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Chapter 1 

Introduction 

Object-based systems and programming languages have attracted a lot of attention in recent years. 

Proponents see them as the most promising means of systematizing the development of large-scale 

software projects by facilitating the encapsulation and reuse of existing code. But it has proven 

difficult to create languages that readily permit reuse of code without violating encapsulation of 

program lacdtlle~ in some fashion. Success in the creation of object-based systems may ultimately 

depend on the construction of models for the object environment that permit careful specification 

of systems, provide a well-defined semantics, and enforce the essential properties of object-based 

systems that make them so intriguing. 

Object-based systems arose from simulation of real-world systems. Their origins can be traced to 

the language Simula [8], developed in the late sixties to expedite the coding of simulation programs. 

Later, with the introduction of classes of objects and other means of reusing code, object-based 

systems were seen as useful tools for software engineering of large systems. More recently, object

based systems have been studied as a means of exploiting the parallel-processing capabilities of 

multiprocessing or distributed computing systems. [31.] 

In turning their attention from reuse to concurrency in object-based systems, researchers left 

many fundamental problems of software reuse unsolved. It proved easier to adapt object-based 

systems to a parallel processing environment than to develop a flexible but safe method for sharing 

and reusing code in such systems, perhaps because there had been a decade or more of independent 

research on concurrency before it was applied to object-based programming. ~ow we are beginning 

to see models that attempt to deal simultaneously with issues of concurrency and sharing. 
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1.1 Granules and Aggregates 

In exploiting both concurrency and code-sharing, key concerns are granularity and composition. 

What is the appropriate size of the smallest shareable component of an object-based system, and 

how can we specify aggregates of such components that can be shared en masse? What degree of 

concurrency is appropriate for an object-based system and how can one describe the interoperation 

of collections of concurrent agents? 

As in most areas of computer science, the choice of granularity involves trade-offs. Sharing that 

is too coarsely grained can be inflexible and unresponsive to the evolving needs of a system. It 

may tempt programmers to create ad hoc arrangements whose semantics are at odds with usual 

expectations for a system's behavior, as when "inherited" properties of a class are overridden in a 

subcl?'3s (meaning, of course, that the properties actually are not inherited). On the other hand, 

very fine-grained sharing can become unmanageable or inefficient. The sheer number of shareable 

components may grow overwhelming, complicating the programming process and introducing a lot 

of overhead in the run-time environment. 

Of course, the construction of software t.ools to deal with the complexity of a system can help. 

A crucial tool, in this context, is a well-designed means of assembling shareable components into 

modules that realize on a larger scale some of the propert.ies of the system's atomic components, 

principally their encapsulation against uncontrolled access to their internal structure. This is where 

the model-builder's role is most evident-in determining how to abstract the basic components, what 

operations should be used to combine components, and what the semantics of the combination is. 

:'vlany of the comments just directed toward sharing apply equally well to concurrency. Coarse

grained concurrency (such as none at all) misses a chance to exploit the seemingly very natural fit 

between object-based software technology and parallel processing hardware technology. But very fine 

grained concurrency increases the overhead of protecting critical shared resources from concurrent 

access while ensuring that no agent is starved for lack of access to these resources. 

When dealing with concurrency, unlike sharing, we can draw on widely recognized, largely suc

cessful existing models. If there were a ·'Calculus of Shared Modules (CSM)" to accompany Milner's 

Calculus of Communicating Systems (CCS), the stat@ of object-oriented programming would be very 

different. Of course, the task of integrating these two calculi into one model might still remain. 
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1.2 Looking Ahead 

This thesis, then, will examine some approaches to modeling the object environment in object-based 

systems, considering especially their success at handling concurrency and sharing. 

Chapter 2 discusses several aspects of object-based systems that must be dealt with in any 

successful model of such systems-encapsulation, concurrency, communication, and sharing. While 

only the use of objects and perhaps classification are regarded as defining characteristics of an object

based system, features like message passing and concurrency are often critical to the practical success 

of a system. 

Chapter 3 explores the modeling of concurrency in some detail, both for the insight that it offers 

on modeling generally and because two of the object models that we examine in subsequent chapters 

are rooted in the modeling of concurrency. In chapter 3, too, a semantics for CCS is developed, a 

process that exemplifies the construction of semantics for other models. 

Chapters 4 through 6 each examine one model at some length-the Actors model of Hewitt 

and Agha [2], the Abacus model of Nierstrasz [37], and the Maude model of Meseguer [29]. The 

Actors model successfully represents a dynamic, highly concurrent object environment, but provides 

little support for classification, inheritance, or other forms of sharing. Abacus addresses some of 

the deficiencies of Actors by augmenting CCS with facilities for encapsulating complex, multi-agent 

modules. Maude exemplifies a complementary approach to modeling object-based systems, one that 

begins with a strong foundation in type theory, then tackles issues of concurrency. 

Throughout the discussion, we must keep in mind the role of modelling in computer science, 

an issue that Milner discusses in his recent exposition of CCS [33]. Whereas physical and social 

scientists construct models of pre-existing systems over which they have little control, computer 

scientists seek useful models to guide their own future construction of systems. The models should 

be judged by their ability to clarify the important issues represented by the class of systems being 

modelled and to guide the programmer in her use of such systems. 

In many respects, all work in computer science is modelling-down to the construction of the 

simplest programs. These modelling activities differ in their level of abstraction. So, while an 

object-oriented program may itself be a model of some real-world situation, it also exists within the 

framework of a more abstract model implemen ted in the object-oriented language used to write the 

program. That model, in turn, may be the outcome of design choices from a universe of possible 

designs that adhere to the object-oriented view of computation. 

Our concern is not with individual programs or languages (though they provide essential il
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lustrations and tests of one's ideas), but with the nature of object-oriented programming and the 

prospects for providing it with a rigorous conceptual foundation. The latter is an extraordinarily 

difficult problem, lying at a nexus of several of contemporary computer science's greatest challenges

the development of formal programming language semantics, the construction and management of 

complex software systems, and the exploitation of concurrency. 
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Chapter 2 

Aspects of object models 

What features of object-based systems must a model reflect? Some of those discussed here are 

intrinsic features of such systems, while others are critical to the practical success of a system. In 

this chapter we briefly examine several important aspects of object-based systems that should be 

considered when constructing a model-the objects themselves and their encapsulation, concurrency, 

communication, and different forms of shuing. The key issue is how each aspect of a model of objects 

can be sustained without permitting a violation of the fundamental aspect of encapsulation. 

Of these different aspects, concurrency has received the most extensive study, culminating in 

several formal models of concurrent computation. These well-developed models can, in turn, be the 

foundation of models for object-based programming environments. For this reason, and because of 

the growing importance of concurrent systems, models of concurrent computation are covered in 

much more detail in the following chapter. 

2.1 Objects and Encapsulation 

Some of the appeal of object-based systems derives from the notion that the programmer's intuitions 

of the real world developed over decades of living in it can be brought to bear in the artificial world 

of an object-based program. 

In the real world are people, organizations, machines, and structures. Each has an internal state 

determined by its mental condition or memory or the arrangement of its components. Each provides 

services to others and demands services of others in its environment. Requests for service must be 

expressed in a manner that the recipient of the request can understand-e.g., through suitable use of 

language for a human recipient. or appropriate use of control mechanisms for mechanical recipients 
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of service requests. 

In abstracting the complexity of the real world to the artificial world of a program, considerable 

simplification takes place. At the heart of the object-based environment is a collection of objects, 

each with an internal state represented. perhaps, by the value of instance variables associated with 

the object. Typically, an object will respond to some form of message directed to it. The response 

may involve changing the state of the object or generating messages directed to other objects or to 

itself. 

The existence of objects with an internal state is a defining characteristic of object-based systems. 

[38,47] There is also universal agreement that the internal state of an object should be encapsulated 

in some fashion, so that state changes occur in a carefully controlled way. One way of expressing 

this is to say that an object is an abstract data type with state [43]. The abstract type defines the 

interface through which other entities interact with the object and can affect the state of the object. 

This notion of object also recalls automata which change state only as a result of processing 

input symbols. In fact, an automaton equipped with an unbounded set of internal states provides a 

reasonable model of the behavior of a single object. But the difficulty in developing a viable model 

for object-based systems lies in modelling collections of objecLs anrl the ways in which they interact. 

A related alternative model might view the entire system as an automaton, with the objects 

as a scheme for providing some structure for the representation of the automaton's state and for 

partitioning the state into separately controllable components [47, p. 23]. An indication of how 

this arrangement might be implemented can be seen in the work on Statecharts and Objectcharts. 

[6,21,22,23] 

It is now more common, however. to regard objects as active agents rather than passive automata 

slavishly processing inputs in lockstep with other components of the system in which they are 

embedded. The active agents can delay processing some inputs while giving other inputs priority 

treatment. Their actions need not be synchronized with other objects, except when synchronization 

is essential to the task at hand. And they can be charged with guarding their own encapsulation. 

The objects in an object-based system inevitably become a fundamental unit of granularity 

and construction in the system. The granularity of concurrency is measured against objects (e.g., 

whether concurrency is permitted within or merely between objects) and program modules are 

typically aggregates of objects. 

Key design issues for a model are the amount of structure allowed an object and the pervasiveness 

of objects in the system. Are objects "flat" constructs containing only their instance variables, or 

can objects contain other objects? Is "everything" in the system an object, or is the system built 
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from a number of fundamentally different units? A homogeneous model in which all constructs in 

a system are objects certainly has aesthetic appeal and may simplify theoretical analysis, though 

perhaps at the cost of rather unnatural representation of some concepts. 

2.2 Concurrency 

While creating encapsulated objects is not difficult in itself, preserving that encapsulation as a system 

is endowed with other features can be challenging, as many authors have pointed out. [46,36] 

One desideratum for object-oriented systems that has had a great influence on the development 

of models for such systems is the ability to exploit concurrency. Great strides have been made 

in developing computing hardware that enjoys the benefits of parallel processing, either through 

the inclusion of several processors in a single machine or by use of a network of machines working 

in close cooperation. Creation of software to simplify the task of programming for such hardware 

environments has lagged behind. But object-oriented systems promise to be a big step in the right 

direction because a software environment of multiple, independent objects lends itself so naturally 

to a division of labor among multiple processors. 

The issue to be resolved is how to permit concurrent activity of many objects without violating 

the encapsulation of their internal states. As in any concurrent system, precautions must be taken 

to ensure that a data structure being manipulated by one process cannot be accessed by another 

process when the structure is in an inconsistent state. Nierstrasz [36] identifies three approaches to 

meeting this need: In the orthogonal approach, methods for assuring mutually exclusive access to 

critical data (such as locks, semaphores, or monitors) are separate from facilities for encapsulating 

an object. The contrasting homogeneous approach uses the same mechanism to control all access 

to an object's internal state, typically by using active objects endowed with facilities for their own 

protection. The heterogeneous approach combines the first two approaches by providing both active 

objects that protect themselves and passive objects whose use is confined to single-threaded active 

objects. 

The orthogonal approach is common in object-based languages in which concurrency has been 

grafted onto a pre-existing language. The homogeneous approach is aesthetically more pleasing and 

likely to be theoretically more tractable than the other approaches. The heterogeneous approach 

offers certain efficiencies by allowing passive objects to be maintained with reduced overhead. 

The granularity of concurrency with respect to objects is another parameter which varies from 

one object-based system to another. An object might permit just a single thread of computation to 



enter it at a time, or could handle multiple threads. Alternatively, it might appear externally to be 

single-threaded, but spawn multiple threads internally in order to respond to a request. 

For modeling purposes-in particular, to take advantage of existing models of concurrency-it is 

convenient to allow concurrency at least between individual objects. If an object's structure permits 

it to contain other objects, then concurrency within objects would be provided as a corollary, while 

if objects are flat structures then they might be modelled as internally sequential. 

Once the units of concurrency in a model are established, one can consider how to assemble these 

units into more complex concurrent systems. Again, established models of concurrency provide 

considerable guidance, but care must be taken that encapsulation of objects or modules is not 

compromised because of the way that they are embedded in a concurrent system. 

2.3 Communication 

Virtually every object-based system is said to use message passing to let objects request services of 

other objects. In many respects, message passing is not so much a special feature of object-based 

systems as it is an un:woiduble eorollary of the encapsulation of an object's internal state. If direct 

manipulation of the internal state is to be avoided, then int.eraction with the object must occur at 

a distance. A client object sends a me~sage to request a service rather than directly accessing the 

internals of a server object. 

This behavior is no different from what one might see in a well-written program in a procedural 

language using abstract data types. A program module needing to use a data structure will invoke 

the appropriate procedure rather than manipulating the data structure itself. Where the procedural 

and object-based languages may differ is in the flexibility of the communication mechanisms and 

the extent to which their use is enforced. The procedural program, in most cases, could access the 

data structure without invoking the procedure; the object-based system, by contrast, will typically 

provide no means of using information internal to an object without sending that object a message. 

There are variations in the message-passing protocols used by different object-based systems, 

often depending on the degree of concurrency anticipated by system designers. A system running on 

a single processor might do very well by broadcasting messages, perhaps by making them available 

in an area of memory shared by all objects. But such a mechanism could create an intolerable 

bottleneck in a system that is highly distributed. In the latter case, point-to-point communication 

may make more sense, although some means of addressing objects and assuring the delivery of 

messages is then needed. 
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The synchronicity of communication is another variable in object-based systems, particularly 

those that provide for some concurrent operations. In synchronous communication, both sender 

and receiver must be ready for the exchange before a message is passed. Some systems require 

the sender to await a response before proceeding with other activity. This may be the means of 

assuring mutually exclusive access to encapsulated data in the presence of concurrent computation. 

Other systems synchronize sender and receiver at the moment of communication, then allow each 

to proceed independently. 

If asynchronous communication is permitted, then some provision must be made for the possibil

ity of an object receiving a message while it is busy responding to an earlier message. The receiving 

object could be required to manage its own flow of communications, or there might be a uniform 

facility provided to all objects by the system in which they are embedded. 

Some of these issues fall more in the realm of implementation than modelling. The model may 

imply that asynchronous communication is permitted, or require that any implementation provide 

assured delivery of messages, but typically says little more. 

2.4 Sharing 

The prototypical object-based languages, Simula [8] and Smalltalk-80 [19], provide mechanisms for 

classifying objects that share common properties and for allowing a class of objects to bequeath 

its properties to a subclass (which might then augment those properties with others specific to the 

subclass). For a time, the use of classification and inheritance was treated as a defining characteristic 

of object-based systems. More recently, systems that rely heavily on encapsulation of data objects 

without providing these forms of sharing have been developed, and recognized as object-based. 

But systems using classes and inheritance occupy an important place among object-based systems. 

Wegner [47] identifies this category of system as object-oriented. 

Classes and inheritance are just two of a large number of sharing mechanisms used by different 

object-based systems. Each of these mechanisms is something of a two-edged sword. They simplify 

the construction of many similar objects and help to enforce consistency of behavior between such 

objects. But in reducing the locality of data by establishing complex interrelationships among 

different collections of objects, they complicate the reuse of modules in different contexts and risk 

violating the encapsulation of objects [46]. 

The two most widely used sharing mechanisms are class and type hierarchies. Two objects of 

the same class can be constructed from a template giving their implementation in terms of the 
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data structures and procedures needed for their operation. Objects of the same type share identical 

specifications of external interface, indicating the structure of messages that objects of that type can 

accept. For example, a description of the class ComplexNumbers might indicate that each complex 

number is to be represented by its real and imaginary part, and that complex numbers-will have 

available to them a method for drawing graphical representations of themselves. Type information 

for the same collection of objects would say nothing about their internal representation, but would 

indicate that they will respond to messages asking for computation of the modulus or argument of 

a complex number, or for arithmetic combinations of two complex numbers. It might also specify 

a message requesting that a complex number be depicted graphically. The depiction would likely 

be accomplished using the previously mentioned graphical representation method available to the 

ComplexNumbers class. 

It is easy to confuse class and type because often the methods used by a class are just the 

operations published for use by clients of the class's objects. Generally, in fact, a class is also a type, 

but the converse is not true. There is a tendency to merge the type and class hierarchies into one, 

as was done in Smalltalk, even though the information provided by the two hierarchies is logically 

distinct and the merged hierarchy may be inflexible and not readily amenable tc. the develnpment 

of rigorous semantics. 

Researchers have had greater success in developing a careful theory of types alone, perhaps 

because type information is purely behavioral and only partially specifies an object. Nierstrasz 

[40] and Danforth and Tomlinson [9] survey the study of types for object-based languages. An 

algebraic theory of types forms the underpinnings of Meseguer's approach to concurrent object

based computation, as we shall see in chapter 6. 

The modeling of sharing seems particularly difficult, no doubt partly because there is no widely 

accepted solution to the problem. At times, particularly when talking of code sharing, we appear 

to need a metalanguage allowing us to describe which parts of a program are to be accessible 

to which objects. On the other hand. the complexity of sharing may just be a reflection of the 

complexity of reality. If a simple block structure is not enough to describe and thus control access 

to program modules, perhaps that is because the program seeks to model complicated, changing 

interactions among real-world entities that refuse to adhere to a straightforward hierarchical pattern 

of communication. A neat and tidy semantics may be possible only by settling for programs that 

less faithfully represent the domains that the programs seek to model. 

Still, even "less faithful" representations would benefit from a systematic approach to sharing. 

The model for sharing should an ticipate from the outset the different degrees of sharing that might 
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be needed. While inheritance can be represented in a hierarchical structure, inheritance that can 

be overridden is not hierarchical. Some other structure, such as a lattice, should be the basis for 

the model in the latter case. Software tools can help manage sharing by keeping track of shareable 

modules in the environment, but without a clear semantics to enforce, such tools may only simplify 

the misuse of the modules. 

Efficient sharing of class information is perhaps the great unsolved problem of object-oriented 

semantics. Many researchers defer the problem by building models whose foundation is a represen

tation of concurrency, the hope being that classification mechanisms can be added later. Others, 

such as Meseguer [29], create a well-supported type structure, then implement classes as types by 

defining messages to assign or retrieve the value of each constituent of an object in that class. This 

does not offer the flexibility of logically distinct type and class structures. 
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Chapter 3 

Models of concurrent systems 

As a starting point for models of concurrent object-oriented systems, most researchers have turned to 

the two best known and most highly refined models of concurrent systems, Hoare's Communicating 

Sequential Processes (CSP) [26] and Milner's Calculus of Communicating Systems (CCS) [33]. We 

will first consider object-based systems as examples of a more general class of systems called reactive 

systems, then discuss some of the requirements for models of reactive systems, and finally examine 

some of the details of CCS as it applies to object-oriented systems. 

3.1 Reactive and Transformational Systems 

Pnueli [4.5] contrasts two basic types of systems-transformational systems and reactive systems. 

Transformational systems are exemplified by early computer systems that provided just one processor 

on which each process would run to completion (or abortion) before another process was allowed to 

commence. A program running in batch mode can also be viewed as a transformational system. Such 

systems are modelled readily as functions transforming an input into an output. The function can 

be implemented as a machine or program in which a series of instructions is executed sequentially. 

Transformational systems are closed systems. Once they have received the necessary input, all 

the actions that they take are internal until the output is produced. Whatever the actual timing 

of inputs and outputs for a transformational system, one can regard all inputs as being available 

when a process is initiated and all outputs as being generated at the completion of the process. The 

system's em"ironment, which is the source of the input and the target of the output, plays such a 

limited role that there is no need to include it explicitly in models of transformational systems. 

Time, too. plays little role in modelling transformational systems since the value of a function 
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does not depend on when it is evaluated. When the function is implemented as a machine or 

program, there is a rudimentary notion of time implicit in the sequence of transitions or instructions 

executed, but this involves merely a simple linear ordering in which quantitative details of timing 

are irrelevant. Variables and other objects in a model of a transformational system are under the 

sole control of the process being modelled. They cannot change between instructions of the modelled 

process, so time is, in effect, the sequence of instructions or transitions. 

One is often interested in the correctness of a given implementation of a transformational 

system-whether the output produced is indeed the result that would be obtained by applying 

the given function to the machine's or program's input. Formal methods of program verification 

that provide an adequate framework for reasoning about transformational systems have been de

veloped by Floyd and Hoare [4,14]. These methods involve decomposing a system into components 

each of which is itself transformational. The input/output relationship for the entire system is then 

inferred from the input/output behavior for the components. 

The features of a transformational system that allow it to be modelled by a function are that no 

events of extrinsic interest occur between the initial input and the final output, and that, aside from 

determining the original input, the system has total control over the computation that produces the 

output. Complex systems that can be subdivided into simple transformational components can also 

be treated successfully by a functional model. 

Reactive systems, on the other hand, either share resources with an external agent or are in 

frequent communication with their environments. Complex systems whose components are reactive 

are also best regarded as reactive even if they might also be viewed as transformational systems. For 

example, an object-oriented program to compute some function is, at its top level of abstraction, a 

transformational system. But any analysis of the program is likely to involve components (objects) 

whose behavior cannot easily be modelled functionally. 

A functional model of computation does not serve well for many modern systems, which may 

involve multiprogramming or multiprocessing to permit several processes to coexist in the system 

and interact with one another. Nor is the functional model well suited to programs such as operat

ing systems or database management systems which, in principle. never terminate but continually 

respond to input from their environments. Representing the semantics of a system by a function sup

presses all information about intermediate states of the system-information crucial to anticipating 

system response to actions that might be taken by the environment at any time. Implementations 

of functions introduce intermediate states, but formalisms such as automata provide no systematic 

means of describing a complex system in a structured way or of indicating concurrent operation of 
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several processes. 

3.2 Requirements for a Model of a Reactive System 

A model of reactive systems should provide some means of specifying the behavior of a system and 

of proving that an implementation of the system meets its specification. Thus, implementations 

and specifications must have a well-defined semantics that lends itself to some method of proving 

correctness of the implementation. To facilitate correctness proofs, modelling must, most likely, be 

compositional. That is, it should be possible to describe a system as an assembly of interacting 

components, each of which can be specified and proved correct in its own right. Compositionality is 

one means of managing the complexity of concurrent systems, and, of course, compositionality lends 

itself well to object-oriented programming and its software engineering goal of creating components 

that can safely be reused in a variety of contexts. 

Reactive systems present special problems when it comes to proving their correctness because 

of vagaries in the timing of different processes. One must not only confirm that processes will 

behayc cmrectly when running, but also ensure that the system cannot become deadlocked and 

cannot produce behavior in which some processes are denied access to critical resources, whatever 

the relative speeds of these processes are. 

The model should also allow a system to be described at an appropriate level of abstraction. The 

functional model of an isolated process abstracts away from details of circuitry or programming to 

treat automata or programs as black boxes that merely exhibit appropriate input/output behavior. 

Similarly, we would most likely want to characterize interactive systems in terms of the observable 

aspects of their behavior, and regard as equivalent any implementations whose observable behaviors 

are essentially the same. This approach is in accord with maintaining the encapsulation of the 

objects in an object-oriented system. 

Furthermore, in combining different modules to form a larger system, we may want to suppress 

details of the modules' specifications that are unimportant to the observable behavior of the system 

as a whole. That is, an action regarded as observable for a module may be an internal communication 

of the overall system. Similarly, our choice and arrangement of modules may be an implementation 

detail when viewed from the level of the system. 

The model will necessarily abstract some features of the real world for the sake of simplification 

or to focus on certain aspects of real systems. Most models of reactive systems include some notion 

of an event without specifying the nature of an event in great detail. The most important property 
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of an event is that it is atomic as far as the system is concerned; it need not be instantaneous. 

Typical events are the receipt or transmission of messages. The current state or configuration of a 

system is also handled abstractly by most models of concurrent systems. Details of how a state is 

represented (say, by a collection of variables with certain values) are largely ignored. Quantitative 

aspects of time are likewise omitted from most models, which instead use qualitative relationships 

among events, like precedence or co-occurrence. Hewitt and Baker [25] and Clinger [7] present 

axiomatic approaches to timing considerations in concurrent systems. 

There are, of course, certain specific types of behavior that a model should be able to describe 

in detail, including sequential, nondeterministic, and concurrent operation. Sequential operation 

is a sort of base case, familiar from the description of non-interactive systems. It may reflect the 

temporal ordering of events within a process or the completion of one process before the start of 

another. 

The possibility of concurrency is at the heart of modeling reactive systems. A multiprocessor 

machine would certainly include concurrent processes, but even in the simple case of a single program 

interacting with its environment, we may want to regard the environment as a process operating 

concurrently with the program. Such <'.n approach allows the environment to be described in the 

same language used for all other processes, lending an attractive economy to the model. 

Nondeterminism arises in two ways·. First, a collection of processes-each, perhaps, correspond

ing to an object in an object-oriented system-constitutes a non-deterministic system because, in 

ignoring timing considerations, we cannot (and may not want to) specify which of the processes will 

act next. From a given state of the system, the next action taken may be constrained to lie in the 

set of actions that individual processes can carry out next, but within that set the next action is 

undetermined. Models that record a system's behavior using a total ordering of the observed events 

must regard as equivalent behaviors that differ only in the order in which events from such sets of 

undetermined actions occur. 

Another source of nondeterminism in a system is the environment in which it operates. A system 

currently anticipating an input from its environment has little control over what that input might 

be. A model of the system would reflect this lack of control in non-deterministic behavior. While 

this non-determinism seems a more intrinsic feature of reactive systems than that arising from the 

uncertain timing of events, it is, to some extent, an artifact of our wish to develop compositional 

approaches. An overall system might be deterministic, yet be built from components which, when 

viewed in isolation, are non-deterministic. 

There is considerable variety in the mathematical models of reactive systems that have been 
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proposed. Graphical models include Petri nets and statecharts. Milner's ees and sees, and 

Hoare's esp are algebraic, while models like event structures represent concurrent systems using 

relations or partial orders. Semantics for these models may be operational or denotational. We will 

be concerned here principally with ees, but it is also convenient to introduce a notation-transition 

systems-that might be regarded as the assembly language of reactive system modelling, but which 

nonetheless allows a simple graphical representation of system behavior. 

3.3 Transition Systems 

Transition systems are related to non-deterministic automata. To be specific, a labelled transition 

system is a structure 

T =(Q,~, qo, E, )..), 

where Q is a set of states, ~ is a finite alphabet or set of labels, qo E Q is the initial state, E ~ Q x Q 

is the transition relation or set of events, and)" : E ---. ~ is the labelling function. 

A labelled transition system differs from the usual notion of a non-deterministic automaton in 

several ways. A transition system may have an infinite set vf st«tC:l ard lacks any designation of 

final states. This is consistent with our informal notion of a reactive system as one which runs indef

initely with no intention of producing a final result. Also, the input symbols of a non-deterministic 

automaton have been replaced by labels which may correspond to message-passing or other events 

related to operation of the system. But we can still regard a transition system as a computing device 

that starts in state qo and successively changes state as events occur. 

An advantage of using labelled transition systems as a model of computation is that they can be 

represented effectively as a directed graph with vertex set Q, the set of states, and edges given by 

E, the transition relation. Figures 3.1 and 3.2 are two labelled transition systems over the alphabet 

{a, b}. The first has four states and models counting modulo 4, with events labelled a corresponding 

to incrementing the counter and those labelled b being decrements of the counter. The second system 

is an infinite binary tree in which each node has outgoing edges (or transitions) labelled by a and b. 

A computation or path in a labelled transition system is a sequence of states p = (ql, q2, ... , qn) 

such that, for each i with 1 :S i < n, (qi' qi+d E E. The length of the path is n - 1. When n = 1, 

we have the empty path at ql' 

We can extend the labelling function).. to computations as follows: Let ~* be the set of all finite 
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Figure 3.1: A labelled transition system, T
 

Figure 3.2: Another transition system, UT 
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strings of labels, including the empty string If:. For the arbitrary path p given above, define 

if n = 1 

otherwise 

That is, A*(p) is the string formed by concatenating the labels on the individual edges of p. If (J' is 

the label on a path from state q to state q', we write q .!!... q'. 

Any transition system T can be "unrolled" to create a new transition system UT that records 

all of the computation histories of the original system. Starting with transition system 

T =(Q, E, qo, E, A), 

the unrolled system is 

UT = (Q', E, q~, E', N), 

where Q' is the set of all computations of T that begin at the initial state of T, and the initial 

state qfJ of UT is the empty path at qo. An event of UT is the extension of a computation of T by 

one more event of T. That is, (p,p') E E' iff p = (qO,ql, ... ,qn) and p' = (qO,ql, ... ,qn,qn+l) are 

computations of T. The label >.'((p,p')) in UT is the same as the label A((qn, qn+l)) on the final 

step of p'. As an example, notice that the transition system of Figure 3.2 is the result of unrolling 

the system in Figure 3.1. 

There is a one-to-one correspondence between states of UT and computations of UT beginning 

in the initial state. This indicates both that UT has the graph structure of a tree and that unrolling 

UT will not produce an essentially different transition system. UT and UUT are isomorphic in an 

easily-defined sense. 

3.3.1 Modelling with Transition Systems 

While transition systems will be a useful device for describing computation, they are not in them

selves suitable models for reactive systems. Most importantly, we lack a language for specifying 

behavioral properties of transition systems and composing them from simpler systems. We also 

must indicate how transition systems represent concurrent behavior and how we can prove that a 

transition system has a desired property. 

In some ways, transition systems are too detailed to be good models of reactive systems. What 

we really need to know about a reactive system is the way that it interacts with its environment. 

The system's states are important only insofar as they facilitate the appropriate behavior. 
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Consider a simple vending machine providing a small assortment of expensive beverages-cans 

of Coke or Sprite, each costing a dollar. The customer can insert a dollar bill or push one of two 

buttons. The machine must recognize the customer's action and dispense the appropriate drink. We 

will assume that if the customer puts in a second dollar bill instead of selecting a drink, then the 

machine will return the bill. Sometimes the machine may just return the first bill, too-behavior 

familiar to anyone who has used bills in a vending machine. 

Figure 3.3 presents a transition system that represents the machine. Events labelled D, C, and 

S correspond to the machine's recognition of the customer's actions of inserting a dollar, selecting a 

Coke, and selecting a Sprite, respectively. Events labelled DD, DC, or DS correspond to dispensing 

a dollar, Coke, or Sprite. The labels thus indicate the visible behavior of the machine, and the 

transition system describes the sequences of visible events to which the machine responds. 

Of course, the machine need not be built in the way that the transition system of Figure 3.3 

indicates. For example, it might be that when a dollar is inserted, the machine enters a state in 

which it attempts to verify the genuineness of the bill. Only when the bill is found to be good would 

the machine enter a state in which it will acknowledge the customer's button pushing. Unobservable 

events such as checking the bill are usually indicated by a. specIal label T. A transition system that 

models such checking of the dollar bill is shown in Figure 3.4. 

Just by noting the observable events, the customer cannot tell which of the two designs were 

used. In either design, the customer could either select a drink or have the dollar returned after 

inserting the first bill. While checking the bill may take time, there is no assurance that it will take 

enough time to be noticeable. In any case. our models are to be abstracting from quantitative timing 

details. All we require is that, if the system does not take any visible action in a certain state, it 

will eventually take an invisible action if such an action is among the options for the current state. 

3.3.2 Equivalence Classes of Transition Systems 

If systems are specified according to the behavior that they exhibit externally but are built by 

arranging internal states or subsystems. then there may be many systems satisfying a given speci

fication, as was indicated above. Even more, two systems may be identical as far as any external 

observer can tell, so that both would satisfy all the same specifications. The systems are equivalent 

In some sense. 

To submit this informal notion of equi valence to mathematical analysis, we must be precise about
 

the sort of experiments that our external observer can perform. Varying the experiments allowed
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Figure 3.3: Transition system for vending machine 

Figure 3.4: Modified vending machine 
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the observer leads to differing models of reactive systems. Shall the observer consider the effects 

of individual actions, bounded sequences of actions, or arbitrary sequences of actions? May the 

observer place the systems under study in arbitrary contexts? How should information about the 

failure of a system to perform an action be used? In the presence of nondeterminism, conclusions 

drawn from an experiment are necessarily provisional. That a nondeterministic system didn't take 

some action need not mean that it can't take that action. All that may be required is a slightly 

different sequence of nondeterministic choices during the preceding computation. 

The answers to these questions are nearly as diverse as the models of concurrent systems, but 

many authors rely on some notion of bisimulation, the ability of two systems to simulate certain of 

one another's computations in some fashion. 

3.3.3 Bisimulation 

Let 

T; = (Qi, E, qi, Ei' A;), i = 1,2 

be two transition syst.ems on the same alphabet. A strong bisimulation between T 1 and T2 IS a 

relation R ~ Ql X Q2 satisfying these conditions: 

(i)	 The initial states are related: (qll q2) E R. 

(ii)	 If (s, t) E Rand s ~ s' in T1 for some (J E E, then there is a state t' E Q2 such that t ~ t' in 

Tz and (s', t') E R. 

(iii)	 If (s, t) E Rand t ~ t' in Tz for some (J E E, then there is a state s' E Ql such that s ~ s' in 

T1 and (s',t') E R. 

The	 systems T 1 and T2 are strongly bisimilar if there is a strong bisimulation between them. In 

that case, we can write T1 "-' Tz. One can show that the relation "-' is an equivalence relation which 

is itself a strong bisimulation. Indeed, it is the largest strong bisimulation between two transition 

systems. 

The existence of a strong bisimulation implies that a computation of any length beginning at a 

state of one system can be matched, step for step, by a computation with the same label beginning 

at a related state of the other system. In particular, any computation beginning at the initial state 

of one system can be simulated by the other system. For example, the systems in Figure 3.5 are 

strongly bisimilar, while those in Figures 3.6 and 3.7 are not. Figure 3.7 presents perhaps the 

trickiest of the three examples. If there were a bisimulation between them, both of the states 1 and 
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Figure 3.5: Strongly bisimilar systems 

Figure 3.6: Weakly bisimilar systems that are not strongly bisimilar 

Figure 3.7: Non-weakly-bisimilar systems 
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2 of the first system must be related to state I' of the second system. But then there is a transition 

from state I' labeled b that is not matched by a similar transition from state 1. As another example 

of strong bisimulation, notice that any transition system T is strongly bisimilar to its unrolling UT. 

Strong bisimulation suggests that an observer of a system can detect the occurrence or failure 

of any action, including an invisible action, but cannot examine the internal state of a system. 

A weaker form of bisimulation posits an observer who can sense visible actions, but not invisible 

actions. For any u E E", define the visible pari of u to be the string Uv E (E - {T})" obtained from 

u by removing all occurrences of T. Write q ~ q' if q ~ q' for some pEE" such that uv = Pv. 

Weak bisimulaiion allows a computation labelled by u in one system to be simulated by a 

computation in the other system whose visible part is U v ' To be precise, if T1 and T2 are two 

transition systems, as above, then a weak bisimulation between T1 and T2 is a relation R ~ Q1 X Q2 

satisfying these conditions: 

(i)	 The initial states are related: (q1,q2) E R. 

(ii)	 If (s, i) E Rand s ~ s' in T1 for some u E E, then either u = T and (s', i) E R, or there is a 

state i' E Q2 such that i ~ i' in T2 and (s'! i') E R. 

(iii)	 If (s, i) E Rand i ~ i' in T2 for some u E E, then either u = T and (s, i') E R, or there is a 

state s' E Q1 such that s ~ s' in Ii and (s', i') E R. 

The systems T 1 and T2 are weakly bisimilar if there is a weak bisimulation between them. 

It is clear from the definitions that every strong bisimulation is a weak bisimulation. The systems 

in Figure 3.6 provide an example of systems that are weakly bisimilar but not strongly bisimilar. 

Under weak bisimilarity, the computation labelled Tb in the first system of that figure can be sim

ulated by the computation labelled b in the second system. Weak bisimilarity equates an invisible 

action with inaction, so a system all of whose actions are invisible is weakly bisimilar to a system 

making no t.ransitions. 

Strong and weak bisimilarity are both equivalence relations, so they partition the class of all 

transition systems over a given alphabet into disjoin t equivalence classes of systems. System behavior 

is a	 characteristic of the class, while individual members of the class indicate different means of 

achieving that behavior. The equivalence class is a single semantic object associated with certain 

system specifications. By changing the equivalence relation used to classify transition systems, 

one can tune the semantics of a model so that it is in accord with the intended meaning of the 

specification language and so that it is mathematically tractable. 
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3.4 Calculus of Communicating Systems 

Milner's Calculus of Communicating Systems (CCS) [32,33] was an early, highly influential attempt 

to provide a model for concurrent systems that would have the properties outlined in section 3.2. It 

provides a framework within which much of the later work in the area of concurrent systems can be 

understood, and illustrates many of the concepts introduced in connection with transition systems. 

3.4.1 Syntax and Informal Semantics of CCS 

Milner adopted the point of view that a model of concurrent systems that strove for compositionality 

would most likely be algebraic. His task, then, was to find a small set of simple systems and primitive 

operations from which all other systems could be constructed. These systems and operations would 

be the constants and operations in his algebra of communicating systems. 

CCS models asynchronous processes that synchronize by communicating. Asynchronicity means 

that, while each process takes actions in a certain sequence, there is no time metric that would 

allow the occurrence of an event in one process to be compared to events in another process. Our 

only me::.n:; of synchronizing such processes is to use communication channels through which two 

processes can rendezvous at certain points in their computation. A process requiring an input from 

a particular source must wait for the source process to reach the point where it can output the 

needed information. The synchronization of the output of one process with the input of another 

gives a loose control of the ordering of e\"ents between the two processes. 

We can develop CCS using the language of transition systems. We require a label set ~ that can 

be expressed as the disjoint union ~ U ..s. U {T} of three sets of actions. ~ and Li are in bijection 

with one another. In fact, we let 

..s. = {a I a E ~}. 

The actions a and a are complementary. We can, for example, imagine that a represents sending 

an output signal on a certain channeL while a corresponds to the receipt of an input signal on the 

same channel. 

We shall also restrict our attention to transition systems whose underlying graph structure is 

that of a tree. Milner terms these systems synchronization trees. The effect of this restriction is 

to suppress details about states since they are characterized by the paths through which they can 

be reached. The restriction is, up to strong bisimulation, no loss in modelling power since every 

equivalence class of strongly bisimilar systems contains the unrollings of the systems in the class, 

and those unrollings are trees. Ignoring details about a system's state is also consistent with the 
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goal of encapsulating the state. 

We can now give a recursive definition of the syntax of ees, along with an informal description 

of the intended semantics. For this purpose, let X be a countable set of variables, E an alphabet 

with the structure described above, and I a countable index set. Assume that B, B', and B j (for 

each i E 1) are well-formed ees expressions. Then the following expressions are also well-formed: 

(i)	 nil. This expression is mean t to denote a totally inactive system, one with a single state and 

no transitions. 

(ii)	 x, for any x E X. The variable x is free in this expression. Variables are used to express 

recursive relationships, as we will see below. 

(iii)	 cr.(B), for any cr E E. This action expression describes a system whose initial action is labelled 

cr and which thereafter exhibits the behavior indicated by B. Expressions of this sort describe 

sequential behavior. Any variables that are free in B are also free in cr.(B). 

(iv)	 L.I(Bi ). This summation over the index set I represents a non-deterministic choice among 

the systems represented by the F,. A synchronization tree for this expression could be formed 

\	 from trees for the B; by identifying all of their initial states as the initial state of the summed 

system. Any variable free in some B; is free in the sum. 

(v)	 (B) I (B'). This expression represents concurrent composition of the systems represented by B 

and B'. Free variables of (B) I (B') are those variables free in either B or B'. The semantics 

of this expression includes elements of concurrency, nondeterminism, and abstraction. This 

configuration of processes also gives the constituent processes the opportunity to communicate 

with one another. 

(vi)	 (B)\O:', where 0:' E E. This restriction expression is intended to describe a process that behaves 

as described by B, but that takes no actions labelled 0:' or ii. The free variables of (B) \ 0:' are 

the same as the free variables of B. 

(vii)	 (B)[S], where 5 : E ----> E is a relabelling map satisfying 5(T) = T and 5(ii) = 5(0:'). (Here, 

we regard the overline operator as an involution, so that (} = 0:'.) A relabelling is more a 

convenience than an essential part of the ees model. It allows many processes differing only 

by a systematic relabelling of their actions to be generated from a single prototype. Variables 

free in B will also be free in (B)[S]. 
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(viii)	 rec x.(B). This expression using recursion permits the definition of systems with infinite sets 

of states. Occurrences of the variable x that are free in B are bound by this use of the 

recursion operator. The process described by this expression can be thought of as a solution 

of the equation x = B up to strong bisimilarity. In order to ensure the existence of a unique 

solution, we insist that free occurrences of x in B be guarded-that is, that they appear within 

subexpressions of the form CJ.(B'). The examples given below may help to clarify the use of 

recursion in CCS. 

To reduce the number of parentheses needed to disambiguate expressions, we will use the following 

operator precedence (from tightest binding to least binding): restriction and relabelling, action and 

recursion, composition, summation. 

Before giving a formal semantics for CCS, it is worth looking at a few simple examples using 

synchronization trees. For instance, the smaller system in Figure 3.5 can be described by the 

expression 

a.(b.nil + T.nil) 

If we let B denote this expression, then the larger system in the ::mnle figure can be described by 

B + B. The strong bisimilarity between the two systems can then be expressed as B '" B + B. In 

fact, the relationship B '" B + B is a p~operty of summation that does not depend on the definition 

of B. The two systems in Figure 3.7 can be described by the expressions a.b.nil + a.c.nil and 

a.(b.nil + c.nil). Since, as was pointed out earlier, the two systems are not strongly bisimilar, we 

see that action does not distribute simply over summation. 

The previous examples were all finite systems. We must use recursion to describe an infinite 

system like that in Figure 3.2. Let x denote that system. Both of the subtrees of the root node 

are isomorphic to the tree as a whole, so they could be represented by x as well. The relationship 

between the whole tree and these two subtrees is expressed by the equation x = a.x + b.x, so an 

expression for the tree is rec x.(a.x +b.x). The free occurrences of x in a.x + b.x are guarded by the 

actions a and b. 

Conversely, suppose that we have an expression such as rec x.(a.nil +b.x) and want to determine 

the system that it represents. We can proceed as follows. Since x represents the system we want, we 

can regard it as referring to the initial state of the system. From that state, a transition by action 

a leads to a nil state having no further transitions, while a transition labelled b leads back to x. 

Such behavior is also exhibited by the two-state transition system in Figure 3.8. Its unrolling to a 

synchronization tree is given in the same figure. 

26
 



.<. 

We stated earlier that guards are needed in recursive expressions to ensure uniqueness of the 

systems represented by the expressions. As an extreme example of an expression in which the 

absence of guards leads to a multiplicity of solutions, consider rec x.x. This should represent a 

system satisfying the equation x = x up to strong bisimilarity. But, of course, any system would 

satisfy this equation. 

3.4.2 Operational Semantics for CCS 

Since Milner's introduction of ees, a wide variety of methods for supplying semantics for ees 
expressions has been proposed. Milner himself [32] let an expression denote an equivalence class 

of synchronization trees. Winskel [48] suggested using event structures; Goltz and Myeroft [20] 

and Olderog [42] gave Petri net semantics; and Degano and Montanari [10] devised distributed 

transition systems to specify the meaning of a ees expression. We shall follow the lead of Plotkin 

[44] in letting a ees expression specify a transition system whose states are themselves certain ees 
expressions. (Plotkin actually used his technique to give an operational semantics for esp, but the 

method transfers readily to ees.) 
A term in ees is an expression having no free occurrences of variables. For any term, we will 

describe a transition system whose behavior is that which the term is intended to express. Let B be 

a term over the alphabet ~. Let the tr~nsition system TB be a system on the same alphabet whose 

states are the ees terms over ~ and whose initial state is the term B. The events and labelling 

function of TB are to be determined by the axioms and inference rules given below. The system has 

only those transitions that can be inferred using these rules. 

In each rule, existence of the labelled transition above the line allows one to infer the existence of 

the labelled transition below the line. The statement associated with action expressions is an axiom 

of this inference system; the transitions exist unconditionally. Except in the recursion rule, B, B', 

B JI 
, C, and C' are any ees terms, a E ~ - {r}, and (J' E ~. In the recursion rule, B can be any 

expression having no free variables other than x. 

We also introduce a notation for substitution of one expression in another. For any expression 

E, let 

designate the expreSSlOn obtained from E by replacing each free occurrence of Xj in E by the 

expression E j • (In the process, it may be necessary to rename some bound variables of E to avoid 

clashes with variables appearing in the E j .) A shorthand notation for this substitution is E{E/x}, 
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where jj; and X represent parallel vectors of expressions and variables, respectively. 

Action. 

(J'.B.!...B 

Summation. 

B.!... B' 

B + B".!... B' 

B.!... B' 

B" + B.!... B' 

Composition. 

B.!... B' 

B I B" .!!... B' I B" 

B.!... B' 

B" I B .!... B" I B' 

B .!... B', C .!.. C'
 

B IC": B' I c'
 
Restriction. 

B.!... B' 
---::---- if (J' ~ {a, a} 
B \ 0' .!... B' \ 0' 

Relabelling. 

B.!... B' 

Recursion. 

B{rec x.B/x}'!'" B' 

rec x.B .!... B' 

Some of these rules deserve further comment. The rules for the composition of two processes 

indicate the concurrent operation of those processes by granting to the composition all of the actions 

of the components. Either component can develop within the composite just as it would on its 

own. Actions of the components may be interleaved in any fashion. Any nondeterminism of the 

components is, of course, present in the composite, but additional nondeterminism can be introduced 

if both components are capable of taking a particular action. 

Composition also allows the components to communicate with one another. If one component 

can take action (J' and the other can take the complementary action ii, then the composite can, 

in effect, take the two actions simultaneously and invisibly. The components communicate and 

synchronize by taking complemen tary actions, but these acts of communication are not visible to 

external observers. 
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The rule for recursion uses substitution into an expression B, but since we assume that x is 

the only free variable in B, the result of the substitution is a CCS term. The requirement that 

occurrences of x in B be guarded allows us to know actions of B{rec x.B/x} without already 

knowing actions of rec x.B. For example, if B is a.nil + b.x, then B{rec x.B/x} is 

a.nil + b.rec x.(a.nil + b.x). 

The action axioms show us that the latter process has actions a, leading to process nil, and b, leading 

to process rec x.(a.nil + b.x). Hence, by the inference rule for recursion, rec x.(a.nil + b.x) has the 

same actions. 

To illustrate the operational semantics described here, Figure 3.9 gives a transition system for 

the term 

(a.b.nil +b.nil) Ia.b.nil. 

The given transition system differs from the one specified in this section only by the omission of 

states not reachable from the initial state. The two systems are in the same strong bisimilarity class. 

3.4.3 Equivalences of CCS Expressions 

While the operational semantics presented in the preceding section clearly describes how a given 

process will evolve as it takes actions, the model is unsatisfactory in that it ascribes semantic 

significance to any syntactic differences between terms. For example, in Figure 3.9, the terms 

b.nil Inil and nil I b.nil are distinguished even though they can take the same actions leading to the 

same new state. Likewise, the term nil I nil is syntactically and, hence, semantically distinct from 

nil although neither term has any associated actions. More generally, we do not expect the meaning 

of a summation or composition to change simply because the subterms are written in a different 

order; the same nondeterministic choice or concurrent behavior is anticipated in any case. But the 

operational semantics just presented does associate different transition systems to summations or 

compositions differing only in the ordering of their components. 

The solution to this problem is to develop an equivalence relation on CCS terms that will make 

only the desired distinctions between terms. Several such equivalence relations have been proposed, 

but we will consider just two, namely, strong equivalence and observation equivalence. These are the 

two most commonly used equivalences and are well suited to our needs. 

We have already seen that each term Bin CCS has an associated transition system TB, and that 

the relations of strong and weak bisimilarity can be defined on transition systems. Connecting these 

two facts gives us the equivalence relations on terms that we need. 
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So, we will say that terms Band B' are strongly equivalent if the associated transition systems 

TB and TBI are strongly bisimilar. Likewise, Band B' are observation equivalent if TB and TBI are 

weakly bisimilar. 

Either form of equivalence is sufficient to prove the following laws, among others, for any'CCS 

expressions B, B', and B", and any action u and visible action a: 

1. B + B' =: B' + B 

2. B + (B' + B") =: (B + B') + B" 

3. B + nil =: B 

4. B+B =: B 

5. nil \ a =: nil 

6. (B + B') \ a == B \ a + B' \ a 

7. (u.B)\a=:nil ifuE {a,a} 

8. (u.B) \ a == u.(B \ a) if u fI. {a, a} 

9. nil[S] == nil 

10. (B + B')[S] == B[S] + B'[S] 

11. (u.B)[S] == S(u).B[S] 

Composition is less amenable to proofs of strong equivalence because more of the syntactic form of 

a composite expression is carried over to the result of a transition than is the case with an expression 

such as a summation. It is, however, clear that nil I b.nil == b.nill nil and nil I nil == nil. It is also 

possible to prove the following equivalence expressing the composition of certain sums as the sum 

of guarded compositions. Let l: {Bi : i E I} designate the summation of expressions Bi for all i in 

some finite index set I. (That this notation is unambiguous modulo strong equivalence follows from 

the commutative and associative laws for summation stated above.) Each Bi is a summand. The 

sum is a sum of guards if each summand has the form ui.Bi. Let Band C be sums of guards. Then 

B IC == l:{u.(B' IC) : u.B' is a summand of B} 

+ l:{u.(B IC') : u.C' is a summand of C} 
(3.1) 

+ l: {T.( B' IC') : u.B' is a summand of Band jj .C' is a summand of C} 

+ l: {T.(B' I C") : jj.B' is a summand of Band u.C' is a summand of C} 

30
 



Equations such as these are the beginnings of an algebra for communicating systems. An algebra 

suitable for object-based programming would address issues of software reuse and substitutability by 

demonstrating that two modules exhibited the same external behavior or by showing that a proposed 

module meets a specification for desired behavior. But CCS provides the most limited possibility 

for defining program modules and no capacity for creating new agents dynamically. We need a 

more flexible scheme for representing interacting agents. The actor and Abacus models described in 

the next two chapters attempt to address these shortcomings of CCS, thereby creating more useful 

models of a concurrent, object-based environment. 

\ 
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b 

Figure 3.8: Transition systems for a recursively defined system 
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(a.b.nil + b.nil)llf.b.nil 

/a\b 
nilllf.b.nil ..........--- b.nilla.b.nil ---~~ b.nillb.nil ..........---- (a.b.nil + b.nil)lb.nil
 

1\ 
a 

~ba 

nillb.nil b.nillnil ..........-- (a.L'.nil + b.nil)lnil
 

\£
nillnil 

Figure 3.9: Transition system for the CCS expression (a.b.nil + b.nil)la.b.nil 
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Chapter 4 

Actors 

The actor model of computation was originally developed as a means of expressing concurrency 

[25,24], but the current incarnation of the model, described in Agha's work [1,2,3] shares the defining 

characteristic of an object-based system, namely, that of encapsulating parts of a system's state to 

enhance data integrity and modularity. 

4.1 Basic Concepts 

An actor is a structure with a fixed mail address at which it can receive messages from other actors 

and with a current behavior. It can respond to the messages that it receives by sending further 

messages. creating new actors, or specifying a new behavior for itself (its replacement behavior). 

Messages sent by an actor can only go to its acquaintances, that finite group of actors whose mail 

addresses are known to the sender. When an actor adopts its replacement behavior, it continues to 

receive mail at its original mail address. Only the actor's response to those messages may change. 

The system in which the actors are embedded is expected to provide support for the transmission 

and receipt of mail, and, indeed, to guarantee the delivery of all mail that is sent. In order to assure 

delivery, even when an actor is occupied with other tasks, incoming messages for the actor may be 

buffered in a mail queue. 

The combination of an actor and its mail queue is reminiscent of an automaton reading a tape 

of input symbols (see Figure 4.1), but there are important differences. First, while the replacement 

behavior of an actor is analogous to the next state of the automaton, there is no limit on the number 

of distinct behaviors that an actor may exhibit in its lifetime, so that the actor is more like an 

infinite state automaton. 
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Mail queue 

Original 
behavior 

Replacement 
behavior 

Figure 4.1: An actor and its mail queue 
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Define Factorial with acquaintances self 
let communication be integer n and customer u 
become Factorial 
if n = 0 

then send 1 to customer u 
else let c = Customer with acquaintances n and u 

send n-l and mail address of c to self 
Define Customer with acquaintances integer n and customer u 

let communication be integer k 
send n*k to u 

Figure 4.2: Actors to compute factorials 

In addition, there is no named location where an actor's state is stored. The creation of an actor 

may be parameterized (as we shall see in the example below), but the actor's state is merely implicit 

in the pattern of behaviors that it computes. This provides the ultimate in encapsulation of objects. 

Finally, while an actor can "write" on its own "input tape," it can do so only through the 

mechanism of the mail system. It can send itself messages just as any other actor acquainted with 

its mail address could. 

Actors also bear some similarity to Milner's Calculus of Communicating Systems (CCS) [33], 

where, as we have seen, a process can evolve in any of a number of directions depending on commu

nications received. Actor systems, however, are more dynamic in that new actors can be created at 

run time, whereas CCS uses a fixed set of processes. Communication protocols also differ in that 

actors communicate asynchronously, in contrast to the synchronous message passing in CCS. 

4.2 An Example 

The example of an actor system given in Figure 4.2 (adapted from Agha's book [2]) is designed to 

compute factorials, and illustrates many of the ideas of the actor model. This declaration describes 

two sorts of actors, a Factorial actor which manages the computation of an integer factorial and a 

Customer actor on whose behalf some factorial is computed. Computation begins when an actor u 

sends a message containing an integer n to a Factorial actor. The Factorial actor specifies that its 

replacement behavior will also be a Factorial actor in the statement become Factorial. It then sends 

one of two messages, depending on the value of n. If n is zero, then the value of n! is 1, which is thus 

sent to the actor u. If n is non-zero, then a new Customer actor is created to receive the results of 

the computation of (n -I)!. The latter computation is initiated by sending an appropriate message 

to self, which is bound to the mail address of the original factorial actor. Since the replacement 
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behavior for that actor is also a Factorial, the correct outcome can be expected. 

The Factorial actor is capable of managing several computations at once. At any time, its 

mail queue might contain messages associated with many strands of computation. The creation of 

Customer actors ensures that the results of each computation are ultimately delivered to the right 

place. 

A Customer actor is created with two acquaintances (aside from itself), an integer n and another 

actor u which needs the value of n!. Upon receiving a message containing the integer k {which 

should be the value of (n - 1)!), the Customer actor passes on the value of the product n * k to . 
the actor u. No replacement behavior for a Customer is given explicitly, so the implicit behavior is 

the undefined behavior that generates no new messages and creates no new actors in response to all 

incoming messages. An implementation of the actor model could reclaim the memory occupied by 

a Customer actor as soon as it sends its message. 

Although the syntax by which integer operations are expressed here is different from that used for 

operations with the Factorial and Customer actors, there is no reason not to regard all constructs in 

the actor model as actors. That is, use of the traditional infix notation for integer operations is just 

a syntactic convenience; we might just as well suppose that n - 1 is computed by sending the act.or 

n a message to subtract 1 from its integer value and return the result. This sort of homogeneity 

in a model is often a great convenience in developing the mathematics of the model. Of course, 

an implementation of the model will have to regard some actors (such as the natural numbers) as 

primitive actors whose computations are completed without further resort to message passing, other 

than to communicate the result. 

Notice that the actor u which initiates the factorial computation migh t be any sort of actor, just so 

long as it has the address of a Factorial actor. Also, the actors involved in one of these computations 

are completely encapsulated from the rest of the environment. The Customer actors created for the 

computation are known only to the Factorial actors that create them and the other Customer actors 

from which they will get a partial result. Their mail addresses are unknown elsewhere, so there is 

no possibility of any other actors sending them messages. Only the Factorial actor interacts directly 

with the rest of the system, thus acting as a receptionist for the Factorial component of the system. 

4.3 Actor Semantics 

One can construct a transition system to represent the computation undertaken by a collection of 

actors. The basic components of the transition system are not difficult to construct, though there 
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are some technical hurdles to overcome. 

First, we must develop an adequate description of a state or configuration of an actor system. At 

any time, there is an existing set of actors, each with some number of unprocessed messages in its 

mail queue. Each actor is given by a mail address and a behavior, while each message is associated 

with a specific mail address and has contents consisting of a tuple of values (actors' addresses). Of 

course, it is possible for an actor to receive more than one message with the same contents, so we 

must provide each message with a unique tag to distinguish it. 

Without being specific yet about the nature of some of these constructs, let us use the following 

symbols to represent the indicated sets: 

B Behaviors 

M Mail addresses 

JC Communications (message contents) 

I Tags for messages 

A = M x B Actors 

T = I x M x JC Tasks (unprocessed messages) 

Recall now the informal des:ription of an actor, which, in response to a message, may send 

messages and create new actors, and must specify a replacement behavior. More formally, then, the 

behavior of an actor with address m is a mapping from messages with address m to tuples consisting 

of a finite set of tasks, a finite set of actors, and a replacement behavior at address m. We write this 

as 

B =(I x JC -. F.(T) x F.(A) x A) 

While this equation conveys symbolically the basic idea of what will constitute a behavior in the 

actor semantics, it is an apparently circular definition because the actors on the right side of the 

equation are themselves defined in terms of behaviors. 

4.3.1 Behavior Semantics 

Construction of a rigorous semantics for behaviors can follow the pattern exemplified by the descrip

tion of CCS in section 3.4. That is, we can recursively describe a syntax for behavior specifications 

that builds complex specifications from primitive behaviors using a small collection of syntactic op

erators. The semantics is then obtained by giving the semantics of the primitive behaviors, and 

showing how the semantics of a complex behavior specification is derived from the semantics of the 

syntactic components of the complex specification. 
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The choice of primitive components and syntactic operators can vary somewhat while still re

taining the spirit of the actor model of computation. Agha [2] builds a model whose primitives 

include integer and Boolean expressions, using the usual range of integer and Boolean operators, 

and mail expressions, which consist either of a mail identifier or an expression new E(el, ... , ei), 

which describes the creation of a mail address for a new actor with behavior E and acquaintances 

el, ... , ei· 

A behavior description has the following form: 

def E(pl,'" ,Pi)[P~, ... ,Pj]5 enddef 

The parameters PI, ... ,Pi are acquaintance parameters that will be bound at the time an actor 

is created or replaces its behavior to the mail addresses of other actors in the environment. The 

parameters PI' ... , pj are communication parameters that will be bound to values at the time an 

actor begins to process a message. We shall not specify a syntax for associating the communication 

parameters with specific components of a communication, but several mechanisms are possible, 

including pattern matching or the use of keywords. The identifier 5 in the behavior definition 

indicates a command of a form described below. 

In giving the syntax of a command, we will assume that 5, 51, and 52 are commands; b is a 

Boolean expression; el, e2,." are arbitrary expressions (integer, Boolean, or mail); a, al,"" aj are 

mail address identifiers; and E, El , . .. , Ej are behavior identifiers. Then a command has one of the 

following forms: 

concurrent 

conditional 

5d/52 

if b then 51 else 52 fi 

communication 

replacement 

send [el"'" eiJ to a 

become E(el, ... , ei) . 

creation let al = new E1(el,l,"" el,iJ and ... and aj = new Ej(ej,l,"" ej,iJ{5} 

In this syntax, the factorial example given above would be expressed as in Figure 4.3. 

Recall now that we are trying to describe a behavior as a mapping from tagged communications 

to 3-tuples consisting of a finite set of new tasks, a finite set of new actors, and a single replace

ment behavior. The tagged communication, through its binding of a behavior's communication 

parameters, establishes the environment in which the behavior's commands can be interpreted. The 

environment determines, for example, the value of the boolean expressions in any conditional com

mands, or the values of the acquaintance arguments in a replacement command. Also part of the 

local environment at run time are the mail address of the actor that is processing the communication 
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def	 Factorial (self) [n, u]
 
become Factorial (self) II
 
if n = 0
 

then send [1] to u
 
else let c = ne~ Customer (n,u)
 

{send [n-1,c] to self}
 
enddef
 
def Customer (n,u) [k]
 

send [n*k] to u
 
enddef
 

Figure 4.3: Another description of actors to compute factorials 

(customarily denoted by self, as in the factorial example) and the current tag curr (initially, the tag 

of the task being processed), which is used to generate the mail addresses of new actors and tags of 

new tasks. 

We will now describe informally the 3-tuples associated with each form of command: 

Concurrent: The 3-tuple associated with a concurrent command is constructed by forming the 

unions of the sets of new tasks and new actors generated by the concurrent components 51 

and 52. The replacement behavior is that of 51 or 52, if either specifies a replacement. I~ both 

do, then the concurrent command is semantically (and syntactically) invalid. 

Conditional: If the Boolean expression b evaluates to true in the local environment, then the 3

tuple associated with the conditional is precisely that associated with 51. Otherwise, it is the 

3-tuple associated with 52. 

Communication: This command generates a new task for the actor at the mail address denoted 

bya. The task's contents are obtained by evaluating e1, ... ,ei in the local environment, while 

the task's tag is generated from the current value of curro Xo new actors and no replacement 

behavior arises from this command. 

Replacement: The replacement command generates no new tasks or actors. As its name sug

gests, it specifies a replacement behavior, identified by E, whose acquaintance parameters are 

obtained by evaluating el, ... , ei in the local environment. 

Creation: This command dictates the creation of new actors with the specified behaviors, whose 

mail addresses are bound to the identifiers a1, ... , aj. The 3-tuple associated with this com

mand consists of these new actors, together with the new tasks, new actors, and any replace

ment behavior associated with 5, the command 5 being considered in an environment that 
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consists of the environment of the creation command, as amended by the bindings of al , ... , aj' 

This completes our description of a semantics for an actor's behavior, except for saying a few 

words about the creation of new tags and mail addresses. If behavior is to be a well-defined mapping 

of tasks and actors are to be identified by their mail addresses, then care must be taken that 

distinct tasks are indeed distinguished by their tags and that no two actors have the same address. 

Furthermore, if an actor system is to exploit its potential concurrency fully, then we must allow 

each actor to generate new tags and addresses independently, yet with the assurance that they are 

distinct from all other tags and addresses. 

Agha's scheme is to represent tags and addresses by sequences of natural numbers. When an 

actor is dealing with a task with tag t, new tags and addresses are created by appending another 

natural number to the sequence represented by t. This is done in such a way that at no time is 

any tag or address in the system a prefix of another tag or address (assuming that this condition is 

satisfied initially), so that subsequent evolution of the system cannot lead to duplication of tags or 

addresses. For our purposes, it is enough to know that the semantics is well-defined. 

4.3.2 TransitioT' Systems for Actor Programs 

Now that we have pinned down the nature of behavior in an actor system, we can complete our 

description of a transition system for an actor program. Define a local states function 

I:M->B 

such that, for each m EM, l( m) is the current behavior of the actor with mail address m. We can 

regard I as a partial function defined only on the mail addresses corresponding to existing actors, 

or let its value on unused mail addresses be the undefined behavior Ih. The local states function 

has an equivalent representation as the set of actors currently in the system, each actor being an 

ordered pair (m, (3) of mail address and current behavior. 

A configuration of an actor system can then be given by a pair (1, T), where I is a local states 

function and T is a finite set of tasks (i.e., those yet to be processed). These configurations will be 

the states of our transition system for an actor program. 

To determine the initial state of the transition system, consider a typical actor program, whose 

syntax is given by 

Here, each D i is a behavior definition and S is a command. For example, in a program to compute 
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15!, D 1 and D 2 could be the behavior definitions for Factorial and Customer given above, while S 

could be 

let f =new Factorial (f) {send [15] to f} 

We can analyze S just as we did commands in behavior definitions, obtaining an initial set To of 

tasks to be processed and an initial set {(ml, ,8d, ... , (mk' ,8kn of actors, which implicitly defines an 

initial local states function 10 . There is no need or sense in S specifying any replacement behavior, 

since S is not executed by an actor. 

In order to describe transitions more easily, define the functions states and tasks on configurations 

as follows: For any configuration (I, T), let states(I, T) = I and tasks(I, T) = T. For any configuration 

Cl of an actor system, one can show that the possible transitions from Ct correspond to processing 

anyone of the tasks in Ct. So, if (7 = (t, m, k) E tasks(cd and states(ct)(m) = ,8, where ,8(t, k) = 
(T, A, 7), then there is a configuration C2 such that 

taskS(C2) = (tasks(ct) - {(7}) UT 

and 

states(c2) = (states(ct) - {(m,,8n) U A U h} 

As usual, we write Ct .!.... C2 to denote this transition. This completes the construction of an opera

tional semantics for actor systems. 

4.4 Other Aspects of the Actor Model 

We have seen that the actor model of computation provides for strong encapsulation of objects with 

ma.ximal exploitation of concurrency both between objects and within them. Computation is carried 

out almost entirely through asynchronous message passing. We have, however, not yet considered 

the prospects for sharing or reusing code in an actor system. 

4.4.1 Actor Modules 

The very effective encapsulation of individual actors can be extended to collections of cooperating 

actors through the designation of receptionists for the collection. The receptionists for a program 

module are actors whose addresses are made known outside the module, and through which all 

messages requesting the module's services are sent. For example, the Factorial actor of section 4.2 
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could serve as the receptionist for a factorial-computing module consisting of the Factorial actor and 

the Customer actors that it creates. 

From the viewpoint of an external observer, an actor module is as thoroughly encapsulated as 

an individual actor. Indeed, there is no evidence available to an actor outside the module that the 

module consists of anything more than its receptionists. Transitions of the module corresponding 

to intra-module communication are invisible actions of the module, as far as an external observer is 

concerned. 

The rudimentary actor language described in section 4.3 provides no support for the definition 

and reuse of modules of actors, but one could build on that language to create mechanisms for 

module definition. For example, if, in the factorial example, the scope of the behavior identifier 

Customer were restricted so that only Factorial actors could meaningfully create Customer actors, 

then a greater degree of modularity would be achieved. 

Of course, the dynamic nature of actor systems-specifically, the possibility of communicating 

mail addresses among actors-poses some risk to the intended encapsulation of an actor module. As 

the system runs, the address of an actor that had not previously served as a receptionist may become 

known outside a module. Then messages can be sent to the module through t.hi:; new acquaintance 

of actors outside the module. 

4.4.2 Sharing Among Actors 

The basic actor model makes no provision for any form of sharing among actors, though its flexibility 

creates the means for implementing different forms of sharing by building on the foundation of the 

basic model. Static type checking of behavior definitions is a possibility, as is dynamic checking of 

newly created actors for conformance to the parameterization of their initial behaviors. 

There has been an effort to implement a system of classification and inheritance within the 

actor model, but that dates back to 1981 and the description system Omega [5]. No more recent 

developments are referred to in the literature. The very flexibility of actors may inhibit attempts to 

enforce uniformity of behavior across a large collection of actors. The actors in the factorial example 

were very conservative in their choice of replacement behaviors, opting either to retain the current 

behavior or. in effect, to shut down. But there is no a priori restriction on an actor's choice of 

replacement behavior. 

Actors seem better suited to share information by means of delegation, in which one actor would 

be the repository for certain code and other actors needing to use the code would delegate the task 
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of executing it on their behalf to that one actor. This would ensure that similar subcomputations 

needed by a variety of actors would be implemented uniformly throughout the system and could be 

modified readily if necessary. 

Even delegation would require some system support beyond what is supplied in the basic actor 

model. To be specific, delegation differs from ordinary message passing in its use of references to 

self The delegated computation is to be carried out just as if the code to be executed resided with 

the actor making the delegation. So the use of self in the delegated computation must be understood 

as a reference to the delegating actor, not to the recipient of the delegation. 

In short, then, the actors model succeeds brilliantly in creating active objects that can operate 

independently and securely in a highly concurrent environment. But these very properties can 

complicate efforts to share or reuse code systematically. 
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Chapter 5 

Abacus 

In a series of papers [35,37,39,41], Nierstrasz and his colleagues address some of the deficiencies of 

both CCS and actors as models for object-oriented systems. They adopt much of the syntax and 

semantics of CCS, but extend it in two important ways. First, to endow CCS with some of the 

dynamic flexibility of actors, they provide for agents that can be parameterized and allow agent 

patterns to be passed in inter-agent meSSl'ges. Second, to permit encapsulation of larger modules 

than a single object, they augment the syntax of CCS with prefixes for labels and filters based on 

those prefixes, which, together, constrain communication in ways not available within the basic CCS 

or actors models. 

5.1 Syntax and Semantics 

The development of the syntax and semantics of Nierstrasz's Abacus model follows the pattern 

that we have seen exemplified with both CCS and actors. The Abacus notation is built recursively 

from simpler patterns and identifiers using a small number of operators. Abacus terms are Abacus 

patterns with no free variables. Transition rules defined on terms are used to describe an operational 

semantics for Abacus in which each term is associated with a labelled transition system. 

We shall describe this development of semantics for Abacus briefly, with emphasis on the ways 

in which Abacus departs from the other models that we have studied. It is important, however, 

to have a detailed description of the semantics in order to understand the differences among these 

models. 

Behavior patterns in Abacus are built from a set L of labels, a set X of label prefixes, a set N of 

simple agent names, and a set V of pattern variables. Variables can be differentiated syntactically 
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Type Form, y Free variables, f(y) 
I Inaction nil 0 
I
 Named agent
 

Output 
Input 
Choice 
Composition 
Restriction 
Relabelling 
Prefixing 
Filtering 

av 
ev!p 
ev?p 
p+q 
p&q 
p \ ev 
p/[fv] 
Xv:P 
p\: Xv 

v(av ) 
v(ev)Uf(p) 
f(p) - (v(ev ) 
f(p) U f(q) 
f(p) U f(q) 
f(p) U (v(ev ) 
f(p) U v(fv) 
f(p)Uv(x v ) 
f(p)Uv(xv) 

{-})
 

{-})
 

Figure 5.1: Syntax for Abacus expressions 

from the other elements (so that they can be recognized as variables in any context) and include a 

distinguished element "_" cJ-lled the anonymous variable. Use of the anonymous variable provides 

some additional flexibility in describing patterns, at the cost of somewhat more complicated rules 

for determining the free variables in an expression. 

These atomic elements of syntax can be combined to form the event patterns Ev , relabelling 

patterns Fv, and pattern names A", as follows: 

• E" ::= LIVIX" : EvI[Rv] 

• Xv ::= XIV 

• R" ::= E" IE" , R" 

• F" ::= Ev/E"IEv/E",F" 

• A" ::= NIN(Rv ) 

Each type of pattern has an associated closed form in which all variables are bound to values. 

Descriptions of the closed forms (E, X, R, F, and A) can be obtained by systematically removing 

the subscripts from the definitions given above. 

To help complete our description of behavior patterns, let v and f be functions giving, respec

tively, the variables and the free va.riables in an expression. For any expression y of a sort described 

above, v(y) and f(y) both consist of all elements of V appearing in y. 

Now let ev, rv , xv, fv, av, and n represent arbitrary elements of Ev, Rv , Xv, Fv, Av, and N, 

respectively, and let p and q represent any two pattern expressions. Then the table in Figure Aba

custab shows the different forms that a pattern expression may take, along with the free variables 

in each such expression. 
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Recursion in Abacus is provided by pattern declarations of the form 

av := p 

The free variables in this declaration are f(p) - (v(av ) - {_}). An object environment is described 

in Abacus by a set D of pattern declarations, which may be mutually recursive. 

As we did with CCS, we can construct a labelled transition system for Abacus whose states are 

Abacus terms and whose label alphabet consists of 

{e?le E E} U {e!le E E} U {T} 

The symbol T represents an invisible transition, as before. 
, 

Note that, unlike CCS, the elements of the label alphabet for Abacus are endowed with structure 

because of the way that E is defined. We will use that structure to be much more specific with 

Abacus than we were with actors about how values in incoming messages are bound to an agent's 

variable parameters. Briefly, expressions match only if they are structurally similar. In that case, 

the matching implicitly defines a binding of values to variables, provided that each variable occurs 

:.J.t most once. The presence of the anonymous variable may facilitate matching of two expression!", 

but has no effect on the resulting binding. 

To lend some precision to this description of matching and binding, let 

Matching and substitution in a behavior expression is indicated by 

where p is a behavior pattern and the expressions m and m v are in Ail and M v , respectively. The 

matching of m with m v and the substitution into p based on the binding determined by the matching 

is defined only if the rules given below can be applied to complete the substitution. The rules define 

the substitution by structural induction on the matched expressions and on the behavior expression. 

• p{n(r)/n(rv )} =p{r/rv } 
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• p{m/rn} == p for any m E M 

•	 p{e/_} == p 

•	 (p op q){o-} == p{o-} op q{o-}, where op could be any member of {!, ?, +, &, \ , :, \:}, provided 

that p and q are constrained appropriately so that p op q is a valid behavior expression, and 

0- is any substitution m/mv . 

•	 p/[fv]{o-} == p{o-}/[fv{o-}] 

•	 A substitution is applied separately to the components of event or relabelling patterns, just as 

it is applied to components of behavior patterns. For example, (xv: ev){o-} == xv{o-} : ev{O-}. 

if v = v' and v =F _
 

otherwise
 

•	 m{o-} == m for any m E M and any substitution 0

•	 nil{o-} == nil 

Finally, we are in a position to give the transition rules on Abacus terms. Many are like those 

for CCS, but there are some significant differences. 

Output. 

e'e!p -+ p 

Input. 

Choice. 

p'::"'p',O:=F T p'::"'p',O:=F T 

p+q'::"'p' q+p'::"'p' 

p~p' p~ p' 

Composition. 

p'::'" p' 

p&q'::"'P'&q 

p'::'" p' 

q&p'::'" q&p' 

e? I e! I 
P~P,q-+q 

p&q ~ p'&q' 

e? e' 
p -+ p', q -+ q' 

q&p ~ q'&p 
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Restriction. 

p~p' 
----"--::::---'--- if a = T, or a E {e?, e!} and elev is not a valid substitution 
p \ ev ~ p' \ ev 

Relabelling. 

p~p' 

prj] f~) p'[J] 

Prefixing. 

p~p',af:.T p 2.,. p' 
x:a

x:p-+X:p' x:p2.,.x:p' 

Filtering. 

p~ p' p~ p',X f:. y 

p\ : x ~ pl\ : x p\ : y x:cr P'\ : y 

Recursion. 

av := p,p{alav } ~ p' 

a~pl 

5.2 Abacus Semantics vs. CCS Semantics 

With the semantic rules for Abacus in hand, we can now compare the syntax and semantics of Abacus 

to that of CCS and actors. The action rule for CCS has been replaced by the input and output 

rules for Abacus, with a minor change in syntax (e? and e! instead of a and Ii for the actions). The 

input rule shows an incoming message e matching with an agent's input offer ev , thereby binding the 

variables in ev to values in the message. If the message and offer do not match, then the substitution 

is undefined and no transition on e exists. Notice too, in this context, that the anonymous variable 

can occur in Abacus terms only in input offers, for an occurrence anywhere else would be free. 

One of the more significant departures of Abacus from CCS occurs in the choice operation. 

Comparing the transition rules for Abacus to those for CCS summation presented in section 3.4.2, 

we see that an inference such as p + q 2.,. p' from p 2.,. p' can be made in CCS but not in Abacus. 

That is, Abacus will not allow the choice between two offered agents to be made internally or 

invisibly. Either agent can itself evolve through invisible transitions, but the choice must remain 

until one agent is selected through acceptance of a visible action. It turns out that weakening the 

choice operator in this way does not lessen the expressive power of the language, and even offers 

the theoretical advantage that the strong and observational equivalences are congruences in Abacus, 

though they are not in CCS. 
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Rules for composition and relabelling are the same in ees and Abacus. The rules for recursion 

differ only in reflecting the different syntax used for recursive definitions in the two languages. 

Likewise, the rule for restriction is different in Abacus principally in recognition of the more complex 

syntactic structure of events. 

Notice, though, the role that variables can play in recursion and restriction. The only unbound 

variable that can appear in a restriction is the anonymous variable. Thus, we can specify that certain 

event patterns do not allow an agent to evolve. Recursion is, with input, one of only two pattern 

types in which ordinary (i.e., non-anonymous) variables can occur in Abacus terms. Furthermore, 

non-anonymous variables occurring in the agent name av are never free variables of the recursion 

expression, so (ironically) they may be used freely. This is the mechanism by which agents can 

be parameterized. As a very simple example, consider the following class of agents which accept a 

single input: 

inl(X) := X?nil 

where X E V. According to the semantics, for any event e, there is an agent inl(e) having as its 

sole transition 

inl(e) .:: nil 

The expanded possibilities for encapsulation in Abacus are evident in th~ rules for prefixing and 

filtering. The prefixing rule indicates that prefixed agents can evolve only through similarly prefixed 

events, or through invisible actions. In doing so, they retain their prefix. (It is worth emphasizing 

here the distinction between a prefix on a behavior expression, such as x : p, and a prefix on an event 

expression which forms an input or output offer, as in x : e!q. In the former case, the behavior prefix 

implicitly applies to all offers subsequently made by the agent p, as the semantic rules indicate, while 

in the latter case only the first offer need be prefixed.) 

All the agents sharing a given prefix thus constitute a module through which communication 

can be controlled. An output offer in Abacus is effectively broadcast in that it can be accepted by 

any agent in the environment that is prepared with a matching input offer. But the use of prefixes 

provi"des a means of restricting the targets of output offers, ensuring that they can only be accepted 

by agents bearing the same prefix. 

Filtering plays a role that is complementary, in different ways, to both restriction and prefixing. 

Where restriction allows one to specify the transitions to be hidden, a filter provides a description of 

transitions to be revealed. To be specific, there are three relevant categories of transition. A filtered 

agent will not expose any unprefixed transitions; it will reveal unchanged any transitions bearing a 
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prefix that is not named in the filter; and if a transition's prefix is the one named in the filter, then 

the transition will be revealed after stripping the prefix. 

As an example of the interaction between filtering and prefixing, consider the following agent: 

(x: a!p+ y : b!q + c!r)\: x & y : (a?p' + b?q' + c?r') 

Either of the prefixed output offers in the first concurrent component can pass the filter, with x : a! 

passing simply as a! or y : b! passing unchanged. But only the latter can be accepted by the input 

agents in the second component because of that component's prefix. So the composite agent can 

only evolve to 

q\: x & y: q' 

via an invisible transition. Wegner [47] describes the abstraction boundary of a module as the 

interface that it presents to its clients, and the distribution boundary as the "boundary of accessible 

names visible from within an object." In these terms, we see that we can control the abstraction 

boundary of a module by using prefixing and the distribution boundary by filtering. 

5.3 Modeling CCS and Actors with Abacus 
\ 

Using the operational semantics that has been defined for Abacus, we can define strong and obser

vation equivalence for Abacus terms just as we did for ees terms in section 3.4.3. Given the close 

connection between ees and Abacus, it is then not surprising to learn that there is an embedding 

tr from ees agents to Abacus agents that preserves strong bisimilarity of agents, so that for any 

ees agents p and q, p ~ q if and only if tr(p) ~ tr(q). The converse is not true, so Abacus does 

have greater expressive power than ees. 
The embedding from ees to Abacus is mostly just a rewriting of ees notation into Abacus 

notation, but care must be taken to accommodate the changed semantics of summation. It is 

instructive to take a closer look at the mapping as an example of judicious prefixing and filtering. 

Let ees be defined, as in section 3.4.1 on a set X of variables and an alphabet ~. Then we 

include X in the set of Abacus variables, and embed ~ in the Abacus label set so that, for any 

a E ~, a maps to a?, a to al, and T to T. Except for summations, tr is defined as follows: 

tl'(nil) =nil tr(p Iq) =tr(p)&tr(q) 

tr(x) = x tr(p \ a) =tr(p) \ a 

tr(a.p) =a?tr(p) tr(p[f]) =tr(p)/[f] 

tr(a.p) =altr(p) tr(rec x.p) =x := tr(p) 
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The difficulty with mapping a CCS summation is, of course, that it interacts differently with 

invisible transitions than does the corresponding operation in Abacus. We first isolate the invisible 

transitions by rewriting any CCS summation P + q as 

LT.Pi + Laj.pj 
i j 

where aj :I T. This can be done using the rules of section 3.4.3, including especially equation 3.1 if P 

or q is itself a composition of terms. Then application of the mapping tr to this expression produces 

((L k?x : tr(pd + x : L tr(aj .Pj ))&k!nil)\ : x (5.1) 
j 

If this Abacus agent takes any visible action, its offer will be prefixed internally by x. But the filter 

strips this prefix, so that externally the offers will appear as expected. Alternatively, anyone of the 

first summands can accept the offer of the agent k!nil, reducing the expression to (x : tr(Pi))\ : x 

for some i. In this way, the Abacus choice in expression 5.1 is accomplished by the visible offer 

and acceptance of k, but produces an agent whose behavior corresponds to that of a CCS summand 

that would have been selected invisibly in CCS. The filtering ensures that the offer of k! can only 

be accepted internally to the agent of expr~ssion 5.l. 

It is possible to extend the model of CCS presented in section 3.4.1 to allow CCS agents to pass 

values [33]. While the embedding is trickier to define, the relationship between CCS and Abacus 

is the same: Value-passing CCS can be mapped to Abacus so that strong equivalence of agents is 

preserved. 

The roots of Abacus in CCS made it almost inevitable that Abacus could be used to model CCS. 

A more interesting and surprising result is that Abacus can be used to model Actors [39]. Since 

Abacus agents communicate synchronously, while actors communicate asynchronously, one must use 

several A.bacus agents to model each actor and ensure that whenever mail is sent to an actor there 

is an agent prepared to accept it. Each actor is realized as a pair of agents, one to manage the 

actor's mail queue and one to represent the actor's behavior. That behavior, in turn, is achieved 

through the interaction of an environment agent to record the bindings of an actor's acquaintance 

and communication parameters, a handler agent that accepts and responds to the next message 

provided by the mail queue, and a cleanup agent that activates the replacement behavior at the 

appropriate time. 

The A.ctor system a!> a whole is modelled by the actor agents, as described above, together with a 

factory agent that creates new actors, and a command agent to execute the top-level Actor program. 

Extensive use is made of prefixing and filtering to control the scope of name bindings during the 
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actors' operations so that the agents that constitute a given actor interact properly with each other, 

without interfering with the agents constituting other actors. 
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Chapter 6 

Maude 

The two models for object-based environments that we have examined so far take as their foundation 

a representation of concurrency and add to it facilities for encapsulating collections of related objects 

and for sharing certain information among selected objects in the environment. Now we turn to a 

model whose roots are in a carefully constructed type theory, which is then extended to deal with 

concurrf'nt op"~rations. Specifically, we shall examine Meseguer's object-oriented system Maude and 

its seman tics of concurrent rewriting [18,29,30]. A related but less fully developed theory can be 

found in the work of Mosses [34]. 

Despite the complementary approach taken by Meseguer, we will see much that is reminiscent 

of the development of the CCS, Actors, and Abacus models, and will have a chance to look at those 

models from another perspective. One of the selling points of Meseguer's theory is that it is quite 

general and subsumes, among other models of concurrency, Actors, CCS, and labelled transition 

systems. 

The price of this generality is that the algebraic machinery developed along the way can be 

quite formidable. We'll briefly sketch the approach here, then get a taste of it by looking at the 

construction of initial algebra semantics for type specifications. Finally, we will tackle concurrent 

rewriting itself and look at its relationship to the other models that we have studied. 

6.1 An Overview of Algebraic Semantics 

Viewed from a sufficient remove, the development of Maude's semantics follows the pattern that 

we have seen before. A simple syntax consisting of selected constants and operation symbols is 

created, from which complex terms can be constructed. An operational semantics for the terms can 

54
 



be derived from fundamental operations associated with each syntactic construct by using carefully 

tailored rules of inference. Though we can then compute with the terms, they are generally unsuitable 

as semantic objects because they suggest unwanted distinctions between expressions that are meant 

to be semantically identical. To eliminate such distinctions, we equate certain terms through the 

creation of equivalence or congruence classes of terms. These classes, then, constitute the semantics 

of the original syntactic expressions. If the equivalence classes are properly constructed, the original 

operational semantics can still be applied in a well-defined fashion by using terms to represent the 

classes. (That is, from a given initial class, an operation will always lead us to the same destination 

class, even though the terms representing those classes may vary.) 

In the cases of CCS, Abacus, and, to a lesser extent, Actors, the outcome of this process (the 

collection of equivalence classes) has been algebraic in nature, although the operational interpretation 

in the form of the transition systems that we have constructed has received more attention. In 

these models, the algebra emerges from our ability to represent an object-based environment using 

expressions built from constants, variables, and operators, and then to manipulate and simplify those 

expressions using algebraic laws arising from the equivalence relation on terms. The construction 

of a semantics for Maude is, by contrast, algebraic from the outset, relying on basic ideas from 

universal algebra and category theory. 

This use of algebra permits the representation of "true" concurrency in the form of simultaneous 

rewriting or simplification of different parts of a given algebraic expression. By comparison, a labelled 

transition system only hints at the possibility of concurrency, when there is a nondeterministic choice 

of operations to be made from one of a number of concurrently operating processes. Ultimately, some 

one choice must be made, so that our retrospective view of a computation is always of a sequence of 

operations. 

A Maude program is built from two types of modules, functional modules and system modules. 

Functional modules present the signature of an abstract data type by naming other types from which 

it is constructed, new operations available for that type, and properties of those operations (such as 

associativity, commutativity, or the satisfaction of certain equations). This signature determines a 

category of algebras all of which realize the syntactic features of the signature. Within that category, 

the preferred semantics is represented by the so-called initial algebra, which is, roughly speaking, 

the most abstract algebra meeting the specifications of the signature. 

Functional modules appeared in the OBJ languages that were precursors to Maude [13]. System 

modules are an innovation introduced in Maude. They can contain the sort of information found in 

functional modules, as well as additional rules for rewriting expressions-rules that cannot safely be 
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interpreted as equations. Such unidirectional rules make time and state factors in Maude programs, 

just as they playa role in reactive systems generally. This contrasts with the static type descriptions 

of the functional modules. The challenge presented by the system modules is to find a semantics 

for Maude that captures the rewriting suggested by these rules while subsuming the initial algebra 

semantics of the functional modules. Ultimately, the answer is still to use initial algebras, but in 

rather different categories from those associated with functional modules. 

Because the unidirectional rules of system modules must be viewed as rewriting rules rather than 

equations, we shall treat equations as rewriting rules also in order to develop a unified approach. 

Both, then, become mappings in a suitably defined algebra, and, as mappings, generate a separate 

algebraic structure of their own on which an equivalence relation can be defined that captures the 

desired semantics. (When there are only equations, the algebraic structure of the mappings is 

isomorphic to the usual algebra of terms.) It turns out that this algebra of equivalence classes of 

mappings is initial in a certain category. That the objects of this category are themselves categories 

is perhaps an indication of the level of abstraction involved here. 

Now that we have laid out the general framework for the development of the algebraic semantics 

we seek, we can delve into some of the details of the constructiofl te gf't a clearer picture of the 

semantics. 

6.2 The Semantics of Many-Sorted Signatures 

We will begin our discussion of algebraic models of types by developing the terminology and ma

chinery for discussing many-sorted algebras. 

6.2.1 Syntax 

Let S be a set, whose elements we will refer to as sorts. An S-sorted set is a collection of sets 

indexed by S, that is, in one-to-one correspondence with the elements of S. Typically, S will be 

finite, and the members of an S-sorted set will be sets such as the integers or the real numbers. If 

A = {As Is E S} and B = {BsIs E S} are two S-sorted sets, then an S-sorted mapping between 

them is a collection of functions 

Us :As ~ BsIs E S} 

indexed by S. 

)Iow, let S* denote the set of all (finite) words formed from an alphabet S of symbols. Then an 

S-sorted signature I: is an S· x S-sorted set whose elements are denoted I:w,s for w in S· and s in 
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S. An element of Ew,s is an operation symbol, or function symbol, of arity wand sort s. The rank 

of such a symbol is the pair (w, s). We will denote the empty string by>.. Operation symbols with 

arity >. are constant symbols. Other strings will be indicated by enclosing the constituent symbols 

within angled brackets. 

As examples, we can construct signatures for the natural numbers and for a stack data type. 

These examples will be embellished as new concepts are introduced in this paper. More elaborate 

examples can be found in Ehrig and Mahr [12]. For the natural numbers, let the sort set consist of 

the symbol nat, and define a constant symbol 0 and unary function symbol inc as the sole members 

of Ew,nat when w is >. and < nat >, respectively. For all other w, the set Ew,nat is empty. A signature 

for a stack of (unspecified) elements can be built from sorts eit, stack, and bool, and the operation 

symbols true, false, nil, push, pop, top, and empty. True and false are constants of sort bool; nil 

is a constant of sort stack; push has rank « elt,stack >,stack); pop has rank « stack >,stack); 

top has rank « stack >, eit); and empty has rank « stack >, bool). 

6.2.2 Many-Sorted Algebras 

It ~s worth remembering that, while the names of the sorts and function symbols suggest a particuiar 

interpretation, this is just a suggestion, and that the meanings of the symbols used are not determined 

by the signature. Rather, the interpretation of the symbols is given when a E-algebra is defined. A 

E-algebra A for an S-sorted signature E is an S-sorted set {As Is E S} of carrier sets together with 

an actual function (jA : Aw --+ As for each function symbol (j in Ew,s . Here, for any non-empty 

word w =< s1, ... , Sn > in S· , the symbol Aw denotes the Cartesian product As 1 X ... x As n' When 

w is empty, A w is a one-element set. 

One interpretation of the first example signature given above is, of course, the natural numbers. 

That is, we can define a E-algebra N, where Nnat is {O,l, ... }, the function symbol 0 is interpreted 

as the numeral 0, and the function incN associated with the function symbol inc is defined by 

incN (n) = n + 1. But other interpretations are possible. For example, any directed graph G in 

which each vertex has outdegree 1 can be used to define a E-algebra B whose carrier set is the set 

of vertices of G. Let DB be any vertex, and let incB(v) = w if (v, w) is a directed edge of G. Our 

assumption regarding the vertices' outdegrees ensures that incB is well defined. 

These two algebras are related in ways other than simply being different interpretations of the 

same signature. Define a E-homomorphism from a E-algebra A to a E-algebra B to be an S-sorted 

mapping f : A ~ B such that, for each word w =< Sl, . .. , Sn > in S*, for each element (a1, .. . , an) 
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in Aw , for each sort s in S, and for each function symbol (f in Lw ,3 , the following equation is satisfied: 

The concept of category will arise frequently in the discussion to follow. A category is a class 

of objects and morphisms. The morphisms are, in effect, labelled ordered pairs of objects, usually 

corresponding to the domain and co-domain of a mapping. An associative composition of morphisms 

is defined whenever the co-domain of one morphism matches the domain of another; the composition 

is itself a morphism. Each object has a distinguished morphism that acts as a left or right identity 

morphism whenever its composition with another morphism is defined. 

It is easy to show that each L-algebra has an identity L-homomorphism whose components are 

the identity functions on the carrier sets of the algebra. Since the composition of L-homomorphisms 

is associative and always produces another L-homomorphism , the class of L-algebras for a given S

sorted signature L, together with their L-homomorphisms, forms a category of many-sorted algebras 

which we will denote AIgE . 

Refer once again to our running examples. We can inductively define a L-homomorphism f from 

the natural numbers N to any ,)f the graph-based algebras B by defining f(ON) = 08, and, for any 

non-zero number incN(n), 

The function f is a L-homomorphism by its very definition. Notice, too, that there is no other way 

to define a L-homomorphism from N to B. This is because each natural number can be represented 

uniquely by composing the functions ON and incN. 

When dealing with data types, we want to maintain an abstract view of the type whenever 

possible. This means that we want to be able to use objects of that type without being concerned, 

or even aware, of how those objects are represented. This notion of abstraction is just the one 

captured algebraically by an isomorphism. A L-homomorphism f : A -+ B is a L-isomorphism if 

there is a L-homomorphism 9 : B -+ A such that the function compositions fog and go f are the 

identity homomorphisms on B and A, respectively. The mapping f is, in effect, just a renaming or 

change of representation of the elements of the algebra. 

As with other algebras, one can define subalgebras and quotient algebras in the category of 

many-sorted algebras. Although these constructs underlie much of the theoretical development of 

algebraic type theory, we will not consider them in detail here, since our main concern is modeling 

object-based environments. Suffice it to say that abstract type theory benefits greatly because it can 

draw on the experience and, often, specific theorems developed over decades of research in abstract 

58
 



algebra. 

6.2.3 Initial Algebras 

Let C be a class of ~>algebras for some S-sorted signature E. A E-algebra A is initial in C if A is a 

member of C and if for each E-algebra C in C there is exactly one E-homomorphism from A to C. 

An easy proof shows that any two initial algebras in a class are isomorphic and that initial 

algebras have no proper subalgebras. What is a bit harder to do is to show that a given class 

of algebras actually has initial algebras. We will most often be concerned with the class of all 

E-algebras or the class of all E-algebras satisfying certain equations. In both of these cases, the 

existence of initial algebras can be shown using a term algebra construction that is reminiscent of 

the construction of Plotkin's approach to defining operational semantics for CSP. [44] 

Before taking up the general construction, let us consider the case of the signature E given for 

natural numbers. That signature has one constant symbol 0 and one unary function symbol inc. 

The main idea in constructing a term algebra is to include elements in the algebra only as they are 

necessary to keep the algebra closed under the functions required by the signature. In this case, 

a E-algebra TE must have an element corresponding to tile COl.stant symbol O. We will call that 

element simply o. To keep TE closed under a function corresponding to the function symbol inc, 

we must have an element to serve as the image of 0 under incT. Call that element inc(O). Again for 

closure, we now need an element inc(inc(O)), then inc(inc(inc(O))), and so on. We take each new 

element to be distinct from all other elements of the algebra. Then TE is a E-algebra with carrier 

set 

{O, inc(O), inc(inc(O)), ... } 

with constant OT = 0, and with function incT defined by 

incT(n) = inc(n) 

for any element n in the carrier set. The equation defining incT is interpreted to mean that the 

result of applying incT to n can be found by replacing n in the right hand side of the equation by the 

term corresponding to n in the carrier set of TE . We recognize the resulting algebra as embodying 

a unary representation of the natural numbers in which a natural number n is given by the term 

having n occurrences of the function symbol inc. Binary or decimal notations or representations 

using trees are, of course, also possible. but all represent isomorphic E-algebras, and, as we will see, 

all are initial in the class of all E-algebras for this signature. 

59 



The general construction of a term algebra TE for an arbitrary many-sorted signature I; is 
III the 

complicated by the existence of more than one sort, but the process of beginning with constants and 
term 

by stages including terms using other function symbols is the same as in the example above. To be 
what 

precise, given an S-sorted signature I;, define a term algebra TE with carrier sets 
n the 

inductively as follows. 

1. Let TE,. (0) =I;>.,. for each s in S. 
zero 

2. For n > 0, let TE,. (n) be the union of TE,. (n - 1) and the set of all terms 0"(a1, ... ,ar ), ~ebra 

where 0" is in I;w,. for some w =< S1, ... , Sr > and ai is in TE,. (n - 1) for i = 1, ... , r. tract 

ction 
Then TE,. is the union of TE,. (n) for n =0, 1, .... 

:lude 
Having said what the carrier sets are, we must now describe the functions corresponding to the 

ro m 
function symbols in I; . If 0" is in I;>.,., then O"T is just the term 0" • If 0" is in I;w,. , then O"T is 

wing
defined so that J for any (a1' ... , an) in TE,w , the value of O"T (a1' ... , an) is the term 0"(a1, ... , an). 

The algebra TE has been constructed in such a way that there is only one way to define a 
lonal 

;:-homomorphism from TE to any other I;-algebra A. The constants of TE must be mapped to the 
stin

corresponding constants of A, while the effect of the homomorphism on more complicated terms is 
that 

similarly determined by the defining equations for I;-homomorphisms, just as the homomorphisms 

defined earlier on the natural numbers were determined by the definitions of zero and the successor 
:iate 

function in the domain and target algebras. Thus, the term algebra T E is initial in the category 

AlgE of all I;-algebras. 
and 

We are now in a position to make an explicit connection between many-sorted algebras and data 
f all 

types in programming languages. A many-sorted signature I; amounts to the specification of an 
tion 

abstract interface for a data type. A data representation for that signature would be any I;-algebra , 

while a data type is an isomorphism class of I;-algebras. Since a I;-algebra is initial if and only if it is 
xed 

isomorphic to an initial algebra, the initial algebras in AlgE form an isomorphism class, and, hence, 
bois 

a data type. In fact. this is the type most often used in connection with a given signature. The initial 
n of 

algebras provide initial algebra semantics to go along with the syntactic information contained in 

the signature. Although we want to treat data types abstractly, as a practical matter, some specific 
. all 

data representation must be selected in order to compute with the type. The term algebra provides 
on-

a convenient representation in that it is initial and can be generated mechanically from the signature 
les. 

(assuming, of course. that the signature itself is in some way computable). A type other than that 
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This technique of coercing one type of algebra into another (to borrow some programming lan

guage terminology) appears repeatedly in the development of algebraic type theory. TE(x) also 

has the property that for any I:-algebra A and any mapping f from X to A, there is a unique 

I:-homomorphism f* : T~(X) -. A agreeing with f on X. 

We define a I:-equation of sort s to be a triple < X, t l , t 2 > where X is a finite S-indexed set 

and t l and t 2 are terms of the same sort s in TE(x) . Notice that X must include all of the variable 

symbols in t1 and t2, but it may include additional variable symbols. A I:-algebra A is said to 

satisfy the I:-equation < X, h, t2 > if for every mapping f : X -. A the homomorphism f* satisfies 

f * (tt} = f * (t2)' When X is the empty set, f is the empty mapping and the homomorphism 

f* is understood to be the unique I:-homomorphism from TE to A. An algebra satisfies a set 

E of equations if it satisfies each equation in the set. In that case, the algebra is said to be a 

(I:, E)-algebra. 

There are some technical difficulties associated with using equations to derive a congruence of 

terms in many-sorted algebras, but the following rules are sound and complete [15]: 

Reflexivity. 

< X,t,t > 

Symmetry. 

<X,tl,t2> 
< X,t2,tl > 

Transitivity. 

< X,tl,t2 >,< X,t2,t3 > 
<X,tl,t3> 

Substitutivity. 

< X, tl, t2 >, < Y, u1, u2 > 
< Z,t1{u1jx},t2{u2jx} > 

where < X, tl, t2 > is of sort s, the variable x in X is of sort s', the equation < Y, ul, u2 > is 

of sort s', and Z = (X - {x} ) UY. 

Abstraction. 

< X,tl,t2 > 
<XU{y},tl,t2> 

if y is a variable of sort s that is not in X. 
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Concretion. 

<X,tl,t2> 
< X - {x},tl,t2> 

where x is a variable of sort s that does not appear in t 1 or t2, and s is void in the signat ure 

E (meaning that TE,. is empty). 

The first four rules here are derived from those ordinarily used for one-sorted equational logic, while 

the last two allow for adding and removing variable declarations. The variable declarations are 

needed to ensure soundness of the logic, while the abstraction and concretion rules are needed for 

completeness. 

Using these rules, one can confirm the existence of an algebra TE,E that is initial in the category 

of all (E, E)-algebras. It can be represented as a quotient of TE by a congruence generated from the 

equations E using the rules of inference given above. The same construction can be generalized to 

create quotients of TE(x) for any set X of variables. These quotient algebras, denoted TE,E(X) , 

playa role in the seman tics of concurrent rewriting presented below. 

Let us return to our recurring example of the natural numbers. Suppose that the signature that 

we have been using is augmented with a binary tunc-ion symbol + to create a new signature, which 

we shall also call E . Then, as pointed out before, the natural numbers are not initial in the class of 

all E-algebras. But if we add the set of equations E consisting of 

< {x}, +(0, x), x> and < {x, y}, +(inc(x), y), inc(+(x, y)) > 

then the natural numbers are initial in the class of all (E, E)-algebras. 

.While many-sorted algebras do a nice job of providing semantics for some types, they are inade

quate in contexts where reference to subtypes is needed. Various solutions to this problem have been 

proposed, but the most successful to date is to generalize the model of many-sorted algebras to so

called order-sorted algebras in which a partial ordering may be imposed on the sorts [16,17]. We will 

not consider order-sorted algebras here, but it is worth observing that the approach to developing 

semantics for many-sorted signatures and for many-sorted signatures with equations is mimicked for 

order-sorted signatures. That is, the signature is augmented syntactically to provide a vehicle for 

subtyping information, then the signat ure is interpreted in a class of algebras for which the initial 

algebra provides a satisfactory semantics. Furthermore, just as the case of many-sorted signatures 

with equations is reduced to that of unadorned many-sorted signatures, so the order-sorted case can 

be reduced to those we have already considered. This kind of bootstrapping will also be evident as 

we turn to the semantics of concurrent rewriting. 
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6.3 The Semantics of Rewrite Theories
 

The syntactic construct on which concurrent rewriting is based is a labelled rewrite theory 

n = (E,X,E,L,R) 

consisting of a signature E, a countable X set of variables, a set E of equations, a set L of labels, 

and a set R of labelled rewrite rules, where 

R C L x TE,ECX) X TE,E(X). 

An element of R can be written in the form r : [t] ---> [t'], the notation [t] indicating the equivalence 

class of the term t E E(X) modulo the equations E. To simplify the exposition, we shall assume 

that there is just one sort in the signature E, so that the arities of function symbols differ only in 

the number of arguments that they take. 

Just as the equations constitu ted the base case for an inductive definition of equivalence of terms, 

so the rewrite rules will be the basis for defining sequents 0:' : [w] ---> [w'], where wand w' are in 

TE,E(X) and 0:' is a proof term built as described in the following inference ru]{'s: 

Identity. 

[t] : [t] ---> [t] 

E-structure. For each function symbol f of arity n, 

Replacement. For each rewrite rule r: [t(Xl," o,xn)] ---> [t'(Xl, ... ,xn)], 

0:'1 : [WI] ---> [wl],"" O:'n : [wn ] ---> [w~] 

l·(O:'l, ... ,O:'n) : [t(w/x)] ---> [tl(WI/X)] 

Composition. 

0:' : [tl] -+ [t2], j3 : [t2] ---> [t3] 
0:'; j3 : [tl] ---> [t3] 

We can get some intuitive grasp of the proof terms before stating some additional equations that 

make the intuitions algebraically precise: First, the identity and E-structure rules ensure that, for 

each class [t] in TE,E(X) and each term w in [t], there is a sequent 0:' : [t] -;. [t] whose proof term 0:' is 

"syntactically similar" to w. In fact, wand 0:' would be identical if all square brackets were stripped 

from 0:'. So the structure of TE,E(X) has a counterpart in the collection of proof terms. This is 
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the starting point for ensuring that the semantics of concurrent rewriting subsumes the semantics 

of many-sorted signatures with equations. Second, in the identity and composition rules, we see a 

nascent category structure, in which the objects are the equivalence classes and the morphisms are 

the proof terms. Third, the replacement rule incorporates the rewrite rules into the semantics and 

represents concurrency in the simultaneous substitution for x and rewriting of t. The concurrency 

of the system is limited, however, in that two rewrite rules cannot act concurrently. Finally, notice 

that any sequent generated solely from the identity, ~-structure, and composition rules will have 

the same source and target (i.e., it will be of the form a : [t] -> [tD. Thus, only the rewrite rules 

allow one term to be transformed to an unequal term. 

The following equations on proof terms determine a set of equivalence classes of proof terms that 

is endowed with all of the desired structure: 

Categorical structure. 

Associativity. For all proof terms a, (3, and " 

(a;(3);, = a; ((3;,) 

whenever all of the compositions are defined.
 

Identities. For all sequents a ~ [t] -> [tl], we have a; [tl] =a and [t]; a =a.
 

'E-algebraic structure. The following equations hold for each function symbol f: 

Composition. f(a1; (31, .. " an; Pn) = f(a1"'" an); f((31, ... , (3n), whenever the composi

tions are defined. 

Identities. fWd,.··, [tnD = [f(t 1, . .. , tn)] 

Satisfaction of E. If t(X1, ... , Xn) =tl(X1' ... , tn) is in E, then, for all a1, ... ,an, 

Exchange. For each rewrite rule r [t(X1,'''' xn)] -> [t l(X1,"" xn)], if ai [Wi] -> [wi] for 

i = 1, ... , n, then 

and 
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fmod NATNUMS is 
sort Nat . 
op 0 : -> Nat 
op inc_ : Nat -> Nat . 
op _+_ Nat Nat -> Nat [comm assoc id: 0] . 

vars X Y : Nat . 
eq 0 + X == X • 
eq (inc X) + Y == inc (X + Y) 

endfm 

mod	 NAT-CHOICE is
 
extending NATNUMS
 
op _1_ Nat Nat -> Nat.
 
vars N M : Nat .
 
rl N 1 M=> N
 
rl N 1 M => H .
 

endm 

Figure 6.1: An example of Maude syntax. 

Let Tn(X) denote the set of equivalence classes of proof terms modulo the equations just given. 

When X is the empty set, write Tn(X) simply as Tn. The set Tn(X) can be viewed either as a (E, E)

algebra or as the class of morphisms for a c~.tegory, and the two structures interact appropriately. We 
\ 

can view the exchange rule in different ways, too. If r(al, ... , an) represents a concurrent rewriting, 

then the exchange rule gives us two ways to look at it as a sequence of operations, with either 

substitution of subterms or rewriting of the term's structure occurring first. On the other hand, in 

the terminology of category theory, the exchange rule indicates that r is a natural transformation. 

Tn is initial in the class of all objects having this combination of structures. So once again, we have 

an initial object semantics for our syntactic constructs. 

6.4 Object-Oriented Programming in Maude 

Maude is a language offering a convenient syntax for specifying labelled rewrite theories and imple

menting the semantics that we have just described. In so doing, it takes advantage of a wealth of 

research on term rewriting, including especially the Knuth-Bendix algorithm [11,27,28]. 

Figure 6.1 presents a sample of r.'laude's syntax, based in part on one of our earlier examples and 

in part on an example given by Meseguer [29]. The NATNUMS module is a functional module containing 

all of the elements of a many-sorted signature (except that in this case there is just one sort, namely 

Nat). The lines beginning with the keyword op define function symbols and indicate their arities. 

In addition, the function symbol + is declared to represent a commutative and associative operation 
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sorts Object Attribute Attributes Msg Configuration 
Value Old Cld AId . 

subsorts Old Cld AId < Value . 
subsorts Attribute < Attributes 
subsorts Object Msg < Configuration 
op <_:_1_> : Old Cld Attributes -> Object 
op <_:_) : AId Value -> Attribute 
op _._ : Attributes Attributes -> Attributes 

[comm assoc id: nil] 
op __ : Configuration Configuration -> Configuration 

[comm assoc id: ] 

Figure 6.2: Specification of an object-oriented environment 

having an identity of O. Such properties are indicated in this way rather than by equations because 

the properties playa special role in the standard term rewriting algorithms. Two variables of a 

specified sort are declared and used to state equations. 

The second module, NAT-CHOICE, is a "system module" in that it forces us to use the semantics 

of rewrite systems rather than many-sorted signatures to interpret the program. The module is 

declared to be extending NATNUMS, meaning that the semantics of NATNUMS are effectively embedded 

in that of NAT-CHOICE and the syntax of NATNUMS can be used in declaring NAT-CHOICE. In this 

case, only the sort Nat is reused. The NAT-CHOICE module gives two rewrite rules, indicated by 

the keyword rl. One could regard them as representing a non-deterministic choice between two 

natural numbers. Interpreted as equations, they would imply a semantics in which all elements of 

sort Nat are equal. This is certainly not intended, nor is it consistent with the notion of "extending" 

NATNUMS. The semantics of the preceding section solves this problem if we take these two Maude 

modules together to specify a labelled rewrite theory (unique labels for the rules being supplied 

automatically by the Maude interpreter). 

An approach to object-oriented programming through concurrent rewriting is suggested by the 

semantics of Actors, where object-based computation consisted of transforming configurations of 

messages and objects into new configurations. Meseguer's representation of the top level of an 

object-oriented environment is given in Figure 6.2. The intended interpretation is that an object is 

a term of the form 

< 0 : Cial : VI, ... ,an: Vn > 

where 0 and C identify the object and its class, respectively, and each ai ; Vi gives the name and 

value of an attribute or instance variable of the object. A configuration of an object-oriented system 

consists of a collection of objects and messages (whose form is not specified here and, indeed, would 
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most likely vary considerably). 

The syntax of order-sorted signatures is used to clarify the relationships among the sorts and 

simplify the description of attributes and configurations. The sort Value might subsume all of the 

data types defined in the environment. Rules associated with specific modules would show how a 

configuration that included messages and objects having particular forms can be rewritten into a 

new configuration, much as was done with Actors. To ease the task of object-oriented programming, 

Maude includes special syntax to specify messages, classes, and attributes, and to hide and thereby 

encapsulate aspects of a module's definition, but the syntax of these object-oriented modules can be 

translated readily into that of functional and system modules. 

Notice how the semantics of concurrent rewriting reduces the programmer's workload by allowing 

rewrite rules for different types of objects to be written without regard for the rules obeyed by other 

types of objects. Although a configuration consists of a particular sequence of messages and objects, 

the programmer does not need to worry about where certain messages or objects occur in the 

sequence. In fact, the nature of a configuration need not be known to the programmer. It is enough 

that the programmer's rules for processing messages interact with the concatenation operator for 

configurations as described in section 6.3. Then, since concatenation is commutative and rules B.ct 

on equivalence classes of terms, the order of messages and objects is irrelevant. 

The seman tics also allow rules to 'operate independently because no interaction among them is 

specified. This does, however, leave the task of avoiding deadlock or starvation to the programmer 

since nothing in the semantics ensures that the "right" rule will be chosen in situations when more 

than one rule could be applied. 
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Chapter 7 

Conclusion 

We have just examined a succession of increasingly powerful models for object-based systems-CCS, 

Actors, Abacus, and Maude. From the point of view of object-based systems, CCS is really a proto

model. It is the basis of other models, but many of the features that one wants when modelling 

encapsulated objects. Actors provides that encapsulation, and introduces the possibility of creating 

new objects dynamically. Abacus improves on Actors' encapsulation by allowing it to extend to 

constellations of inter-related agents. Maude provides a fully-developed system of type declaration 

that interacts harmoniously with facilities for concurrent operations. 

While these models grow increasingly powerful, they also present ever more complicated problems 

of implementation in a parallel processing environment. Actors might be regarded as the assembly 

language of object-based systems in this regard. The mapping of objects to processors in Actors 

is relatively straightforward, just as an assembly language facilitates the mapping of variables to 

registers. 

But as facilities for sharing grow more sophisticated, the task of managing resources shared 

among objects operating on different processors becomes more complex. This should not be too 

great a surprise. By allowing objects to share resources or code, we reduce their independence. 

Increased interdependence, in turn, places a greater premium on matching objects to processors in 

an efficient manner, both so that objects that communicate frequently can do so easily and so that 

objects with special computational needs are assigned to processors that meet those needs. 

The contrast between Actors and Maude illuminates the challenges presented by increased shar

ing. The semantics of Actors is expressed in terms of messages and behaviors, each with an associated 

mail address. Once that mail address is assigned to a processor, it is easy to see how to manage 
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the flow of computation because the actors are so self-contained. In Maude, on the other hand, the 

semantics is expressed using terms constructed from syntactic elements introduced by a variety of 

different objects. While concurrent rewriting provides for separate simplification of different parts 

of a term, the "ownership" of those parts is not always clear because of inheritance and because 

the focus of attention shifts rapidly to different subterms as simplification proceeds. This may be 

an argument for basing a model of object-oriented programming on a model for concurrency, since 

the latter is more closely related to the underlying hardware on which execution of the program will 

occur. 

We are just beginning to develop rigorous models of object-based systems. Each of the models 

that we have considered represents the first few steps in an effort to develop a comprehensive model 

of object-based systems that addresses the many desirable aspects of object-oriented programming, 

allowing them to co-exist without clashing. The authors of these models acknowledge that the 

models are incomplete. Certainly no model has achieved the sort of influence that CCS has for 

concurrent computation or the Turing machine has for computability. 

It may be that we are asking too much of object-based programming languages. They are to be 

suitable for rapid prototyping of systems and long-term soft.W1.re development efforts. They are to 

) have a tractable mathematical semantics but be capable of modelling the complexities of the real 

world. They are to give the programmer great flexibility, but carefully guard the encapsulation of 

objects and other modules. 

Nonetheless, researchers are optimistic that object-oriented programming will eventually meet 

the high expectations that many have for it. A carefully formulated model will be an important 

part of achieving the goals of object-oriented programming. 
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