PhD dissertation, Ohio State University,
September 1982.

[Clar76l Clark, J.H., "Designing Surfaces in 3D", CACM, Vol 19 No 8, pp. 454-460.
ACM, August 1976.

[Cobb84] Cobb, E.S., "Design of Sculptured Surfaces Using the B-spline
Representation", PhD dissertation, University of Utah, June 1984.

[Cohe80] Cohen, E., Lyche, T., and Riesenfeld, R., "Discrete B-splines and Subdivision
Techniques in Computer-Aided Geometric Design and Computer Graphics",
Computer Graphics and Image Processing, Vol 14 No 2, pp. 87-111. October
1980.

[Conn91] Conner, D.B. and True, T.J., "A Reference Manual for SCEFO", BAGS
documentation, Brown University, 1991.

[Coqu90] Coquillart, S., "Extended Free-Form Deformation: A Sculpturing Tool for 3D

Geometric Modeling" Computer Graphics (Proceedings 0/ SIGGRAPH '90), Vol

24 No 4, pp. 187-196. ACM August 1990.

[Fari90] Farin, G., Curves and Surfaces/or Computer Aided Geometric Design.

Academic Press, 1990.

[Fole84] Foley, J.D, Wallace, V.L., and Chan, P. "The Human Factors of Computer

Graphics Interaction Techniques", CG&A, pp. 13-48, IEEE November 1984.

[Fors88] Forsey, D~R and Bartels, RH. "Hierarchical B-spline Refinement" Computer
Graphics (Proceedings of SIGGRAPH '88), Vol 22 No 4, pp. 205-212. ACM
August 1988.

