
BROWN UNIVERSITY

Department of Computer Science

Master's Thesis

CS-91-M7

An Operating System Development Environment

by
Robert Boyer

)

Technical Report CS-91-28

An Operating System Development Environment

Rob Boyer

Brown University

Advisor: Tom Doeppner

.-\pril 29, 1991

Contents

1 Introduction and project goals 1

1.1 Structure of this document 1

1.2 Terminology......... 2

2 Machine model 3

2.1 Instruction set . 3

2.2 Execution modes and stacks 3

2.3 Machine registers . . . 4

2.4 Devices and interrupts 4

2.5 The system control block (SCB) .)

2.6 Memory Management . 5

2.6.1 Real versus Virtual mode 6

2.6.2 Physical memory, pages, and page frames 6

2.6.3 Memory management registers 6

2.6.4 Page protection 7

2.6.5 Additional paging support . 7

2.7 Machine support for contexts ... 7

3 Low-level components of the prototype operating system 8

3.1 POS initialization routine . 8

3.2 Interrupt service routines, trap, and exception handlers 8

3.3 Data structures . 9

3.4 Process contexts 9

4 A UNIX-based implementation 10

4.1 Design overview . 10

4.1.1 Device simulation and interrupts LO

4.1.2 Traps and exceptions. 11

4.1.3 Context switching .. 11

4.2 Current status and limitations 12

5 An OSFII-based implementation	 13

5.1 Task structure ...	 13

5.1.1 The Sim task	 14

5.1.2 Process-context task(s)	 15

5.1.3 Intertask communication	 15

5.2 Virtual memory implementation	 17

5.2.1 The pmap module ..	 17

5.2.2 Address space layout.	 17

5.2.3 Enabling virtual memory	 19

5.2.4 Use of the Mach external pager feature	 19

5.2.5 Non-resident page access.	 20

5.2.6 Responding to page faults	 20

5.2.7 Altering and flushing page mapping tables.	 22

5.2.8 "Referenced" and "Modified" flags	 23

5.2.9 User-mode code and data	 24

5.2.10 Switching between user and supervisor modes .	 24

5.3	 Simulating device I/O 2·5

5.3.1 DMA support.	 2.5

5.4	 Traps, exceptions, and interrupts 26

5.4.1 Manipulating the POS thread's state.	 26

5.4.2 Trap handling. . . . 26

.5.4.3 Exception handling. 27

.5.4.4 Delivering an Interrupt 27

.5.4 ..5 SIMrei 0 and SIMsetipl () 27

5.5	 Support for multiple process contexts. 28

.5 ..5.1 Context creation 28

5..5.2 Context switching 29

5.6 Task and thread synchronization 29

.5.7 Startup and boot sequence 29

.5.8 Current status and limitations :31

11

6 Conclusion 32

6.1 Possibilities for further research .. 32

A Summary of the simulator interface 33

A.1 Accessing privileged processor registers. 33

A.I.1 Retrieving the contents of the Processor Status Register 33

A.I.2 SIMsetipl 33

A.I.3 SIMsetscb 33

A.I.4 PIR - pending interrupt register 33

A.I.5 MMRs - memory management registers 34

A.2 Virtual memory interface 34

A.2.1 Enabling virtual memory 34

A.2.2 Flushing page tables 34

A.3 Device interface 34

A.3.J Terrrl~r,al device . 35

A.3.2 Disk device 37

A.3.3 Clock device 38

AA Traps, exceptions, and interrupts 38

AA.1 Traps ... 38

AA.2 Exceptions 39

AA.3 Interrupts and interrupt handlers 39

AAA The SIMrei instruction 40

A.4.5 Context manipulation 40

AA.6 Context initialization 41

AA.7 Process context switching 41

AA.8 Altering the user-mode context 41

B OSF/1 implementation notes 43

B.1 OSF/1 implementation: default memory management architecture 43

B.2 OSF/1 implementation: location and status of source code. 43

B.3 OSF/1 implementation: module layout. 46

III

C References 47

List of Figures

1 System Control Block . 5

2 OSFII-based simulator architecture 14

3 Simulator task hierarchy 16

4 Code that runs within a process-context task 16

5 Simulator's address space layout .. 17

6 Two process contexts sharing a page 19

7 Page fault processing . 21

8 Flush Operation ... 22

9 Virtual address format - default pmap 43

10 Virtual memory data structures - default pmap . 44

iv

1 Introduction and project goals

The Operating System Development Environment project provides libraries and run-time code that
support the development of prototype operating systems. The primary goals of the project are:

1.	 to simulate a realistic machine architecture entirely in software, without being intrusive or
causing unwanted side-effects in the operating system being developed.

2.	 to allow operating system code to be written entirely in a high-level language; initially "C"
will be supported.

3.	 that the operating system and simulator should run native mode code generated by the host
system's compilers. While running, the operating system should appear to the host system's
kernel and development tools as a normal, user-mode application.

By building a machine simulator in this way, all existing development, debugging, and profiling tools
supplied with the host system can be used to create, debug, and analyze the prototype operating
system. No modifications are required to the host system's operating system, and performance is
substantially improved as compared to an interpretive approach.

In order to simulate the actions of architecture-specific trap and interrupt handling, a machine
independent, C-callable interface is exported to the operating system writ~r The simulator interface
emulates the behavior of traps and interrupts in terms of the resulting How of control between the
different pieces of operating system code. For example, a trap function is provided that causes
control to immediately transfer to the operating system's trap handler. Before making this control
transfer, the simulator switches to a privileged mode and supervisor stack, emulating the way many
hardware architectures respond to a trap instruction [6].

Other simulator functions are provided to manipulate privileged simulator registers, access sim
ulated peripheral devices, and manage multiple process contexts. The simulator is structured so
that the asynchronous, event-driven environment created by a typical multiple-device hardware
system is emulated as closely as possible. Writing code to run in the simulator involves dealing
with issues that must be faced when writing an operating system for such environments - such as
handling multiple device priority levels, creating and switching between process contexts, handling
hardware exceptions, and dealing directly with device I/O registers for both DMA and non-D:MA
type devices.

1.1 Structure of this document

In the following section, the general machine model presented by the simulator is discussed. Then.
the low-level interface that exists between the simulated machine and the Prototype Operating
System that logically runs within the simulated machine is presented. The design for a UNIX
based1 implementation of the simulator is then outlined, followed by the design for an OSF/1-based2

implementation. The OSF /l-based design avoids many of the limitations found in the UNIX-based
design, and provides additional functionality mostly related to virtual memory support. In each

1 UNIX is a registered trademark of UNIX Software Laboratories in the United States and other countries.
20SF stands for the Open Software Foundation.

1

of the two design sections, the current status, limitations, and possible improvements for each
implementation are also discussed. Finally, a summary of the project is provided, followed by
appendices that contain the actual simulator programmable interface, and notes related to existing
implementations.

1.2 Terminology

In order to avoid confusion, the operating system that is being developed to run in the simulator is
termed the prototype operating system, or POS. The operating system that is running on the host
machine is referred to as the host operating system. The host operating systems that have been
used in the project are SunOs 4.1, VAX- ULTRIX V4.0, and OSF/1 (Mach 2.5 + OSF extensions).

2

2 Machine model

The machine that is emulated by the simulator combines features found in many existing hardware
architectures [6]. Certain design decisions are mandated because the simulator runs native-mode
code, and all simulator, pas, and user-mode code running in the pas must execute as a normal
(non-privileged, user-mode) application on the target machine.

The simulated machine is based on a single-CPU modeP. The CPU is logically attached to physical
memory that is loaded with machine instructions and data accessed by the CPU. A fixed number of
privileged and non-privileged registers are present in the machine. Privileged registers are employed
to store addresses or constants that are used by the machine in order to perform system-level
functions, and to control devices present in the simulated system. The non-privileged registers are
the same general-purpose registers that exist on the host system and are accessed by both user-level
and supervisor-level code.

Direct memory access (DMA) and non-DMA devices may be configured into the simulated system.
The device interface is primitive, requiring direct manipulation of device registers to complete I/O
operations. Devices may be set to interrupt when the I/O is complete, and the machine will then
cause an interrupt service routine (ISR) to execute on the simulated machine's CPU.

2.1 Instruction set

Since the simulated machine will run native-mode code (i.e. code generated by the host system's
compilers) as a user-mode application on the host system, the supported instruction set consists of
the majority of non-privileged machine instructions available on the host machine. Code generated
by the host system's compilers will run in the simulator without alteration4 • The simulator is
designed so that the pas and the user-mode code running within the pas can be written entirely
in a high-level language, such as C.

Privileged and "special" machine instructions are emulated via a procedural interface. The simu
lator provides routines that perform the same logical functions as these instructions would perform
on an actual machine. In this category are the following instructions:

• user-mode trap (controlled access to supervisor mode)

• return from trap, exception or interrupt (REI)

• process context creation, saving, loading, and modification

2.2 Execution modes and stacks

The simulated machine supports two execution modes - supervisor and user. The machine is in
supervisor mode when pas code is running, and in user-mode when non-privileged code is running
within the pas. Physical pages and their containing memory regions are assigned protections based

JIn section 6.1, an possible extension to the simulator is discussed that would allow certain types of parallel
machines to be simulated.

4 relocation and address fix-up of the code may be required, depending on the POS being developed

3

on execution modes5 . For example, POS code and data can be protected from read or write access
by user-mode code, while at the same time allowing read/write access to supervisor-mode code (see
section 2.6 for more information).

Each process context running within the POS has two program counters and two stack pointers
- one of each for supervisor and user modes. There is currently no support for a system-wide
interrupt stack. When a device interrupt occurs, the supervisor stack of the currently executing
process context is used to deliver the interrupt handler.

Simulator privileged instructions (see below) can only be issued from supervisor mode, otherwise
a privileged-mode exception occurs.

2.3	 Machine registers

The simulated machine contains the following "privileged" registers:

PSR - the processor status register. Contains the current execution mode and interrupt priority
level (IPL).

PIR	 - the pending interrupt register. Bits set in this register indicate an I/O has completed for a
device at the corresponding IPL.

MMRs - a configurable number of memory management r~gisters a.H~ available that can be used to
support the particular memory management architecture being simulated. The use of these
registers is described further in section 2.6.3.

Additionally, device registers are used to provide a low-level device interface as described in sec
tion 2.4.

2.4	 Devices and interrupts

Simulated terminal, disk, and clock devices are supported. The number of each type of device is
configurable. Associated with each device is an interrupt priority level, or IPL. IPLs range from 0
- 15, with 0 being reserved. The simulated machine stores the current IPL in the processor stat us
register (PSR).

An interrupt hierarchy is supported using IPLs. When a device completes I/O, its IPL is compared
with the current IPL of the simulated machine in the PSR. If the device IPL is higher, the code is
interrupted, its state saved, and the interrupt handler for the device is run on the supervisor stack.
If the current IPL is lower than the device IPL, the interrupt is deferred by setting a bit in the
pending interrupt register (PIR).

When the IPL drops lower than the pending device's IPL, the interrupt handler is invoked through
the "rei" mechanism (return from exception or interrupt). A special simulator instruction (SIMrei)
must be issued whenever an interrupt, trap, or exception handler exits. During SIMrei processing
in the simulator, the PIR is scanned to determine whether a pending interrupt can be delivered
when the IPL is restored to its previous value. If so, the pending interrupt's IPL becomes the

"page protection is not supported in the UNIX implementation of the simulator.

4

: seB

Interrupt Handlers

(1 per IPL)

trap handler

page-fault handler

access violation handler

protection violation handler

illegal instruction handler

privileged op exception handler

floating-point exception handler

Figure 1: System Control Block

current machine IPL, and the interrupt is delivered immediately; otherwise the IPL is restored
to the value that existed prior to the original interrupt. Control then resumes at the point the
interrupt handler originally interrupted.

Tt. is also possible for supervisor-mode code to directly change the current IPL by issuin~;:,., 1JriY;~-:o~d

machine instruction (SIMsetipl), so that critical code regions can be protected from interrupts.
When the setipl instruction is used to lower IPL, the same checks for pending interrupts are made
as with SIMrei.

2.5 The system control block (5CB)

A simple system control block is used by the simulator to locate the interrupt, trap, and exception
handling routines supplied by the POS. The address of the SCB is contained in a simulator register,
and may be accessed via privileged instructions. The format of the SCB is shown in figure 1.

.\ single interrupt handler exists for each IPL, even though multiple devices can use the same
IPL. The interrupt handler can determine which specific device is interrupting by checking the
first parameter supplied to the interrupt service routine. This argument is a longword uniquely
identifying the interrupting device.

2.6 Memory Management

The memory management subsystem is designed with flexibility in mind. It is intended that various
memory management architectures can be supported by replacing a single module of the simulator
containing relatively few routines with simple interfaces. This module is termed the pmap module
and is discussed in conjunction with the OSF/1- based implementation in section 5.2.1. Here, the
general architecture of the memory management subsystem is presented.

5

2.6.1 Real versus Virtual mode

The simulated machine can run with memory management enabled or disabled6 . When the simu
lator starts up, memory management is disabled - this state is known as real mode. While in real
mode, there is no virtual memory translation. Every referenced address directly maps to the same
address in simulated physical memory. Ideally, physical addresses start at zero and extend to the
size of physical memory configured into the machine minus one. However, certain host machine
limitations may require that the physical address space start elsewhere.

At some point during system startup, the POS may enable virtual memory, at which point the
machine enters virtual mode. While in virtual mode, referenced addresses are mapped to physical
addresses via the data structures and address translation mechanisms supported by the pmap. The
writer of the POS is responsible for providing the page-fault handling code, and for maintaining
the page-mapping tables required by the architecture. (As mentioned above, the simulator allows
alternate memory management architectures and data structures to be supported by replacing the
pmap module.)

2.6.2 Physical memory, pages, and page frames

Physical memory is divided into page-sized pieces known as frames. Page frames are numbered
starting at zero, and extend to cover the amount of physical memory in the simulated machine. Page
frame numbers are uE:eu durilLg the virtual memory mapping process to support a non-contiguous
memory allocation scheme [6]. Normally, page frame numbers will appear in the memory manage
ment data structures that are used to provide virtual mapping.

The simulated machine allows both user-mode and supervisor-mode page sharing. Multiple process
contexts may map the same page frame to different virtual address ranges. It is up to the memory
management architecture to manage protection and keep track of multiple references to the same
page - the simulated machine merely provides a mechanism that allows multiple contexts to map
the same region of physical memory.

The simulated machine does not have a fixed page size. Instead, various page sizes can be configured
by changing a compile-time constant and rebuilding the simulator.

2.6.3 Memory management registers

A configurable number of longword registers are supplied for use with the memory management
subsystem of the simulator; it is up to the pmap module (and thus the simulated machine's \"irtual
memory architecture) to use and interpret their contents. For example, a register could be used as
the system page table's system virtual address, and another could be used to contain the maximum
system virtual page number. The simulator merely provides these registers at a known address and
logically accesses them when required during the address translation process.

6The memory management functionality described in this section is only supported in the OSF II-based imple
mentation of the simulator

6

2.6.4 Page protection

While the simulated machine is in virtual mode, the following page protection modes are supported:
read, write, and none. These protections are combined with the current execution mode to deter
mine whether access is actually permitted. For example, a page may be protected user-mode read,
supervisor-mode read/write; meaning user-mode code may read the page, but only supervisor-mode
code may modify the page. The pas has complete control over page protection through the data
structures employed to support the memory management architecture. If the paging architecture
supports it, the granularity of protection may be a single page. The simulated machine does not
support different protections for regions within the same page.

2.6.5 Additional paging support

The simulated machine provides four (logical) booleans associated with each page that may be
supported in various degrees by the virtual memory architecture being simulated. The mapped
flag indicates whether the page is mapped. A valid flag is used to indicate whether the page
is currently present in memory (resident). A modified flag is provided that allows the pas to
determine if a page has been written in to. Finally, a referenced flag allows the pas to determine
if the page has been read or written. The specific paging architecture supported by an incarnation
of the simulator's pmap module determines whether all or a subset of these flags are actually used.
The mapped and valid flags, however, must be support<>d hy all memory management architectures.

2.7 Machine support for contexts

The simulated machine supports the creation, saving, and loading of process contexts through
special privileged simulator instructions. The inclusion of context manipulation support at this
level serves the following purposes:

•	 It relieves the pas writer from dealing with many of the low-level operations that must
typically be performed to support multiple contexts. This same rationale can be found in
the design of certain elSe architectures, such as the VAX, which include similar high-level
context manipulation instructions.

•	 It provides a mechanism for the simulator to be notified whenever a context is created,
loaded, or saved. The simulator may need to know when this occurs because of the way
multiple contexts are implemented on the host machine (for an example, see section .5.1.2).

•	 It provides a host-machine independent way for performing these functions. Most, if not
all, of the machine-dependent operations required during context creation and switching are
performed by the simulator's context-related procedures.

Process context manipulation is discussed further in the following section concerning low-level
prototype operating system components.

7

3 Low-level components of the prototype operating system

This section describes components of a typical prototype operating system (POS) that interact with
or are used directly by the simulated machine. The routines and data structures described here
provide an illustrative example of the low-level machine support contained in a typical POS. There
is no requirement that the code running in the simulator include all the routines discussed here,
but a POS designed to support the features found in the majority of existing operating systems
would include most, if not all, of them. Similarly, all of the data structures that are recognized by
the simulated machine and described in section 3.3 would typically be used within a full-featured
POS.

The POS would normally include initialization (system startup), trap-handling, exception-handling,
and interrupt-handling routines. The POS code and static data are loaded into (simulated) phys
ical memory, and portions may optionally be paged if virtual memory mode is supported in the
implementation, and the paging data structures are set up correctly.

3.1 POS initialization routine

It is intended that POS code be written in a high-level language. After the POS is "bootstrapped" ,
the POS initialization, or main routine gains control in supervisor mode. If virtual memory is to
be supported, the POS main routine typically sets up page tables and enables v;rt'nl memory by
issuing a special simulator instruction. The main routine also allocates and mitlalizes supervisor
data structures from the POS free memory area (described below), starts any I/O operations on
devices that are used by the POS (such as a clock), and creates and loads the initial process context.
When the initialization is complete, control may be transferred to the initial process context.

3.2 Interrupt service routines, trap, and exception handlers

After initialization, the POS is event-driven. POS routines are invoked when:

•	 user-mode code issues a trap instruction. When this occurs. the simulator transfers control
to the POS trap handler in supervisor mode.

•	 user-mode code causes an exception, such as a page fault. floating point exception, access
violation, etc. In this case, the simulator transfers control to the appropriate POS exception
handler in supervisor mode.

•	 a (simulated) device completes I/O and the simulator causes an interrupt handler in the POS
to be invoked.

Pointers to the trap, exception, and interrupt handlers are contained in a system control block
(SCB) located in the POS free memory area (see next section). The POS initialization routine is
responsible for setting up the SCB and storing its address in a simulator register.

8

3.3 Data structures

Data structures accessed by the simulated machine would normally be contained in the free memory
area. The free memory area is the memory left over in (simulated) physical memory after the
prototype operating system code and data are loaded by the bootstrap procedure. The POS is
responsible for allocating the required data structures from the free memory area. Supervisor
stacks, process control blocks, I/O buffers, and the system control block (section 2.5) are allocated
from this region. If a page-mapped virtual-memory system is being implemented, then a physical
page frame cache and any page-mapping data structures (such as page and/or segment tables) will
also have to be allocated from this region.

The POS free memory area is fixed in size and can not be dynamically grown, since its size is
directly determined by the amount of physical memory configured into the simulated system.

3.4 Process contexts

Multiple process contexts are managed through the use of a data structure known as the context
information block (Cm). A new context is created (in supervisor mode) by using a simulator priv
ileged instruction SIMcreatectx O. SIMcreatectx 0 writes the new cm to an address supplied
by the caller. The cm is an opaque data type whose contents are used by the simulator to load
the context when SIMsaveloadctxO is called.

SIMcreatectxO is callable by supervisor-mode code and requires the following as arguments:

•	 a supervisor and user stack pointer that are to be used by the new context.

•	 the address of a POS routine called the context initialization routine. When a process context
is loaded for the first time, the context initialization routine gains control immediately in
supervisor mode, using the new supervisor stack.

•	 a single longword argument that is supplied to the context initialization routine.

•	 a user-mode program counter that control is initially transferred to when the new context
enters user mode. This address should be in the user-mode virtual address space of the
simulated machine.

•	 an address that the newly-created cm is to be copied to. This should be a location somewhere
in the POS free memory area (typically, it would be part of a process control block).

•	 the address of a longword array that contains initial values for the memory management
registers that will be set when the context is loaded7 .

The context initialization routine could be used to install page-mapping tables for the user-mode
address space, and to complete the setup of the user-mode part of the context.

7 this parameter is not used in the UNIX-based implementation of the simulator.

9

4 A 'UNIX-based implementation

An initial version of the simulator has been designed and implemented using BSD4.x ([3] and [4])
as the host operating system. This implementation supports most of the components of the model
as presented in the previous section, with the exception of virtual memory.

4.1 Design overview

In the UNIX-based version of the simulator, all simulator routines are loaded into the same ex
ecutable image as the prototype operating system. Thus the simulator and POS run as a single
UNIX process. UNIX signals are used to simulate device interrupts and traps, and to detect ex
ceptions. Host machine-specific code is required in the UNIX-based simulator to alter and restore
signal contexts during interrupt, trap, and exception handler delivery and also to support context
switching.

4.1.1 Device simulation and interrupts

Disk, terminal, and clock devices are simulated using standard UNIX system calls. Disks are
implemented using read/write/seek calls within a single container file (a standard UNIX file that
contains the data that is stored in the sim'1htf'd disk). Clocks are implemented directly off the
internal virtual timer described below. Termmals are implemented using either an X-window with
polling [1] or the default tty the simulator was started from.

Device access is handled via a small number of simulator procedures that allow device registers to
be read or written. The device is identified to these routines via a handle, which is an opaque data
type corresponding to the device. In the UNIX implementation, the handle is simply the address
of a data structure corresponding to the device.

An internal, periodic virtual timer is started during simulator boot. The timer interval is adjustable
via a compile-time constant; the default is 10ms. The virtual timer handles device I/O completion,
and polls the simulator terminal devices for any characters typed in the corresponding windows.
When a device operation is initiated, an I/O delay is implemented by queuing the request to an
I/O pending queue. There is a separate queue for each IPL. A delay timeout is associated with
each request, and is configurable per device. In most cases, even though a delay is present, the
actual I/O is completed immediately (synchronously) before the I/O request is inserted in the I/O
pending queue. However, the appropriate status bits in the device registers are not set, and an
interrupt is not delivered, until the I/O request completes its delay in the I/O pending queue.

Whenever the virtual timer expires, a VTALRM signal is delivered to the process, which in turn invokes
the simulator's timer handler. The timer handler examines the I/O pending queues, starting with
the highest IPL queue. If a request is found that is due to be delivered, the return signal context
is modified so that the appropriate interrupt handler will be invoked. The previously interrupted
context is stored on an internal "interrupt stack". Each entry on the interrupt stack contains the
UNIX sigcontext structure for the interruption point, plus some additional information used by
the simulator (such as the PSR at the time of the interrupt).

If an I/O request's delay has expired, but the current IPL of the simulated machine is too high

10

to deliver it, the timer handler sets a bit in the PIR register and exits. Whenever an SHirei or
SIMsetipl instruction is executed, the simulator checks the PIR register to see if any pending inter
rupts can now be delivered. Since the simulator's SIMrei and SIMsetipl routines are also initiated
by sending UNIX signals, they also save and alter signal context when delivering previously-pending
interrupts.

Since the default simulator terminal uses a simple X-window to provide terminal emulation, it is
necessary to poll the window for any characters that may have been typed in it. In order to support
polling, a special request is inserted in the I/O pending queues during terminal device configuration.
This request is never removed from the queue; it is simply there to make sure the associated device
is polled every virtual time-out interval. If a character is found during terminal device poll, and
the appropriate bits are set in the control and status registers, the I/O is completed. This mayor
may not result in an interrupt, depending on whether interrupts are enabled for the device.

4.1.2 Traps and exceptions

When the pas issues a trap instruction, a simulator routine sends a UNIX signal (using the kill
system service) to the process. The signal handler alters the return signal context so that the trap
handler is invoked; using the same methods described in the previous section. In this sense, a trap
is analogous to an IPL 0 interrupt.

During simulator startup, a special signal handler is defined to catch allY I'}{,:eption-related signals
(such as SIGSEGV, SIGBUS, and SIGFPE) generated by the running process. This signal handler
again alters the return signal context so that the pas exception handler is invoked. When the
exception handler returns, the instruction that caused the exception is executed again.

4.1.3 Context switching

Process context switching is supported via simulator procedures that create, save, and load contexts.
The save and load operation is done within a single procedure, SIMsaveloadctxO.

The create context procedure SIMcreatectxO sets up the initial supervisor stack for the new
context, and stores context state in a block of memory provided by the caller (usually the context
block would be part of a process control block). Along with the context block's address, the caller
supplies the initial supervisor-mode pc and sp for the new context, the initial user-mode pc and
sp, and a single longword argument that is supplied to the initial supervisor-mode function. The
supervisor-mode stack is used as the starting point to build the new context's supervisor stack.

Process context is normally switched while in an interrupt or trap handler, just before return to user
mode. As described in the sections above, a signal initiated the interrupt or trap, and therefore the
signal context to restore when the handler completes is stored on the simulator's interrupt stack.
During context switch, this saved return context is modified according to the context state saved
in the context block being loaded. The current context state is also saved in a different context
block provided by the caller, so that it can be reloaded at a later time.

One final simulator routine exists for modifying an active context: SIMsetusrctxO. This routine
allows modification of the user-mode portion of the context, specifically all the general-purpose
registers. SIMsetusrctxO serves two purposes; it allows return status to be set for a trap in

11

struction (by setting the register that normally contains return status; this is dependent on the
host system's compiler), and setting the arguments to the initial user-mode routine that runs in
a context. Since SIMsetusrctx0 allows direct modification of machine registers, its use is highly
host-machine dependent.

4.2 Current status and limitations

The UNIX implementation of the simulator was designed and implemented in approximately 3
months by a single grad student, with faculty assistance during the design phase. All functionality
(except for virtual memory support) is present, and the resulting simulator library is currently
being used in the operating systems course at Brown. The entire simulator library required only 20
C modules with a total of approximately 3300 lines of code. The most difficult part of implementing
the library was providing the host machine-specific signal context modification routines.

Supported host machines are the SPARCstation (sun4) [10] running SunOs 4.1 and the VAX running
VAX-ULTRIX V4.0. MIPS [2] support could be added quite easily, but was not completed due to
time constraints.

12

5 An OSFII-based implementation

The UNIX-based implementation described in the previous section allows many machine features to
be simulated in a way that is relatively non-intrusive to the prototype operating system. However,
the virtual memory capabilities presented in section 2.6 can not be easily simulated using the
functionality available on standard UNIX systems. Notably absent from the UNIX system call
interface are functions that allow direct manipulation of a process' address space - such as explicit
mapping of address ranges, reading from or writing to another process' address space, and user
mode (application-level) detection of page-faults.

OSF/1, on the other hand, provides the system calls and memory management support required to
implement the virtual memory architecture of the simulator. By using Mach memory management
features present in OSF/1, the simulator can be built in a way that minimizes host machine-specific
code, and avoids the necessity of leaving user-mode to perform virtual memory mapping and page
fault detection.

Other features of Mach and OSF/18 that are used to improve the implementation of the simulator
are threads ([11]) and dynamic loading. Threads allow a a single simulator server task to logically
divide its work so that a unique thread deals with each logical type of request. For example,
separate threads are used within the simulator server task to simulate I/O on devices that are
configured into the simulated machine. Mach system calls [8] allow the state of the single thread
running the prototype operating system (POS) to be modified so that trap and interrupt handlers
can be invoked. The dynamic b<l.di!!g capability available in OSF/1 allows code to be dynamically
mapped into the simulator environment in a host machine-independent manner. The use of threads
and dynamic loading is described further in the following sections.

The OSF/l-based implementation is envisioned to eventually contain the following components9
:

•	 a simulator task that handles simulated machine startup, device I/O, context creation and
switching, simulator instructions, and serves as a Mach external memory manager in order
to provide simulator virtual memory support.

•	 a simulator library that is linked with POS code to produce one or more process-context
task(s). The simulator library is also linked against any user-mode images written to run
within the POS.

•	 a console monitor routine (CMR) that is used during the startup sequence. One of the CMR's
main functions is to start the boot sequence when the appropriate command is entered on the
console terminal. The CMR also allows clean exit from the simulator via an "exit" command.
The CMR could easily be extended to provide additional functions, such as commands to
peek, poke, or dump physical or virtual memory locations in the simulated machine.

5.1 Task structure

The OSF/1-based version of the simulator is implemented using multiple tasks (Mach and OSF/1
terminology), otherwise known as processes (UNIX terminology). The first task to execute is the

8 OSF/1 is a superset of Mach that contains extensions implemented by the Open Software Foundation. The
dynamic loading feature was created by OSF and is not part of Mach.

aat the present time, prototypes of the first two items listed below have been created

13

S1M task

Process-context

tasks

OSF Kernel

Figure 2: OSF/1-based simulato! c.rchlcecture

Sim task, which performs most simulated machine functions and manages all other tasks that
are part of the simulator environment. The tasks controlled by the Sim task are called process
context tasks, because each of them corresponds to a single process context created by the POS.
Only one process-context task is active at any given time. The Sim task activates (resumes)
and deactivates (suspends) process-context tasks whenever the POS issues the simulator's context
switching instruction.

The overall architecture of the simulator is shown in figure 2. The small boxes represent threads
that execute within the Sim task. The lines between task boxes and triangles indicate the use of
:"lach memory objects to simulate physical memory, as described in section 5.2.

5.1.1 The Sim task

The Sim task is essentially a multi-threaded, user-mode server that handles all simulator device
I/O, privileged and special instructions, process context creation and switching, and process context
memory management functions. Mach message passing, memory, task, and thread management
kernel calls are used extensively by the Sim task. Additionally, the dynamic load functionality
provided in OSF/1 is used by the Sim task to load the CMR and POS image files into the initial
process context task (see below). The OSF/1 load interface allows these images to be read into a
target task's address space, and thus obviates the need for special-purpose, host machine-specific
loader code to be part of the simulator.

The Sim task also serves as an external memory manager, or pager, for the process-context task(s).
In this way the Sim task can be notified whenever a process context task accesses a page that is

14

not logically resident in the simulated machine. This process is described in section 5.2.

The different types of routines that execute within the Sim task are shown in figure 2. The boxes
containing thread routines indicate that the associated routines execute as a distinct thread or
threads within the Sim task.

5.1.2 Process-context task(s)

In order to provide the same virtual address space to all process contexts running within the POS,
a separate task is created on the host system for each distinct process context created by the POS.
The Sim task will control the process-context tasks; activating the appropriate one when context
switches occur. Only one process-context task will be active at any given time; the rest will be
suspended. The process-context tasks run POS code, as well as code loaded by the POS. When
the simulator is booted, the Sim task creates (forks) a single initial process context task running
the console monitor routine (CMR) and later (after the "boot" command is issued to the CMR),
the POS. Whenever a new process context is created by the POS, a new task will be forked (by
the creating process-context task) in which the new context will run. If no new contexts are ever
created, there will only be a single process context task. An example of the simulator task hierarchy
with four active process-context tasks is shown in figure 3. The curved arcs in the figure represent
the remote procedure call communication path between each process-context task and the Sim task,
as described in section 5.1.3.

Each process-context task contiguously maps the same supervisor address range to the POS code
and data areas. Thus supervisor-mode address space can be viewed as a shared memory segment
existing between the process-context tasks and the Sim task.

Unlike the Sim task, each process-context task has only one thread. The state of this thread may
be modified by the Sim task so that interrupt, trap, or exception handlers can be invoked. This
procedure is described in section 5.4.4.

The code that runs within a process-context task is shown in figure 4. A process-context task runs
prototype operating system code, as well as code dynamically loaded by the POS as part of the
process context. The simulator interface library consists of remote procedure call interface routines
that are used to communicate with the Sim task (see section 5.1.3).

5.1.3 Intertask communication

The Sim task and process-context task(s) communicate through shared memory (see section 5.2.2)
and by issuing remote procedure calls (RPCs). Mach and OSF/l support the RPC interface
by supplying the Mach Interface Generator tool (MIG) [7]. MIG allows the interface between
communicating tasks to be defined in a way that relieves the programmer from worrying about
encoding or decoding messages.

RPCs are issued to ports (see [8]). Normally, the Sim task listens on several ports for messages
explicitly or implicitly sent by a process-context task. Explicit messages are sent when a process
context task issues a simulator instruction, such as SIMtrap () or SIMflushpmt (). Implicit messages
are sent to the Sim task by the OSF/1 kernel when a page fault or exception occurs in a process
context task.

15

Sim

task

/

Initial

Process

Context
Task

Process Process

Context Context

Task Task

Process

Context V
Task

Figure 3: Simulator task hierarchy

prototype

operating system

code

simulator library
routines

context-specific

code (loaded by paS)

Figure 4: Code that runs within a process-context task

16

f----------l :START_CMR_VA
f----------l :START-REGS_VA

supervisor-mode vas

f-----------l :START_SUPER_VA

user-mode vas

L..- ---' :START-USER_VA

Figure 5: Simulator's address space layout

Most RPCs sent from the process-context task to the Sim task are bidirectional - Le. the process
context task sends a request message, and then waits for a response from the Sim task. During
the wait, the process-context task is in a synchronous wait state. However, even though the single
thread within the process-context task is waiting for a response, the Sim task may suspend and then
abort it. This results in the RPC call being cancelled, so that the state of the process context thread
can be modified to invoke pas interrupt, trap, or exception handlers as described in section 5.4.4.

Practical examples of the use of MIG and rerode l-'r0c~ei.ure calls on Mach-based systems can be
found in [9].

5.2 Virtual memory implement'ation

In this section, the complete design for supporting various virtual memory architectures in the
aSFII-based simulator is presented. The main design goal of the virtual memory component is to
allow alternative memory management architectures to be implemented with minimal effort.

5.2.1 The pmap module

The Sim task contains a replaceable module that is dependent on the type of memory management
architecture that is to be supported by the machine being simulated. This module is called the
pmap module because it (roughly) serves a purpose similar to the Mach kernel module of the same
name. For example, the a segmented, forward-based paging architecture could be replaced by a
scheme that uses inverted page tables by replacing the Sim task's pmap module (and by changing
the pas that interacts with it). The pmap module is discussed in the following sections on memory
management where relevant.

5.2.2 Address space layout

A typical address space layout is shown in figure 5. In this configuration, user-mode code and
data starts at STARLUSER3A, supervisor-mode code and data at START-SUPER_VA. The privileged
register area is contained within supervisor-mode space. The console monitor routine is also present

17

in supervisor-mode space - this area, and the privileged register area are presumed to be always
resident and accessible while in supervisor mode. Any access is prevented while in user mode.

The values for STARLUSER_VA, START...SUPER_VA, START-REGS_VA, and STARLCMR_VA are defined in
the pmap module. These values are constrained by the host machine's available user-mode address
space; that is, all simulator-defined address ranges must fit within the user-mode address range of
the hosting machine.

The Sim task and all the process context tasks share the simulated machine's physical memory,
privileged register, and CMR regions by mapping ranges of their address space to a single Mach
memory object representing the simulated system's physical memory. This memory object is re
ferred to in this document as the physical memory object (PMO). The process context tasks map
the PMO (contiguously) using the supervisor-mode address range, and may map portions of it
(non-contiguously) to pageable user-mode or supervisor address ranges. Thus, any given page of
the PMO may be simultaneously mapped more than once by a process context task, depending on
the mappings set up in the page mapping tables.

The Sim task will always be able to directly access locations mapped to the physical memory object,
since it (the PMO) will be mapped to a contiguous region of the Sim task's virtual address space.
If possible, the physical memory object will be mapped using the same supervisor-mode address
range that maps the object in the process context tasks. Mapping to the same address range will
simplify DMA operations, since the Sim task performs the "real" I/O initiated by a process context
task. If a particular host architecture precludes using the supervisor-mode address region in the
Sim task, conversion routines will be needed to convert a process context td,s~ ::>l1pervisor-mode
address to the corresponding address in the Sim task. The conversion should be straightforward;
all that is required is the addition of an offset to the address in the process context tasks to get the
Sim task's address for the same location" in the physical memory object.

The following two conversion routines will be used: PMAPpostosimO and PMAPsimtopos (). In the
case where no conversion is necessary, these routines will be defined as null macros.

While in both real and virtual modes, the physical memory object is mapped into the initial process
context task starting at the beginning of supervisor-mode address range and extending to the size of
configured physical memory. The CMR and privileged register areas are also mapped to the PMO
in both real and virtual modes. However, references to addresses outside of these ranges (such as
user-mode addresses) are always invalid while in real mode. Virtual mode allows page mapping
tables to be defined so that these non-physical ranges can be mapped to page frames in simulator
physical memory. Supervisor-mode ranges that are not mapped to actual physical memory, CMR,
or privileged register areas can also be made pageable in the same way - if the pmap supports
system page table mapping.

When virtual memory is enabled, different process context tasks may map the same physical page
frame at different addresses. In this way, page sharing can be accomplished. Mapping a portion of
the single physical memory object is done using the offset and size parameters of the Mach vmJl\ap 0
system call, which allows part of a memory object to be mapped to a specified task address range.
The size parameter will normally be set to the simulated machine's page size.

Figure 6 illustrates how two process contexts can share pages by mapping a range of their virtual
address space to the same offset within the physical memory object.

18

Physical Memory Object

A

/ II I~
u;r.,,~l ~..J..lr~ •• ,,;r.,,~l ~..J..Jr~•• ~fnnfn

lOnn 3

2000 81

3000 15

4000 24

~nnn 42

6000 77

7000 121

8000 66

5000 5

6000 132

7000 88

8000 27

9000 4

10000 10

11000 15

12000 100

Process Context BProcess Context A

Figure 6: Two process contexts sharing a page

5.2.3 Enabling virtual memory

The system page mapping tables and any other data structures required by the memory manage
ment architecture must be created and installed by the POS before the simulator is switched from
real to virtual memory management mode. Installation of page tables is usually accomplished by
setting memory management registers with the addresses and lengths of the tables (supervisor and
user - see next subsection). Switching to virtual memory management mode is done by calling
SIMenablevmO.

Calling SIMenablevm0 results in an remote procedure call (rpc) to the SIM task's service port .
.-\ thread in the Sim task receives the message and calls a routine (PMAPenablevmO) in the pmap
module. PMAPenablevmO performs whatever remapping is required to set the correct memory
management environment for virtual mode. Normally, this means scanning the page tables pointed
to by the designated memory management registers, and performing mapping operations (Mach
system calls) based on the entries found in the tables.

5.2.4 Use of the Mach external pager feature

OSF/1 and Mach provide an interface that allows a user-mode server to manage memory objects
mapped by one or more processes [8]. By using this interface, the Sim task is able to detect access
to non-resident pages (among other duties. the Sim task acts as a Mach external pager for the
memory objects representing the simulator's physical memory). The Mach kernel essentially acts
as a cache for pages mapped to memory objects. When the cache needs updating or flushing, the
appropriate routine in the external pager is invoked.

19

The Mach external pager interface also allows pages cached by the Mach kernel to be locked from
read or write access, and the external pager to be notified when either type of access is attempted.
The server can then optionally unlock the referenced pages so that access will succeed. This feature
is used by the Sim task to support the referenced and modified bits that are part of the generic
memory management architecture supported by the simulator.

In the following sections, certain Mach memory management remote procedure calls (routines whose
names start with the prefix memory_obj ect_) are referenced. These routines are part of the external
pager interface supported by Mach and described in [8].

5.2.5 Non-resident page access

Pages that are mapped by the active POS page tables, but are not resident, are mapped by the
Sim task to a particular offset of a dummy memory object (DMO) that is also managed by the Sim
task through the Mach external memory management interface. The protection of the the DMO
is set to the protection value found in the POS page tables, but data is never actually provided
for any page of the DMO. The reason for using a dummy memory object in this way is to cleanly
detect attempted access of a non-resident page and, at the same time, handle protection violations.

When a non-resident page is accessed in a process-context task, and the protection value permits
access, the Sim task is notified (via the external pager routine memory_obj ect_data.xequest) and
supplied with the offset within the DMO that plOduced the fault. The Sim task can then initiate
page-fault processing in the faulting process-context task. When the page is made resident by the
POS page-fault handler (see below), the Sim task unmaps the page from the DMO and maps it to
an offset within the PMO that corresponds to the pfn used to hold the page's data.

If a non-resident page is accessed, and the protection value does not permit access, Mach will send
a message to the task's exception port. A thread in the Sim task listens on this port, and changes
the state of the process context task so that the exception handler is invoked (see section .5A.3).

5.2.6 Responding to page faults

The detection of a page fault has been described in the previous section. Figure 7 illustrates the
sequence of events that occur after the Sim task determines a page fault has occurred.

As shown in figure 7, normal page fault processing performed by the Simulator proceeds as follows:

1.	 The Sim task determines that a page fault has occurred because the Mach kernel issues a
memory _obj ecLdata.xequest 0 RPC to the Sim task specifying a page mapped to the DMO.

2.	 The Sim task calls the pmap routine PMAPget_page_dataO to obtain residency information
about the accessed page from the page mapping tables.

3.	 If the page is not resident, the process context task's state is saved, and then modified so the
POS page fault handler is invoked when the process context task is resumed. The page fault
handler's address is obtained from the system control block (see section 2.5). Arguments to
the page fault handler include the faulting address.

20

page-fault
occurs

1

Mach kernel sends

memorY.Dbject..data.request
message

.--- v_e_s-N_O -,

resident?

Provide
demand-zero

page

DONE

Modify pas state

to invoke page-fault

handler

Figure 7: Page fault processing

21

POS issues flush
page mapping table

instruction

Yes

unmap from DMO
map to PMO

No
set new

protection
lock page for
read access

Figure 8: Flush Operation

4.	 The process context task is resumed. If the page-fault handler is invoked, it performs whatever
actions are required to obtain the page data and update the page-mapping tables. When
complete, the page fault handler must call SIMflushpmt (). SIMflushpmt () is described in
the following section.

5.2.7 Altering and flushing page mapping tables

Any time the data structures used by the memory management architecture are modified, the
Sim task must be notified so that the required changes in page protection and mapping can be
performed. Therefore whenever the POS modifies the page tables, it should call SIMflushpmt (),
which does the following (see figure 8):

1.	 It issues an fpC call to the Sim task's service port.

2.	 The Sim task receives the "flush" message, and calls PMAPflushpmt (), a routine in the pmap
module. PMAPflushpmt () determines which pages have been changed in terms of validity,
protection, or reference bit state. (Note that this may require the pmap to maintain a copy
of the previous page-mapping tables for comparison with the newly-modified tables).

22

3.	 If a page has become invalid, the offset within the physical memory object to which the
address range was mapped must be unmapped. The page is unmapped by calling the Mach
routine vm_deallocate O.

4.	 If a page has become valid, it must be mapped. The physical memory object is mapped using
the Mach call vm...map (). The pfn found in the page table entry is multiplied by the page size
to determine the offset argument of the vm...map () call. Page access is set to the protection
argument, and PMAPreferencedO is called for the page so that the reference bit is set, if
supported by the pmap module. Finally, memory_obj ect-lock...request 0 is called so that
the Sim task is notified when write access is attempted to the page.

5.	 If a page's protection has been changed by the POS, and the page is valid, the Mach
vm_protect () routine is called to set the new protection for the address range mapped to the
page(s).

If the protection is changed for an invalid page, no actions are required.

6.	 If the reference bit has been cleared by the POS, the page is locked from any access so that
the mach kernel will call a memory manager routine (memory_object-lock...request) when
access is attempted. The actions taken in this routine are described in the next section.

5.2.8 "Referenced" and "Modified" flags

As implied in the previous section, the referenced and modified flags will be implemented using
the cache management routines provided by Mach. The basic idea is to lock a logically mapped,
resident page so that the memory manager (i.e. the Sim task) is notified whenever a read or
write access is attempted to the page. The locking only has to be applied until the first read or
write attempt, after which the page can remain unlocked until the POS or pmap resets the bits in
the page table entry indicating the access has occurred, or until the page is invalidated and later
revalidated.

r pon notification of a lock request, the Sim task calls a routine in the pmap module that deals with
the reference (typically by setting a bit in a page table entry). Afterwards, the page is unlocked so
that when the process context task that caused the reference is resumed, the page will be accessed
successfully.

The following describes, in detail, how the referenced and modified flags will be supported (also see
figure 8):

1.	 When a page is made valid by the POS, the POS updates the page table entry within the
page-mapping tables, and calls the SIMflushpmt 0 routine to flush the page tables. The Sim
task receives the flush notification, and calls PMAPflushpmt 0 as described in the previous
section. If the page has just switched from being invalid to being valid, go to step 2. If the
referenced bit has just been cleared for a valid page, go to step 3.

2.	 If the page has just been made valid, the Sim task maps the page to the proper address
range in the process context task, and sets the page protection. The Sim task then calls the
PMAPreferencedO routine, which will cause the referenced bit in the page table entry to be
set, if the memory management architecture supports such a bit.

23

If the page is protected so that write access is allowed, the Sim task then calls the Mach
routine memory_object-lock-requestO so that read access is permitted on the page, but
any write access causes a lock request notification to be delivered to the memory manager
(i.e. the Sim task). The routine PHAPclearmodifiedO is called so that the modified bit in
the PTE is cleared.

3.	 If the referenced bit has just been cleared in a page table entry for a valid page, and read
access is permitted to the page, then the memory _obj ect-lock-request 0 call is issued so
that read (and write, if the page is protected r jw) attempts cause a lock notification to be
delivered to the memory manager.

The modified flag is supported in a similar manner:

1.	 When code running in a process context task attempts a write to the page, the Mach kernel
calls the memory_object_data_unlockO routine in the memory manager (Le. the Sim task)
in order to deliver the write-lock request notification. This routine calls the PHAPmodifiedO
routine, which will cause the referenced and modified bits in the page table entry to be set,
if such bits exist in the architecture. Then, the Sim task releases all locks on the page, using
memory_ob j ect-lock-request0 .

To summarize; if a page allows write access, then a write lock will be placed on the page when
its PTE is changed from invalid to valid, and the modified bit will be cleared in the PTE. When
a write access is attempted, the lock will be released and the pmap notified so that the modified
bit can be set in the PTE. Once set, the modified bit remains set until the page is invalidated and
revalidated.

Also, when a PTE changes from invalid to valid, the referenced bit in the PTE is set. If the pas
later clears the referenced bit for a valid page, a read lock will be placed on the page so that a
subsequent read attempt will result in the referenced bit being reset.

Note that if a write attempt is made to a page that is protected read-only, an address exception
will occur instead of a lock notification. Lock requests for write notification will never be issued to
read-only pages.

5.2.9 User-mode code and data

The pas code is responsible for loading user-mode code, usually from image files stored in a
simulated disk device. User-mode code can not call any of the simulator-supplied routines, with
the exception of SIMtrapO, which is used to emulate a trap instruction. If a privileged simulator
instruct is called from user mode, a privileged instruction exception is delivered to the process.

User-mode code is subject to paging, and therefore the pas must ensure that the required page
mapping tables exist before any user-mode code is executed.

5.2.10 Switching between user and supervisor modes

The simulated machine supports two execution modes (also called access modes): supervisor and
nser. Page protection is based on the current execution mode; for example a page could be protected

24

user-mode no access, supervisor mode read access. In order to support different protections for each
mode, the simulator has to be notified whenever the simulated machine is switching between the
two modes, and has to issue Mach system calls to change the protection on pages that have different
protections for each mode.

The simulated machine switches mode whenever a trap instruction is issued from user mode, or
when the return from trap, exception, or interrupt instruction is returning to user mode. In both
cases, the Sim task is notified via an rpc call from the active process context task (see sections 5.4.2
and 5.4.4). The Sim task calls PMAPmodeswitch(protect...rtn) whenever the mode is being
changed. PMAPmodeswitchO must scan the page mapping tables and call protect...rtn for each
page or range of pages that need their protections changed. protect...rtn calls the Mach routine
vm..protect 0 to actually accomplish the protection switch.

5.3 Simulating device I/O

When a device register is updated in a way that semantically results in the commencement of an
I/O operation, the Sim task detects the update, notifies a thread in the Sim task to process the
I/O operation, and updates a device register when the I/O is completed. If an interrupt is to be
delivered, the active process context task is suspended and one of the following is done:

1.	 If the current IPL of the machine is less than the IPL of the device, then the state of the
POS thread is altered so that the interrupt handler for the just-completed 1/0 uevice is
executed when the process context task is resumed. The Mach primitive thread_set-stateO
will be used to alter the state of the thread. The POS thread is then resumed and the
interrupt handler executes immediately. See section 5.4.4 for details of the interrupt delivery
mechanism.

2.	 If the simulator is running at an equal or higher IPL than the device that has just finished
I/O, a bit in the simulator's Pending Interrupt Register (PIR) is set to indicate the pending
interrupt. The SIMreiO or SIMsetiplO code will detect this bit and deliver the interrupt
when IPL is being restored to a lower value.

SIMrei 0 and SIMsetiplO are described in detail in section 5.4.5. Also, the complete sequence
of operations that need to be done when altering the state of the POS thread is described.

5.3.1 DMA support

The POS starts DMA operations by loading the device address and memory address registers, and
then setting a bit in the device control register using SIMdevctlO. The memory address must be
a supervisor-mode address. Since the Sim task maps the physical memory object using the same
supervisor-mode address range as the process context tasks, the Sim task can use the memory
address directly to perform the I/O. For example, to perform a disk read operation, an I/O thread
running in the Sim task would use the value in the memory address register as the address of the
target buffer.

25

5.4 Traps, exceptions, and interrupts

When a trap, exception, or device interrupt occurs, the Sim task takes special actions that may
result in altering the state of the active pas thread. Mach kernel calls facilitate these activities
and allow the machine-specific aspects to be reduced to very few lines of code.

5.4.1 Manipulating the POS thread's state

Before the details of trap, exception, and interrupt processing are presented, it is necessary to
describe exactly how the state of the single pas thread will be altered when a trap, exception, or
interrupt handler is invoked, and how the state will be restored when the handler exits.

The Sim task maintains a data structure known as the context stack. Whenever the flow of control
in the pas thread is altered to invoke a handler, information pertaining to the thread and machine
context that existed before the alteration is stored in a structure and pushed onto the context
stack. This information minimally includes the program counter, the stack pointer, contents of the
general-purpose registers, and the PSR.

The handler must always exit by issuing a SIMreiO instruction. When the simulator receives
notification from SIMrei () , it pops the context stack and restores the context that was previously
interrupted. At most, there can be 17 entries on the context stack, since there are 16 interrupt
priority levels whose co:::rcs;,onding devices could interrupt an active trap or exception handler that
interrupted user-mode code (note that using IPL 0 for a device interrupt level is not supported).

5.4.2 Trap handling

A trap is initiated by user-mode code executing in the process context task, but most of the work
is done in the Sim task. The sequence of events is described in the following steps:

1.	 The user-mode code calls SIMtrap 0 supplying two parameters that are to be passed to the
trap handler.

2.	 SIMtrapO packages the two parameters into an rpc to the Sim task service port, also passing
the arguments supplied to SIMtrap O.

3.	 The Sim task suspends the pas thread, stores the context information on the context stack.
and then aborts the pas thread (thus aborting the rpc). It then uses the thread_set-state ()
kernel call to modify the suspended state of the single pas thread so that the pas trap
handler will be invoked when the thread resumes. The address of the trap handler is obtained
from the system control block (SeB). The trap arguments are pushed on the target supervisor
stack.

4.	 The PMAPmodesvitchO routine 1S called to set the protection of the memory regions in
supervisor-mode address space.

5.	 The Sim task resumes the pas thread.

26

6. While	 the POS thread is handling the trap, it may call SIMsetusrctxO to set the return
status for the trap. This routine allows modification of the context information stored on the
context stack.

7.	 The POS thread then calls SIMrei 0 . SIMrei 0 will issue an rpc to the Sim task, which
will result in the suspended POS thread being resumed (details below) in the previously
interrupted thread context.

5.4.3 Exception handling

Exceptions occurring in the POS or the user-mode code running "within" the POS thread will be
detected by Mach and a message will be sent to the thread's exception port. The receive rights for
the exception port are passed to the Sim task during process context task creation (see section 5.7).
Therefore, the Sim task receives exception notifications for all process context tasks, and initiates
exception handler invocation in the same way described for traps above.

5.4.4 Delivering an Interrupt

The conditions under which an I/O thread causes an interrupt handler to be invoked in the currently
active process context task was described in section 2.4. The I/O thread does the following in order
to deliver the interrupt:

1.	 The Mach system call msem-.lockO is used to obtain a the system-wide simulator semaphore
(see section 5.6). This semaphore is used so that interrupts can not cause an interrupt handler
to be delivered in the middle of the processing of a simulator instruction.

2.	 The POS thread is suspended and aborted. The context at the time of the suspend is saved
on the simulator's internal interrupt stack.

3.	 The appropriate POS interrupt handler is obtained from the system control block, and the
state of the POS thread is altered so that the interrupt handler will be invoked when the
thread is resumed.

4.	 The Mach system callmsem_unlockO IS used to release the simulator semaphore, and the
POS thread is resumed.

5.4.5 SIMrei() and SIMsetiplO

The return from exception or interrupt instruction is handled mostly in the Sim task, and \vill be
implemented as follows:

1.	 The code running in the POS thread (within a process context task) calls SIMrei 0 to exit
from the exception, fault, trap, or interrupt handler.

2.	 SIMreiO calls msem-.lock to obtain the system-wide simulator semaphore, and then issues
an "rei instruction" rpc to the Sim task's service port.

27

3.	 The Sim task receives the rei message, and suspends, and then aborts, the pas thread that
sent it. The simulator Processor Status Register (PSR) is reset to its previous value.

4.	 The simulator's Pending Interrupt Register (PIR) is then checked to see if an interrupt can
now be delivered (if IPL is being lowered). If so, the state of the suspended pas thread is
altered so that the new interrupt handler will be executed. The pas thread is then resumed,
and msem_unlock is called to release the simulator semaphore.

5.	 If no interrupts are pending, the context stack is popped, and the context information stored
in the popped entry is used to restore the pas thread's state. If control is returning to user
mode, the Sim task calls PMAPmodeswitchO to protect the supervisor-mode regions of the
simulator's virtual address space so that no user- mode access is possible. The pas thread
is then resumed, and the simulator semaphore released.

The SIMsetiplO instruction behaves very similarly, except that there can be no return to user
mode - in the case when there are no pending interrupts, the pas thread is simply resumed with
no modification of thread context taking place.

5.5 Support for multiple process contexts

Context switching is performed using many of the mechanisms already discussed. The central idea
is that when a new process context is created, a new host system task is f0.rkcd. b which the new
context will run. In this way the new context can use the same virtual address space as its parent
context. Supervisor-mode regions are shared between all contexts tasks, while user-mode regions
are context task specific.

5.5.1 Context creation

When SIMcreatectx 0 is called from an active process-context task, the following processing oc
curs:

1.	 The active (parent) process-context task forks the new context task. After the fork, the
parent context task suspends itself. The new context task issues an rpc call to the bootstrap
port; the message is "new context task created". Included in the rpc call are the new task's
taskJd.

2.	 The Sim task receives the "new context task created" message, and returns send rights to the
Sim task's service port to the new context task. The new context task then issues another rpc
to the Sim task's service port (the message is "build context"), this time sending its unique
name for the Sim task's service port. This is needed as part of the context information that is
stored in the context block in the following steps. Also included as parameters in the rpc call
are the arguments that were supplied to SIMcreatectx O. These parameters include state
information that will be used to build the new context (stack pointers, memory management
register contents, initial supervisor-mode program counter).

3.	 The Sim task receives the "build context" message, and suspends, then aborts the single
thread in the new context task. The state of the new context thread is then modified using
the parameters that were supplied to SIMcreatectx O.

28

4.	 The context information that is need to load the simulator's privileged registers is stored in a
context information block whose address was supplied by the caller of SIMcreatectxO. This
address must be in supervisor-mode address space.

5.	 The parent process-context task is resumed.

5.5.2 Context switching

Context switching is initiated when an existing process-context task calls SIMsaveloadctx O. The
parameters to this call include a pointer to a block that will be used to store the current con
text, and a block that contains the context to be loaded. The following processing occurs when
SIMsaveloadctxO is called:

1.	 The existing process-context task issues a "context switch" rpc call to the Sim task's service
port.

2.	 The Sim task receives the message, and suspends the current process context task. The
privileged simulator registers and other state information are saved in the context information
block whose address was supplied by the caller of SIMsaveloadctx ().

3.	 The Sim task then retrieves the context information block for the context to be loaded, and
uses it to 10rd the simulator registers.

4.	 The Sim task then resumes the new process-context task that was previous created as de
scribed in the previous section.

5.6 Task and thread synchronization

The system-wide simulator semaphore has already been discussed in sections 5.4.4 and 5.4.5. In
each rpc stub that is called by POS code to initiate a simulator instruction, the simulator semaphore
is obtained by calling msem-l.ock O. When the rpc returns, or when the instruction is complete
(some instructions never return, such as SIMrei) msem_unlock 0 is called to release the semaphore.
The Sim task tries to obtain this semaphore whenever it is about to deliver an interrupt. Therefore,
the semaphore prevents simulator instructions from being interrupted while being processed.

It is also necessary to coordinate access to device registers between I/O threads executing in the
Sim task. In this case, the pthread mutex mechanism is used.

5.7 Startup and boot sequence

The Sim task is started manually by the user, with an optional configuration file as a command-line
parameter. The Sim task performs the following initialization steps:

Configures the simulator - the configuration file, if present, is read, and the specified devices
are "created" (data structures are allocated in the Sim task to represent the devices). If no
configuration file is supplied, a default configuration is created.

29

Port allocation - ports are allocated for the physical memory object, the dummy memory object
(see section 5.2.6), and the Sim task's general-purpose service port. A port is also allocated
to serve as the bootstrap port, and the Mach system call to set the bootstrap port is called.

Initial process context task creation - the Sim task forks the initial process context task.
After the fork, the Sim task starts a single thread listening on the ports allocated in the
previous step (a port set is used to group the ports into a single entity). The process context
task sends a initial process context task created message to the bootstrap port, which is
received in the Sim task.

Virtual memory initialization - when the Sim task receives the initial process context task
created message, it suspends and abortslO the single POS thread, then scans the address
space of the process context task and deallocates all memory regions that overlap the address
space of the simulated machine. The Sim task then maps the physical memory object (PMO)
to the supervisor address range in the process context task.

Activation of the CMR - the Sim task loads the CMR image into its (Le. the Sim task's)
address space, and then uses Mach vm calls to copy the image into the process context task's
address spacell . The state of the single POS thread is modified so that the CMR main routine
will be executed when the POS thread is resumed. The stack pointer is set to the highest
physical address of simulator memory. The POS thread is then resumed.

CMR initialization - the CMR retrieves its bootstrap port, and issues a POS started rpc to the
Sim task. The Sim task receive'; this ~nessage, deallocates the CMR from its own address
space, and maps the supervisor mode address range to the PMO. At this point, the Sim task
initializes device registers located in the register page of supervisor-mode address space. The
Sim task then returns send rights' to its service port as a return value to the POS started
rpc. The CMR receives the port, and loads it into a reserved register located in the register
page of supervisor-mode address space. (The service port name becomes part of the process
context, since each rocess context task will have a unique name for this port). The CldR can
now use the normal simulator mechanisms for I/O calls.

"Booting" the POS is initiated by a command typed on the console terminal. The CMR parses the
command, and sends a POS boot message to the Sim task's service port. The Sim task immediately
suspends and aborts the single POS thread. The Sim task then unmaps itself from the supervisor
address space, loads the process context task image into its own address space, and uses mach vm
calls to copy the POS image into the process context task's supervisor-mode address space.

(The POS will be linked with a special switch to set its starting address to the beginning of the
supervisor-mode address range. Thus the OSF/1 loader will perform the correct address fix-up
since this is the same address range in which it will be copied into the process context task. The
reason for temporarily unmapping the supervisor area in the Sim task is to allow the loader to
function properly - the load call will fail if the address range is already in use).

The POS thread's state is altered so that the main POS routine will be invoked when the thread
is resumed. The pfn of the first free memory page is supplied as the first argument to the main

10 the abort is required before the state of thread can be modified
11 the asp /1 load interface does not currently support directly loading images into another task's address space.

This may be an option in future versions of asp /1

30

routine, the size, pages of the entire physical memory is the second argument. The Sim task then
re-maps the PMO to the supervisor-mode address range, and resumes the process context task.

5.8 Current status and limitations

The OSF/I-based implementation has been partially implemented. The basic virtual memory func
tionality has been prototyped; including page-fault detection, delivery, referenced and modified bits
support, and page table flushing. A pmap module exists for the memory management architecture
outlined in appendix B.l. I/O device emulation using threads in the Sim task has also been coded
and tested, and interrupt delivery is working. Task and thread synchronization, after a great deal
of debugging, is now working using a single system-wide simulator semaphore and multiple pthread
mutexes to control access to device registers and internal device-related data structures.

User-mode support (the PMAPmodeswitch() routine and SIMtrap()) has not yet been implemented,
nor has context creation and switching. The dynamic image file loading required to load the CMR
and POS has not been coded, because the current version of OSF/I (snapshot 5) does not support
the loader interface. Dynamic image file loading and context switching support are the major pieces
of work remaining to be done in order to complete the OSF/I-based simulator.

:31

6 Conclusion

An operating system development environment has been created that allows operating system code
to run in native mode on the host machine as a user-mode application. A generic machine model
has been defined, and the operating system/machine interface is emulated using standard procedure
calls. The simulated machine is configurable in terms of the virtual memory architecture supported.
The asynchronous behavior of most multi-device computer systems is emulated fully using interrupt
priority levels.

Two implementations have been prototyped - the first was built on standard BSD UNIX [3],
the second on an OSF/l-based system. The OSF/l-based system allows emulation of a virtual
address space, with full paging capability. This can be achieved using the sophisticated memory
management kernel interface available with OSF/1.

6.1 Possibilities for further research

The following are ideas for possible further study related to the project:

Operating system analysis tools - it would be useful to measure operating system performance
without including overhead introduced by the simulator.

A:l int~grated programming environment - writing operating system code involves speciai
programming paradigms. A tailored programming environment, optimized for operating sys
tem development, could be created that could further speed the development process. It
should be relatively easy to build· this environment on top of a general-purpose, extensible
programming environment such as FIELD [12].

Parallel architecture support - the current OSF/1-based simulator could be extended to sim
ulate a parallel machine by allowing multiple process-context tasks to execute simultaneously
(given a parallel host system).

Transparent simulator operation - the current simulator suffers from the requirement that in
order to modify some simulator registers, an explicit procedure call must be used so that
the simulator can be notified. For example, modifying a device control register can not be
accomplished simply by writing directly to the register. Instead, SIMdevctl() must be used
otherwise the simulator would not be notified when modifications to the register are made. If
Mach offered a write-through cache option in conjunction with the external pager mechanism,
the simulator could be notified transparently whenever such modifications are performed. The
same technique could be used whenever page tables are modified, so that the explicit flush
page-mapping tables instruction would not be required.

32

A Summary of the simulator interface

A complete user's guide for the UNIX-based implementation of the simulator can be found in [5].
This section summarizes the interface presented by both versions of the simulator.

A.I Accessing privileged processor registers

A.I.1 Retrieving the contents of the Processor Status Register

An interface is provided to retrieve the current value of the PSR and to set the IPL value stored
in it 12 :

cur-psr = SIMgetpsrO - returns the value of the current PSR. Note that the PSR is also the
third parameter to interrupt service routines and exception handlers; therefore it should rarely
be necessary to use this call to access it.

A.I.2 SIMsetipl

The ipl of the simulated machine can be altered by calling SIMsetiplO:

old_ipl = SIMsetipl (new-ipl) - sets the current interrupt priority level in the PSR to new_ipl
and returns the previous IPL in old-ipl. This routine provides a way for lower-IPL code to
raise IPL to block any potential interrupts from higher-priority devices. Lowering IPL below
the value represented by an interrupt service routine is not recommended, as it may cause
anomalies during REI processing.

A.I.3 SIMsetscb

The SCB register contains the address ofthe system control block. TVB, or trap vector block, is the
name of the register in the UNIX-based implementation. The SIMsetscbO call sets this register
in the OSF/I-based implementation; SIMsettvbO sets it in the 1JNIX-based implementation.

SIMsetscb(tvb_adr) - (OSF/I-based implementation) sets the SCB register to the address of
the system control block contained in scb_adr.

SIMsettvb(tvb....adr) - (UNIX-based implementation) sets the TVB register to the address of the
Trap/Vector Block contained in tVb_adr.

A.I.4 PIR - pending interrupt register

The PIR register contains bits which, when set, indicate an interrupt is pending at the IPL cor
responding to the set bit's position. For example, if bit 5 is set, an interrupt is pending for some
device at IPL 5.

12 SIMgetpsr is only provided in the UNIX-based implementation of the simulator. The OSFII-based simulator
allows direct access to the register in the register area

33

There is currently no interface to obtain the contents of the PIR register; however, its contents at
the time of an interrupt is supplied as the second argument to interrupt service routines - see
section AA.3 for more information.

A.1.5 MMRs - memory management registers

The memory management registers are used by the pmap to contain the addresses of memory
management data structures such as page-mapping tables, or memory management parameters
such as the size of a page table or a mapped segment. See appendix B.l for a memory management
architecture that uses two MMRs.

MMRs are only used on the OSF/l-based version of the simulator. There is no interface to update
them; they exist in the privileged register area and may be accessed (read/write) directly by the
POS. See the include file sim.h for the exact location of the MMRs within the privileged register
area.

A.2 Virtual memory interface

The routines described in this section are only supported in the OSF/1 version of the simulator.

A.2.1 Enabling virtual memory

The simulator machine always begins operation in real mode, as described in section 2.6. In order
to switch to virtual mode the following call is provided:

SIMenablevmO - enable virtual memory. It is assumed that any page-mapping tables or other
data structures required by the pmap have been created and "installed" (normally by placing
the addresses of structures in memory management registers) before this call is issued.

A.2.2 Flushing page tables

Whenever page tables are modified by the POS, the the simulator must be notified. The following
routine performs this function:

SIMfl.ushpmtO - flush page mapping tables. Normally, the address' of active page-mapping tables
would be contained in a memory management register and thus no parameters are required
for this call.

A.3 Device interface

The simulator library provides a set of functions that allow access to simulated peripheral device
registers. These routines are the only way to control and monitor devices in the simulator environ
ment. The interface has been designed so that accessing devices in the simulator closely resembles
the way in which device registers are accessed in an actual operating system.

34

In the OSF/1-based implementation, all registers except the device control registers are accessed
directly in the register area in supervisor-mode space. In both implementations, the device control
registers are accessed through the system call SIMdevctl (). This is required because the simulator
must be notified when device I/O is initiated. In the UNIX-based implementation, additional calls
are provided so that all device registers can be accessed through procedures.

All the simulator device interface functions rely on the user supplying the correct device handle
as the first parameter. If an incorrect handle is supplied to one of these calls, the results are
unpredictable and are likely to result in a simulator crash. In the UNIX-based implementation,
the handles are actually the addresses of data structures representing the associated device. In
the OSF/1-based implementation, the handle is the supervisor-mode address of the register block
corresponding to the device.a

The following simulator functions are provided to modify device registers13:

SIMdevctl(handle, new_val) - The value specified in new_val is written to the device con
trol register of the device represented by handle. This function is used for both DMA and
non-DMA devices.

sts = SIMdevsts (handle) - The value of the device status register of the device represented
by handle is returned in sts. This function is used for both DMA and non-DMA devices.

val = SIMdevrreg(handle) - For non-DMA devices, returns the value in the read register of
the device represented by handle.

SIMdevwreg(handle, new_val) - For the non-DMA device represented by handle, the value
specified in new_val is written to the device's write register.

SIMdevrnadr(handle, new_val) - For the DMA device represented by handle, the value spec
ified in new_val is written to the device's memory address register.

SIMdevdadr(handle, new_val) - For the DMA device represented by handle, the value spec
ified in new_val is written to the device's device address register.

The values supplied in the new _val parameters, which are device-specific, are described in the
following sections.

A.3.1 Terminal device

Single-character I/O is supported in the simulator terminal device. If you are running on an
Xwindows system [1], the terminal will appear as a new window during the boot process, unless
the environment variable SIM-.NOX is defined. If SIM-.NOX is defined, or you are running on a non
Xwindows system, the current tty will be used. This means that any output from printf will be
intermixed with actual terminal I/O from the simulator. By using X-windows, you can separate
the debug printf statements from the "real" terminal I/O.

If Xwindows is used, multiple terminal devices can be created using the configuration interface
supplied with the simulator.

13 Only SIMdevctl () is supported in the OSF II-based implementation. The other registers are accessed directly in
the privileged register area of supervisor-mode address space.

:35

The X terminal device is rather simple, and only responds to a few non-printable characters. When
a write operation is performed, printable characters are printed at the current cursor location; when
the line length of the terminal device is exceeded, wrap around will occur. The X terminal device
processes the following non-printable keys:

I key I value I action

backspace Ox08 move back one cell, don't delete char
delete Ox7F move back one cell, delete char
return OxOD move to beginning of the line
linefeed OxOA move to next line, without carriage return

Non-printable characters, such as control characters, are returned in the device read register but
are "not echoed in any way during read or write operations.

The IPL of the default terminal is 10.

Terminal control register Four bits are defined in the terminal control register: two "GO" bits,
RGO and WGO (one bit for read and one for write) and two "ENABLE" bits RENABLE and WENABLE
(again, one for read and one for write). The bit positions are defined in the file sim.h.

The RGO bit is set to 8t:trt a read from the terminal, the WGO bit is set to start a write to the
terminal. On completion of the read, the character read from the terminal can be obtained from
the read register using SIMdevrreg. The character to be output to the terminal during a write
operation should be stored in the write register using SIMdevwreg before the WGO bit is set (using
SIMdevctl). "

The RENABLE and WENABLE bits are set if an interrupt is to be delivered when the read or write
operation completes (see section AA.3). The GO bits are set by the operating system to start I/O,
and cleared by the simulator when the I/O is actually complete. However, there is no way to
determine when I/O is complete by polling the GO bits; this must be done by polling the terminal
status READY bits (see below).

Note that because of the separate read/write bits, read and write operations can be performed in
parallel.

Terminal status register The terminal status register consists of two bits: RREADY and WREADY.

The RREADY bit is set when a read has completed, WREADY is set when a write has completed. These
bits are accessed by calling SIMdevsts as described above. The RREADY or WREADY bits are cleared
when the user sets the corresponding RGO or WGO bits.

The operating system must make sure that the previous read/write operation is complete before
beginning the next read/write operation.

Terminal read register The terminal read register contains the last character read from the
terminal device. This register should not be accessed until the RREADY bit is set in the terminal
status register.

36

Terminal write register The terminal write register contains the character that is to be output
to the terminal device. This register should be set before the WGO bit is set initiating a terminal
write operation.

A.3.2 Disk device

A direct memory access (DMA) disk device is supported in the simulator by means of a container
file. In other words, the contents of the simulated disk appear in a file in the current directory from
which the simulator is being run.

The default filename for the container file is SIMdisk. dIna. If this file exists in the current directory
when the simulator is started, it is used. Otherwise, a new empty container file is created. If a new
container file is required (Le. an initialized disk), the old one can simply be deleted.

The default disk is organized as 32 cylinders, 4 tracks per cylinder, 8 sectors per track, 1024 bytes
per sector - and thus has a maximum capacity of 1 megabyte. Additional disks with different
geometries and capacities can be defined using the simulator's configuration interface.

All disk operations are in units of sectors. Supported operations are seek, read, and write. It is
strongly encouraged that seeks be done before each read and write to ensure that the disk head is
at the correct location.

Since the disk device is DMA, up to one secto:'s "",Oi tIl of data is transferred directly to/from the
disk (starting at the head's current location) from/to the buffer specified in the memory address
register. When the I/O is complete, a bit is set in the disk status register and an interrupt is
generated if interrupts have been enabled.

The IPL of the default disk is 7.

Disk control register A 2- bit field, OP, is used to specify the desired disk operation: currently
SEEK, READ, or WRITE are supported (the values for the OP field are defined in sim.h). The GO bit is
set to initiate the operation, and the ENABLE bit is set if an interrupt is desired when the operation
completes.

Disk status register The status register has a single bit, READY, that is cleared when the GO bit
is set in the control register, and set when the I/O operation has completed.

Disk device address register The device address register is used to set the cylinder, track, and
sector position of the disk head. This register is accessed only during the seek operation, and is
ignored during read and writes. The format of this register is defined in sim. h.

Disk memory address register The memory address register is used during read and write
operations to determine where in physical memory the disk data should be copied to or from. The
register is an unsigned longword that should be set to the desired address (using SIMdevmadr)
before the read or write is started.

37

A.3.3 Clock device

The clock device provided by the simulator allows a single timer to be set. A bit is set in the
clock status register when the time expires. An interrupt can be generated if interrupts have been
enabled for the clock device.

The clock timer value is set by writing into the clock's write register the number of microseconds
from the current time that the timer is to expire. The resolution of the clock is currently 10
milliseconds (10,000 microseconds) and runs off an internal simulator timer - therefore setting the
clock's timeout value to less than 10 milliseconds will result in a time interval somewhere between
oand 10 milliseconds and is equivalent to setting the timeout value to O.

Additional clock devices can be created using the simulator configuration interface.

Clock control register The START bit causes the clock to begin operation. The ENABLE bit, if
set, causes an interrupt to be generated when the clock timer expires. Setting the HALT bit stops
the clock, and clears the ALARM and STATE bits in the status register (see below). The bit positions
are defined in sim.h.

The IPL of the default clock device is 14.

Clock status register The clock status register has two bits: ALARM and STATE. "l'he ALARM bit
is cleared when the HALT bit is set in the clock control register, and is set by the simulator when the
timer expires. An interrupt is delivered (or made pending, based on the current IPL) only if the
ALARM bit is clear when the timer expires and the ENABLE bit has been set in the control register.
The STATE bit is set after the START bit is set in the control register, and is also cleared when the
clock is halted.

Clock device write register The clock write register is set by using SIMdevYreg. The value
written to the register is a longword unsigned value corresponding to the number of microseconds
from the current time until the time the clock timer is to expire.

A.4 Traps, exceptions, and interrupts

Traps, exceptions, and device interrupts are events that cause the current flow of execution to be
interrupted, with possibly a change of mode and stack from user to supervisor. Traps always occur
synchronously and from user-mode code - they are typically used as a way to enter supervisor mode
to perform a system call. Exceptions also occur synchronously, and are detected by the simulator
when an illegal operation or memory access is attempted. Device interrupts occur asynchronously
when a device has completed I/O and the device has been enabled to generate interrupts (as
described in section A.3).

A.A.1 Traps

Synchronous traps are generated using the following simulator function:

38

val = SIMtrap(al, a2) - causes a trap to occur, and the arguments al and a2 become the
two arguments of the trap handler. Typically, al would contain a trap code and a2 would
contain the address of an argument list, but there are no restrictions on what the arguments
are used for. The return value in val is set, after the trap has been processed, to the contents
of the user-mode register that is normally used to return status on the target architecture.
On the SPARCstation, this is iO; on the VAX, it is rOo The contents of this register, and
hence the value returned in val, can be set from supervisor mode during trap processing by
calling SIHsetusrctx (see section AA.8).

SIMtrap is the only simulator routine (besides printf) that may be called from user mode. If it is
called from supervisor mode, an illegal instruction exception is generated.

When SIMtrap is called by the operating system code, the simulator freezes and saves the state of
the user-mode code running on the user-mode stack, and starts the trap handler running on the
supervisor stack. The address of the trap handler must have been previously stored in the system
control (or trap vector) block. If this trap handler address is set to an invalid address in the SCB,
or if the SCB register is set to an invalid address, unpredictable results will occur.

The trap handler must end with a SIMrei instruction in order for control to return to the frozen
user-mode program counter and stack; see section AAA for more information.

AA.2 Exceptions

Exception handlers can be specified (by initializing pointers in the trap vector block) so that control
is transferred to an exception handler, in supervisor mode, when one of the following events occurs:

•	 an attempt to issue privileged (simulator) instructions while in user mode or to issue SIMtrap
while in supervisor mode

•	 access violation

• illegal instruction encountered

• floating-point error

When an exception occurs, the simulator switches mode and stack to supervisor (if not already
running in supervisor mode). If an exception handler has been set in the TVB for the type of
exception, the handler is called with the exception code (defined in sim.h) as the first argument,
the program counter where the exception occurred as the second argument, and the PSR at the
time of the exception as the third argument. Exceptions may occur in either supervisor or user
mode, and at any IPL. If the exception handler does not take steps to remedy the faulting situation
by altering the context, control will revert back to the offending instruction when the handler issues
SIMrei, thus causing an endless cycle of exceptions.

AA.3 Interrupts and interrupt handlers

All the devices described in chapter A.3 can be set up to generate interrupts when an operation
completes. One interrupt service routine (ISR) exists for each interrupt priority level (IPL). The

39

addresses of the ISRs are contained in the trap/interrupt vector block, as described in section A.1.3.
The ISR section of the trap vector block and TVB register itself must be initialized before starting
any I/O operation that could result in an interrupt; otherwise the simulator may crash or control
will be transferred to undesirable locations.

If a device has interrupts enabled, the interrupt service routine is called with three arguments when
1/a completes on the device:

• the handle of the interrupting device

• the contents of the PIR register (section A.1.4)

• the interrupted (previous) PSR (section A.I.!)

Again, the ISR must end with a SIMrei instruction; see below.

A.4.4 The SIMrei instruction

The SIMrei instruction takes no arguments, and has the following syntax (note that SIMrei is
defined as a macro and requires no parentheses when invoked):

SIMrei - return to the previously Internl!'LeJ IPL and mode. If any pending interrupts exist for
an IPL greater than the IPL being returned to, deliver the interrupt immediately.

If the mode being returned to is user, SIMrei will first check for pending interrupts, and if none
are found, it will switch operation back to the user-mode stack and user-mode program counter.
If the mode being returned to is supervisor, SIMrei will check for pending interrupts with IPL
greater than the IPL being returned to. If any pending interrupts are found, they are delivered
immediately by calling the appropriate ISR.

The operations described above will not be performed if the trap/exception handler or ISR returns
normally (i.e. does not issue a SIMrei instruction) - therefore it is critical that SIMrei be used
as the single means of returning from all handlers and interrupt service routines.

A.4.5 Context manipulation

Process context is defined here as a snapshot of the state of the general-purpose registers, the
stack pointers (supervisor and user), the user and supervisor program counters, and other internal
simulator information needed to properly save and restore a current running environment.

The simulator provides special functions that allow complete process contexts to be created, saved,
and restored. Contexts are stored in and loaded from contiguous memory locations (context blocks)
supplied and managed by the caller of these routines.

While running in supervisor mode, the operating system also can modify the frozen user-mode
portion of its current context - this interface is described below in section AA.8.

40

A.4.6 Context initialization

Two routines are provided that allow a new, complete process context to be created while running
in supervisor mode in a different process context:

SIMcreatectxC ctx_adr, sfunc, ssp, ufunc, usp, arg, mmrs) - Anewcontextiscreated
and loaded into address pointed to by ctx_adr. SIMsizectx should be used to determine
the size of the memory block required to store the context. The new context will initially
start in supervisor mode in the context initialization routine sfunc on the stack starting at
ssp (remember, stacks grow downwards). arg will be the single parameter supplied to the
sfunc routine. The mmrs parameter is only used in the OSFII-based implementation of the
simulator. The mmrs argument is a pointer to an array of longwords that will be loaded into
the simulator's memory management registers when the context is started.

The context initialization routine (sfunc) routine should terminate with a SIMrei instruction,
after which control will revert to user mode and the ufunc routine, running on the supplied
user-mode stack.

SIMsizectxO - returns the size, in bytes, that will be required to store the context.

SIMcreatectx simply creates a new context and sets up the stacks starting at the addresses provided
by the caller. Control is not transferred to the new context until a SIMsaveloadctx call is issued
(see below). If it is necessary to supply arguments to the initial user-mode function (ufunc) of
a context, this should be done immediately after the context is 10(1.1.=:.1 (normally in the context
initialization routine sfunc) by calling the SIMsetusrctx routine described below in section A.4.8.

A.4.7 Process context switching

Process context switching refers to the action of saving the current process context, and loading
into the simulator a different process context. The new process context gains control immediately.
The following simulator function is provided to perform process context switching:

SIMsaveloadctxCold_ctx_adr, ne\Lctx_adr) - The active process context is saved in the mem
ory location pointed to by old_ctx_adr, and the new process context is loaded from the
memory location pointed to by ne\Lctx_adr. The new context could have been created via
SIMcreatectx or could be the context returned in the location pointed to by the old_ctx-adr
parameter during a previous SIMsaveloadctx call.

If the context being loaded has just been created using SIMcreatectx, control is immediately
transferred to the context initialization routine (sfunc) that was specified in that call. Other
wise, the context, after being loaded, continues where it left off when it was saved in a previous
SIMsaveloadctx call.

A.4.8 Altering the user-mode context

The simulator always ensures that whenever control is transferred from user mode to supervisor
mode, all the general-purpose registers in use at the time are saved. Part of this information is
stored internally in the simulator and not directly accessible to operating system code.

41

However, routines are provided that allow the contents of the saved user-mode general-purpose
registers to be examined and modified by supervisor-mode code. By using these routines, it is
possible to:

•	 set the return status of the SIMtrap routine, so that status can be returned from a system
call. Note that using the normal C method of supplying a value to the return instruction of
the trap handler will not work, because trap handlers must end with SIMrei and should not
use return.

•	 pass arguments to the initial user-mode function (ufunc) of a new process context.

•	 set up an entire new user-mode stack, frame pointer, and program counter for the current
process context. This may be useful if a user-mode exception occurs.

The following two procedures provide access to saved user-mode registers of the current process
context14 :

SIMgetusrctx (mask, ret_adr) - returns the values of the (user-mode) registers indicated by
bits set in the mask argument (a single longword) to an array oflongwords starting at ret_adr.
If the 1st bit is set in mask, the value of rO at the time user-mode code was interrupted is
returned; if the 8th bit is set, the value of r7 is returned, etc. The values are returned
con::;ecutively in the return array from lowest to highest, according to the bits set in th~ :na.::;k

argument.

SIMsetusrctx (mask, src_adr) - sets the registers indicated in mask to the values stored in
the longword array beginning at src_adr. The mask argument has the same format as in
SIMgetusrctx.

These routines will only modify the user-mode registers of the currently executing process context.
There is no way to modify registers of a previously stored, inactive context.

l1In this discussion, the rightmost bit is called bit 1, not bit O.

42

..-r-T-_~ --,l;.;;2;.- -=,O:bit

page table index page offset

segment table index

1 =supervisor mode, 0 =user-mode

bit 31, must be set to 0

Figure 9: Virtual address format - default pmap

B OSF/1 implementation notes

B.1 OSF/1 implementation: default memory management architecture

The default pmap module developed for the OSF/1-based implementation using the MIPS hardware
platform (2] supports a segment-based architecture. Each process context requires a single segment
table with one or more page tables. Each segment table entry points to a single page table. Pages
are 4096 bytes in length.

The format of a virtual address is shown in figure 9. Bit 31 must be 0, since all simulator addresses
must be user-mode addresses on the host machine. Bit 30 is set to 1 if the address is a simulator
supervisor-mode address, 0 if it is a simulator user-mode address. Bits 26 to 29 contain the index
within the segment table (0-15), bits 12 to 25 contain the index within the associated page table
(0-(2*14)-1), and bits 0-11 contain the offset within the page.

As shown in figure 10, a segment table entry consists of the address of the associated page table,
the size of the segment (in bytes), and the protection associated with the segment (read-only,
read-write, or none).

A page table entry contains the page frame number (pfn), the page protection, and a flags field.
The pfn field contains the page frame number of a resident page, it may also be used to store the
logical block number on disk of a non-resident page. The page protection in the pte allmvs more
restrictive access to the page than that defined for the segment.

B.2 OSF/1 implementation: location and status of source code

The source code for the OSF/1- based version of the simulator is in /pro/sim. The information in
this section is also contained in the README. FIRST file found in /pro/sim.

Due to bugs in OSF/1 and time contraints. approximate 40design presented in the design document
has not yet been implemented. The source code in this area was used for testing certain key
components of the design - page-fault processing and device I/O with interrupts. Most of the code
should be re-usable, with some cleaning up. I've tried to comment things as thoroughly as possible.

The latex source for the design document is contained in the. doc subdirector and is called bse. tex.

43

pal/:e table sIze prot

:>
segment table

pfn prot flal/:s

:>
page table

'-
physical page

Figure 10: Virtual memory data structures - default pmap

The code should closely reflect the design presented there.

The following things still need to be done to complete this version of the simulator:

1.	 Because the aSF /1 loader interface wasn't complete as of 12/90, we couldn't implement
dynamic loading of the console monitor routine and the prototype operating system image.
Stubs performing the same functions are bound into a single image constructed by the Make
file. These need to be split out into seperate images and dynamically loaded during startup.

2.	 Context switching has not been implemented in any form. However, the design document
contains a plan of how to do it. Many of the low-level routines needed to implement context
creation and switching should already exist in the current code for other purposes, and could
be used.

3.	 The address space used in the prototype is as follows:

start_user_va: Ox20000000

start_super_va:OxSOOOOOOO

registers_start_va: Ox64000000

this will probably have to change so that user va starts lower (Ox400000 on MIPS) and
super _va at Ox40000000. The pas image should be loaded starting at Ox40000000 using the
method described in the design doc.

4.	 Certain pmap modules are not implemented; such as PMAPmodeswitchO. The most important
routines, such as PMAPflushpmt 0 are implemented, however.

44

5.	 The console monitor routine is really just a stub at this point. It needs to be extended to
recognize certain commands (a parser should be created); at least the boot and exit commands
should be supported.

6.	 setipl is not fully implemented.

7. Reading a device configuration file during startup and parsing it to actually create the machine
configuration has not been implemented.

The following things have been coded and minimally tested/debugged:

1.	 Page fault detection, invocation of page-fault handler, and page-fault table flushing. The
mach external pager interface is used as described in the design doc.

2. Device I/O initiatiation, processing, and interrupt on completion. Each device has at least one
I/O thread. The terminal device should have two; one for read and one for write (currently
only one thread is used, this needs to be changed to work properly).

3.	 REI instruction.

4.	 pmap module supporting paging, PMAPenablevrnO, PMAPmodified, PMAPreferencedO.

5.	 The basic task synchronization method, using a system-wide semaphore (the address of the
semaphore is a reserved word in the privileged register area). The macros L!JCK..sIM and
UNLOCK..sIM are defined in sirn_defs .h, along with a lot of other useful macros.

6.	 The mig definition files for many of the required rpc calls. These files end in extension ".defs".
The Makefile will compile these using mig to generate the corresponding ".c" files.

4.5

B.3 OSF/1 implementation: module layout

The following modules have been created or are supplied with OSF/1:

boot.c - initialization rpc routines
boot.defs - mig interface to routines in boot.c
clock.c - simulator clock device implementation
cmr.c - a placeholder for the console monitor routine
deliver.c - delivers interrupt ,trap, or exception handlers. Alters thread
state.
dev_common.c - handles operations common to all devices, like I/O completion.
device.c - routines that implement device interface; mig interface defined in
device.defs.
device.defs - defines device interface offered by simulator
disk.c - simulator disk device implementation
exc.defs - defines exception handler interface (mach-provided file)
globals.c - actual file that containing global variables
init.c - called by initial process context task to initialize the world
kern_mem.c - a memory manager that could be used in test routines to
manage supervisor-~rp.a free memory
Makefile - builds all modules and a couple of test routines
mem_mgmt.c - performs the Mach external pager functions for the simulator
memory_object.defs - (mach-provided) external pager interface
pmap.c - memory management architecture-specific routines
pos_main.c - a stub for a pos startup routine. Very hackish at this point.
queue.c - generic queue-handling routines
rei.c - handles "rei" simulator instruction
service.c - handles other special simulator instructionss or messages
service.defs - mig interface to routines in service.c
sim.h - include file exported to pos writers
sim_defs.h - internal simulator definitions and macros
sim_globals.h - simulator global variable definitions
sim_internal.h - master include file for use by simulator routines, includes
all others.
sim_pmap.h - defines memory management architecture constants.
sim_structs.h - defines internal simulator data structures
sim_types.h - defines internal simulator data types.
startup.c - simulator main routine, generic port listen routine
term.c - simulator terminal device implementation
SIMenable_vm.c - pas interface to simulator to enable VM
SIMflush_pts.c - pas interface to simulator to flush page tables
SIMrei.c - pas interface to simulator to issue REI instruction
SIMdevctl.c - pas interface to simulator to modify device control register

46

C References

References

[:I.]	 R. W. Scheifier, J. Gettys, and R. ~ewman. X Window System. Digital Press, 1988.

[2]	 G. Kane. MIPS RISC Architecture. Prentice Hall, 1989.

[3]	 S.J Leffler, M. K. McKusick, M. J. Karels, J. S. Quarterman. The Design and Implementation
of the 4.3BSD UNIX Operating System. Addison-Wesley Publishing Company, Inc. 1989.

[4]	 M. J. Bach. The Design of the UNIX Operating System. Prentice Hall, 1986.

[5]	 R. C. Boyer The Brown Simulator Library User's Guide. Brown University, August 27, 1990.

[6]	 M. Milenkovic. Operating Sytems Concepts and Design. McGraw-Hill Book Company. 1987.

[7]	 R. P. Draves, M. B. Jones, M. R. Thompson. MIG - The Mach Interface Generator. Depart
ment of Computer Science, Carnegie-Mellon University. November 22, 1989.

[8]	 R. V. Baron, D. Black, W. Bolosky, J. Chew, R. P. Draves, D. B. Golub, R. F. Rashid,
A. Tevanian, Jr, M. W. Young. MACH Kernel Interface Manual. Department of Computer
Science, Carnegie-Mellon University, August 13, 1990.

[9]	 1. R. Walmer, M. R. Thompson. A Programmer's Guide to the Mach System Calls. Depart
ment of Computer Science, Carnegie-Mellon University, December 28, 1989.

[10]	 Sun Microsystems. The SPARcTM Architecture Manual. Sum Microsystems, Inc. 1987.

[11]	 IEEE Computer Society. Threads Extension for Portable Operating Systems - P1003.4a/D4.
Institute of Electrical and Electronics Engineers, Inc. August 10, 1990.

[12]	 S. P. Reiss. Integration Mechanisms in the FIELD Environment. Technical Report No. CS
88-18. Brown University Computer Science Department. 1988.

47

