
BROWN UNIVERSITY

Department of Computer Science

Master's Thesis

CS-91-M18

"Form-Centered Workflow Automation Using an Agent Framework"

by

George Fitzmaurice

Form-Centered Workflow Automation

Using an Agent Framework

by

George Fitzmaurice

ScB, Massachusetts Institute of Technology, 1988

Department of Computer Science

Brown University

Thesis

Submitted in partial fu1fi11ment of the requirements

for the degree of Master of Science in the

Department of Computer Science at Brown University

August, 1991

Table of Contents

Acknowledgments 3

1 Overview and Philosophy 4

1.1 Introduction 4

1.2 Centrally Designed vs. Centrally Controlled Routing 5

1.3 Working Assumptions 5

1.4 Example of Workflow 6

1.5 Workflow Functionality 7

1.6 Overview of Our Model 11

1.7 Outline of Paper 11

2 Background 12

2.1 Research Systems 12

2.1.1 Logical Routing 12

2.1.2 Electronic Circulation Folders 15

2.1.3 Cokes 17

2.1.4 PAGES 18

2.2 Commercial Systems 21

2.2.1 Electronic Mail. 21

2.2.2 BeyondMail. 21

2.2.3 LotusNotes 23

2.2.4 Active Documents 25

2.2.5 Reach 26

2.2.6 System A (BLOC) 28

2.2.7 System B (KeyFile) 28

2.2.8 System C (Verimation) 30

2.2.9 Others 32

2.3 Summary 32

2.4 Agent Systems 32

2.5 Groupware 32

3 Modeling Workflow Using Agents .33

3.1 Requirements 33

3.2 Why use Agents 33

1

3.3 Agents in Our Design 34

3.4 Model Components 34

3.5 Initiating a Workflow Job .37

3.6 Workflow Control Panel 38

3.7 Workflow Routing 38H

3.7.1 Routing code 38

3.7.2 Routing state information .39

3.7.3 Missions 39

3.8 Example of Component Interaction in the Model .41

3.9 Form Sets and Bundles 42

3.10 Spawning Forms 44

3.11 Splitting and Merging Forms or Sub-Forms .45

3.12 Conditional Merging 45

3.13 Tracking and Mission Summary .46

3.14 Form Operatives 46

3.15 Role Procedures 47

3.16 Form Routing Library 47

3.16.1 FRforward() 48

3.16.2 FRrecall() 48

3.16.3 FRbundle() 48

3.16.4 FRtimer() 49

3.16.5 FRsuspendFormArrivalO .49

3.16.6 FRsuspendMergeO 49

3.16.7 FRcopy 49

3.16.8 FRspawn 50

3.16.9 FRresolveRole 50

3.16.10 FRinstallRoleProc 50

4 Implementation 51

4.1 User Interface 51

4.2 Components 54

4. 3 Workflow Example 55

5 Conclusions 56

5.1 Analysis of Model 56

5.2 Future Work 57

11

6 Bibliography 58

7 Appendices : 61

7.1 Appendix: Logical Routing Evaluation 61

7.2 Appendix: Envoy Framework Overview 63

7.3 Appendix: Implementation Schedule 64

7.4 Appendix: Prototype Screen Shots 68

7.5 Appendix: Visual Routing Language Scenarios 71

iii

.....

This thesis by George Fitzmaurice is accepted in its present fonn by the

Department of Computer Science as satisfying the thesis requirement for the

degree of Master of Science.

£~ t&7's/P-)~-
Prof. Andries van Dam
Advisor

Acknowledgments

This thesis is a culmination of many people's efforts who aided in many facets of
the thesis ranging from conceptual brainstorming, analysis, design, and most
importantly, moral support.

Professor Andy van Dam was instrumental in ensuring the successful completion
of this thesis. The work described in this document stems from many detailed
discussions with Andy who contributed significant ideas and analysis, unlimited
energy and managerial skills that kept the project on track and inspired me to
work the hardest I have ever worked. Andy, always working on ten or more
things at the same time and at a whirlwind pace, was always accessible in person,
and I enjoyed many of the late night, long distance phone calls and fax
exchanges. Thanks also to Lori and Tina who kept tabs on Andy which allowed
me to keep in constant contact with Andy.

The folks at BLOC Development (Peter Preksto, Ron Frohoc, et.al.) provided
great reviews of early design ideas and always kept me honest. Randy Foregaard
and Eugene Lee of Beyond Inc. helped me get a quick understanding of the
existing mail systems and technology trends. Karen Smith Catlin contributed an
interesting perspective on workflow by providing me with a set of forms from
Hitachi Europe Ltd.

Tennis provided me with an outlet to escape the work and stress and helped me to
relax and cope with the matters at hand. Thanks to all of my tennis cohorts
including Bern, Rob, Chris, Laura and Mum.

The research was sponsored in part by IRIS and I thank them for providing the
working environment and computers for the project. Marty Michel extended the
project and supplied valuable technical information and analysis. Thanks to Rose
Antoni for her constant encouragement and administrative wonders. Norman
Meyrowitz, who supported the original agent research, served as my initial
advisor and helped me investigate and evaluate masters topics; I will always be
impressed with his technical insight. Also, the workflow prototype would not be
possible without thanking Mum Palaniappan for co-designing and implementing
the original agent framework with me. A special thanks to all at IRIS who helped
me to juggle classes and a full-time job with astonishing success.

I am amazed at the amount of work that was undertaken in the less than three
month lifespan of this thesis. To my close friends, I described the experience as a
PhD booteamp and on reflection I realize that I not only learned about my research
topic but also how to conduct high quality research.

This thesis is dedicated to my sisters (Jean, Julie, Elizabeth) and my parents
(mom and dad) who supplied enormous emotional support and encouragement
throughout the entire grueling process. Thank you all.

- G.F.

George Fitzmaurice 3

1 Overview and Philosophy

1.1 Introduction

Office workflow can encompass many different disciplines (e.g., psychology, group

dynamics, transactional analysis, queuing theory) and technologies (e.g., facsimile

machines, computers, applications, networks). We have taken a much more restricted view

of workflow as deterministic, centrally designed and form-centered workflow. A forms

centered approach means that at each workflow stage, some processing occurs that usually

involves the form. The forms are live; users can fill in fields of a form, launch additional

applications and communicate with documents produced by those applications (e.g.,

spreadsheets).

Paper forms are used extensively in many organizations and often serve to record events,

request supplies or services, and notify people. The forms serve to encode the procedure

that is required to reach a desired organizational goal.

We use the term workflow to describe the entire process that the forms undergo in an

organization to reach a desired goal. Many organizations have strict procedures for

servicing a request which involves one or more forms at any given stage in the procedure.

At each stage, workers typically interact with forms, examining, fIlling-in, and taking

actions based on the data present on the forms. The forms travel between workers,

departments, and organizations that usually are not geographically co-located. Enterprise

wide workflow encompasses forms that are used throughout a large organization having

mul~ple LANS (and WANS), hosts, and a variety of workstations.

In our view, electronic forms need to be intelligent, active, and dynamic objects that interact

with one another and the environment in which they exist Many early workflow systems

have a restricted design which treats forms as independent units of processing which expect

each form to work in isolation. This is not true in our approach. We consider workflows

that span a form set and the forms can communicate and interact with one another. Routing

depends on the form set, not just individual forms.

The computer industry proposes to automate the workflow process by supplying electronic

forms l , intelligent form routing, security, user notification, resource balancing, and

lputure references to the tenn "fonn" mean a fonn instance unless otherwise specified.

George Fitzmaurice 4

tracking applications for users and managers to design, implement and monitor the

workflow process. Each of these components will be described and discussed later;

however, intelligent form routing will be emphasized in this document and in our design.

1.2 Centrally Designed vs. Centrally Controlled routing
In analyzing and designing workflow systems, it is crucially important to understand the

differences between centrally designed and centrally controlled routing. The model we have

defmed concentrates on deterministic, form-centered workflow routing which is centrally

designed and defined before the form in initially used. Alternatively, an ad-hoc routing

system would rely on each form-receiving user to manually decide and advance the fonn to·
: .. "

the next user. This approacb is prone to errors and, consequently, we have adopted a

limited notion of ad hoc routing by allowing users to manually copy a form and send it to a

co-worker.

Centrally controlled routing addresses the question of where the routing information and

definition are kept There are three major design types: (1) the routing script is attached to

the form and travels with the form; this is the decentralized approach (2) routing

information is managed in a centraljormbase (form database) for all form types, (3) each

fonn type has a private fonnbase to access routing information. Centrally controlled routing

also identifies whether a single component or process is responsible for executing the

routing script There are three major approaches: (1) the routing script is interpreted locally

at each user's site, (2) a central server process all of the routing requests, (3) a different

server exists to process routing requests for each fonn type.

In addition to these routing classifications, when we consider workflows that span multiple

forms, system designers need to decide whether there will be one routing script for all of

the forms or individual scripts for every fonn. In the Background section we will pay

particular attention to which routing scheme was chosen and identify the benefits and

detriments of each approach.

1.3 Working Assumptions
It is believed that enterprise-wide workflow may involve on the order of tens of thousands

of different form types and thousands of workflow schemas for large organization such as

Chrysler and Boeing. While enterprise-wide workflow needs to be able to operate in a

heterogeneous, distributed environment, we deal here only with workflows that span

George Fitzmaurice 5.

groups of user working on a single local area network such as might be found in a small

business or a department of a larger organization.

This model supports a division of labor based on the principle of locality of reference. That

is, it is expected that local departments of large organizations do not make use of all of the

form classes that the organization has defmed. In reality, they use only a fraction of the

total number of form classes. Similarly, a department will most likely use a small set of

workflow schemas in their everyday work. Having a centralized form database is

impractical. A large organization would place tremendous stress on a single database

process trying to service its community.

The model assumes that there are several hundred form types and dozens of workflow

schemas defined. It is not clear what modifications to our design will be necessary to

support large, enterprise-wide workflow environments. We are trying to be sensitive to the

needs to have our solution scale-up, but more analysis needs to be done to determine

whether that is feasible.

1.4 Example of Workflow
In order to understand what types of functionality and information needs to be provided in

a workflow automation system, a simple workflow schema is described. One particular

company requires that its workers submit an overseas travel application before conducting a

business trip overseas. The form requests that the applicant fill in their name, trip number,

purpose of the visit, a schedule with sites, people, dates and preferred accommodations.

Once the form is fIlled in, the applicant's manager must approve of the form. Next it travels

to a general manger who authorizes the request The form is then used to initiate the travel

arrangements for the applicant

In this workflow schema, there are four distinct stages: (1) user fIlls in form to make a

request, (2) manager approval, (3) general manager approval, (4) initiate travel

arrangements. Consequently, the form is expected to undergo four routing transferrals, the

first of which entails instantiating a new form instance.

While filling out the form, the user can be aided by having some of the fields be filled in

before (or as part of) opening the form. For example, the applicant's name and other

identification information can automatically be fIlled in from the user's ill and the user's

profIle in a personal database. Field values such as the trip number can be computed as

well. In addition, the form validates the data while the user fills in each field of the fonn.

George Fitzmaurice

Once the user submits the request, the next recipient needs to be determined and sent the

fonn. If the request is not approved, the fonn must be routed back to the applicant who

must be notified.

The workflow designers want to selectively enable access to workflow status and tracking

information. Administrators or an individual may be enabled to inquire about certain kinds

of status infonnation. The types of information which may be available are status

information about what stage the workflow is currently in and who is working on the

request.

Managers would like to examine summary statistics on the workflow schema such as: how

many overseas travel applications were submitted, how many were approved, what is the

average time an application takes to be processed, which month had the most application

request. The accounting department may want to collect statistics on the average cost of the

trips and the amount spent on trips by individual workers or departments.

1.5 Workflow Functionality
The simple workflow example above highlights the basic functionality needed in a

workflow system. However, more progressive concepts need to be provided in order to

mimic and improve on the current paper-based workflow functionality. These concepts are

described below.

Terminology

Before continuing, it is necessary to understand some frequently used terminology. A

workflow schema dictates which forms and in which order the fonns (and their partitions)

are filled in and routed to users and also what external processing takes place at each hop

(Le., launching an application and importing fonn data). While the workflow schema

provides the defmition and description of an office workflow procedure, a workflow
instance holds the data and state information for a workflow procedure that is in progress

or completed. Forms, in our model, are implemented as object-oriented classes and each

form class defines the content (i.e., fields), presentation (i.e., the layout of the fields),

behavior (Le., actions associated with the fields such as verification) and routing (Le., the

ordering of who should process the fonn). Note that routing information for forms in a

fonn set may largely overlap. Aform instance holds the data and state information for a

given invocation of the form class definition.

George Fitzmaurice 7.

Form Sets & Partitions

Many workflow stages require the user to access and fill-in multiple fonns. Therefore, the

notion of having a workflow schema attached to a single fonn is impractical. Workflow

schemas make use of one or more fonn sets. Aform set is a collection of one or more

logically related forms that can be accessed and operated on for a given workflow schema.

Figure 1 shows three fonns belonging to a fonn set. The forms are divided into regions,

called partitions, that contain collections of logically related fields. Note that forms in a

fonn set do not necessarily travel to all of the workflow steps.

Form Set

Figure 1: A Fonn set containing three fonns. Each fonn is divided into two or three partitions of
logically related fields. The fonns contain ~ group of hot linked data fields.

Hot-Linking

Data will often be shared among fonns within a workflow schema. For example, the

initiator's name, address, title and social security number or other identifying numbers

should be on many of the workflow fonns. Mechanisms must exist to support hot-linking

ofdata fields between fonns. This allows all fonns to receive immediate updates when any

one of the hot-linked fields changes. Fields can be grouped and groups can be hot linked as

well; neither individual fields nor groups need be displayed in the same way on different

forms. Note that we associate linking with a workflow, not with the fonn defmitions

themselves.

Form Membership

Forms can belong to many workflow schemas. For example, a product price list fonn

could belong to an inventory workflow and a purchasing workflow schema. When the

price of an item changes, both fonns, their fonn set and their workflows are affected and

need to know of the change.

George Fitzmaurice 8

Parallel Routing

A workflow stage is a stopping point in which users, typically, need to perfonn some

action before advancing to the next stage. Each stage of the workflow does not necessarily

need to follow a linear pattern. Often a fonn is divided into regions (Le., partitions) which

workers can process in parallel since the fields to be filled out are mutually exclusive (they

may share an arbitrary amount of read-only information).

Split/Merge 0/a/orm

When a form is being worked on in parallel, the form is considered split between one or

more users. Once users finish processing the fonn and submit it, the data must be

reconciled and merged.

Cyclic Routing

In addition to the parallel routing. workflows may be defined in which a routing cycle

occurs. For example. a review process or a negotiation may require that a form or form set

travel back and forth to the same users until a condition is met which breaks the need to

cycle. Note that cycles should not be restricted to two users only one hop away but can

include many users and hops for one complete workflow cycle.

Roles

For a workflow schema to remain generic. roles must be used instead of specifying exact

userIDs. The form routing logic will want to indicate a role (e.g.• Manager, Department

Head) when a form needs to be forwarded to the next workflow stage.

. Notification

Users should be notified of new workflow tasks that they have been assigned to process.

In fact. the workflow requests can be prioritized for users, allowing them to determine

which requests are most critical. The workflow requests have an associated deadline and

users can be warned when the deadline is approaching or can be notified that the request is

overdue.

Customized Views

The electronic forms need to be active and adaptive depending on the workflow stage and

current user. Forms can be tailored in terms of their visual presentation. layout, content,

and security. For example, a worker may only want to see or be allowed to see the fields

that s/he uses to process the form at the current workflow stage. Moreover. the worker

might be allowed to exercise his or her own viewing preferences to alter the layout and

George Fitzmaurice 9.

appearance of the form when displayed or the workflow designer might tailor the

appearance to the skill level or each class of workers. Certain forms may contain sensitive

data which can be made invisible at workflow stages. Fields within a form may have read

and write access controls to prevent users from filling-in certain fields (Le., a user is

prevented from filling-in the manager's authorization field).

Tracking

Users need to have tools that allow them to see the current state of workflows which are in

progress. In addition, tools that help users manage their work requests (e.g., prioritize or

sort them) are very important in a successful system. Note that the tracking data could

probably be used by a variety of applications.

Collective Tracking & Resource Balancing

Statistical tracking data that summarizes the collective workflow jobs can also be computed

to aid designers, for example, in determining the workflow bottlenecks. The tracking data

can also aid managers in identifying trouble spots in the workflow route. Similar to a

network manager which monitors the throughput of gateways or servers, workflow

components can monitor if there is a backup of requests or identify which steps take the

longest to complete. The data could also be used to dynamically adapt the workflow by re

routing requests through less congested servers or to workers who have a smaller work

queue. In short, a sophisticated workflow system will be able to perform resource

balancing to obtain maximum throughput.

Authentication

The workflow system needs to prevent unauthorized access to form and workflow schema

definitions as well as data belonging to form instances and workflow instances. Access and

concurrency control at the field level of a form is necessary to support parallel routing.

Atomic Transactions
The model should be robust enough·to support a rich set of workflow transactions. That is,

we should be able to define atomic transactions that have the same functionality of

databases (e.g., can be journaled, and can recover from a system failure by rolling back to

a consistent state).

All of this functionality needs to be provided by a state-of-the-art workflow system. It is

proposed that an agent-based system could serve as the core building block for a workflow

framework. Therefore, we describe a model that builds upon an existing agent framework,

George Fitzmaurice

Brown's Envoy System [45], and examine the feasibility of the model to support

automated office workflow.

1.6 Overview of Our Model
In designing our workflow system, our goal was to support all of the above mentioned

functionality. While we are initially concentrating on the intelligent routing aspects of

workflow, the model can easily be extended to incorporate many of the features.

The decision to use Brown's agent frameworkrJ as the core for our workflow model was

based on two factors: (1) the agent framework already existed and its architecture was

touted as being extensible; we wanted to test this theory, and (2) agents are a natural choice

since they can easily handle decentralized processing. That is, the agent framework

provides workflow functionality such as: notification mechanisms, automated scheduling

and management of tasks, tracking, and resource locating.

The model dedicates one server process per form type. This server furnishes form-level

requests for any form instances of its given type. It is responsible for field and form level

access control and persistent storage of its forms. Users interact with an independent

frontend process which receives a package ofdata from the server which allows the

frontend to perform field-level transactions without communicating back to the server

(except for hot-link data exchanges).

Routing logic is centrally aggregated on a form-type basis and the definition and state

information for the routing code resides in the server. The routing code is executed only

when a user submits its work request.

An additional process per workflow schema serves as a communication hub to the rest of

the components. Its primary function is to manage and track information of workflow

instances belonging to its schema

1.7 Outline of Paper
First a lengthy review and analysis of existing systems that address the area of workflow

automation is presented. During this analysis we determine how it satisfies and relates to

our ideal workflow system. Next, we describe our agent-based workflow model and derme

a generic form routing library to be used in conjunction with a high level programming

language (e.g., C++). This library provides an easy and familiar mechanism for workflow

designers to program new workflow schemas. Our prototype and implementation are

George Fitzmaurice 11,

delineated next along with the user interface for our prototype. We end with an evaluation

of our model, the lessons we have learned and talk about possible future work.

2 Background

This lengthy section ftrst describes workflow systems in the research community and then

commercial systems that are available today or coming to market shortly. The Logical

Routing and the PAGES system are two of the most relevant research systems reviewed.

Three of the systems known as Systems A, B, and C are under non-disclosure and only a

brief description will be presented to highlight their approach. Because our design also

spills over into agents and groupware, two short sections on these areas will give the reader

pointers to related references.

2.1 Research Systems

2.1.1 Logical Routing
The Logical Routing project is a Message Management System (MMS) built at the

University of Toronto [39]. The system addresses the need for logical routing of structured

messages which can use information about themselves or about the system to affect their

own processing. Mazer and Lochovsky define a routing speciftcation language which

supports: single message routing, parallel and cyclic routing, splitting and merging of

messages. They have also incorporated some simple notiftcation and the system is the only

one reviewed that has attempted to address the issue of resource balancing. While this

system is relatively old, it is one of the most relevant systems that deal with the problems of

message routing. Their approach allows for routing to be centrally designed but is

evaluated locally at each site. The system design, however, still does not consider a

collection or set of messages; the messages travel and work mostly in isolation. See the

appendix for a more detailed evaluation of this system.

First, it is important to realize that their system does not make many references to the notion

of form automation. Instead, their office information system centers around message types

which can be thought of as object classes (or, in our world, Form classes). A message is

an instance of a message type. The messages are stored in a communication base which can

be distributed or centrally located.

Each user of the communication base is modeled by an agent who plays a role (e.g.,

manager) within the MMS. The tenn agent is somewhat misused in this context. In the

George Fitzmaurice 12

MMS, an agent is simply a mapping mechanism and representation between specific

userIDs and roles. Users may belong to more than one role and a role may include other

roles.

The authors defme three kinds of sites: origin site (the source of the message), processing

site (intermediate sites), and terminal site (the last site in a route). Each site has an in-mail

and out-mail tray to receive and send messages.

The routing specification of messages falls under two major categories: type routing (the

message designer defines a route for all instances of the message) and instance routing

(users defme or mcxlify the routing of a message instances that affects the present instance

only). Overriding a message's route (i.e., ad hoc specification) can occur at both the type

and instance routing.

At each site, originals or copies of a message instance can be sent to the next set of

recipients. Copies are independent from the original in terms of content and the route they

take after they are created. The system places a significant routing constraint when multiple

originals are sent to a set of recipients during the next routing stage. All originals must

evaluate the same routing specification and all must evaluate to the same next site (i.e., once

the routing code is executed and the next site is determined, all originals will be forwarded

to this site). Note that it is possible to route an original to sites when all, or some of, the

recipients have processed the message.

An automatic procedure may be defined to block the routing of a message instance until

some criteria are satisfied (e.g., waiting for another message to arrive or a field value). The

authors, however, give no indication on how designers would defme or install automatic

procedures.

A routing specification for a message type consists of a single script definition which

contains a set of subdefinitions for each potential site in the route. Time constraints on

processing an instance may be specified for each site. Within a site specification, different

routing code can be executed depending on how many times the given instance has visited

the same site. If an error occurs during the routing process, designers can specify addition

code for run-time exception handling (e.g., return message back to originator). Conditional

routing constructs exist to allow messages to be forwarded to different sites based on

supplied criteria being satisfied. Note that time constraints are checked upon an instance's

arrival at a site and periodically during the message's stay at a site. The routing conditions

George Fitzmaurice

are only checked during routing evaluation when the message has been processed. Finally,

designers may specify whether the users of a given site can create instances of the same

message type.

Some level of resource balancing is possible by specifying the following keywords during

the routing fOlWarding command:

•	 FEWEST-MESSAGES <site 1> OR <site 2> OR <site N> - current instance is to

go to which ever site currently has the fewest instances of the given message type.

•	 MOST-MESSAGES <site 1> OR <site 2> OR <site N> - go to which ever site

has the greatest number of instances of the given type.

•	 LEAST-LOADED<site 1> OR <site 2> OR <site N> - go to which ever site has

the least loaded CPU

•	 MOST-LOADED<site 1> OR <site 2> OR <site N> -current instance is to go to

which ever site has the greatest loaded CPU

Implementation

The prototype system is implemented under UNIX and uses C and a relational database

management system.

A central log provides a history of message instances, containing an entry for each creation,

termination, and each movement of an instance from one site to the next Database relations

exist to support concurrent routing and authorizations.

A message type routing script is preprocessed (i.e., compiled) before invocations are

possible. This phase deals with checking for proper syntax and expanding general site

specifications and resolving roles.

Next, the message type definitions are distributed to sites. There are a few strategies for

distributing: member (some message types are already known to all sites as part of the

original system), implicit (all of the sites specified in the routing script will be sent the

message type definition when the instance is created), explicit (the message designer can

manually send the definition to a site), and ad hoc (a temporary copy of the message type is

sent to a site; the copy is discarded once the message has been processed at the site).

Because the message type routing script is already specified as a collection of independent

site definitions, the script can be partitioned on a site-by-site basis. Only the site specific

script is propagated to the corresponding site (as opposed to the total routing specification

George Fitzmaurice 14

script). The authors are not completely clear on when the script needs to travel with a

message type or message instance. It appears that the routing script needs to travel to sites

during at hoc routing and manual routing.

Three methods for evaluating the routing specification are described: central evaluation (a

central authority, or process, evaluates the routing after each site completes processing the

instance), origin evaluation (the originating workstation will make all the routing

decisions), and distributed evaluation (after each site's processing is complete, the

corresponding workstation evaluates the decomposed routing and sends the instance on to

the next site). The distributed evaluation is used in the prototype.

The triggering of the routing evaluation at each site occurs when the user is finished

processing the message instance. This occurs by the user placing the message in his or her

out-tray. Automatic evaluation may occur, for example, ifone of the time constraints have

been triggered.

2.1.2 Electronic Circulation Folders
The ProMinanD system[29] is an Electronic Circulation Folders approach to office

workflow developed by Karbe, Ramsperger, and Weiss. Their philosophy concludes that,

in general, office work is full of exceptions, and that, in the long run, changes take place

with respect to organization structure, assignments, office roles, and event tasks. They

have also chosen a decentralized evaluation approach to workflow. The workflow scripts

are centrally defined but the system promotes ad-hoc routing and dynamically modifying

the routing procedures. There are no provisions to support parallel routing (nor split/merge)

or hot-linking data between documents. The system is, however, one of the only designed

to handle acollection of documents which are associated to a given workflow schema.

The model is based on a very traditional tool for processing an office task, the circulation

folder (CF). Its contents consist of arbitrary but related documents which are to be worked

on by office workers. Their addresses are written on the cover of the CF. An internal

messenger service takes care of the transfer of closed CF's from an office worker's out

tray to the in-tray of the one whose address has been added to the CFs cover by the office

worker at his discretion.

The electronic version of this mOdel, ProMinanD, offers more functionality and greater

efficiency over the paper version.

George Fitzmaurice 15,

Users log into the system and select an office role that they will be perfonning. A graphical

desktop gives the user access to office tools such as editors, and the ECF in-box and out

box.

Operations

There are operations "forward," "postpone," and "inform" which deal with the common

migration of ECFs. The operation "forward" advances the ECF to the next office worker

fulfilling the specified role. An office worker can postpone the processing of the work

inside an ECF as well as issue the inform command to receive the status of an ECF (Le.,

where the ECF has migrated from the worker's the out-box). Other operations on ECF

include:

•	 not me - worker claims he is not the one who has to work on the current step. ECF

is sent back to the previous worker because of "refusal."

•	 refer back - worker needs additional information

•	 append - add a migration step immediately following the worker's step. The idea

here is that an office worker may want to have another office worker (normally a

subordinate one) carry out or complement the current step.

•	 delegate - appends two steps after the current one. Whereas the first one is

appended like before the second one comes back to the delegating office worker to

get the results back and take over responsibility.

•	 shortcut - removes a step in the workflow

•	 shift - delays a step in the workflow to be worked on later (perhaps a worker who

is responsible for the step will not be in for some time)

•	 fetch back - retrieve an ECF which has been moved to the next worker's in-box.

Can only be retrieved if the next worker has not processed the ECF yet

•	 cancel ECF - remove the ECF instance because it has become obsolete.

Implementation

The system is implemented on Sun workstations running Unix with TCP/IP and the

window system SunView and written in Objective-C. The migration specifications are

contained as objects which accompany their ECF (this is possible because Objective-C

allows objects to be "passivated," stored, read in and activated again).

The overall migration system (MS) consists of a local migration server(LMS) running on

each workstation and a global migration server (GMS).The LMS implements the office

worker's interface to the MS, maintains the office worker's desktop model, and interprets

George Fitzmaurice 16

the migration specification in order to fmd out which step will be the next after forwarding

the ECF. The GMS controls the migration of ECF between stations. It also contains

infonnation for determining which office workers are logged in, the roles they are currently

playing to resolve roles into concrete receivers, the ECFs state of migration, and events

which trigger forwarding of ECF. Note that ECFs are copied to each workstation as it

follows its migration course.

An organizational description is maintained as relations in the database system. The

relations describe the valid roles and relations between roles and between organizational

units (i.e., departments). This allows ECF templates to be defined which have a pre

defmed migration path and the contents needed to perform the workflow procedure.

One key point that the system makes is that the description of the organization is set apart

from the migration system algorithms. Also, the system designer realize that a single GMS

will not handle large organizations. A cluster concept is being developed which will allow

the integration of wide area networks.

2.1.3 Cokes
The COKES (Carlton Office Knowledge Engineering System) system, by R. Kaye and G.

Karam [30], is an artificial intelligence approach to solving office automation. While it

initially does not appear to be related, many of the same problems ofrouting and decisions

as to where the knowledge is..stored are found in this knowledge-base approach. The

designers have chosen to distribute the office knowledge needed to solve a particular

procedure to those users' sites which are responsible for carrying-out the procedure.

Notions of personal agents, message forwarding and conditional suspending are present in

this model

-
The system provides high level support of office workers by embedding office knowledge

in a network of distributed cooperating knowledge-based "assistants" and servers. These

assistants and servers incorporate both factual and procedural knowledge in tenns of

frames and rules, and are capable ofmaking use of existing conventional office technology.

The assistants are devoted to individual users, whereas the selVers are dedicated to

specialized areas of organizational knowledge or functionality. The system is capable of

supporting concurrent multiple tasks with facilities for interruption and resumption of

tasks. The various assistants and selVers cooperate in solving problems by passing

messages between themselves. One of the basic principles of the system is that office

workers should be assisted by an entity which is knowledgeable about the organizational

George Fitzmaurice 17

structure, the tasks the worker is currently working on, and user preferences and personal

procedures.

The system aids the. user in learning about the organizational structure and procedures by

querying the knowledge-base. COKES uses rules to define procedures and frames to

define office structure.

There are two types of frames: class frames and instance frames. In this sense, it is very

similar to an object-oriented approach. The interesting twist to the frame's instance

variables (a.k.a., slots) is an additional qualifier known as a facets. The facets identify

procedures or daemons that are invoked ifcertain operations are performed on a slot For

example, if we attach a daemon to an if_added facet of a given slot, then when a value is

added to the slot, this daemon is invoked automatically. Other facets include: if_removed,

if_replaced, if_needed, and if_appended. This feature is useful in maintaining consistency

across a set of slots or even across frames.

The architecture supplies each user with a knowledge-assistant Servers also exist to supply

general office knowledge and a means of maintaining centralized control over changes to

the knowledge. All assistants and servers are equipped with both inference engines and

facilities for communicating and cooperating with each other. Another basic COKES

principle dictates that information should be stored where control over its evolution is

located. Therefore, information about a particular project is stored in the project manager's

personal assistant.

Rules are applied toward the achievement of a goal using a backward chaining inference

strategy. Distributed and concurrent office activities may be suspended until some waiting

condition can be satisfied.

2.1.4 PAGES

The research system known as PAGES by Heikki Hammainen[23, 24] makes significant

contributions to the area of office workflow, agents, and form automation. This approach

also centers around agents. Forms are defmed as a means of communicating between each

user's agent. The agents have access to local formbases which serve as a decentralized

approach to workflow and routing evaluation.

Agents act both as consumers and providers of services. The services are accessed by

interchanging and sharing forms. The agent acts as an object manager processing,

presenting, and storing forms that contain data, layout, and rules.

George Fitzmaurice 18

A form is an instance of an object-oriented class. An agent is assigned to each user or

organizational unit (e.g., accounting department). Each agent has access to a formbase (a

set of instantiated forms). Forms get mailed to and from other agents. Forms can be

simple, such as a confirmation form. All functionality of the system appears in rules of the

form classes and all data in instances of these form classes. Rules are described by a form

oriented rule language, FPL (Form Programming Language).

Workflow designers are expected to fIrst defIne a state transition diagram of the workflow

process they wish to automate. Once all the states are determined, forms are defined to

provide the communication and informational needs of the collaboration between the states

(simple forms are confumation, reject, accept, etc.). Each state change corresponds with a

form interchange transaction. A Form Interchange Protocol (FIP) makes sure that when an

agent transfers a form to a new agent/formbase, the form defInition is equivalent or at least

compatible. Two PIP-aware classes exist to defIne and support the fonn migration scheme:

PIP message and PIP monitor classes. The instances of the PIP message classes implement

the steps of PIPs, whereas the instances of the PIP monitor classes maintain the states of

PIPs, but typically do not move themselves.

Note that agents always receive a copy of the form. If a receiving agent has no knowledge

of the form class, the form definition will migrate and be installed into the user's formbase.

Forms are derived from an abstract base class, Form. The system supports the construction

of applications within the local formbase. The fields of the form are drafted interactively

with the form editor. Then the desired functionality is defined by filling in the standard rule

slots of the class. Linking forms aid in constructing semantic networks. For example,

when a delivery form completes, the action is linked to an inventory form which reduces

the inventory by the ordered amount. Linking to another form occurs by specifying the

class name, formID, and field name.

Agents are interconnected with a network which supports unique agent addresses and

reliable transfer of forms. The agent identifies the arrival form and places it into the right

folder, which verifIes the conformance of the instance with the local class defmition. The

migration of form classes is a way to distribute functionality among agents but carries the

risk of accepting incomplete, unsuitable, or even hostile classes.

Implemented as policy instead of mechanism, the agent should support the user in

remembering (1) when and what kind of form he is expecting from others, (2) what others

George Fitzmaurice 19,

are expecting from him, and (3) how his forms are related with each other through pending

tasks.

The term "project" defmes a unit of collaboration which involves a set of agents and a set of

forms. The generic project aspects are captured in the base class Project which allows the

user to browse his projects as a uniform to-do list. The basic project information consists

of the initiator, participants, date of start, and finish, and an entry for each form involved.

The state of a project is either pending, idle, or finished. A pending project requires the

user's attention since there is a deadline. Each participant maintains the local state of a

project asynchronously according to the form flow visible to him.

An entire workflow process can consist of a set of forms and projects. In Figure 2, two

organizational units (the Customer and the Supplier) each have an agent assigned to them

and a collection of forms (fender, Order, Confirm, Change, and Status). An example of a

project may be a new status request from the supplier to the customer.

I
Customer

Tender -I

Order1 I
Confirm I1

I Change
1

I Status I
'

""
....

...

..

...

Supplier

1 Tender

1 Order

I Confirm

'"

I
I
I ..

1 Change

- 1 Status
'

I
I

~

....

Figure 2: Fonns interchanged during the ordering procedure.

To capture the past, a uniform bookkeeping of significant events is implemented with a

form class History whose instances record standard events for example, form deleted,

created, sent, or received, as well as any user-defined incidents. The main attributes of the

History class is a time-stamp, reference to the associated form, and event type.

Real-time sharing of forms is achieved through a distributed windowing system, such as

X; a single form can be viewed by multiple users in parallel.

The PAGES model does not impose a consistent global view to the organizational roles of

agents. Instead, each agent maintains its own view of the world and implicit dynamic roles

George Fitzmaurice 20

appear as side-effects of fonn interchange, that is, the sender of an order form becomes a

customer and the receiver becomes a supplier. The rigid aspect of roles may appear locally

in the rules of an individual agent. For instance, the team agent recognizes the team

members and allows them to access the shared team forms.

A decentralized approach was chosen for the PAGES system. A single agent does not

coordinate the entire workflow process. Instead, any participant which comes in contact

with the workflow, can operate dynamically as the coordinator. Each self-contained agent

is expected to know only its direct acquaintances (i.e., the agents it deals with).

Finally, note that the use of a fonn is slightly different than the traditional use. The PAGES

model emphasizes the use of a fonn to aid in the communication between two collaborators

or two users in a workflow; the form is usually designed to have only the needed

information to complete a communication transaction. This approach differs from having a

single form be used by all the participants in a workflow, customizing the presentation and

filling-out rules based on the current user.

2.2 Commercial Systems

2.2.1 Electronic Mail
Various electronic mail packages can be considered a very primitive, unstructured

workflow tool. Here, the messages and the text within the messages are not structured and

each user decides in an ad-hoc manner the next recipients of the message. UNIX mail,

CC:Mail[7] and MicrosoftMail[40] all support message transports that span heterogeneous

machine architectures. This property must not be forgotten when designing a workflow

system. Researchers contend that one of the major reasons why electronic mail is so

successful is its ubiquitous access and availability on most machines.

2.2.2 BeyondMaii
The BeyondMail product[5] from Beyond Inc. provides significant functionality over

standard electronic mail packages. It can be considered a decentralized workflow system in

which mail messages arrive for users in their inbox and rules are applied to them to file,

perform some action or forward the message to a set of users. The system can be

significantly improved if it has the ability to attach rules to the mail messages which would

then be installed and executed at each site. This would allow for a much simpler

distribution and maintenance of the routing script and state information.

George Fitzmaurice 21

BeyondMail allows users to create rules to manage their mailbox. These rules direct

BeyondMail to automatically forward messages to colleagues, classify messages in

personal folders, delete "junk mail", or generate automatic responses to routine messages.

BeyondMail comes with 6 standard "forms" that can be sent to users. For example, there

are "Phone Message" and generic "Request Forms" available in the set of standard forms.

Each user can define a set of rules to be applied to the incoming mail messages and forms.

The rules are in a "When...If...Then" format. A typical rule might be "When new mail

enters my inbox, if the sender is my Supervisor and the word 'deadline' is used, then put

the message in my Urgent folder." Users can switch between rule sets depending on the

current situation (e.g., out of town, crisis mode). Rules can be triggered when certain

events occur:

• New messages arrive in a user's inbox,

• A user reads a message for the frrst time,

• A messages that is fIlled into a folder,

• When BeyondMail is starting-up or exiting,

• Periodically (a recurrent time every hour, day, week, month)

• Timer (a specified date, time has arrived)

If a rule is sensitive to one of the events, it becomes active and the IF portion of the rule is

examined to detemrine whether or not to fIre the rule. Firing the rule will execute the THEN

portion of the rule. Many different types of action can be performed during this stage:

• Construct a new mail message

• Send the mail message

• File the current message into a folder

• Display an alert box

• Perform some calculations (examine or set fIelds of the message)

• Launch an application with pre-defined keystroke inputs.

Constructing the rules are simplified by using rule templates and selection lists. A selection

list displays to the user all of the possible settings. Many functions use selection lists as

parameters. For example, the move command which places a message into a folder has a

selection list which contains all of the available folders. The templates provide extra

structure information when defIning a rule. This reduces the amount of keywords a user

must understand, prevents type mismatch, and quickens the amount of time needed to fill

out the rule.

George Fitzmaurice 22

The rule language is modeled after HyperTalk in that the syntax is very english-like.

Theoretically. anything a user can do manually. slhe can do it automatically using a rule and

specifying the action as a verb within the rule definition. Rules can be generated by using

the structured rule editor or by entering text adhering to the rule language syntax. Rule

specification is simplifted if a user wants the rule to be applied to a particular form since all

forms have a rule template.

Composing a form message is easy if a user is using one of the standard forms; just fill in

the fields and send it. Currently. there is no way of defIning a new class of forms.

Customization of the behavior of forms is achieved through the rule language. Documents

or data IDes can be attached to messages. This means that the recipients can view the

attached documents in their native application assuming that they know which application to

use.

Because Beyond can make use of the structure of the mail message. it can more effectively

manage a user's set of messages. The ability to perform full text queries on the main body

of the message adds significant power to the management mechanism by being able to base

its actions on the content of the message.

Routing is decentralized since the rules apply to a user's mailbox. It is possible to distribute

rules to a set of users but this quickly becomes cumbersome (e.g., updating rules). This

scheme tends to make it easy to program routing transactions that take one hop as opposed

to a sequence of hops.

2.2.3 LotusNotes

A very popularly known system, LotusNotes [38], by Lotus concentrates on office

workers communicating with one another and accessing public information. This system

addresses some of the same functionality of form-centered automated workflow. It

provides the means to hot-link data fields, access and manage collections of documents,

track group activities, and has access control to the documents. The system serves more as

a bulletin board and does not necessarily require documents to be routed.

Lotus Notes allows its users to create and access document-oriented information on PC

LANs; among its features are a document database. store-and-forward electronic mail and

conferencing functions. The package contains a standard set of applications for

conferencing, project tracking, bulletin boards, contact management and status reponing as

well as application development environments for customizing its built-in templates. The

George Fitzmaurice 23,

speed and flexibility of the tool allows frequent prototyping and customization for the

particular user group which may be the key to the eventual success of the product

The product's goal is to transform the way people work, particularly as it relates to how

people deal with group or corporate information. Lotus believes that people interact in two

ways: sending information back and forth to each other (e.g., using electronic mail), and

accessing shared information, whether it be structured information in databases or

unstructured information such as bulletin board conferencing. Towards this end, the

application development environment can support applications that require dynamic

addition of information, sharing across groups or locations, and access to text-based and

graphics-based documents. For example, using Notes, a much more structured e-mail

application could be built which does more filtering and categorizing of incoming

information. This functionality, however, is only a portion of what other e-mail

management products, such as BeyondMail, provide. Yet, the fact that such an application

can easily be built is noteworthy.

Notes has been designed as a client/server application (one of the fIrst in the PC world).

The server functions as a repository and management point for the document databases

(Le., applications). In addition, the server controls the communication functions such as

database replication and mail routing.

The notes applications are basically a database of documents where each document contains

both structured and unstructured fIelds. The users and developers never see the actual

database, except for an iconic representation on their desktop. All interactions with the

database is through the use of Forms and Views. The forms are used to enter information

into the database and present the information to the reader. Fields within the form can be

many types: data fIelds, numeric fIelds, calculation fIelds, and fully-formatted, "rich-text"

fIelds. Developers can restrict what type of information goes into a give fIeld as well as

provide a list of valid entries to choose from. Views are used to access the information. A

main view sorts the documents (Le., forms) by the most appropriate field (e.g., date,

author). Secondary views may sort by different criteria. Views are created by application

developers and new views can be added. Personal views can also be defined in which a

user's private information in addition to the shared information can be presented.

A great deal of other functionality is provided by the Notes package. Documents can be

hot-linked together even if the documents exist in different databases. A full-text engine

adds additional searching capability. Filters exist to provide extra sorting abilities for

George Fitmlaurice 24.

documents and electronic mail messages. In addition, filters can be used to collect

documents and perfonn a unifonn action on all of the resulting documents such as add a

new field or change the values within a field A security scheme has also been set up to

restrict access to databases as well as authentify users. Finally, the overall strength of the

groupware application allows its applications to capture and make persistent a group's

knowledge, expertise, and history.

2.2.4 Active Documents

Interleaf Inc. has defmed a commercial system known as Active Documents[18]. Here the

world centers around the document and attaching knowledge and behaviors to the

documents to react intelligently in their environment Because the architecture is so

extensible, it is difficult to critique it since one could always argue that a program could be

attached to the document to get the desired functionality. Nevertheless, the system lends

itself to some interesting architecture designs. In terms of workflow, the system does not

take on a centralized or decentralized philosophy but instead the workflow definition would

be embeded in a fonn as an active document

The system advances the current notion of document processing by defining an extensible,

object-oriented system for describing and executing active documents. A run-time bindable

object system and Lisp interpreter serve as the key underpinnings in supporting such a

mechanism. Much of Interleafs philosophy can be traced back to Emacs, one of the first

widely-used extensible editors that allows its users the ability to mold the underlying editor

for tasks sometimes not imagined by the software developers.

Interleaf describes active documents as structured documents and their processors in which

the objects in the documents can be acted upon by, and can themselves act upon, other

objects in the document or the outside world A document is simply a collection of

document objects (doc-objs).

The software is based upon an object-oriented system which allows standard class creation

and inheritance mechanisms. The Lisp programs have access to a document's set of

objects. These objects range from characters and graphics to higher-level objects that

describe the structure of a document. Various events (e.g., opening, printing, or displaying

a document or selecting objects) cause the objects to be sent messages allowing them to, for

example, query external databases or remote processes to get the current state of external

data.

<George Fitzmaurice 25

Not only can the content be encapsulated as doc-objs. but the user interface and document

behavior are described in terms of objects and therefore can be customized. Lisp permits

the run-time reconfiguration of the user interface. For example, the keyboard mapping and

the menu system can be dynamically redefined.

Associating methods with the documents is a very powerful concept Permitting the

methods to be defined at document execution time allows the active documents to be used

in ways that the system architects may not have anticipated yet For example, a method

associated with a mathematical integral sign may originally only allow for the expression to

be graphically displayed. That method could be replaced at run-time with a method that

ships the expression to a symbolic mathematics processor for symbolic integration.

In fact, the documents can even communicate with external processes by using standard

TCP/IP sockets. The Lisp load primitive permits an arbitrary ASCII file containing Lisp

code to be read and interpreted.

In summary, Interleafs active documents supports a document-centrlc approach to defining

and customizing a document's appearance and behavior based on a run-time, object

oriented system. Documents can take on new functionality and responsibility in terms of

the data that they manage and have access to.

2.2.5 Reach
A system currently under development by Reach Software Corp [35] promises to be a

complete solution to workflow automation for PCs. It is a vision because the system is still

being designed and a lot has been promised but we are still waiting until the product comes

to market

The Reach system will be a task flow automation approach to workflow automation. It will

primarily consist of intelligent forms capable of routing themselves and changing states

based on operations the user can perform at any given stage in the workflow. These

intelligent forms will be attached to electronic mail messages, which will carry them around

the network in a route defined by the designer. Two principle components will exist:

•	 WorkMAN/Forms. client based, scripting engine capable of processing workflows,

running in the background, communicating with Mail system and DDE compliant

•	 WorkMAN/Server. client-server based, using SQL to enable more complex

querying of the workflow system, reports and administration.

George Fitzmaurice 26

Forms will be objects and consequently have a type (e.g., purchase order or an invoice)

and a set of operations associated with it.

Dynamic routing will exist to detennine which user on the system should get the form next.

Route a form based on the state of the workflow and the specific operations that must occur

next.

Role-based and rule-based constructs will aid the form routing. Each stage in the workflow

will have a set of rules associated with it. Role-based addressing allows designers to defme

the route in generic terms rather than specific hard-coded users. For example, determine the

manager of the user making the request as to who should receive the form next

Scripting will allow applications to be launched and files specified to be processed by the

application.

The form design tool will allow developers to define a form, the content of the form, the

roles involved in processing that form, the applications needed to process the form and its

route. Constructing the form will involve drawing text boxes, labels, and fields. Users can

also make use of buttons and attach actions which will be executed when the button is hit

Dialog boxes will be used to specify standard operations with buttons. A script will

automatically be generated that goes along with the button (e.g., launch an application).

Routing rule templates will be used to provide common patterns for a variety of routing

types: sequential, serial with loopbacks, branch routings with conditional operations. A

graphical display of the route will be generated once the routing rules are entered. A

workflow route can temporarily be altered if, for example, a manager is on vacation.

Hitting a Done button, for example, will execute the workflow script which specifies the

completion of the current stage and requesting a new route. The workflow system will use

MailMan primitives to create a message, address it to "manager," and attach it to a form. A

user will send it off like a regular mail message. MailMan will resolve which user matches

the specified role and send the message. When the next user receives the form, the software

will check its type against the types in the form library and then check the state of the

workflow, determining which operations must be enabled, and display the form on the

screen accordingly.

Tracking the workflow at each step is proposed in the Reach system. A message will be

sent to servers designated as "tracking points." This builds an audit trail of the workflow

which will be saved in a database for later querying.

George Fitzmaurice 27,

The Reach approach centers the entire workflow process around the use of a single fonn. A

workflow engine background process will be running at each workstation. Processing of

the fonn will be based on the fonn type and the state of the form. A centralized workflow

description approach has been chosen (i.e., the entire workflow process definition is

attached to a singular fonn). Currently, it will not be able to handle a set of forms.

2.2.6 System A (BLOC)

This system[1l], as well as the following two systems, are still under non-disclosure

agreements and, consequently, cannot be properly identified. However, System A has the

ability to intelligently display and fill-in electro~ic,fonns across heterogeneous machines.

The forms are active and dynamic objects that respond to the environment and user actions.

Currently the system is being extended to take on more workflow functionality. Its main

approach is to have one routing script be attached to a fonn which travels with the form.
" .

However, this company is trying to deal with the notion of a fonn set and data sharing

between fonns. It has denounced the idea of a centralized selVer being responsible for

evaluating routing logic since its major strength is its target toward enterprise workflow

which does not guarantee the accessibility of selVer machines.

2.2.7 System B (KeyFile)

System B [31] provides document management in the fonn of storage, retrieval and

distribution. A variety of information types can be imported into the electronic environment

such as scanned images, facsimile messages, DOS files, word processor files, voice

messages, and handwritten notes. The system has three basic Document management

functions: (1) Entering documents, an image-based version of a paper document; (2)

Reviewing and Processing documents, sending and annotating documents and (3) Filing

and Retrieving documents. The major strength of the system is its very rich tool integration

which allows easy management of electronic documents.

The company defines workflow as processing and receiving documents or fonns that

follow this pattern:

• Create or receive a document

• Classify for appropriate handling

• File, throw out, enter into workflow "system"

• Perhaps copy it

• Distribute for action

• Take appropriate action

• Perhaps revise it

George Fitzmaurice 28

• Follow-up

• File or redistribute it

Some interesting points about the system is the use of an object-oriented document server.

Documents are referenced and routed to users by unique documentlDs. Users at a given

site have access to the document server and the representation of the document is an icon

that references a document object Multiple copies of the icon can exist since they all point

to the same object. Commands exist to force a manual copy of a document Having

multiple icons that point to the same device is also useful if each icon is used within a

different job or task. Different parameters could be set on each icon that matches the job.

For example, a scanner could have different settings based on the document being imported

into the environment

Users can assign Properties to every item in the system to uniquely identify it Some of the

properties include: a Title, Type, Person, Description, and Date. Explicit keywording is

also possible. An elaborate document search ability is available with multiple search criteria

such as title, author, keywords, and date.

Scripts can be generated to automate a repetitive task. The way in which a script is defined

is significant Users use the drag-and-drop mechanism with icons. By properly dropping a

sequence of icons onto a desktop job icon, the user defines the set of actions s/he wants

performed. For example, dropping a scanner icon, an OCR icon and finally a file draw icon

will import a paper document into electronic form and file it away.

FonDS can be routed to any system user. The form authors can place a deadline on how

quickly the user needs to process the form. A user can be notified when time is almost up.

The Connection Manager provides a very intelligent transport mechanism. For example, it

supports multiple hardware architectures, properly orders and aligns bytes.

To construct a routing form, there are 4 major components: send to someone FYI, send to

someone waiting for a reply, suspend, and stop. The routing order is specified by a

sequence of the 4 components and stored in a folder. Fields and buttons can be placed on

the form. Action can be associated to buttons. For example, if the user hits the "Accept"

button then forward the form to my supervisor; if the user hits "Reject" then return the form

to the initiator. The suspend component adds extra functionality, or intelligence, into the

workflow process as it can require that certain conditions be met before progressing. For

example, suspend the workflow until all necessary documentation arrives.

George Fitzmaurice 29,

The system adheres to Microsoft's Dynamic Data Exchange (DDE) protocol. This allows,

for example, data from an application to automatically be imported into a workflow form,

filling in the proper fields. Finally, data files can be intelligently attached to mail messages.

That is, the message contains information such as what application to launch to view the

data.

2.2.8 System C (Verimation)

In this system, we will only examine the routing primitives it has defined in its fonn

language. A fonn's routing transaction can be one of two types: forward or destination.

Forward destinations receive a copy of the fonn with all of the logic still active (e.g., verify

fields) while fmal destinations only receive a static copy of the fonn with the data entered in

by users. The syntax for specifying a route involves only a few simple calls:

)DESC

DEST (userID1)

USRFWD (No)

USRDEST (No)

This information is declared in the description portion of the fonn. The above code

indicates that the form should be routed to userID1 who will receive a final destination. The

USRFWD and USRDEST codes indicate that users cannot dynamically alter the forward or

final destinations of the fonn. Note that multiple users can be specified in the DEST

command. The next example specifies that the fonn should be forwarded to userIDl, and

next to userID2, then two destination copies should be sent to userID3 and userID4. As

soon as userIDl completes all of the desired input and hits the send button, userID2 will

receive the fonn.

)DESC
FORWARD (userlD1)

FORWARD (userID2)

DEST (userlD3, userlD4)

USRFWD (No)

USRDEST (No)

Variables may be defined and used as parameters to the FORWARD and DEST commands.

This allows the fonn's route to be dynamically specified as conditions arise. Users can:

• add additional forward destinations,

• add, remove, or restore branches and

• replace, and re-order the destinations.

George Fitzmaurice 30,

There are 21 reserved variables defined to support 21 routing hops (FWD.IDn where n =
0...20). Another reserved variable, &ZFWD identifies a count of how many hops have

occurred. To add a hop, the form designer needs to assign a userID to the proper FWD.IDn

variable. For example, to add user gf to the hop 5:

CNTL (.FWD.IDS =DG.gf)

There can be no breaks in a route. If a forward destination is inserted, and it is not the next

forward destination, the Form will automatically skip over that destination and go directly

to the fmal destination. But if you need to add a hop in the middle of the route definition,

how do you shift all the remaining hops down by one? This is done automatically.

Removing a hop at a specified level is accomplished by assigning a blank to the control

variable:

CNTL (.FWD.IDS = t ')

To add a branch to a previously defmed route at level n, just another assignment to the

FWD.IOn variable is necessary. To replace a forward destination, permission needs to be

granted by the form designer: FWDCNTL(REPL). Issuing the assignment:

CNTL (.FWD.ID5 =&userName)

will replace all of the old destinations at level 5 to the new destination. Note that the only

forward destination that the user can replace is the next forward destination.

Looping is difficult in this scheme. It is, however, possible to send the form back to the

first user by resetting the .FWD variable:

CNTL (.FWD =0)

The system always "remembers" the Memo-ID of the first user.

Note that only one set of forwarding controls can be assigned to a form. This seems like an

unnecessary restriction. The form designer should be able to specify at each hop in the

route whether the user has the permission to modify the route. The routing script is attached

to the form instance and is evaluated locally at each user's site. This model assumes that

forms will work in isolation.

George Fitzmaurice 31.

2.2.9 Others
Form automation is a growing industry [46] and many more systems are bound to become

available. Two systems, Rhapsody from AT&T, and NCR's Cooperation, are additional

tools for providing workflow functionality for the office. Early workflow systems [2,25,

48,50,51] laid the groundwork for todays systems. Survey articles on office automation

[6,16,27,36] provide a historical perspective as well as comprehensive studies on office

needs. Information retrieval tools such as full-text retrieval systems[9] must be integrated

into the automated workflow systems.

2.3... .$ummary
Mter reviewing the background literature and commercial systems, it is interesting to note

that one can identify a common set of properties that most of the workflow systems

provide. At the very least, forms or messages can be transferred to a recipient by specifying

a role instead of a hard-coded userID. Most have chosen a decentralized, local evaluation

scheme for calculating the next routing destination. Consequently, the systems tend to be

limited in providing routing instructions that affect only one form and not a form set. Inter

form communication is very week and basing the next routing destination on state

information contained in external forms is difficult. Almost all of the systems have

provisions for conditional, cyclic and ad-hoc routing. Only the more sophisticated systems

can handle parallel routing and merging. The remaining workflow properties such as

resource balancing, atomic workflow transactions, and tracking have not been fully

addressed.

2.4 Agent Systems
The term "Agent" has been used in a variety of ways within the computer industry. Here is

a comprehensive list of some of the more popular systems and references to agents [1,3,4,

8,10,12,13,14,17,19,20,26,28,33,34,42,43,44,47].

2.5 Groupware
Any new software that is being developed must understand the issues involved in groups

of users working together. Here is a list of some survey articles that discuss groupware

issues[15,21,22,32,37,41,49].

George Fitzmaurice 32

3 Modeling Workflow Using Agents

3.1 Requirements

While designing our model, we attempted to adhere to a set of requirements or goals that

we believe are imperative in a state-of-the-art workflow system. First the model should be

robust enough to support a rich set of workflow transactions. That is, we should be able to

derme atomic transactions that have the same functionality of databases (e.g., can be

journaled, and can recover from a system failure by rolling back to a consistent state). It is

impractical to supply this level of functionality in a prototype but we believe it is necessary

in a commercial system that must compete with manual procedures. The model should also

not collapse by having single points of failure. For example, relying on a single, central

database to always remain on-line is not realistic. The processing of the workflow should

be distributed to make best use of the resources on hand. Obtaining higher throughput and

responsiveness (e.g., in filling out the form) is very important. Workflow designers should

be able to quickly define simple and complex workflows without expending a great deal of

effort. Finally, the model, in principle, should be scalable.

3.2 Why use Agents
There are a number of approaches that one can take in implementing a workflow system:

(1) rule-based systems like BeyondMail, (2) hard-wired programs and, (3) dedicated form

languages such as PAGES and Logical Routing.

We chose to make use of agents because we had access to an agent framework (Brown's

Envoy system) and wanted to see if the framework could be easily and quickly extended to

support a workflow model.

It is also quite natural to consider agents as a key technology in building a workflow

system since they poses functionality that overlaps with workflow functionality. Agents

provide functionality such as:

• notification mechanisms,

• schedulers and managers of tasks,

• track information,

• and often server to locate users and system resources.

The Envoy system provides all of this functionality and we eagerly wanted to understand

the complexities involved in upgrading the system to support a complete workflow design.

George Fitzmaurice 33,

3.3 Agents in Our Design
We believe that agents provide a natural way to characterize and implement workflow

automation. An agent can be defined as a computer-based assistant that helps users perfonn

tedious, repetitive or time-eonsuming tasks more easily and efficiently. It can be

implemented using agents which take on responsibilities for automating a series of user or

system actions - perfonning these actions when proper conditions are met without any

user intelVention. In short, agents selVe as higher layers of abstraction and offer the

property of indirect invocation.

In our model, we have three types of agents:

•	 Envoys - which selVe as delegators and managers of task assignments and results.

An Envoy keeps track of a set of tasks and can inform users when a task changes

status or has results, using a variety of notification channels.

•	 Operatives - these agents are attached, typically, to end-user applications to perform

actions or work on behalf of a user. Most operatives have a single backend selVer

component and multiple frontend components that users interact with.

•	 Bureau Chief-provides a site-wide lookup seIVice for contacting agents and

system resources. It abstracts naming and authentication seIVices.

Each type of agent plays an integral part in orchestrating and implementing our workflow

automation system and will be discussed later in detail.

3.4 Model Components
Below we describe the primary components of the model and outline the major

responsibilities of each component (see Figure 3).

Our workflow model can be classified as, primarily, a centralized workflow modeL

However, one central form database (formbase) does not exist in this model. Instead we

propose an actual, small database for each form class because of the need for robust (i.e.,

transaction-base:d) processing. Each formbase has a governing process (FormOperative

Backend) that seIVices form-level transactions such as creating a new form instance and

supplying field authorization for all instances of its form. Our model is decentralized in the

sense that the FormOperative Backend invokes a process on the user's local machine to

handle field-level transactions (i.e., fIlling in the form).

A form's Backend process is comprised of one form class and a set of complementary

classes that are bound in while the Backend is compiled. The complementary classes

George Fitzmaurice	 34

support the integration and interaction of the fonn class into the workflow model (e.g.,

communication mechanisms and protocols). The FonnOperative Backend process is also

responsible for executing the routing logic for each fonn instance by accessing methods of

the form class. The fonn class defines a unique chunk of routing code for each workflow

schema the fonn can participate in. The logic code does not travel with the fonn instance

nor does there exist routing logic at each user's machine2• One FonnOperative Backend

process services all instances of its fonn class. For example, consider the FonnOperative

Backend that services a Travel Expense Form. If five users are in the middle of a Travel

Report workflow then five instances of the Travel Expense Fonn may be in use but only

one Backend process will be needed to service all of the Travel Expense Fonn requests.

Users interact with a fonn instance by using a FonnOperative Frontend that runs on their

local workstation. This Frontend process deals with displaying the fonn instance to the

user and allows him/her to interactively fill-in the fields. Many conditions can cause the

fonn instance to be advanced to the next workflow stage. The user could explicitly hit a

"submit" button or the fonn could automatically advance to the next station under

conditions such as (1) an error condition occurred, (2) all the fields were filled-in, or (3) a

complementary fonn instance was completed. Once the fonn closes the Frontend process

terminates.

Users each have an agent, called a User Envoy, assigned to them to work on their behalf.

The User Envoy serves as a delegator and manager of task assignments and results. It aids

in keeping track of the user's set of tasks and infonns the user when new information for a

task arrives by using a variety of notification channels (e.g., e-mail, alert box). A User

Envoy would typically have a variety of registered tasks, or missions, such as: receiving

and filtering mail, managing the user's daily calendar, and handling workflow requests.

In addition to the User Envoys, there is a Workflow Envoy (WE) for every workflow

schema. The Workflow Envoy primarily serves as a coordinator and tracker. Only one

Workflow Envoy process is needed to support multiple workflow instances belonging to a

given workflow schema. The Workflow Envoy serves as the communication hub for its

2We use the terms travel and hop to mean that only the minimal form data is transferred during a one step

routing transaction; the form is not physically moved or copied. Most likely, only a unique form identifier

(formID) will be specified. At most, variable data is moved, not the form class definition which is accessed

and cached.

George Fitzmaurice 35

workflow schema. This allows the Workflow envoy to keep a workflow transaction log for

each workflow instance. It also maintains global workflow state information such as the

addresses of all the participating User Envoys and Operative Frontends and Backends.

A single Bureau Chief process provides site-wide lookup and role-resolution services. The

Bureau Chief process runs on a server machine and can supply information on how to

contact User and Workflow Envoys as well as Operatives. It also maintains the role

resolution database that maps generic terms (e.g., Department Head) to specific userIDs.

The model makes use of a form set definition (FSD) which allows workflow designers the

ability to defme a collection of logically related form classes to specify which forms should

be presented to the user during each workflow stage and which fields or groups of fields

among the form instances should be hot linked. The Workflow Envoy holds one form set

definition which it examines to ensure that the necessary forms are present during each

workflow stage and to propagate the hot-link data (see figure below).

Figure 3 shows the primary components in the workflow model and their communication

channels. Note that each user has one User Envoy and at any given time can have one or

more operative Frontends (one per form instance) running while processing a workflow

request.

George Fitzmaurice 36

Figure 3: Workflow model components.

In summary, the model dictates that form-related functionality should be centralized by

having individual FormOperative Backends servicing form-based transactions for a given

form class. The routing logic for a form is defined within its form class. A separate chunk

of routing code exists for each workflow schema the form belongs to. FormOperative

Frontends service field-based transactions for a given fonn class. Workflow Envoys are a

mechanism for centralizing the information needed to support office workflows that span

multiple form instances. The form set defmition (which also contains the field hot linking),

tracking and global workflow state information all reside in the Workflow Envoys.

3.5 Initiating a Workflow Job
There are two types of workflow initiation: direct and indirect launching. A direct launching

requires the user to issue a command, perhaps by selecting a menu system command (e.g.,

"Travel Expense Report") from his desktop. Alternatively, a manger may perform an

indirect launching by issuing a command in which the first recipient is not the manager but

one of his employees. In both cases, the initiating command will cause a message to be sent

to the designated Workflow Envoy. If the workflow instance was launched directly, the

Workflow Envoy will launch the appropriate Fonn operative Frontend(s) on the user's

machine, supplying it with a pre-defined initial mission. The mission will also be installed

George Fitzmaurice 37

into the User Envoy's set of registered missions. IT the workflow was launched indirectly,

the Workflow Envoy will only locate the first recipient's User Envoy and pass it the

mission.

3.6 Workflow Control Panel

The workflow control panel is launched when a user opens a workflow mission from their

User Envoy. The panel tells the user the workflow schema the mission originated from, the

stage the workflow job is currently in, and the forms associated with the mission (pull

down menu). Users can open and close forms that are associated to the mission, provide

textual comments about the workflow job, see additional instructions, temporarily put away

the set of forms for this mission, cancel the work done so far, or submit the work request.

Note that the workflow control panel may obviate the need for a "Done" button on each

form. The "Done" buttons may be confusing to users if they are presented with a set of

forms to satisfy a work request.

Workflow Control Panel

Workflow: Purchase Request Procedure
Stage: 1r-- _

Forms: IInvoice Form III (open Form) (C1.ose Form)

My Comments:

1"----1 ~
(Instructions) (put AWay) (cancel) (submit)

Figure 4. Workflow Control Panel

3.7 Workflow Routing
The workflow routing of forms is achieved through routing logic code, state information,

and envoy missions. Each topic is addressed below.

3.7.1 Routing code

The routing logic for a workflow is aggregated at the form level and each fonn operative

Backend executes the routing logic for its fonn instance by accessing methods of the fonn

George Fitzmaurice 38 .

class. Since a form may be used in multiple workflow definitions, the routing logic must be

able to change depending on the workflow procedure being followed. Towards this end,

the routing code is broken up into separate functions that get executed based on the

incoming request. Each form operative Backend has a dispatcher routine which examines

the incoming request and executes the proper routing procedure.

3.7.2 Routing state information

A routing table provides routing state and transition information for instantiated forms.

When a new workflow job is encountered by the form operative Backend, a new form

instance and routing table is generated. The table has 4 columns and a varying number or

rows:

Role Procedure RequestCount Status

Anyone InitializeO 0 INTI1AL

Mafta1!;er ManaJ?;erApprovalO 0 INTI1AL

AccountinJ?;Dept AccountLoJ?;O 0 INTI1AL

The primary key for the table is the Role column. The incoming request has a role field

which is compared with the state table. Once a match is found, the corresponding

procedure is executed. The procedures can process the form (e.g., compute any additional

values) and then forward the form to the next recipient The RequestCount field indicates

how many request messages have been received by the operative Backend for a given role.

This information is important if the routing logic changes based on the number of trials a

work request was attempted. For example, after the third time of trying to get an

authorization, send the form to the department head. The status field conveys what state the

work stage is at any given time. Some status entries are: INITIAL, REQUEST,

REPEAT_REQUEST, WORKING, SUBMITIED, PROBLEM, and DONE.

The above table could be the initial routing table for a Purchase Form. When a purchase

form is instantiated by a Workflow Envoy, the userID and role are initially supplied. The

operative Backend's dispatch routine examines the routing state table and calls the

associated procedure that matches the specified role (Anyone in this case). The InitializeO

procedure is called which forwards a copy of the form to the userID by defining a mission.

3.7.3 Missions
Conceptually, a mission embodies a work request, typically for a user to process. A

mission is simply a collection of data values consisting of information such as: userID,

George Fitzmaurice 39·

role, field authorization, work status (initially REQUEST), formID or bundleID,

workflowID, and a timeStamp. The field authorization information indicates initially which

fields should be visible and modifiable to the user. The mission is passed to the Workflow

Envoy which determines the userID, if necessary by asking the Bureau Chief, and sends

the mission to the user's User Envoy. When a user decides to process a work request, he

opens the form(s) by selecting the mission from the Mission Summary application which is

associated with his User Envoy. The User Envoy launches the needed form operatives

Frontends to display the forms associated with the mission. In addition to the forms being

displayed, a small workflow control panel opens.

When a mission is submltted by the user, the operative Frontend packetizes the mission

data and contacts the Workflow Envoy. It, in turn, receives the data and sets tracking

information for the mission such as userID, role, status=SUBMI1TED, and a timeStamp.

The information is relayed back to all of the operative Backends which participated in the

work request An acknowledgement message from all of the operative Backends is sent

back to the Workflow Envoy.

If a mission submission is overdue, the Workflow Envoy is responsible for sending a

message to the user's User Envoy which, in turn, notifies the user of the problem. When

the Workflow Envoy originally received the mission, it recorded the current time and the

mission overdue time. An alarm time was calculated and queued. A submission of a

mission causes the alarm to be deactivated.

Backend Operatives Receiving Completed Missions

When a work request mission returns to the form operative Backend, the dispatch routine

examines the userID and role and locates the proper entry in the routing state table. The

RequestCount counter is incremented and the status changes to SUBMITfED. Next, the

routing procedure is executed. If any data was added or changed on the form, it is written

to a file on disk for persistent storage.

Mission Results & Repons

In Brown's original Envoy model, missions are carried-out by operatives and they generate

three report types (message, short report, and interactive report) which provide

progressively detailed amounts of result information. In the extended workflow model, the

missions are carried-out by users. Consequently, missions do not need to return results but

instead status information. The simplest form of status information may be to only get an

acknowledgement message back from the operative Backends stating that they received the

George Fitzmaurice 40

user's submitted mission data. Providing more information may be trickier. Users probably

want to receive status information as the operative Backends and Workflow Envoy initiates

and completes future stages. This information will be stored and presented by the

Workflow Envoys. It would be impractical to constantly propagate the status information to

all the User Envoys that have participated in the workflow.

3.8 Example of Component Interaction in the Model
To understand how the components interact with one another, consider the following

example. A user, Bob, wishes to get reimbursed for a trip he recently took and initiates a

Travel Expense workflow by selecting a menu command from his desktop. The Workflow

Envoy that has the Travel Expense workflow schema defined is sent a message to initiate a

new instance of the workflow.

The Workflow Envoy next examines its form set definition and determine which forms

need to be sent to Bob for the initial workflow stage. Initially, only a Travel Expense Form

needs to be filled in by Bob so the Workflow Envoy contacts the associated FormOperative

Backend process that handles this particular form and requests that a new form instance be

created (the Bureau Chief is consulted to obtain the Backend's address). The Backend

process initializes some form-specific state information and sends the Workflow Envoy a

unique formID for the new form instance. The Workflow Envoy then asks the Bureau

Chief for the address of Bob's User Envoy. Because the user who initiated the workflow is

also receiving the fIrst workflow stage, the Workflow Envoy can directly launch the Travel

Expense FormOperative Frontend on Bob's machine. Otherwise, the Workflow Envoy

would send a request to the user's User Envoy.

The Frontend displays the form for Bob and he fills in the necessary fields. When he hits

the "Submit" button, the Frontend packetizes the fIeld data and sends a message to the

Workflow Envoy. The Frontend process terminates. The Workflow Envoy records the

event in its workflow transaction log and relays the message to the Travel Expense

FonnOperative Backend.

After receiving the message, the Fonn Operative Backend executes the routing logic code

for the next workflow stage which involves sending the form instance to Bob's

Supervisor, Alan. The Workflow Envoy receives the message and queries the Bureau

Chief to resolve the Supetvisor role and obtains a specifIc userID. Once it receives the

userID, the Workflow Envoy accesses the fonn set defInition to determine if additional

forms need to be sent along. In this case, no additional fonns need to be sent and Alan's

George Fitzmaurice 41 .

User Envoy is contacted and passed the work request. The Workflow Envoy records the

event in its workflow transaction log.

Alan's User Envoy informs him that a new workflow request has arrived. When Alan

decides to process the request, the appropriate Travel Request FormOperative Frontend is

launched by the User Envoy and the form is displayed. The Supervisor approves the form

which causes the form to close and the Frontend process packeti.zes the data and sends it to

the Workflow Envoy.

Once again the Workflow Envoy records the event in its workflow transaction log and

relays the message to the FormOperative Backend No additional user intervention is .

needed at this point The Backend executes the routing code which causes a few

calculations (e.g., sums up the total travel expenditures for the user) and the data is stored

in a database for future reference.

If the Supervisor did not approve the travel report, the data would still be packeti.zed and

sent to the Workflow Envoy. The event would be recorded and the Workflow Envoy

would contact the FormOperative Backend which would execute routing logic. This time,

the Backend would indicate that the form be forwarded back to the initial user. The

Workflow Envoy would receive this request and, already knowing the address of the initial

user's User Envoy, send it the message. Bob will be asked to resubmit the Travel report.

This example shows when the components are invoked and how they interact with one

another. A more complicated example involving multiple forms in a form set and hot linked

data fields would emphasis the importance of the Workflow Envoy as a coordinator and

tracker. Next, we discuss how form sets are defined in our model.

3.9 Form Sets and Bundles
Workflows that use more than one form require multiple threads ofcontrol for each form.

The Workflow envoy is responsible for managing the threads of control and synchronizing

them when a work order is requested. Form sets determine which forms should be present

during a workflow stage and, consequently, automatically indicate to the Workflow envoy

that it should suspend the next workflow stage until all of the required forms have arrived.

Form sets and routing bundles seIVe two separate functions. The form sets provide the

support for hot linking fields between fonns and specifying which forms should be

presented to users during a workflow stage. The routing bundles are a convenient way of

George Fitzmaurice 42

naming a collection of form instances. For example, a user may wish to performs a query

and retrieve all the formIDs of a given form type that were created last month. This bundle

of forms could be used as input to a workflow procedure.

Form sets are a collection of, presumably related, form definitions. The main purpose of

defIning a form set is to be able to link data fields within the forms in the form set so that

when data changes in one form, the change automatically propagates to the other form

instances in the form set. A form set also allows designers to specify which forms should

be sent and presented to a user during a stage in the workflow. To support this type of

functionality, a form set data structure is installed at the Workflow Envoy. The data

structure first consists of entries for each form class within the form set containing the

following pieces of information:

• FormOperativeClassName,

• the machine and port number the operative is running at,

• the field names that are hot linked,

• the formID.

The next portion of the data structure consists of routing information which specifies the

workflow stage name and the collection of form instances that should be routed and

displayed for the recipient. For example, a purchase request workflow consists of three

forms and three hops, with the name, address~ date and purchase ill fields hot linked. The

first form instance should be displayed to the initiating user and to the second recipient, a

manager, while all three forms should be presented to the third and final user, the

accounting department. Below is how this form set data structure might look like:

workflowlD=66532

1. PurchaseForm, ivy, 1134, {Name, street, city, date, purchaseID}, 10765

2. InvoiceForm, irwin, 2007, {Name, street, city, date, purchaseID}, 10766

3. ApprovalForm, iris, 233, {Name, street, city, date, purchaseID}, 10767

InitialStage: 1

ManagerStage: 1

ApprovalStage: 1, 2, 3

Note that it is necessary to be able to specify the hot link fields in each form entry so that

designers have the flexibility to enable/disable the hot linking between form instances. The

field names need to be unique across the form set.

To implement the hot linking of data fIelds, each operative will call a PropagateFieldsO

function after the role-procedures (i.e., routing logic code) have completed and perhaps

George Fitzmaurice 43.

more frequently if necessary. This function determines which fields have changed and then

examines the form set data structure to send the data directly to those form operative

Backends which have hot links. This would require the Backends to contact the Workflow

Envoy, however, a copy of the form set definition may reside with the Backends as an

optimization. The form operative Backends that receive the update message will determine

if the data needs to be immediately sent to the operative Frontends ifusers are actively

working on the particular form instance and have requested immediate notification.

The notion of Form Sets allows designers the ability to decouple the form's definition from

explicitly specifying hot linked data fields. It gives workflow schema designers some

dynamic flexibility in determining which forms should be present at each worldlow stage.

A new Form Set can be installed at the Workflow Envoys and Operative Backends without

recompiling and potentially without disruption in service.

3.10 Spawning Forms
If a workflow job requires that an additional form be used, the current form operative

Backend will issue a spawn command that sends a message to the Workflow Envoy. The

message will indicate whether the request is to retrieve an existing form instance or create a

new one. The Workflow Envoy, in tum, locates the proper form operative Backend and

passes it the message. A formID is returned to the Workflow Envoy which relays the id

back to the original form operative Backend. Most likely, the Backend which issued the

spawn command will either access data fields on the form or forward the form to a user. To

forward the form, the operative designer needs to issue the FRforwardO command. To

access field data on the form, the designer makes use of two functions:

int FRgetFieldData(fonnlD, fieldName, INT ISTRING IBYTES, &data);

This function retrieves the specified fieldNarne from the formlD and places the values in the

data variable. Note that the userID will be checked to make sure that the user has read

access to the field.

int FRsetFieldData(formlD, fieldName, INT ISTRING IBYTES, data);

This function attempts to store the data value into the fieldNarne field on the specified form.

The userID will also be checked to make sure that the user has the proper write permission.

Workflow designers can specify in a form set the option presence of a form for a workflow

stage by entering a negative index value. The workflow stage that contains a negative form

index value will not be presented to the user initially. However, if the form is spawned by

George Fitzmaurice 44

an operative Backend, the negative value is converted into a positive one throughout the

form set definition. This causes the form to be dynamically added to the form set.

3.11 Splitting and Merging Forms or Sub-Forms
If the workflow schema can support parallel work requests, the form operative Backend

will send a set of users a work request each having write access to mutually exclusive

portions of the form. It is up to the form designer to decide if it is necessary to wait until all

the work requests come back before moving to the next workflow stage or if it is possible

to make decisions based on the results of some of the work requests.

Because the form operative Backend is a server and could receive many types of messages

(e.g., status requests, new form instantiations, hot link data updates) it cannot block,

waiting until work request missions return. Instead, form designers need to add this level

of intelligence into the routing procedures. A convenience function needs to be provided to

indicate when all of the pending work request missions have returned (see Form Routing

Library).

Note that when a form is split, each of the receiving users can inherit an independent thread

of control if the workflow dictates. Threads of routing control are identified by the

operative Backend by the first user who receives the split form. Typically, a form will split

and then be reconciled during the next workflow stage.

3.12 Conditional Merging
Conditional merging provides a finer granularity of control during the routing process by

allowing the designer to perform actions before all of the forms to be merged have arrived.

For example, consider the following scenario in which a workflow causes the fOlm to be

split after the initiating user (I) hits the done button. Users A and B receive the form in

which they need to fill-in mutually exclusive portions of the form in parallel. The form

travels to user C for approval or rejection (see Figure 5).

George Fitzmaurice

User A

UserS
Figure 5: Conditional merging example.

With conditional merging, the fonn automatically advances to user C when either user

finishes filling-out their portion. User C has the option of viewing the partially filled in

form and taking action immediately. The routing logic could be designed to advance the

form to user D if one copy of the form has arrived and been approved:

•	 user A's form has arrived and been approved, while user B's form still has not

been received

•	 user B's form has arrived and been approved, while user A's form still has not

been received

Alternatively, the logic may dictate that both forms be examined and approved before

advancing to user D. Similarly, the form can be rejected if only one copy of the form is

received, reviewed and rejected or both may need to be examined before a decision can be

made.

3.13 Tracking and Mission Summary

Because all missions and communication messages are relayed through the Workflow

Envoy, a rich set of tracking data can be recorded. A variety of applications can be built that

communicate with the Workflow Envoy to access the tracking data. A Mission Summary

application may list all of the registered workflow jobs that the Envoy has participated in

and sort them by status information such as: active/completed, userID, percentage done,

and priority.

3.14 Form Operatives

A new form operative base class (cEvFormOp) will be defined which communicates with a

Workflow Envoy (WE) and User Envoys. The new operative class will be a continuous

operative, running all of the time, servicing workflow requests. When a user initiates a

workflow process, the appropriate Form operative Backend is contacted by the Workflow

Envoy or instantiated if one does not initially exist.

George Fitzmaurice	 46

Each new form added to the system will need to subclass the cEvFonnOp to provide fonn

specific information such as the:

• content - the fields,

• presentation -layout of the fields,

• behavior - actions associated with the fields such as verification, and

• routing - the ordering of who should process the fonn.

Presently, we are not concerned with providing tools for form designers to specify the

content, presentation or behavior of the form. Instead we have concentrated on supplying a

set of routing primitives for designers to use to make defining workflows functionally rich

and easy to program.

3.15 Role Procedures
The form routing logic has been partitioned into operative Backend functions known as

role-procedures. The functions can be accessed by generic roles as opposed to specific user

ideas. Moreover, the same functions can often be used in a variety of workflow schemas.

When an operative Backend receives a submitted form, an operative dispatch routine

determines who the sender was and accesses the current role-procedure for the user. This

allows the workflow designers the ability to post-process the form's content and implement

conditional routing logic. Once the current role procedure finishes executing, the next role

procedure is computed. It is subsequently called which primarily advances the form to the

next step in the workflow.

To make programming role-procedures simpler, a set of routing primitives have been

dermed which deal with transporting forms to users, inter-form communication and data

sharing, and synchronizing threads of routing control.

3.16 Form Routing Library

We have designed a minimal but complete routing library to be used within a high level

programming language (e.g.., C++) or a 4GL oriented form language.

Below is a list of the functions described in the Fonn Routing Library (FRL) along with a

discussion of how the function will be incorporated into the workflow model.

47 ' .George Fitzmaurice

3.16.1 FRforward()

int FRforward(formlD I bundlelD, wkflStageName, missionData. recipient1 •...•recipientN);

This call should be placed as one of the last calls in a role-procedure. It indicates that a

mission should be constructed and sent to the Workflow Envoy. This will cause the

Workflow Envoy to immediately resolve who the recipients are if roles were specified and

notify the User Envoys that a new work request has been established This call does not

block; the current user's interaction with the form will end when the role-procedure ends.

An original is always sent to the recipient The workflow stage name (wkflStageName) is

sent along with the forwarding request This information is used when accessing the fonn

set definition to determine what additional form instances need to be present for the given

workflow stage.

3.16.2 FRrecaliO

int FRrecall(fonnlD IbundlelD. wkflStageName, recipient1 •...•recipientN);

The routing facility allows designers the ability to recall a form after it has left a users out

basket. Users should be able to re-open the fon:n. make changes and hit the "Done" button

once again. When the next recipient actively works on the form (i.e., opens the fonn), it is

no longer possible for the previous user to reCall the form; the previous state is committed

once the next user begins working on the form.

3.16.3 FRbundle()

bundlelD FRbundle(formID1 •...•formIDn)

Bundle the specified forms and assign a unique bundleID to them. Note that only fonn

instances can be bundled. A bundle can be considered a package that is sent during a hop.

int FRbundleAdd(bundleID, formID1 •...•fonnIDn)

Add one or more forms to the given bundleID.

int FRbundleRemove(bundlelD, formID1 •...•formlDn)

Remove one or more forms from the given bundleID.

George Fitzmaurice 48

int FRbundleJoin(destBundleID. srcBundle1, ...• srcBundleN)

Join together a collection of bundles into a destination bundle.

3.16.4 FRtimerO

1int FRtimer(index, timeout);

The function will evaluate to FALSE if the timeout value has not been reached. 'This

function can be used ifworkflow designer want to place deadlines on completion of

workflow stages.

3.16.5 FRsuspendFormArrivalO

int FRsuspendFormArrival(formlD I forrnSetlndex, roleProclD, status, timeout);

The function takes a specific formID or a form set index number to suspend execution until

the form enters the specified roieProcID and has a matching status flag. The timeout value

prevents the function from suspending indefInitely.

3.16.6 FRsuspendMergeO

int FRsuspendMerge(formID. timeout. recipient1, ...•recipientN);

This function can be used to enforce that all recipients have finished processing their

portion of the form before forwarding to the next workflow stage. Because the recipients

never have a copy of the form but are interacting with the form operative Backend (server),

then merging and multiple threads is not a problem.

3.16.7 FRcopy

lint FRcopy();

Makes an explicit copy of the form instance for the current user. This causes a me to be

written to disk containing all of the data currently stored in the form's fields.

George Fitzmaurice 49.

3.16.8 FRspawn

formlD FRspawn(retrieveFormlD IfonnClass, RETRIEVE IDISPLAY);

Spawning a new form will cause the associated form operative Backend to be invoked. .

Flow of control still remains with the calling (Le., parent) operative Backend. Inter-form

communication may be required if the parent operative Backend needs to wait until the

sibling operative Backend has completed or needs to extract data from the sibling's form

(see FRgetFieldDataO and FRsetFieldDataO). The last parameter tells the Workflow Envoy

whether or not to display the retrieved form or not One may want to create a new instance

of a form class to be sent to the next recipient and, consequently, may not be interested in

seeing the empty form displayed on the cmrent user's workstation.

3.16.9 FRresolveRole

userlD FRresolveRole(roleName, LOCAL I GLOBAL);

To provide a means of specifying the workflow generically, roles may be used. Roles can

identify an organizational position (e.g., department head), department (e.g., accounting),

or relationship (my supervisor). Note that it is advisable that a Role resolution be computed

at the last possible moment in order to provide the most flexibility and accuracy in the

resolution algorithm. If the function is called using the GLOBAL parameter, a database

lookup will be forced. Otherwise, if a LOCAL call is make, an attempt to resolve the role in

its private Role table will first be tried. Ifno entries can be found, the database is consulted.

One application of using the LOCAL parameter may be during a cyclic route when once a

Role is associated to a user, the form needs to be routed to the same person throughout all

of the looping cycles. The first encounter with the LOCAL resolution call will require a

database lookup but subsequent calls will resolve the Role in the private Role table. Note

that an additional component must exist which allows the designers to define their

organizational structure and construct the role database.

3.16.10 FRinstallRoleProc

int FRinstaIlRoleProc(role,procedure(»;

Once the designer has determined all of the roles and procedures needed to process the

form for a given workflow schema, s/he needs to install this information using the

FRinstallRoleProcO function. Note that the set of role-procedures needs to be installed

George Fitzmaurice 50·

every time the operative Backend is initialized. The role parameter should be a null

terminated character string and the procedure parameter needs to be a function pointer.

4 Implementation

Our prototype system, known as Workflow Envoys, has been implemented on Sun

SparcStations running UNIX, using C++, XII/Motif, and TCP/IP for all network

transactions. The Envoy Framework was also used as the core skeleton for supporting our

workflow model.

One of the goals of implementing portions of the workflow model was to see how easily

the Envoy framework could be extended to support workflow functionality. Towards this

end, we tried to preserve as many of the working protocols that the Envoy system had

already established. This guided many of the implementation decision in terms ofdivision

of labor between components.

Although we wanted to only concentrate on the routing primitives of the Form Routing

Library, it was necessary to implement a great deal of the internal infrastructure to support

the complete design. Practically all of the necessary communication protocols between the

components needed to be implemented.

Only the core functions within the Form Routing Library were implemented to test the

validity of our design. Specifically, the following calls were made available: FRforwardO,

FRspawnO, FRgetFieldDataO. FRsetFieldDataO, FRinstallRoleProcO.

The entire implementation effort was compressed into slightly over three weeks (see

Appendix IV: Implementation Schedule). Below is a more detailed discussion of the

implementation along with the user interface and a sophisticated workflow example which

was programmed in order to test and critique the model and implementation.

4.1 User Interface
In our model, users have one User Envoy assigned to them and a representation of this

agent is embodied as a desktop icon. The icon has three basic states (see figure 6): (l)

envoy active, (2) envoy waiting to launch a mission or waiting for user intervention, and

(3) the envoy has received a completed mission report from an operative (e.g., a copy of

the submitted form set).

George Fitzmaurice 51 '

~
 ~

Missions Missions

Figure 6: Envoy icon states: (a) Envoy waiting to launch a mission or user intervention, (b) The envoy

has received a completed mission report.

A user will most likely have a variety of missions registered with its User envoy. For

example, a user may have a mail filter mission and a set of full text monitoring missions on

a few public directories (see Figure 7).

LoanWorkflow

STATUS HISSlOO t£SSAGE lJ'ERATIYE lAST NEXT

Wat t HoIrIe t t: Kat 1. FOMIl 22:43:02
~lai t Car loan: Srnl th A 1. Form 06:22:53

~ Report ('?-'II f:"'::ll'.'h'l3tIQll I Delete Results II Cancel Hisston I Sort~: I 01Status

Figure 7: Mission Summary Application

When a user clicks on his or her Envoy icon, the Mission Summary application is opened

to present the user with a tabular list of his or her missions along with status information.

Each entry in the mission summary corresponds to either a registered mission that the user

initiated or a workflow instance "work request" which could have been issued by almost

any user. If it is a work request, the WAIr status will be displayed along with the

workflow instance name, date received and Form operative responsible for generating the

request.

To process a work request, a user will select the proper entry in the Mission Summary

application and hit the "Open Report" button. The user will be presented with the associated

form set. The proper form operative Frontends will be launched to display the forms and

interact with the user. Note that if the user initiated the workflow instance and is the first

recipient of the workflow, then the forms will automatically be presented to the user. Slhe

George Fitzmaurice 52

does not need to explicitly go through the Mission Summary application and manually open

the workflow. At anytime, the user can opt to Delete mission entries as well as Cancel the

mission. Cancelling a work request will cause a message to be sent back to the fonn

operative Backend which sent the request. It is up to the operative Backend designers to

determine what to do; one possibility is to re-route the request to another user.

Uses will also have access to one or more Workflow envoys on their desktop which they

can open and see a list of workflow instances that have completed. or are in progress. Each

entry represents one workflow instance. Selecting a workflow instance and choosing the

"Open Report" button will cause the Workflow envoy to present the latest submitted state

of the workflow. While there is only one Workflow envoy per workflow schema, there can

be multiple Workflow icons and Mission Summary applications that access the set of

workflow instances.

A simple ASCII-based form presentation and fill-in Frontend was designed for users to

interact with (see Figure 9). When a form is launched, a new widow (i.e., xterm) is opened

and the form Frontend is executed. and the form is initially displayed. Each field belonging

to the form has an index number presented along with the field name, current values, and

an access control indicator. There are three indicators:

• R Read access only

• W Read and write access

• F Required field which needs to be filled in before submission

Users have access to the following commands:

• ' d '	 Display the form and all of its fields.

• 'e num'	 Edit fields in the form starting at index nwn. The default nwn value is O.

•	 'f' Edit those fields which have been requested to be filled in by the

operative Backend.

• IS'	 Submit the form

• ' q ,	 Quit and revert the form back to its original state.

Surprisingly, this level of commands provides enough functionality to support simple form

presentation and editing.

George Fitzmaurice	 53 .

4.2 Components
When implementing the workflow components, every effort to preserve the compatibility

with the existing Envoy model was taken and enforced. Below is a discussion of how each

component faired during the implementation process:

•	 User Envoy - Very few changes were necessary. The only extension was the added

concept of having a base missionID and complementary missionIDs. Here we

needed the ability to uniquely have the User Envoy identify and generate the

workflow instance responsible for the work request. When a user selects the

mission in the Mission Summary application, the base missionID is consulted to

retrieve the interactive report which allows the forms to be presented and filled in.

•	 Workflow Envoy - This component was based on the original User envoy and

makes use of the same communication protocol between components. A simple

workflow transaction log was implemented to preserve the workflow results at each

stage. The Workflow envoy also caused the implementation of the Form set. It

currently is defined by making simple function calls provided in the base Workflow

Envoy class. Ultimately we would want the Workflow envoy to be able to read the

form set definition in from a file. This would also all them to automatically handle

different workflow schemas without being recompiled.

•	 Mission Summary - No changes were necessary in this component.

•	 Bureau Chief - This component was not implemented. As a consequence, the role

resolution service was not available and userIDs were supplied whenever roles

were needed. Note that this had little effect on the implementation of the

components and libraries that require roles. In addition, environment variables were

used to specify the current location of the operatives, User envoys, Mission

Summaries, and Workflow envoys.

•	 Form Operatives - Most of the programming effort fell on this component and on

the Workflow envoy. Some of the basic functionality was inherited from the

original, server-based operative core class. A simple form Frontend was developed

to allow users the ability to see and fill-in forms. Basic field-level access control

was also established. In terms of the Backend, the entire role-procedure mechanism

was implemented as part of the base operative class. Two sample operative

Backends were constructed to support the following workflow example.

George Fitzmaurice 54

4.3 Workflow Example

Consider the following bank loan workflow schema. Two individuals wish to apply for a

car loan at a local bank. Both decide to apply electronically and send a mail message to the

bank requesting that they initiate the proper workflow instance. A Loan Officer receives the

request and initiates the proper workflow schema. He must first ftIl in his name and the

requested loan amount Next, each applicant (the primary and secondary) are requested to

fill in mutually exclusive portions of the form which they can do in parallel. Ifeither

applicant has assets greater than $100 dollars then an additional form is spawned for the

user to fill-in. This form is an itemized assets listing and will be dynamically added to the

form set of the workflow. Note that the workflow will be suspended until all pieces have

arrived, including any spawned forms. Once both portions of the application are submitted,

the form is reconciled and presented back to the loan officer. He calculates a risk factor and

decides whether to accept or reject the loan application. Ifhe accepts the loan and the

requested amount is greater or equal to $10,000 dollars, then he must get his supervisor to

approve the request This conditional routing has been built into the workflow schema and

his supervisor will automatically be sent the work request ifneed be. Once the supervisor

receives the workflow instance with all of the accompanying forms, s/he can make a

decision whether to authorize the loan. If the supervisor notices anything wrong with the

application, s/he can send it back to the loan office. The loan officer can correct any

mistakes or inconsistencies and resubmit it to his supervisor. This cycle can continue untiJ a

decision is made on the loan application.

This workflow schema was successful programed within our prototype. To demo the

system we allowed all User envoys and the Workflow envoy to be accessible from one

machine. Figure 83 shows the desktop with the initial four User envoys and the Workflow

envoys. The next figure (Figure 9) shows the stage in which the form is split and both

applicants have a work request. The final figure shows the Supervisor reviewing the form

set which includes an Itemized assets worksheet form supplied by the primary applicant.

3 The next three figures are located in the appendix.

George Fitzmaurice 55,

5 Conclusions

We believe that forms are intelligent, active, and dynamic objects that should interact with

one another during an automated workflow procedure. Many of the existing research and

commercial systems focus on forms working in isolation. This perspective is too narrow

and promotes simple workflows that may not be sophisticated enough to replace the paper

versions. In presenting our philosophy, we have outlined what we believe a state-of-the-art

workflow system must have:

• form sets,

• atomic workflow transactions,

• user authentication and access control,

• customized viewing of forms and layout,

• hot linking between forms within a form set,

• the ability to split a form and merge it at a later workflow stage;

• conditional, linear, cyclic and parallel routing;

• the use of roles;

• varying forms of notification;

• tracking singular workflow instances and collective tracking, and

• resource balancing.

With this in mind, we designed an agent-based workflow model that provides centrally

defined workflows which get executed on form serves who manage and route forms

belonging to a given type.

To aid designers in developing workflow schemas, we established a Form Routing Library

to be used with high level programming languages (e.g., C++) or dedicated form

languages.

The core set of functions within the Form Routing Library were implemented along with

the major components in our workflow model. This development was aided by the

existence of an agent framework which was upgraded to support our requirements.

5.1 Analysis of Model
Our model assumes that users work in a computing environment that supports multiple

processes and are networked together. We have tried to avoid being susceptible to single

points of failure by having one central database. Instead we have separate databases for

George Fitzmaurice 56

each form type. These databases can be replicated and distributed to those sites that often

use workflow schemas that involve the given form type.

Defining a Workflow envoy process that selVes as an information clearinghouse selVes

many functions. Tracking information can be collected and applied towards adapting the

workflow and tune it for peek throughput.

Although only parts of the model were prototyped, the short amount of time needed to

build the system up to its current state leads us to believe that having an agent framework

can reduce duplication of efforts. Now that we have promoted the agent framework into a

workflow framework, it is interesting to wonder how this new framework can be extended

again.

5.2 .Future Work
One possible area for further investigation is to devise a means of visually representing and

constructing a workflow route which can later be compiled. This verges on the discipline of

visual programming and shares its difficulty when programs are large and complex. An

initial iconic workflow language has been outlined in the Appendix titled "Visual Routing

Language Scenarios". Note that the language is incomplete and selVes as future research.

Still, there are plenty of areas that can be investigated within the current prototype. Tackling

the other workflow elements (e.g., tracking, resource balancing, notification, etc.) and

building upon the current design should continue to prove the viability of our approach to

form-eentered automated workflow.

George Fitzmaurice 57,

6 Bibliography

Below is a list of references to workflow automation systems (W), agents (A), and

groupware (G). Each entry will have one or more content indicators (W, A, G) which

classifies the reference as dominantly discussing the marked topic. A bold entry symbolizes

a pivotal reference that adds significant contribution to the topic area.

1.	 A ADAMS, S. S. AND NABI, A. K. NeuralAgents: A Frame of Mind. OOPSLA '89
Proceedings, (Oct 1-6, 1989), pp. 139-149.

2.	 W AHLSEN, M., BJORNERSTEDT, A., BRITTS, S., HULTEN, C., AND SODERLUND, L. An
Architecture for Object Management in OIS, ACM Transactions on Office Information
Systems, Vol. 2, No.3, (July 1984), pp. 173-196.

3.	 A ANDERSON, R. H. AND GILLOGLY, J. J. Rand Intelligent Terminal Agent (RITA): Design
Philosophy. ARPA Order No. 189-1, Rand, Santa Monica, CA, (Feb. 1976).

4. A	 Apple Computer, Inc. Project 2000 - A Knowledge Navigator. (videotape), (Mar. 8, 1988).

S. W	 BEYOND INC. BeyondMail Rule Book, Cambridge MA, (1991).

6.	 W BRACCHI, G. AND PERNICI, B. The Design Requirements of Office Systems, ACM
Transactions on Office Information Systems, Vol. 2, No.2, (April 1984), pp. 151-170.

7. G	 CC:MAIL, LAN, Miller Freeman Publications (Jan. 1991).

8.	 A CHEN, F. F., PRAKASH, A., AND RAMAMOORTHY, C. V. The Network Event Manager.
Proceedings of the Computer Networking Symposium, Washington D.C., (1986).

9.	 G COOMBS, J.H. Hypertext, Full Text, and Automatic Linking, SIGIR '90 Proceedings: 13th
International Conference on Research and Development in Information Retrieval, Brussels,
Belgium, (September 5-7,1990) ACM, New York, (1990), pp. 83-98.

10.	 A DIALOO INFORMATION SERVICES, INC. AP News Reloaded as a Single FIle; New Fields and
DIALOG Alert Service Added. Chronology, Vol. 18, No.4, (Apr. 1990).

11.	 W BLOC Development Corp. F3 Design & Mapping. Reference Guide, Deerfield Beach, FL
(1991).

12.	 A DON, A., OREN, T., AND LAUREL, B. Guides 3.0. CHI '91 Video Proceedings, New Orleans,
LI (April 28-May 2,1991) ACM, New York, (1991).

13. A	 DOW JONES AND COMPANY, INC. An Overview of DowVision. (1990).

14.	 A DROMS, R. E. Access to Heterogeneous Directory Services. Proceedings of the IEEE
InfoCOM '90 Conference, (Jun. 1990).

15.	 G ELLIS, C. A, GffiBS, S. J., AND REIN, G. L. Groupware: Some Issues and Experiences.
Communications of the ACM, Vol. 34, No. I, (Jan. 1991), pp. 38-58.

16.	 W ELLIS, C. A, NUTT, G. J. Office information Systems and Computer Science, ACM
Computing Surveys, Vol. 12, No.1 (March 1980), pp.27-60.

17.	 A ELLMAN, T. Explanation-Based Learning: A Survey of Programs and Perspectives. ACM
Computing Surveys, Vol. 21, No.2, (Jun. 1989), pp. 164-221.

18. W	 ENGLISH, P., ET. AL. An Extensible, Object-Oriented System for Active Documents,
Conference on Electronic Publishing. Document Manipulation and Typography Proceedings,
Gaithersburg, MD, (Sep. 1990), pp.263-276.

George Fitzmaurice 58

19. A

20. A

21. G

22. G

23. W

24. W

25. W

26. A

27. W

28. A

29. W

30. W.A

31. w
32. G

33. G

34. A

35. W

36. W

37. G

38. G

39. W

40. G

FENTON, J. AND BECK, K. Playground: An Object Oriented Simulation System with Agent
Rules for Children of All Ages. OOPSLA '89 Proceedings, (OcL 1-6,1989), pp. 123-137.

FREEDMAN, BETH. Verity Upgrades Topic Text Manager. PC Week. (June 12, 1989).

GffiBS, SJ. LIZA: An Extensible Groupware Toolkit. CHI '89 Conference Proceedings,

Austin, TX (April30-May 41989) ACM, New York, (1989), pp. 29-35.

GRUDIN, J., POLTROCK, S. Computer Supported Cooperative Work. and Groupware,
Conference on Computer-Human Interaction Tutorial Notes, (Apr. 2 1990)

HAMMAINEN H., ELORANTA E., AND ALAsUVONTO J. Distributed Form Management. ACM
Transactions on Office Information Systems, Vol 8, No I, (Jan. 1990), pp. 50-76.

HAMMAINEN H., Fonn-based Approach to Distributed Coopezative Work.. Acta Polytechnica
Scandinavica, Mathematics and Computer Science Series No. 58, Helsinki (1991).

Nammer, M., Howe, W. G., Kruskal, V. J., and Wladawsky, I. A Very High Level
:...rtograrnming Language for Data Processing Applications, Communications of the ACM,
Vol. 20, No. 11, (Nov. 1977), pp. 832-840.

HEWLETT PACKARD, lIP NewWave Agent Guide, Santa Clara, CA. (OcL 1989).

IDRSCHHEIM, R. The Effect of A Priori Views on the Social Implications of Computing:
The Case of Office Automation, ACM Computing Surveys, Vol. 18, No.2, (Jun. 1986), pp.
165-195.

KAHN R. E. AND CERF V. G. "The Digital Library Project The World of Knowbots," Vol. I,
Corporation for National Research Initiatives, (Mar. 1988).

KARBE, N., RAMSPERGER, N., WEISS, P. Support of Cooperative Work by Electronic
Circulation Folders, Conference on Office Information Systems Proceedings, (1990), pp. 109
117.

KAYE, A. R. AND KARAM, G. M. Cooperating Knowledge-Based Assistants for the Office.
ACM Transactions on Office Information Systems, Vol. 5, No.4, (OcL 1987), pp. 297-326.

KEYFll.E, INC. Keyfile Documentation(under non-disclosure), Nashua NIL (May 1991).

KRAEMER, K., KING, J. Computer-Based Systems for Cooperative Work and Group Decision
Making, ACM Computing Surveys, Vol. 20, No.2, (Jun. 1988), pp. 115-146.

LAI, K. Y. AND MALONE, T. W. Object Lens: A "Spreadsheet" for Cooperative Work.
CSCW '88, Portland, Oregon, (Sep. 26-28, 1988), pp. 115-124.

LAUREL, B. Interface Agents: Metaphors with Character. The Art of Human-Computer
Interface Design, ed. by Brenda Laurel, Addison-Wesley Publishing Co., Inc., Reading, MA,
(1990), pp. 355-366.

LEWIS, J., BURTON, C. Workflow Automation. Clarke Burton Report, Salt Lake City, UT,
Vol. I, No. 12, (Apr. 1991).

LYYTINEN, K. Different Perspectives on Infonnation Systems: Problems and Solutions,
ACM Computing Surveys. Vol. 19., No. I, (Mar. 1987),.pp. 5-46.

MALONE, T. W., GRANT, K. R .• LAI, K. Y., RAO,lt:'AND ROSENBLITT, D. Semi
Structured Messages are Surprisingly Useful for Computer-Supported Coordination. ACM
Transactions on Office Information Systems, Vol. 5, No.2, (Apr. 1987), pp. 115-131.

MARSHAK, D. Lotus Notes: A Platfonn for Developing Workgroup Applications. Patricia
Seybold's Office Computing Report, Vol. 13, No.7, (Jul. 1990), pp.I-12.

MAZER, M. S. AND LOCHOVSKY, F. H. Logical Routing Specification in Office Information
Systems, ACM Transactions on Office Information Systems, Vol. 2, No.4, (October 1984),
pp. 303-330.

MICROSOFT CORP. Microsoft Mail for PC Networks, Strategic White Paper. Redmond. WA,
Part No. 098-19609.

George Fitzmaurice 59

41. G	 MILEY, M. The Medium is Not the Message. Personal Worlcstation, (May 1991), pp. 49-53.

42. A	 MINSKY, M The Society ofMind, Simon and Schuster, New York. (1986).

43.	 A OBJEcr MANAGEMENT GROUP. Object Management Architecture Guide. Framingham, MA,
(1991).

44.	 A OREN, T., SALOMON, G., KREITMAN, K., AND DON, A. Guides: Characterizing the
Interface. The Art of Human-Computer Interface Design, eeL by Brenda Laurel, Addison
Wesley Publishing Co., Inc., Reading, MA, (1990), pp. 367-381. .

45.	 A PALANIAPPAN, M., YANKELOVICH, N., FITZMAURICE, G., ET. AL 1be Envoy Framework:
An Open Architecture For Agents, To appear in ACM TOOlS (1991).

46. W	 SPANBAUER, S. Perfect Fonns with Windows, PC World, (JuI. 1991), pp. 199-207.

47.	 A Sun Microsystems Inc. SonNet Manager Installation and User's Guide, Part Number: 8()()
3481-10, Mountain View, CA, (Mar. 1990).

48.	 W TSICHRITZIS, D. Form Management, Communications of the ACM, Vol. 25, No.7, (July
1982), pp. 453478.

49.	 G TUROFF, M Computer-Mediated Communication Requirements for Group Support, Journal
of Organizational Computing, Vol. 1, (1991), pp. 85-113.

50.	 G WEYER, S. A. AND BORNING, A. H. A Prototype Electronic Encyclopedia. ACM
Transactions on Office Information Systems, Vol. 3, No.1, (Jan. 1985), pp. 63-88.

51.	 W YAO, S. B., HEVNER, A. R., SHI, Z., AND LUO, D. Formanager: An Office Fonns
Management System, ACM Transactions on Office Information Systems, Vol. 2, No.3,
(July 1984), pp. 235-262.

George Fitzmaurice 60

7	 Appendices

7.1 Appendix: Logical Routing Evaluation
This system was extensively reviewed in the Background section but since it has so much

intersection with workflow models that deal with routing, a more detailed analysis is

undertaken. The primary distinction between the systems is that the logical routing system

is based on messages or forms that work in isolation. In our workflow model, we envision

functionality that requires forms to interact with one another. Such functionality includes:

•	 Hot linking of data between fields in a form and groups of fields

•	 Conditional routing based on state information and field values that span multiple

forms and possibly all forms within a form set. This entails being able to access and

set field values from any form in the workflow.

•	 Multiple forms displayed during a workflow session (processing and fIlling out

field values).

•	 Splitting a form instance and allowing each of the split forms to have independent

routing until the workflow dictates that the forms be merged and reconciled.

The Message Management System cannot easily support this level of functionality and

breaks down for the following reasons:

•	 The routing language has been designed to route individual, autonomous messages

independent of any other messages. It is difficult for designers to access field

values belonging to message instances of the same type or of different types all

together.

•	 The concurrency and access control for entire message instances and field values

within messages is left to the communication base, implemented as a relational

database. The routing language has no constructs for the form designers to access

and set this type of information.

•	 Some level of tracking information is kept within the communication base but no

applications exist to display and summarize this information. It is anticipated that

tracking applications could be built which hook into the communication base.

•	 Having distributed routing evaluation but relying on a centralized communication

base is problematic in terms of performance and being vulnerable to having the

entire system become inoperable if the communication base is off-line. Using

George Fitzmaurice	 61,

multiple, decentralized communication base may be more reliable but makes it more

difficult to perfonn functions that span more than one communication base.

•	 Distributing the message type definitions and routing script based on mapping a role

(e.g., grad.-eoordinator) to a site machine is problematic if roles changes frequently

or if users work on different machines. Especially in a UNIX environment, users

often log into more than one workstation to do their everyday work; this means that

the site of the user (or role) is often not static and not known before the message

instance is launched.

•	 Splitting a form into "originals" is possible but the added restriction of requiring all

originals to be merged and routed to the same next site is unnecessary and prevents

flexibility in the design of some workflows.

Our approach has many advantages over the MMS in that the design allows for an easier

implementation of the desired fonn-centered workflow functionality that works across

multiple forms.

•	 Updating each workstation with the necessary message type definitions as well as

ensuring that the latest version of each definition is available is a cumbersome

process in the MMS. In our agent-base workflow model, having centralized form

specific servers obviates the problem of updating each workstation with the

necessary form class definitions.

•	 Roles are resolved at the last possible moment by the Bureau Chief. Forms are

accessed by making requests to a server running at an advertised machine and port

number. The Form Frontend can even run remotely if the local site does not have a

copy of the executable (since we are using the X Windowing System). This means

that users can move around to different workstations and still access and process

their workflows.

•	 Each form server makes use of a database to provide data persistence and

consistency.

•	 Our routing library allows designers to access and set field values from any form in

a given workflow schema (even between different form classes).

•	 The state information of the workflow instance is centrally located in the Workflow

Envoy and is accessible from any form and its related routing code.

The MMS allows Message designers the ability to alert users when a message has not been

processed in a timely manner or can warn users when a certain duration has passed The

notification is in the form of an alert box. This primitive notification is not sufficient in an

George Fitzmaurice 62

environment when many messages may be active; the user could get bombarded with a

relentless series of alert box interruptions. A more comprehensive monitoring and

management tool needs to be provided. These abilities fall under the general tracking

functionality that must be addressed more vigorously in form automation systems.

The paper ends with issues that need to be addressed in the future. One problem involves

dealing with changing message type definitions. IT message instances of a given type are

still active while a new message type definition is installed, what happens? A similar

problem occurs when roles change witJ.rin an organization.

Finally, the paper does not aggressively target just office information systems but also hints

at applying the logical routing specification to networks and transport mechanisms in

general.

7.2 Appendix: Envoy Framework Overview
IRIS has taken the approach that agents should be desktop-based, personal assistants that

operate in conjunction with user's existing set of applications. Each user has one agent, or

Envoy, assigned to them to work on their behalf. APIs have been designed so that

developers can upgrade their software into an envoy-aware application. The Envoy serves

as a delegator and manager of task assignments and results. In its current design, Envoys

are not responsible for carrying out action for the user, this is left for the applications. The

Envoy aids in keeping track of the user's set of tasks and informs the user when a task is

completed by using a variety of notification channels (e.g., e-mail, alert box).

We have adopted a playful metaphor to help users understand and interact effectively with

Envoys. A user specifies a mission for his Envoy by interacting with an "envoy-aware"

application. We call envoy-aware applications operatives because they are responsible for

actually carrying out missions on behalf of the user. Once the user specifies a mission, the

Envoy plays the role of coordinator, scheduling, tracking, and dispatching all missions the

user has specified (Figure A).

George Fitzmaurice 63.

•

~

USER Mission

Summary

Envoy

Infonners

Figure A: Overview of Envoy Framework components.

The Envoy handles all communication with the operatives. If the user has specified an

information-gathering mission, then the operative assigned to the mission lets the Envoy

know when new information is available to report to the user. In tum, the Envoy notifies

the user, selecting a communication channel from a set of envoy-aware applications called

informers. Once notified of mission results, either with a brief message or a soon repon,

the user can opt to see an interactive repon. The Envoy stores interactive reports generated

by operatives. To view an interactive report, the Envoy passes the data to the operative

responsible for canying out the mission, giving users the ability to manipulate the mission

results using the native application intetface. At any time, the user may display a Mission

Swnmary which provides a comprehensive list of all the user's active missions and all the

reports generated by the operatives responsible for those missions.

When an application developer fIrst introduces a new operative or informer into the

environment, she registers the appliCation with a Bureau Chief. For every local-area

network:, there is one Bureau Chief which maintains a record of all envoy-aware

applications in the environment as well as a record of each user's personal Envoy.

7.3 Appendix: Implementation Schedule

This section describes the implementation plan for building the workflow prototype based

on the Envoy framework. A two phase plan was defined to ensure that a minimum

workflow model would be working within two and a half weeks (i.e., Phase I). Milestones

and their completion data were given to ensure successful progress. Note that each

George Fitzmaurice 64

milestone was met on the specified days. This can be considered proof that the Envoy

framework was extensible for this application.

Milestone 0 (Sat. 3th)
Install a new IRIS build & development tree. The environment will consist of
C++, XII and motif. IRIS' list building block will also be used.

Phase I

First, a Form operative Frontend base class and executable will be built along with a

sample form. The Frontend will provide form presentation, readlwrite protection on fields

and field fill in. The interface will be ASCII based. A command loop will prompt the user

to hit a character for issuing a form-related command.

The Frontend needs to be able to receive a partially completed form (Le., a data packet that

contains field values) and authorization codes. The code will consist of one byte per field

containing access and status information: read, write, visible, hot-linked, fill-in requested,

already filled-in.

Milestone 1 (Tue. 6th)
Issue a command that launches the form Frontend. User should be able to
display the form, fill-in the form and the authorization information should be
enforced.

The next goal is to concentrate on providing the communication mechanism between the

various components. This requires that the Backend, Workflow Envoy and User Envoy all

be initially built The idea is to build a skeleton server for each component that can contact,

send and receive messages from one another. TCP/IP will be used for the network

protocol. RPC was considered but it is too cumbersome to use and dynamically change.

Once the communication mechanisms are in place, the Backend of the form operative will

be enhanced next It will contain minimum functionality such as the core dispatching

routine and the routing state table.

Milestone 2 (Mon 12)

The next milestone will be to successfully execute the following scenario: (1)

issue a command that launches a workflow instance.(2) This causes the WE

to contact a form Backend which creates a new form instance. (3) Next the

User Envoy is contacted with the work request and (4) the form Frontend is

launched automatically.

George Fitzmaurice 65

Next the FRforwardO calls will be implemented and tested to work for linear, non-splitting

workflows that involve a single form. This requires that the role-procedmes be accessible

from the state table.

The transaction log should be built next for the WE. At first, ASCII based debugging

information (e.g., fprintfO's) will be used for the Workflow Envoy. They will print out

the transaction log. The WE will need to contact users' User Envoy and install the work

request. The User Envoys will need to be able to launch a form Frontend. The Frontend

needs to be able to packetize the form data and send it to the WE.

Milestone 3 (Fri. 16)
Initiate a workflow instance and have the single form be filled out by two or
three users (see Testing). The WE should be keeping track of each message
transaction. The User Envoys need to show the work requests in the Mission
Summary application and be able to access the work request (e.g., launch it).

Note that in choosing an ascii-based Frontend interface, it is not readily possible to launch

multiple forms during the workflow stage initiation. (One possible solution is to launch an

xterm window per form that needs to be displayed. We could automatically launch the

appropriate Frontend executable in each xterm window - this needs to be investigated).

IT it is possible to launch multiple forms during a workflow stage, then the form set data

structure will be defined to provide this ability.

Milestone 4 (Sat. 17)

Define and test a workflow instance that requires two forms (of the same

type) to be displayed at a given workflow stage.

Define more complicated workflow schemas that involve splits and joins and multiple form

types. The Backend and WE will need some additional enhancements. The idea is to

provide inter-form communication by implementing the FRgetFieldDataO and

FRsetFieldDataO calls. FRspawnO, FRsuspendMergeO and FRsuspendFonnArrivalO will

also be implemented.

Milestone 5 (Fri. 23)
Execute workflows that require a form to be spawned, split and merged.
Show conditional routing and cyclic routing examples. Show data access and
retrieval between forms.

Phase II Implementation

Time permitting, each of the items in the Phase II list will be built.

George Fitzmaurice 66

The Bureau Chief will be one of the last components built. A role resolution server can be

provided by a simple ASCII data file. The remaining Bureau Chief functionality is

secondary and can be "hard-coded" and later implemented if time permits..

Hot linking data fields within a form set will be implemented after the basic routing abilities

are working.

Hook-up the GUI Mission Summary application to the workflow envoy. The Mission

Summary application, which works in conjunction with the User Envoy, will be

significantly modified and attached to the Workflow Envoy to display status information

about various workflow instances.

Provide workflow instance and form instance persistence.

Experiment with tracking data and summary statistics. Resource balancing.

Testing

In order to test the system, the User Envoys will access environment variables to retrieve

the userID. This allows a single user to log into multiple windows and, by setting an

environment variable, appear to be many people having different userIDs. Consequently,

the single user will be able to display a set of Mission Summaries corresponding to each

virtual user. This will allow the tester to see and interact with each stage in a given

workflow instance.

I
I

George Fitzmaurice 67 ~

7.4 Appendix: Prototype Screen Shots

Figure 8. Five Envoy Icons, the initial workflow state.

..... ;

George Fitzmaurice 68

o :!l

~ ~
~ ~

~:!1 "0=:
~ ~,

§.
 Ql:l

g@

i
~r
~. g
0'...
~
g,
g
~

f
fn

~
~
"0

'loon ~lIcatlan' [...
• [R] ~ 110. =100
• [W] loon Officer lIMe a Baldwin §• [W] ~t =12000
• [R] ITIIIIrlI ~1Ic.¥lt lIMe = =a
• [R] Addraa =
• [R] Yearly Sal." = ~..'
• [R] Aneta = ::I
• [R] Dobts =
• [W] Sec:onclorII ~1Ic.¥lt lIMe =Hs. Fuller g
• [W] Addraa =215 U,1......lty Rd, I'raYldonce RI
O. [W] Yearly Sal." =11000 O'

• [W] Aneta =0
• [W] Dobts =0 3

3. [R] loon Rlok Index a
4. [R] loon Revl... [acceptlre,lect] = :;'

.5. [R] ~Izatlan [lINlno] =

.6. [R] e-M =
 I$

Figure 10. Final review of the workflow by the Supervisor. Note that all fonns belonging to the workflow
are displayed at this workflow stage.

George Fitzmaurice 70

7.5 Appendix: Visual Routing Language Scenarios
We provide three scenarios that any workflow system should be able to handle. After

describing the scenarios, a visual diagram, or flow chart is presented that graphically

represents the scenarios in an iconic fashion. This is preliminary research on a more robust

and extensive visual language specification.

Scenario 1: LINEAR - Student registration for class

An employee at Brown wishes to register for a class. He first goes to the Brown Learning

Community which requests that an application form be on file before moving to the next

step. A packet of information is then received. The packet contains a registration form.

Since registration happens for only one more day, this must be attended to first Upon

waiting in line at the Registration office the employee must fill out two additional forms

which ask for routine information such as your name, student id, address, parent's

address, telephone numbers, etc. Note that if the employee is formally enrolled as a degree

candidate, the r~gi&~tion form would require the authorization of his advisor (or any

faculty belonging to the department) before it travels to the Registra. If the advisor does not

agree with the registration, slhe needs to discuss the problem with the student before

authorizing the form. A copy of the completed registration form is given to the student

Once the registration form is submitted, the tuition reimbursement form can be filled out.

The form requires the employee to fill out standard information and specify which course

he wants to take and why it is job related. Next, he gives the form to his supervisor who

authorizes the request The supervisor accepts or rejects the request The form next travels

to the benefits office which will process and authorize the request. Before requesting for

tuition reimbursement, the benefits office must receive a copy of the employee's official

grade for any classes taken the previous semester. Ifa student receives a grade lower than a

C, he does not receive total reimbursement but must pay the auditing fee for regular Brown

courses (or 80% of tuition for BLC courses taken). Before requesting reimbursement, the

employee must also authorize the Payroll department at Brown to deduct $100 per month

from his salary if it becomes necessary to pay for a course. Note that the tuition

reimbursement form has 5 copies: one for the employee, one for his supervisor, and 3 for

the benefits office. Also note that, ideally, the tuition reimbursement process should be

completed before the date in which course registration can be changed without penalty.

George Fitzmaurice 71·

Scenario 2: CYCLIC - College Admissions cycle.

An admissions committee for a college makes use of a cyclic admissions process. When a

prospective student application arrives at the admissions office, it is reviewed by anyone of

the workers at a first pass to see if the application is complete (all the required material has

been received by the committee). If the application is not complete, the file gets placed in a

suspend pile while it waits for the remaining material.

Once a fIle is complete, a first pass review of the application occurs. This first pass checks

for minimum requirements and accuracy in filling-out the application forms. Minimum

requirements may be GPA > 2.0 and GRE scores totaling more than 1000. The fIle may get

processed sequentially by two workers just to make sure that no errors occur. The

application now gets suspended until the application admissions deadline arrives. This

allows the committee to know how many total applications it can consider along with how

many slots are opened for the upcoming year.

The next round of review evaluates an applicant's writing ability. Three committee

members sequentially read a sample of writing and determine the applicant's writing ability.

Two of the three must accept the application in order for it to advance to the next review

cycle.

Letters of recommendation are considered next Here the committee is looking for

unsupportive recommendations that would mandate a rejection or outstanding

recommendations that would support acceptance.

The fmal review cycle involves the most subjective component in which the committee

attempts to look at the remaining applications and identify any unique characteristics (say,

in the extra-cunicular activities) or indicators that the applicant will succeed at the college.

Four out of five committee members must agree upon an a decision of accept, reject, or

wait-listed.

Note that all the evaluation constraints cannot be placed on the application in a one pass

review. If this approach was chosen, the committee may not make enough offers and then

it would be difficult to decide which of the rejected applicants to consider. Each round of

review is a refmement process.

George Fitzmaurice 72

Scenario 3: REPLICATE & CONSOLIDATE - Loan approval.

Two brothers, Tom and Jack, apply for a mortgage for a house at a local bank. Both of

them fill out a separate application form. The bank: begins to process the application by fIrst

using a single form which holds review information concerning the request Each

applicant's information is verified in parallel. The verification process involves three bank

workers each responsible for verifying a portion of the application: (1) credit check -long

term debts and payment history, (2) asset check - major assets like cars, boats, other

property as well as salary, and (2) references. Since two people are applying for the loan, a

total of six bank workers can process parts of the form at the same time. When they are

done, each component must be consolidated and a risk number is calculated. The loan is

accepted or rejected based on the risk number.

George Fitzmaurice 73,

Scenario 1: Linear - Student Registration & Reimbursement

'.: .

Ej
E-Mail
applicant & exit•

)~~~5+---~~~~
"-----

Scenario 2: Cyclic - College Admissions Cycle

(Student (1st Pass)

rn
Application:

Fill in
 ..

Workert Workert

~
 ~
Worker2 Worker2

Minimum

Requirements?

GPA> 2.0

GREs> 1000 ~

Worker3

Reference
Check

-

Scenario 3: Replicate & Consolidate - Loan Approval

~~~~:::~:::x:::::::::~~:::-~m~x:::::::::.:::::: 

( Applicant~ ( 1stStep "% C2nd Step) 

rn
 
Application: 
Fill In 

rn
 
Application: 
Fill in 



'loin ~lIcatlon' 

• [RI ~ No•• 100 
• [WI loin Officer "- • It'. Baldwin 
• [WI RequesUd -..t • 12000 
• [RI Prl-V Applicant "- •
 
• [RI Adcren •
 
• [RI V....ly Sal..." •
 
• [RI Asnts •
 
• [RI Debts' 
• [WI Secondory Applicant "- • lis. Fuller 
• [WI Adcren • 215 Lnl.....lty Rd, Providence RI 
O. [WI V....ly Sal..." • 11000 
1. [WI Assets • 0 
2. [WI Debts • 0 
3. [RI loin Risk Indole • 
4. [RI Loan Review [aceeptlreJeetl • 
5. [RI fMhrlzation [yaslnol • 
6. [RI e-ts. 

,tor ee-and [d,a,f.s,ql => 0 


