
BROWN UNIVERSITY

Department of Computer Science

Master's Thesis

CS-91-M17

RelType

Relaxed Typing for Intelligent Hypermedia Representations

by

Dilip K. Barman

,

RelType

Relaxed Typing for Intelligent

Hypermedia Representations

Dilip K. Barman
Brown University

Dept. of Computer Science

dkb@cs.brown.edu

April 5, 1991

Abstract

RelType is a flexible typing scheme, primarily for the links of a hypermedia
system, that models hypertext as an object-oriented knowledge representation (KR)
medium. The typing is non-intrusive in allowing but not enforcing hypertext link
(and node) type specifications. Users continue to have complete linking flexibility,
but may choose to use one of a small number of predefined types with associated
semantics (e.g., subsumption, explanation) or to define their own types. The ensuing
structure, akin to a semantic net, is type checked and specified semantic actions
executed. The structure is semantically as rich as the user wishes and could, at least
partially, support tractable inference. Tools also allow a RelType system to evolve
semantically in a manner reflecting actual usage. Taxonomic and assertional compo
nents capture domain knowledge. An object-oriented view supports knowledge
acquisition and eases extensibility, particularly through use of linked templates.
RelType provides the flexibility of hypertext, combined with some of the representa
tional power of term classification KR systems, in an efficient and usable manner.

Table of Contents

Abstract "...... 1

Introduction .. 1

Rationale. .. 3

Why Hypertext? Why KR? 3

ReIType Goals 4

Review of Relevant Representational Issues .. 5

Semantic Networks 5

Taxonomic vs. Assertional Systems 6

Subsumption 8

Review of Typing in Existing Typed Hypertext Systems 9

gIBIS Types 10

Neptune CASE Types 12

Textnet Types 12

NoteCards Types 15

THOTH-II Types 15

CONCORDE Types 15

RelType System Architecture .. 17

HAM 17

Node and Link Types 18

Type Representation 19

Supported Types 21

User-Defined Types 23

Subsumption in ReIType 24

Query Interface 25

Linked Templates 28

Prompted Matching 28

Tractability 30

Scenarios of How RelType Can Be Useful 32

Maintaining a Knowledge Base 32

Software Engineering 34

Computer-Mediated Instruction 35

Other Scenarios 39

ii

Summary. .. 39

Frank. Halasz's 7 Key Issues: How Does RelType Stack Up? 40

Future Work 43

Conclusions 44

Acknowledgements 45

Bibliography 46

Primarily Hypertext References 46

Primarily Knowledge Represenation References 47

Other References 49

iii

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Table of Figures

Figure Path-based inference .. 6

Figure Tree of Porphyry 7

Figure gIBIS and PHI link types 11

Figure TextNet link types . 14

Figure Defined Types type taxonomy . " 20

Figure ReIType's predefined types 23

Figure Query language BNF syntax 26

Figure Query example 27

Figure Prompted matching example 29

Figure Existing representation for an office supply KB 34

Figure Principled extension ofKB through linked templates. 34

Figure Initial ideas for typing in a high school civil rights scenario. 36

Figure Confrontation template 37

Figure Frank Halasz's seven key issues 41

iv

Introduction

Hypertext is a flexible representational mechanism for storing knowledge about
a domain, and typically the resulting structure is manually navigated by users
browsing for information. Ideally, a knowledge-based system (KBS) that can reason
from a hypertextual base would add inference to a potentially large corpus of
information. However, the very flexibility of hypertext makes useful inference
difficult. Some systems, such as NoteCards ([Jordan, 1989]), and KMS ([Akscyn,
1988]), suggest elements of semantic nets, but there is no semantic type checking.
Resulting systems are neither well structured nor do they afford the user flexibility
in writing documents and tying related concepts together in "webs" as they see fit.
TEXTNET ([Trigg, 1983]) offers a system with full typing and semantic interpreta
tion, but this system is specifically oriented toward online scholarship and would be
difficult and even inappropriate to use in general. [Collier, 1987] describes a system,
THOTH-II, which models semantics in hypertext, but really is for structuring
information rather than supporting inference, and is at the LISP programming level,
hardly a model a writer would adopt. CONCORDE ([Hofmann, 1990]) integrates
some semantics with hypertext, but is meant for one application (knowledge
acquisition).

The RelType implementation uses the Hypertext Abstract Machine (HAM1
) as

a transaction-based server to handle low level details about storage and access of
nodes and links. Fine granularity linking is supported by means of offset specifica
tion. Because links are viewed as objects unto themselves and are stored indepen
dently of nodes (such as Intermedia webs; see, for example, [Yankelovich, 1988]),
links are first class objects with their own set of attributes and can be maintained
privately by individual users sharing a read-only set of nodes.

The HAM supports the association of attribute-value pairs with objects (links,
nodes, and contexts). The RelType user is able to choose optional types that map to
the underlying attribute-value system. The user who has instantiated a link (or
node) is able to specify one of a small number of semantically defined types, such as
AKO ("a kind of'; class-subclass subsumption), [SA (membership), or SUPPORTS
(justification for argumentation). This concept ofoptional types in a hypertext system
does not occur in the literature (but see [Hoffman, 1990] for something similar) or
existing tools. Users have complete flexibility to continue without typing and the
interface (given the appropriate front end) would be a natural hypertext one.

lsee [Delisle, 1986] and page 17 below

ReIType: Relaxed Types in Hypermedia

Type information is stored in the HAM database as optional object attributes.
A type checker ensures integrity so that Al [SA A2 ... [SA A k [SA Al is not allowed,
for example; types are defined as a hierarchy maintained as a DAG2

• The typing of
links and nodes enables inferencing so that external knowledge based systems can
at least partially use the information in hypertext as representations for reasoning
in the spirit of [Clitherow, 1989]'s bridge to Cyc or [Hayes, 1989]'s combination of
hypertext and inference for diagnosis. By combining partially typed hypertext and
inference, a knowledge base (KB) can support inference over its typed portions and
allow reasoning trails to serve as open-ended explanations by giving users the context
in which to manually navigate for related information. Prompted query matching
allows untyped objects to semantically evolve as they are used in inference paths.
Full integration is sacrificed for the importance ofkeeping the user interface flexible.

A knowledge engineer could use ReiType by encoding knowledge in hypertext,
possibly including untyped links at leaves of inference for background, browsing
reading. As part of the developed system, partially typed linked templates could be
defined for extensibility so that macro-like chunks of hypertext corresponding to
specific knowledge structures and/or documentation could easily be added by an end
user3

• Thus, if a user of such a KBS needs to add a new component that is AKO
general component for which a template is defined, the template, with "smart" links
so that it would self-integrate, would be instantiated. Frame-like functionality could
be included with demons prompting the user for template specifics and watching for
new slots to be filled. This is a contribution to knowledge-based systems from the
points of view of extensibility, simplification/automation of a large part of mainte
nance, verification due to enforced system architecture, and knowledge acquisition.

In sum, the value of this work lies in exloring partial typing oflinks and nodes,
inference combined with manual navigation in knowledge structures, and as an
investigation for practical knowledge-based system representation tools. While some
hypertext systems have typed links, no others have partially typed nodes and links,
as well as fine granularity, separately stored links.

2Directed acyclic graph; such an organization is sometimes called a tangled hierarchy

3[Jordan, 1989] describes structure accelerators for essentially the same purpose in NoteCards.

Page 2 of 49 April 1991

Dilip K. Barman

Rationale

'WIiy !J(yperte;rj? 'J1/Iiy ~

RelType provides an information structuring tool and fills a niche that both
existing hypertext and knowledge representation systems leave empty. Hypertext is
relatively "easy" to use and allows a flexible capturing of information in whatever
form seems most suitable to the user. This conceptual (and, in practice, system)
interface is a natural one for "sketching" ideas and motivation to support design
activities, whether for deliberating on how to build something (e.g., a software
engineering project), analysis (e.g., conceiving and weighing alternative feasible
solutions to some problem), information transfer (e.g., traditional teaching or
"knowledge dumping" of critically skilled personnel in an organization prior to their
leaving a position), or other activity involving representing pieces ofinformation that
are often ill-defined and may lack clear structure. This is in contrast, say, to
updating an existing database with given fields and interpreting a new situatipn in
terms of attributes corresponding to those fields.

Of course, there is a price to pay for such flexibility, and that price is that
computationally not much can be done with the resulting structures. Adding content
and perhaps structural search capability helps, but the information remains primarily
passive.

Knowledge representation schemas address the problem of computationally
empowering information from the opposite viewpoint, that of providing primitives
(relationships and structures) and well-defined semantics for those primitives. The
emphasis is on canonical forms or, as [Wilensky, 1986] describes it, uniformity as a
principle of representation; systems such as KL-ONE, Krypton, and Kodiak attempt
to map isomorphic concepts to identical representations. By representing their
information through a KR formalism, users gain powerful inferencing capabilities and
can discover hidden relationships and implications inherent in their data. Rule-based
systems, for example, have illustrated the production rule formalism as a powerful
paradigm for declaratively storing knowledge and drawing inferences thereof.

April 1991 Page 3 of 49

ReIType: Relaxed Types in Hypermedia

The problem with existing knowledge representation systems is flexibility and
ease of use. Even some of the more successful commercial rule or frame based
systems that include object-oriented principles and graphic interfaces, such as
IntelliCorp's KEE or IBM's TIRS, do not provide for capturing information as
somehow related to a problem and only later, if at all, letting the user formalize the
connection.

This relates to issues three and seven in [Halasz, 1988]4, where "the problem
of premature organization" (page 845) constrains a user to force fit his/her ideas into
a rigid structure, at loggerheads with user exploration and experimentation. Related
to the knowledge acquisition bottleneck for knowledge engineers, it is difficult to
translate information and abstractions from a user's mind to a computer-mediated
tool. The problem is a fundamental one, but it is compounded by having to structure
the ideas in a highly constrained manner. This is a problem with both existing KR
formalisms and those hypertext systems which attempt to include semantics in the
nodes and links.

Clearly, both hypertext and KR models can contribute to a flexible tool for
information design, such as RelType seeks to be. "At a high level of abstraction,
hypermedia systems, frame-based systems, and object-based systems present nearly
identical data models" [Halasz, 1988 page 847]; the differences lie in emphasis and
supported goals (see also [Barman, 1990]). RelType combines the flexibility of
hypertext with the semantic structures of KR formalisms and offers function in an
object-oriented fashion to system customizers and users.

~'Iype goals

An important goal of RelType is to allow a user to easily describe all
components of a nascent design, providing as much or as little semantics as desired
to afford maximum convenient expressivity in the information space. Both links and
nodes are presented to the user as objects with associated operations. Typed link and
node support provide semantic constructs for building a subsumptive knowledge base
of objects, identifying objects to be executable and specifying how they can
dynamically be made, and depicting argumentation used for design rationale. Also,
users can specify their own types to suit their specific needs.

The result of using the tool is a hypermedia network with traditional untyped
links and nodes, in addition to well-specified objects acting according to defined

4See Figure 14 on page 41

Page 4 of 49 April 1991

Dilip K. Barman

semantics. A query interface (along with tools to make querying easier for end
users), allows intelligent retrieval from the hypermedia representation. The
integration of executable, inferencable, and documentation5 components provides a
unifying representation for continued development or as a target for the posing of
intelligent queries. Inference and query operations are performed in time polynomial
in KB size.

Review of Relevant Representational Issues

Semantic 9{f.twOTK§

A semantic network is a directed graph used to represent knowledge where
nodes are concepts, states, events, or attributes. Adjacent nodes are related by the
label on the connecting link which could be of varying semantic content depending
on the underlying system. Ross Quillian [Quillian, 1966], who wanted to represent
the meaning of English and define a model of how English words are represented in
human memory, is often cited as the originator of the semantic network, but semantic
nets were used since the late 1950s in machine translation efforts6

•

The knowledge representational view is of semantic nets as a form of
graphically depicted logic with only unary (types) and binary (attributes) predicates.
Types are organized into a taxonomy having links decorated with attributes such as
[SA andAKO, as well as domain defined attributes. ISA represents instantiation and
AKO subtype; for example, Clyde [SA Elephant AKO Animal AKO Living-Being.
Because a unary predicate is represented by a node containing a "type", nodes may
either be types or constants. AKO behavior can be simulated by overloading the
meaning of ISA; const [SA type represents the normal ISA instantiation, while typel
[SA type2 is the AKO taxonomic relation.

Besides implicit subsumptive classification (see the section Subsumption on
page 8), relational semantics may be specified by link attributes. Path-based inference

5inc1uding design rationale

6[Masterman, 1961] is in fact the first to use the term semantic net.

April 1991 Page 5 of 49

ReIType: Relaxed Types in Hypermedia

allows a link to be inferred between two nodes based on the existence of a path
between the two nodes. Thus, if we have two assertions, Sima is a person and A
person is a living thing, then we can infer Sima is a living thing by using the rule
that if an object is an instance of a class C, then that object is an instance of all
superclasses of C7 (see Figure 1). In general, deriving inferences involves including
a theorem prover in the net formalism.

•

Figure 1 Path-based inference

[Woods, 1975] questions the plethora of systems calling themselves semantic
networks and points out limitations, such as the difficulty of using attribute-value
pairs to represent statements like John's height is greater than 6 feet or John's height
is greater than Sue's. Woods suggests creating an EGO link to establish the
intensional identity and rationale for creating any given node. Also, he distinguishes
assertionallinks that assert facts and/or relations from structural links that serve a
definitional purpose; below we will see this evolve into ABox vs. TBox reasoning
components.

ty~onomU; vs. Jllssertional Systems

Mankind has historically used taxonomies to classify and understand the
world. The Greek philosopher Porphyry, for example, built a classification tree in the
third century based on Aristotle's syllogisms. Figure 2 shows how this organizes

7This is an example of a subsumptive inference.

Page 6 of 49 April 1991

Dilip K. Barman

types into subtypes and shows what differential criteria separate the subtypes so that
concepts are defined in terms of distinguishing characteristics from their supertype.

Tree of Porphyry
SUBSTANCE

/1 ~·Imatena Immatena
~ ~

BODY SPIRIT
.~~ .

animate Inanimate
~ ~

LIVING MINERAL

/t· ~ ·t·sensllve insehsllve
~ ~

ANIMAL PLANT

·~I ~. 1ratlona irrationa
~ ~

HUMAN BEAST

______ I ~--=-------
Plato Socrates Aristotle ...
Figure 2 Tree of Porphyry

A taxonomy orders objects, such as concepts, events, states, or Aristotle's ten
categories, usually by generality (type or subsumption8 hierarchy) but possibly by
some other principle or relationship such as part-whole (meronomy). Because some
objects may be incomparable, a taxonomy presents a partial ordering. As in
object-oriented languages, a most general type, often called T, is provided in a
subsumption hierarchy. Also, attributes (e.g., frame slots) can be inherited.

The intent in taxonomy is to classify concepts rather than state constraints or
facts of a particular domain. More recently, particularly in this century, methods of
formal logic have provided notation and expression for symbolically asserting
propositions and manipulating truth values. Alfred Tarski's model theory provides
for extensional semantics via an interpretation function that maps terms to their

8Concept C1 subsumes concept C2 if any instance of C2 satisfies the definition of C1 too. In other words, the
extension of C1 is a superset of the extension of C2•

April 1991 Page 7 of 49

ReIType: Relaxed Types in Hypermedia

denotations9 and Alonzo Church's lambda calculus provides for functional definitions
to allow both extensional and intensional descriptions to be stated.

Term classification (TC) (also called classification-based) knowledge representa
tions like KL-ONE ([Brachman, 1985a]), begun in the late 1970s, and its descendants
(such as NIKI}O, KANDOR, BACK, K-Rep, KL-TWO, LOOM, MESON, and
CLASSIC) use concept classifiers to organize concepts (terms) into a subsumptive
taxonomyll. A distinction is made between such classification, or terminological
component (TBox), and assertional knowledge (the ABox component) that provides
constraints and facts about a domain. All knowledge is seen as being in either TBox,
to describe classes of individuals, or in ABox, to constrain the concept semantics.
(For a clear and excellent perspective ofTC representations, see [Mac Gregor, 1991].)

SufJsumption

[Woods, 1991] feels that the term subsumption is sloppily used and has at least
five different meanings. Extensional subsumption is deductively computed so that it
logically follows that the extension of a concept is a superset of the extension of a
concept it subsumes. Structural subsumption relies on an algorithm (presumably
more efficient than deduction) to determine subsumption relations. Recorded and
axiomatic subsumptions are similar; in the first, a static concept hierarchy is given
and subsumption is read directly or by computing a transitive closure, and in the
second the subsumption relations are axiomatically stated. Finally, deduced
subsumption is similar to structural subsumption but follows from deduction of the
axioms of the domain knowledge.

Many papers have been published showing intractability in worst case for TC
systems. [Schmidt-Schauss, 1989] proves that it is undecidable in KL-ONE if one
concept is subsumed by another by reducing the word problem in groups (undecid
able) to a modest sub-language of KL-ONE. [Nebel, 1988] shows that complete
terminological inference is intractable for BACK and KANDOR, a system that was
thought to be tractable, and in fact for any system with a nontrivial concept language
with subsumption shown to be co-NP hard by transforming the set splitting problem,
known to be NP-complete. [Nebel, 1990] demonstrates that subsumption with

9The denotation of a constant is an individual object, and of a formula is a truth value (T or F).

10uNew Implementation of KL-ONE"

11A concept classifier computes subsumption relations between pairs ofconcepts. In so doing, it can insert new
concepts into an existing taxonomy by placing a new concept with its subsumptive links pointing to the most
specific subsuming concepts and being pointed to by the subsumptive links of each most general subsumee.

Page 8 of 49 April 1991

Dilip K. Barman

KL-ONE like concept semantics is co-NP complete. [Patel-Schneider, 1989] shows
undecidability of subsumption in NIKL by reduction to the Post correspondence
problem for a binary alphabet.

These results should not be surprising for concept languages with power close
to that of FOPC12

• The general case of computing subsumption between two
concepts where the concept language has the power of FOPC is computationally as
hard as the problem of determining if two FOPC expressions are equivalent, which
is undecidable. [Levesque, 1985] was the first of many to suggest that the full
expressive power of FOPC leads to intractability so some suitable subset, tailored to
the domain of representation, should be chosen to achieve an appropriate tradeoff of
expressivity vis-a-vis computability.

[Woods, 1991] and [Mac Gregor, 1991] provide an interesting counterpoint.
[Woods, 1991] suggests that research into such results "seems now to have nearly run
its course, reaching the conclusion that almost everything of interest is computation
ally intractable in the worst-case" and that in fact there is no abundance of
expressive power that can be traded away for efficiency. Woods feels that most ofthe
work in subsumption is computing transitive closure on recorded taxonomies, so
worst case analyses should not be overly stressed and used to argue for limiting
expressivity. [Mac Gregor, 1991] downplays these results as well, since at runtime
computing concept types is emphasized, not classification. In the tractability analysis
below (page 30), we will see that these arguments certainly apply to RelType since
RelType in fact uses static recorded taxonomies.

Review of Typing in Existing Typed Hypertext Systems

The classic treatment of types in programming languages is due to P. Wegner
and L. Cardelli [Cardelli, 1986] and is set in an OOP context in [Wegner, 1990, pages
33-36]. As [Wegner, 1990, page 34] puns, "the term type is heavily overloaded" and
is perhaps not a good choice to use in RelType as it shares little with the concept of
a programming language type. [Sowa, 1991b] describes philosophical uses of the
word and mentions related terms such as sort, isa, set, class, kind, and flavor. Term
classification knowledge representation systems use the word "type" in a manner
closer to that meant here, as the set of concepts that an individual belongs to. In any
case, the notion of "type" in RelType is in consonance with its use in the hypertext

12First order predicate calculus

Apri11991 Page 9 of 49

ReIType: Relaxed Types in Hypermedia

literature to denote constraints or classification for objects in a hypertext system,
most commonly nodes and links.

Clearly, from the computational point ofview ofbeing able to interpret a user's
hypertext structures, a fully typed system is ideal. Stipulating that all objects be
typed would be less than ideal, however, for users, especially in exploratory mode.
Full typing would also be of questionable value, as users might be inclined to rely on
defaults and thereby side-step semantic issues entirely. Here we review existing type
systems in hypertext systems that are typed. As this will bear out, existing type
systems are either simplistic labeling schemes to identify targets of search, or are
overly restrictive and hamper user flexibility.

g[fJJ!S q'ype5

IBIS (Issue Based Information Systems) is a method, developed in 1970 by
Horst Rittel, that aims to structure the search for a design as "fundamentally a
conversation among the stakeholders ... in which they bring their respective expertise
and viewpoints to the resolution of design issues. Any problem, concern, or question
can be an issue" [Conklin, 1988, page 304]. Key issues are identified and positions
can be expressed which resolve a given issue. Each position may have a set of
arguments, some supportive and others objecting to it. IBIS works to clarify what's
at stake in a design by representing issues, positions, and arguments (and "other" for
related material to consider) as node types with typed links in an IBIS network. This
can be viewed as a rhetorical model with a set of typed messages (Issue, Position,
Argument, and Other nodes) and a set of moves (i.e., valid links) among the message
types.

gillIS, or graphical illIS, is an MCC implementation of the IBIS method that
is being developed-as a tool to be used by designers to capture their design rationale.
It includes nine link types connecting the typed nodes (abbreviated I, P, A, and 0).
Followup work on a more general architecture called Germ (graphical entity
relationship modeling tool) includes thirteen link types in an enhanced gIBIS.

[~scher, 1989] describes how R. McCall extended IBIS in 1987 by introducing
the Procedural Hierarchy of Issues (PHI) which generalizes an issue to include any
design question, whether deliberated or not, and changes relationships to serves
relationships where issue 1 serves issue 2 if answering 2 depends on answering 1
first1a. This provides further structure for decomposing a problem domain of issues

13Subsequent PHI work is described in the [ECHT, 1990] paper "PHIDIAS: Integrating CAD Graphics into
Dynamic Hypertext", Raymond J. McCall et.al., pages 152-165.

Page 10 of 49 April 1991

Dilip K. Barman

into subissues. "Authorts Argumentation Assistant (AAA): A Hypertext-Based
Authoring Tool for Argumentative Texts" by Wolfgang Schuler and John B. Smith in
[ECHTt 1990t pages 137-151lt describes University of North Carolina work on how
people write. AAA is a system supporting PHI argumentationt and here they use the
same node types (but other is called fact; for consistencYt we11 stick to other)t but
have nine different link types. Figure 3 lists both (Germ-based) glBIS and AAA PHI
link types.

13 gIBIS Link Types

Generalizes (1-71)
Specializes (1-71)
Replaces (1-71)
Challenges (1-7lt 1-7At 1-7P)
Suggested-By (1-7lt 1-7At 1-7P)
Responds-To (P-71) these links may evolve to one of the next 2
Resolves (P-7I) a position that is selected as a solution
Is-rejected-from (P-71) for dropped positions
Supports (A-7P)
Objects-To (A-7P)
Expands-on (I-7P)
Objects-to (A-7A)
Other (0-70)

9 PHI Link Types

Serve (latIb) issue b serves issue a
Replacement (IatIb) issue b is a replacement of issue a
Suggestion (Xt la) issue a is a suggestion/question by X (any

node type)
Answer (IatPb) position b is an answer to issue a
Objection (Pat Ab) argument b is an objection to postion A
Support (Pat Ab) argument b is a support of postion A
Contributes (PAatPAb) pos.larg. b contributes to pos.larg. a
Reference (XtFy) fact y is a reference of X (any node type)
Contradicts (XtY) X contradicts Y (XtY any node types)

Figure 3 glBIS and PHI link types

April 1991 Page 11 of 49

ReIType: Relaxed Types in Hypermedia

9{eptune 0l5~ crypts

[Delisle, 1986] suggests using attribute-value pairs for developing and
maintaining code in a CASE environment. It is not clear if they have actually used
the following, but in any case they offer these suggestions for structuring the nodes
and links in such an environment. No formal semantics is provided, nor is there a
type system per se, but the information is expressed through a system of attribute
value pairs. The underlying HAM architecture is general, so appropriate applications
code could interface with these attributes and values to implement a type or
constraint system.

Each node, it is suggested, could have an attribute Document with value taken
from {requirements, design, sourceCode, objectCode} to identifY the role a node plays
within the software engineering lifecycle. Ifthe language being used for development
were Pascal, the code could be structured as a tree with a node for each procedure or
function14

• Modula-2, like Borland's Turbo Pascal, has the ability of providing
separate modules and providing a visible calling interface that is separate from an
implementation module. As such, the Neptune authors suggest representing
Modula-2 project code as a directed graph to show where modules are imported.
Nodes might have an attribute contentType with values {text, graphics, Modula-2
source code, Modula-2 object code, Modula-2 symbol table}. To illustrate functional
decomposition, an attribute codeType might be defined with values {definitionModule,
implementationModule, procedure}. Links are suggested to specify relationships
between components in the project, perhaps with a link relation from {isPartOf,
annotates, references, compileslnto}.

%I(tnet crypts

The primary consideration of Randy Trigg's Textnet system is to provide an
architecture for scientific literature to move online so that all activities from draft
and review through publication in electronic journals and reader commentary can be
accomodated. All links are typed and the set of types is static - there is no provision
for adding new types. The types are oriented toward activities associated with
creating and critiquing scientific papers, and the author feels that he has been
exhaustive in providing enough primitive types that there should not be a need to add
more types. User-defined types would run counter to the standardization that would

14But this doesn't handle mutually recursive calls, so a directed graph (possibly with cycles), like a call graph,
seems to be more in order.

Page 12 of 49 April 1991

Dilip K. Barman

be required to make this a general and widely used tool, and would result in both
reader and semantic confusion.

While links are directional, an interesting distinction is made between physical
and semantic directionality. Physical direction represents the progress the author
expects readers to make, while semantic direction is dependent on the link type.
There is, for example, a link type Comment that implies C (source object) comments
on T (target); usually, the physical direction is T to C because typically the item being
commented on is read before the commentary.

Two classes of types are defined - normal and commentary. Normal link types
are used in development of ideas to connect nodes to nodes, while commentary types
are used to connect descriptions of a node to the node itself. There are 29 normal
link types and 51 commentary link types. We enumerate his link types below.

In addition to type, other attributes oflinks described are author, date, fromobj
(the source object), toobj (target), and two tags,prerequisite and must-follow. Ifa link
goes from object A to object B and is tagged prerequisite, A must be read before B
because it is required to understand B; if tagged must-follow, then a reader ofA must
at some point also visit B by traversing the link.

The use of types in Textnet is not of much direct relevance to RelType; the
goals are different. Textnet's taxonomy of link types is particularly oriented toward
producing and critiquing scientific literature, while I am interested in more general
use. As such, his taxonomy is both too rigid (cannot be extended) and too specialized.
Nevertheless, some ofhis link types might be worth implementing. It seems that his
system, requiring full type specification, would be difficult to use. His notions of
semantic vs. physical directionality may be useful to consider in follow-on work to
RelType.

Figure 4 enumerates TextNet link types, directly from [Trigg, 1983, page 37].
They are divided into normal and commentary types. Headers for further classifying
commentary types appear in italics, but do not themselves represent types.

April 1991 Page 13 of 49

ReIType: Relaxed Types in Hypermedia

Normal Link Types

Citation Generalization/Specification Summarization/Detail
C-source Abstraction/Example Alternate-view
C-pioneer Formalization/Application Rewrite
C-credit
c-leads Argument Simplification/Complication
C-epon A-deduction Explanation

A-induction
Background A-analogy Correction
Future A-intuition Update

Refutation Solution Continuation
Support

Methodology
Data

Commentary Link Types

Comment Points Data
critical Pt-comment D-comment
Supportive Pt-trivial D-inadequate

Pt-unimportant D-dubious
Environment pt-irrelevant D-ignored
E-comment Pt-redherring D-irrelevant
E-misrepresent Pt-contradict D-inapplicable
E-vacuum Pt-dubious D-misinterpreted
E-ignored Pt-counter
E-Isupersede pt-inelegant Style
E-Irefute Pt-simplistic S-comment
E-Isupport Pt-arbitrary S-boring
E-Irepeat Pt-unmotivated S-unimaginative

S-incoherent
Problem Posing Arguments S-arrogant
P-comment A-comment S-rambling
P-trivial A-invalid S-awkward
P-unimportant A-insuff
P-impossible A-immaterial
P-ill-posed A-mislead
P-solved A-alternate
P-ambitious A-strawman

Figure 4 TextNet link types

For details on the semantics of the types, see [Trigg, 1983], chapter 4 (A
Taxonomy of Link Types). For a flavor of the semantics, a few examples follow.
C-pioneer is a citation to a pioneer in a field. Environment types describe how
scientific papers exist in an environment of related work; for example, E-vacuum
indicates a neglect of understanding past work or somehow relating the paper to the
field, and E-ignored points to some relevant work that was ignored. P-solved is a
critique that this is a solved problem, and A-immaterial states that an argument,
while valid, doesn't lead to a desired conclusion.

Page 14 of 49 April 1991

Dilip K. Barman

9{pteCards q'ypes

The basic constituents of NoteCards, from Xerox PARC, are Notecards, which
contain an arbitrary amount of text, graphics, or other editable data, and links.
Links are typed and directional, connecting two cards. Granularity of linking is card
at the destination and offset within card at the source. The typing, however, is
merely a user-chosen label and no provision is made for type inference or other
computation of any kind.

TJ-{Cfl!Jl-II q'ypes

In THOTH-II, a key element being modeled is the semantic relationship that
exists between nodes of text. An explicit semantics is provided by specifying a value
link (as opposed to a text link to connect a node to the actual text content or a lexical
link to connect a region of text to a node) between two nodes. However, the typing
of links is merely a labeling and is so flexible as to have no underlying type system
at all. The labels are merely targets for searches. As such, the "explict semantics"
is ad hoc and really a way for a user to flesh out his ideas and tag relationships,
hopefully in a consistent manner, for later search.

CaJ{(XYl{.'1Y£ q'ypes

CONCORDE is perhaps the closest existing system to RelType. It is a
hypertext system built using Smalltalk-80 to structure information specifically to
serve as an aid for all stages of knowledge acquisition. [Hofmann, 1990] mentions
that systems exist with typed links or nodes and refer to THOTH-II, gIBIS, and
NoteCards. While semantic nets can thereby in principle be supported, they remark
that knowledge-based applications of hypertext are in fact rare.

CONCORDE is built to fill the need for an integrated tool for knowledge
engineers to use to store knowledge sources, help in structuring such knowledge,
highlight errors and places more information needs to be gathered, provide a
"knowledge snapshot" for knowledge engineers and experts to both appreciate what
the system currently "knows", and for knowledge base maintenance. The basic
information-carrying unit is the card, and cards are connected via links. As in
ReIType's theory of relaxed typing, CONCORDE differentiates two kinds of links
constrained (typed) and individual (untyped). Inherent constraints are expressed by
defining valid source and target card classes for a constrained link; predicates (e.g.,

Apri11991 Page 15 of 49

ReIType: Relaxed Types in Hypermedia

causes, same_substance) are also provided for defining explicit constraints. The
knowledge engineer can define such predicates as appropriate for the domain being
modeled. Although they don't describe this very well, the authors mention "exercises"
that are presumably used in verification/validation of an expert system and which
they show result in what are called linked templates in Rerrype, or chunks of nodes
and links that represent atomic units in the application representation. They hope
to add semantic checking in the future.

The ideas in CONCORDE bear a resemblance to those presented here, such as
the support of both typed and untyped links, and an application in aiding knowledge
engineers. However, the ReIType goal is to develop a system that is a knowledge
repository that is used after an appropriate KA methodology, perhaps one using
CONCORDE, gathers relevant information. RelType seems to be more useful for
knowledge base maintenance (instantiating linked templates for user-directed
knowledge base growth), possible actual representation (content-rich nodes
semantically interpretable and inferencable), and explanation (semantic understand
ing of link and/or node types and inferencing to a close match to a query to provide
a contextual explanation). Perhaps the CONCORDE approach could be combined
with ReIType to encompass a general hypertext-based knowledge engineering
environment to include all phases from initial knowledge acquisition through delivery
and enhancement.

Unlike other systems reviewed here, CONCORDE has some real substance to
the semantics of link types, at least for constrained links. A constraint system is
defined which validates which links can be added by including predicates for checking
for conditions. The orientation is for structuring causally related knowledge and for
inferring additional links or negating possible links. Again, the utility is best seen
in the knowledge acquisition phase of a knowledge-based project, when raw
observations and tentative rules are being tested.

The constraint system is not well documented, but from what is provided, it
is not oriented toward defining general semantic actions. In particular, conditions
as functions of existing objects (nodes, links) can be tested in some restriction of
first-order logic, but the resulting actions are not described in the paper except for
two examples of deleting or inserting a link. The implication is that actions are
meant to modify linkage behavior among existing objects. The semantics ofReIType,
on the other hand, allow more general actions, such as calling user defined code as
procedural attachments to link traversal, and automatic smart linking.

Page 16 of 49 April 1991

Dilip K. Barman

RelType System Architecture

!JfYl9,{

The Hypertext Abstract Machine is an abstraction that acts as a server to
provide callers with generic hypertext functionality for storing, maintaining, and
accessing nodes and links15

• The HAM is transaction-oriented, responding to
requests from distributed clients on the LAN, and has recovery, versioning, and
synchronization control. It provides both command line and C language calling
interfaces. ReIType runs with the a.-HAM version as its base. The basic objects in
the HAM are nodes, links, and contexts. All of the defined objects form a graph or
database.

Contexts are collections of nodes, serving to provide a potentially hierarchic
partitioning of objects. Links may connect nodes within same or different contexts;
linking is provided at the granularity of offsets into nodes. For any given graph,
RelType uses three contexts, one named Knowledge Base for the user to develop
essentially an A-Box of RelType hypertext structures, another named Value
Taxonomy for representation ofa subsumptive classification hierarchy ofvalues, and
a third named Defined Types where RelType pre-defined types are represented and
which can be extended with user-defined types.

Links and nodes can have arbitrary numbers ofattribute-value pairs associated
with them. Versioningis provided so that, for example, a link can be made to always
dynamically point to the "current" version or be cemented to a specific node version.

At least in principle, demons are supported so that user code can be
automatically called upon a specific HAM event, but work on passing environmental
parameters to the code was described as in progress. a.-HAM, in particular, does not
explicitly have demons. Limited demon support is provided in ReIType as a semantic
primitive (Le., user-defined types cause specified user code to be called upon
traversing the object the type describes).

151J'he HAM is well described in [Delisle, 1986], including an appendix specifying the operations.

April 1991 Page 17 of 49

ReIType: Relaxed Types in Hypermedia

9{ptfe antl Lintq'ypes

While the primary object to be typed is the link (since the link establishes a
relationship that can be constrained), nodes, representing actual substance, are also
typable. Some kinds of relationships only make sense between nodes having certain
attributes; a link indicating a dynamic makeable object that is executable should
originate from a piece of code, for example. A typical link type will implicitly define
the context for interpretation of nodes at either end of the link, and a typical node
type will constrain the operations that can be performed or types of inferences that
can be drawn on it. Also, typing nodes gives users a way to imply the context and
content of a node so that they can find "interesting" nodes and relationships through
querying.

There are 23=8 possible combinations ofpartially typed structures for any pair
of directly connected nodes. If we represent the triple <x,y,z> by xyz where each
variable comes from {U,T} to respectively mean untyped or typed, x and z are nodes,
and y a directed link from x to z, then the possible structures are given by {UUU,
TTT, UTT, UTU, TUU, TUT; TTU, UUT}.

UUU represents "business as usual" - no types at all; presumably many node
pairs will continue to exhibit this structure. The other extreme, TTT, would be useful
for linking two nodes of specified semantic content and executing an action or
propagating a constraint between the two; an example would be marking the source
to be a piece of code in a given language, the target an executable program, and the
link the program relationship compiles Into.

UTT (and TTU by symmetry) and UTU represent the remaining possibilities
of typed links. UTT would be handy to go from a known node content, perhaps an
argument, position, or program component, via a Background link to a node
representing the beginning of a subgraph constituting an area a user can manually
navigate to get background information on the target node. UTU could be used in
subsumption so that if the source node is AKO (a kind of) the target, we can inherit
structural attributes from the target.

Finally, TUU (and UUT) and TUT use no types on links at all. Both are best
envisioned as being part of a composite linked template that could intelligently be
structurally searched. A knowledge engineer might· make a system he/she builds
extensible by defining node types T1 and T2 and defining a template connecting nodes
of types T1 and T2 as part of a structure. For example, a structure developed to
support an information base on animals in a zoo might include a template T that
could be instantiated upon introduction of a new animal. Part of the template might
include a node of type AnimalName, say, and it would always be connected to a

Page 18 of 49 April 1991

Dilip K. Barman

"scratchpad" for miscellaneous notes that don't fit under any other provided
structures or for zoo personnel to initially make notations that only later will be fitted
to the rest of the linked template. Arguably, though, this category of node and link
types provides little advantage and could be done without. In the zoo example, the
application might be better served by labeling the link with a type simply as a label
for search, such as Raw Notes.

i["ype !K&presentation

All types, built-in and user-defined, are represented in a subsumptive
taxonomy in context Defined Types, as shown in Figure 5. Like the attribute-value
taxonomy, the types are arranged as a tangled hierarchy (DAG). The most general
object is RelType Type and it has AKO links from two subclasses, Link Type and Node
Type.

Subclasses of link types are Transitive Type, Reflexive Type, Symmetric Type,
Antisymmetric Type, and Nocycle Type. They correspond to transitivity, reflexivity,
symmetricity, antisymmetricity, and acyclicity relations, respectively. For example,
the type [SA is an instance of Transitive Type (A ISA B, B ISA C => A ISA C),
Antisymmetric Type (A ISA B => ..,(B ISA A», and Nocycle Type (cannot have AIlSA
~ ... ISA Ak ISA AI). Note that a type that can take one of a range of values as an
argument interprets noncyclicity in terms of a cycle of exact type plus value; thus if
type T can be x or y, then A (T=x) B (T=x) C (T=x) A is a cycle, but A (T=x) B (T=x)
C (T=y) A is not.

Apri11991 Page 19 of 49

ReIType: Relaxed Types in Hypermedia

Figure 5 Defined Types type taxonomy

A link type with none of these relations can be instantiated directly from Link
Type. All node types are instances of Node Type.

Each such node in the taxonomy of types supports attributes that define the
type semantics. Attribute code is the name of an executable procedure that is to be
called whenever an object of that type is traversed. The root object, RelTyPe Type has
an attribute path which indicates a path of directories to be searched for executables;
this is inherited by all type objects and can be overriden.

Attribute range specifies a list of valid values the type can take on (e.g., T=x
above); if range is not specified, it must be a type like AKO which doesn't take
arguments and if range=any, any value at all (including none) may be specified. If
attribute abstract is present with value yes or true, that type is comparable to an
OOP abstract class and is not allowed to itself be used as a type, but rather serves
the purpose of defining subsumees which can be types16

• Attribute abstract is not
inherited, because in practice typically only some structurally defined nodes need be
abstract.

16tJ'h.e basic nodes structuring the taxonomy, all those depicted in Figure 5, are abstract, but are not so
annotated here so as not to clutter up the figure.

Page 20 of 49 April 1991

Dilip K. Barman

Link types have attributes source constraint and target constraint which are
query language constraints on what kinds ofnodes an instance of this typed link may
connect. Of course, the taxonomy is itself a ReIType structure17 and can include
arbitrary hypertext links for documentation.

Supportell q'ypes

Choosing anyone set of types for user support is always going to be a point of
debate. Of course, giving users the ability to define their own types helps to
overcome any semantic restrictions. The Defined Types taxonomy is merely primed
with these supported types but new types may be added in the same manner and
these existing types even subtyped or used as templates. Furthermore, the issue is
largely sidestepped because RelType is not a prototype to support typing in a
specialized domain such as argumentation or scientific paper writing/critique, where
the specific supported types can be an important issue. Instead, the aim is to show
how a well-defined but relaxed type scheme can help in developing general knowledge
repositories.

Among the supported types are those necessary for implementing subsumption
([SA, AKO) to allow information inheritance. To avoid confusion, these types perhaps
should be "InstanceOf' ([SA) and "SubType" (AKO), but we will stick to the
traditional names for their brevity. Because subsumption calculation is computa
tionally expensive, arbitrary use of ISA and AKO is not currently supported. Rather,
as mentioned above, a separate context with the reserved name Value Taxonomy acts
as a T-Box component to define a global terminological component that a knowledge
engineer can build (or the user can build/extend). This acts as a definitional
subsumptive domain model that can be used for inference over the assertional
hypertext. ISA and AKO are the only semantically meaningful link types in the
Taxonomy contexts, but for documentation purposes, arbitrary hypertext links can
be made. End"users may annotate links in their knowledge base with ISA or AKO,
but in the knowledge base (assertional component) they only playa role of targets for
searches or items that user-defined types can operate on in an arbitrary manner.

One of the ultimate goals is to enable a hypermedia network to act as a
representational medium which includes both executable knowledge fragments and
concomitant documentation and design rationale. Explicit explanation is supported
by link types Explanation and Background. The use of these links ranges from
manual link following (the capturing of design rationale remains as a benefit) to

170 ther than the fact that there can be no type semantics here other than AKO and ISA to avoid recursive
definition!

April 1991 Page 21 of 49

ReIType: Relaxed Types in Hypermedia

providing intelligent answers to queries. For example, a linked template with a
descriptive name like "Why ... ?" might follow an explanation link and display the
node contents. Appropriate type conventions may be used so that explanation links
from "close"18 nodes may be automatically followed. Eventually, explanation
hopefully will be more robust and automatic, mirroring execution paths and
presenting more complex inference-driven explanations.

To encourage users to include executable units in their hypermedia systems,
ReIType includes link and node types to support program development. Nodes can
have a type programComponent (chosen from {C source, C++ source, PASCAL source,
object code, linkable library object code, executable, documentation, design}), and
links programRelation (from {subModule, definitions for, annotates, compiles Into})
to show how program components, including documentation, relate.

Finally, a limited and simplified subset ofIBISIPHI argumentation is provided,
primarily to provide the ability to show design rationale in the development of a
RelType information base. Six of the thirteen gIBIS types and two of the nine PHI
link types, as well as Issue, Position, and Argument node types, are supported. IBIS
types allow arguments to be described with respect to other arguments (ObjectsTo),
arguments to support or disconfirm positions (ObjectsTo, Supports), and positions to
correspond to, and subsequently resolve or reject, issues (RespondsTo, Resolves,
Rejects). The PHI types introduce the serve notion of the resolving of one issue
depending on first resolving another issue (MustResolveFirst; PHI calls this Serve)
and the general link type Contradicts.

Thus, four node types and thirteen link types are defined. They are listed in
Figure 6.

1l1>ased on type semantics

Page 22 of 49 April 1991

Dilip K. Barman

Node Types
For executables

programComponent	 E (C source, C++ source, PASCAL source, object code,
linkable library object code, executable, documentation,
design}; content of node is that component

Argumentation

Issue

Argument

Position

Link Types
Subsumption

AKO specialization

ISA instance

Explicit explanation

Explanation

Background

For executables
programRelation E (subModule, definitions for, annotates, compiles Into}

Argumentation types
RespondsTo (P~I) these links may evolve to one of the next two
Resolves (P~I) a position that is selected as a solution
Rejects (P~I) for dropped positions
Supports (A~P)

ObjectsTo (A~P)

ObjectsTo (A~A)

MustResolveFirst (lll~Il) issuel serves issu~ and must be solved first
Contradicts (X~Y) X contradicts Y (X,Y any node types)

Figure 6 RelType's predefined types

'llser-1Jefinet! q'ypes

RelType supports user-defined types by allowing constraints and the
specification of user-provided C++ code in the Defined Types taxonomy. When a link
is traversed, if the link is untyped nothing will happen outside of the traversal.
Otherwise, if the link's type is predefined, the semantic action associated with the
type will be performed. If the link is typed but not with one of the predefined types,

April 1991	 Page 23 of 49

ReIType: Relaxed Types in Hypermedia

and if the type is specified19
, the associated actions will be perfonned. A predefined

calling interface gives the user code environmental data such as pointers to the link
and source and destination nodes, and the name of the graph environment so that it
can directly modify any additional objects it may need. Finally, a non-defined type
will not result in any additional action; this might be a way for a user to define a
keyword type for searches, in the manner of many of the above reviewed systems
which claim to have typed links, and perhaps later specify semantic actions.

Types can cause the execution of actions upon traversal in manual navigation,
such as the updating of a database, keeping of statistics, or display of customized
help text. For many types, there might be no action at all associated with traversal
during browsing, but the semantics may come to play upon query- or program
directed navigation. For example, subsumptive link. types would be used in
answering a query; if we know that Clyde is an elephant and that elephants have
tusks, RelType would be able to find that Clyde has tusks when asked, or to list
having tusks as one of Clyde's characteristics.

Su6sumption in 1(fliIype

ReIType supports two tangled hierarchy subsumptive taxonomies, one (whose
context is) called Defined Types and the other Value Taxonomy. They are maintained
in contexts separate from each other and the knowledge base. While arbitrary
hypertext links and nodes may be present in these taxonomies20

, the only compo
nents considered part of the type hierarchy are nodes directly connected to ISA or
AKO typed links. Both taxonomies are static and provide no facilities for dynamic
classification and introduction of new concepts.

The Defined Types taxonomy, as already described, has most general type being
RelType Type. There is some semantics in the representation, with node attributes

. specifying pieces of code to be called and inheritance of relationships such as
transitivity. Inheritance of attributes is supported.

The attribute-value taxonomy has a most general value, called Thing. The
nodes in the hierarchy are considered to be named according to the value of their
attribute Name. Unlike the Defined Types hierarchy, there is no real semantics to
the concept nodes; the attribute-value taxonomy is meant to be used by a knowledge
engineer to model the objects of the problem domain and their relationships. The

lllj.e., it appears in the taxonomy

2°for example, to serve as documentation

Page 24 of 49 April 1991

Dilip K. Barman

taxonomy serves as a kind of data dictionary and is used to allow basic subsumption
on names. Inheritance does not have any obvious benefit and is not implemented.
It would be easy to add inheritance of attributes but this would only make sense if
the nodes were true concepts and not just name holders.

Qjlery Inter/au

An important building block for specifying semantics or for dynamic command
line inquiry is the query interface. Kindly refer to the computer-mediated instruction
scenario on page 35 for a worked out example of what a typical query might look like
and what it might allow a user to accomplish.

Basically~ the query interface is a way of specifying a set of constraints which
are applied to the attribute-value pairs of objects defined in the current hypertext.
A query consists of a conjunction of selectors which can match objects in the
hypertext. Objects matching the last selector are returned as the result of the query.

The BNF syntax for specifying a query appears in Figure 7. CAPITAL ITALIC
letters are used for non-terminals~ the start symbol is QUERY~ E is the empty string~

and "id" is a terminal identifier which can be any string of alphanumeric characters
starting with an alphabetic character that is not L~ N~ or C (i.e.~ [ABD-KMO-Za-z][A
Za-zO-9]*).

April 1991 Page 25 of 49

ReIType: Relaxed Types in Hypermedia

{ifval is in TBox, att can be a subsumee of val}
{current object mustn't be id}

lid should be of type N}
{ " }
{ .. }

otherEnd = id [both ids N)

QUERY

SEL

SELID
SELSTUFF
WHICHOBJECT
SELECTOR
SELECTORS

CONJ

PAR

CRITERIA

RELOP

~ SEL & QUERY
~SEL

~ SELID SELSTUFF
~ SELSTUFF
~ id: {name selected objects; "id ,:," one token}

~ WHICHOBJECT SELECTOR
~ LIN I c I id {links, nodes, contexts, or ids}

~ SELECTORS I E

~ SELECTORS I CONJ
~ CONJ
~ CONJ. PAR
~PAR

~ (SELECTORS)
~ CRITERIA
~ att = val
~ att is val
~ ne = id
{Node criteria follow}

~ numlncomingLinks RELOP number
~ numOutgoingLinks RELOP number
~ numLinks RELOP number
~ linkedTo = id {direct conn.; id should be of type N}
~ incomingLink = id lid should be of type L}
~ outgoingLink = id {.. }
~ link = id {" }
{Link criteria follow}
~ source = id
~ target = id
~ oneEnd = id
~ oneEnd = id

~ = I > I < I >= I <= I <> {really tokens}

Implementation note: for top-down parsing, need to eliminate left recursion
and replace SELECTORS and CONJ:

SELECTORS ~ CONJ DISJ
DISJ ~ I CONJ DISJ I E

CONJ ~ PAR CONJS
CONJS ~. PAR CONJS I E

Also, for predictive parsing, need to left factor, replacing QUERY:
QUERY ~ SELQ
Q ~ & QUERY IE

Figure 7 Query language BNF syntax

Note that link criteria can be specified as conjoined ("." operator) or disjoined
(" I"), with conjunction taking precedence. Parentheses can be used as well.

For example,

Page 26 of 49 April 1991

Dilip K. Barman

x:N.id=3.color is Brown.numlinks>2.(a=b Ic=d) &
y:N.linkedTo=x.id=5 &
z:N.linkedTo=y.ne=x &
lnk:L.source=y.target=z.id=l &
N.(incomingLink=lnk.att=3.outgoingLink=lnk)

(link=lnk.attx=abc)

will assign x to the set of nodes with id=3 and color=Brown and more than 2 links
and either a=b or c=d. If "Brown" is in our attribute-value taxonomy, then we will
also match color to any subsumee ofBrown21

• y will be assigned to the set of nodes
linked to x with id=5. z will be set to all nodes, excluding x, that are linked to y -
i.e., nodes indirectly linked to x through y. lnk will be the set of links whose source
is a node in y and target is a node in z and whose id is 1. The set of nodes with a
link among lnk that have attx=abc OR those with att=3 and incoming and outgoing
links from lnk will be returned. In the diagram in Figure 8, the node with attribute
name (=a) will be returned (and no other objects).

Figure 8 Query example

Formulating queries, admittedly, is "not pretty" for the end user. Undoubtably,
a suitable interface could be built to make posing queries more natural language like

2180, for example, ifSepia AKO BrownAKO Dark-Color, then color=8epia would match, as well as color=Brown

April 1991 Page 27 of 49

ReIType: Relaxed Types in Hypermedia

or graphical. However, even with an "easy to use" interface, query posing could
become tedious and perhaps beyond the scope of many users. In the section below,
a method is described that hides query details and provides the end user with a node
(that constitutes a linked template) that can form the origin of a dynamic query.

LintulTempfate.s

To allow a ReIType knowledge base to be extended in a principled manner,
linked templates are provided. These are graphs that themselves are just like
hypertext fragments with nodes and (possibly typed) links, but also there are smart
links that are anchored at only one end. The unanchored ends of smart links are
represented by a query-language specification that a candidate node in the hypertext
must satisfy in order to be an attachment point for an instantiated template22

• A
system builder could define an architecture for extensibility by providing linked
templates for new information that would enforce consistency and, more importantly,
preserve semantic meaningfulness of the entire hypertext, when instantiated by a
user.

Linked templates provide a nice way to hide details of the query language from
end users with understood node or subgraph search needs. A knowledge engineer or
database designer could analyze the query needs of the users and create types with
the appropriate query language statements being part of the type definition. Any
parameters for the query could be prompted for. A toolkit of "smart nodes" could be
provided, each of them corresponding to one of these query types and being single
node linked templates. Upon activation, an instance of such a node would serve as
an anchor for links emanating to all nodes links emanating to all nodes matching the

3querr •

Prompted Matdiing

The whole point of relaxed typing is to allow users to easily use RelType while
specifying as much or as little semantic detail as they wish. However, a neglected
type can cause an inference to fail that should have been successful. For example,

22The specification may be null, indicating that the template may be attached anywhere.

23No analogue exists for link queries, since links can only point to nodes and not to other links.

Page 28 of 49 April 1991

(
\

Dilip K. Barman

x:N.area is ConnecticutTown.type=Argument.topic=t.
t is EnvironmentalConcem &

y:N.linkedTo=x.type=Position.topic=t &
L.source=x.target=y.type=Supports

will set x to the set of nodes with attribute area equal to ConnecticutTown (or
anything subsumed by ConnecticutTown), type=Argument, and some topic t that is
an EnvironmentalConcem or subtype. y will be the set of nodes that are linked to
x with type=Position and the same topic as x. The set of links from x to y will be
returned that have type=Supports.

Assume that Bethel [SA ConnecticutTown and Recycle AKO Environmental
Concern. The structure in Figure 9 almost succeeds, but the user failed to type the
link. RelType can prompt the user by displaying the link and asking ifit should have
type=Supports; if so, the link will be so typed (permanently) and the query will be
successful.

type=Argument
area=Bethel

topic=Recycle

Figure 9 Prompted matching example

There is a tradeoff between making matching very precise on one hand and
very flexible by considering the knowledge base objects totally malleable on the other
hand. It would be computationally intractable, for example, to relax all constraints
in trying to find matches. RelType strikes a reasonable compromise by using this
prompted matching mechanism only for objects n such that n doesn't have a type at

April 1991 Page 29 of 49

ReIType: Relaxed Types in Hypermedia

all that the constraint is searching for (including type=null) and n is related to an
object that has matched its constraints.

Ifthe link above had type=ObjectsTo (or type=t for any t"# Supports, including
null), it would not be considered or prompted for. The second condition of being
related (if a node, connected to a matching link or linked to a matching structure of
nodes; ifa link, connected to a matching structure ofnodes) will keep RelType, in our
example, from prompt matching all nodes that don't have type= specified. In other
words, the first constraint must be exactly matched.

Note that the semantics of each line must stand alone in defining relatedness
to already matched objects. Without partial matching, the following query is
equivalent to the one above.

x:N.area is ConnecticutTown.type=Argument.topic=t.
t is EnvironmentalConcem &

y:N.type=Position.topic=t &
L.source=x.target=y.type=Supports

But since part of the y constraint does not specify that it is connected to x, it will not
be match prompted. This is another illustration that end user query needs should
be understood by the system architect and provided for via linked templates, rather
than having end users craft their own queries.

Thus, we provide a definition of "almost" match as an object associated with
an otherwise matching sub-structure that could match if an unspecified type were
given some range of values. To avoid re-querying of objects in a later constraint, if
a user specifies that there is no value for a given type, the object is assigned a value
for that type of null.

This approach helps users to specify a minimum of semantics and have the
system ask intelligent questions to annotate the knowledge base for inferential paths
that arise in practice. Thus, a partially typed representation can evolve to include
stronger semantics.

tTractability

In a TBox with the expressive power of first order predicate calculus,
computing a subsumption relationship between two concepts is computationally
equivalent to determining if two FOPC expressions are equivalent, an undecidable
problem. RelType, by "cheating" on this issue, avoids the computational problem,

Page 30 of 49 April 1991

Dilip K. Barman

since it provides static axiomatic recorded subsumption hierarchies and includes very
simple expressivity of ISA and AKO links only. An object can be tested for taxonomy
membership in constant time and precomputed transitive closure subsuming and
subsumee concepts can be returned.

Because Rel1'ype does not support dynamic object addition to its TBox
components, it does not have a classifier. In the attribute-value taxonomy,
classification simply would not make sense since there are no inherent semantics that
could be used to make decisions as to where to add a new object in the taxonomy. It
might be worth considering classification in the type taxonomy, however, to allow
dynamic addition of user created types. Computing subsumption and taxonomy
membership would then have to be done for each value access in the knowledge base.
However, the concept nodes still have no semantics, so the cost would be that of
computing transitive closure, which can be done in time D(n3

), where n is the size of
the taxonomy.

Navigation by query in RelType is tractable, being linear in the knowledge base
size when the knowledge base size is reasonably large. In particular, a query consists
of N] constraint lines, each of which has some number of constraints, the largest of
which is NCmax' If No is the number of objects (links and nodes) in the knowledge
base, then simple constraint matching can take time up to N]NcmaxNo. Ifwe include
attribute-value and (static) type subsumption, we can identify all subsumees in
constant time, and can potentially check all of the subsumees against the constraint.
If the size of the value taxonomy is Nv and that of the type hierarchy is Nt, matching
a query can take time up to N]NcmaxNoNftt. The KB size, No, is the dominant term
for all but tiny systems where the system would in any case be quite efficient. For
significant Nt with dynamic user created types, the cost is still modest, being of order
No Nt

3
•

Without RelType constraints, prompted matching would be exponential in the
knowledge base size with all possible combinations of objects meeting the topological
requirements of a given query being considered. However, Rel1'ype limits prompting
to objects already being otherwise considered and that "almost" meet specifications,
and elminates vacuous reprompting by nullifying types. Thus, prompted matching
introduces a constant factor times the number of KB objects of additional work.

So even in the worst case RelType's computations are tractable. Efficiency can
be improved over the analysis presented here by appropriate database organization
and retrieval so that time O(log N) may be realizable to match and retrieve objects
against a query. In any case, computations are decidable in time polynomial in
knowledge base size.

April 1991 Page 31 of 49

ReIType: Relaxed Types in Hypermedia

Scenarios of How RelType Can Be Useful

Maintaining a ~1UJ'UJfedge 'Base

ReIType allows a new approach to knowledge engineering, providing a unified
representation for both executable rules and immediately connected and browseable
supporting documentation. In principle, rules could be supported and the entire
network thereby set to play the dual role of execution and explanation, but at least
in this version, only procedural and some object-oriented programming coding support
are provided. Explicit support for a frame-language or an environment for rwes could
be built atop the provided language tools or, better, an integrated rule language cowd
be built-in in the future. It wowd be expected that link and node types for
supporting executables wowd have to be extended, in any case.

Nevertheless, even in this version, some degree of integration is indeed
supported. The subsumptive link types, for example, allow attribute inheritance.
Use of untyped links encourages any kind of user documentation, while use of
provided documentation types makes it easy to interface an application layer to
automatically relate documentation to a given node.

A knowledge engineer cowd provide linked templates for user extensibility of
a knowledge base24

• The builder of the system cowd provide users with templates
of hypertext with "smart" typed links that cowd only fit into an existing knowledge
base in "correct" places and perhaps associated demons to keep databases dynamical
ly updated. Class linked templates cowd introduce another level of type checking, by
ensuring that a template cowd fit only into any instance of a given node N25

• N
could be viewed, in an OOP fashion, as a class, and any constraints in that class (as
well as those of the class instance to which the template is anchored) could be
inherited to the new addition.

24assuming the hypertext structure, at least potentially, is considered to be inferencable plus browseable, the
name knowledge base (KB) is used

2&rhis introduces an additional layer, so that N becomes the grandfather of the node linked to in the template.

Page 32 of 49 April 1991

Dilip K. Barman

Even without explicit rule-based support, ReIType provides frame-like
representation with typed links and demons, and includes untyped as well as typed
links for contextual browsing. Templates with smart links allow the knowledge
engineer to provide macro-like building blocks to enable end users to evolve their
systems. This has payback as a knowledge acquisition and explanation tool, and
helps by leveraging the knowledge engineer's design so that users can take on a large
degree of the maintenance task.

A scenario that illustrates the value of this work with respect to KB
maintenance is provided on the accompanying figures which show a segment from a
knowledge base on office supplies. This is suggestive of a generic KB, and could be
envisioned as a maintenance or diagnostic manual for some domain of operations.
The mixed typed/untyped network allows a taxonomy of office supplies to be built,
while flexibly providing for users to link, via user-defined types and simple hypertext
links, to information that they feel is relevant.

Replacement is an example of a user-defined link type that is simply a value
constraint; an instantiation of this template would not allow any but the given values
to be specified. Another applications layer could be built to perhaps graphically
depict possible choices and ask the user to select one. Cost is another user-defined
type; it has associated semantics to ensure the cost is in a specific range and to
invoke code for database updating. In Figure 11, the AKO link is a "smart link" and
ensures that the template can only link to a node called Supply. Demons26 handle
type checking values associated with the template, and may even provide a helpful
interface for specifying the values. DemonO is associated with the instantiation ofthe
template, and causes the updating of a database.

26User code defined in the type specification and called upon object instantiation

April 1991 Page 33 of 49

ReIType: Relaxed Types in Hypermedia

DemonO:
Update sUpply count

~~-----', ~

(Supply i llOS:uee'! -~. ~s\l\l
,5 . !l\If;II

I I 9 <I\i(\\'.e~'·
I ~ S!"l'c#'"

Figure 10 Existing representation for Figure 11 Principled extension of KB
an office supply KB through linked templates

Software I£ngineering

Another good application has already been seen in Neptune, and that is for
helping to manage the complexity of multi-file, multi-module~ software projects with
all their concomitant executables and non-executables. RelType can provide some of
the basic functionality of Neptune, and has the added strength of its relaxed typing.

Nodes can be marked with attributes indicating the role of their contents as
source code, documentation, or header files that can be linked into an application.
Relations supporting modular decomposition such as subModule will be handy, and
explicit programming semantics for constructing modules are specifiable through
customizing relations such as compiles Into with system-specific details. All life cycle
constituents, including design rationale, can thus be integrated by using RelType.
Design rationale could very well be represented by argumentation subnetworks; this
could be a major advantage for builders and extenders of large systems, so that
design tradeoff's could be made explicit and not have to be rediscovered in mainte
nance or system extensions.

An example scenario might be of a user developing applications code. Given
a "slick" interface, s/he might even choose to use ReIType in the initial system design
phase to built entity-attribute-relationship diagrams, using types just as labels and
the tool as a graphic aid. This could then be put into its own HAM context and the
context given an attribute contentType with value set to design.

The real use comes when slhe uses RelType to specify the application at lower
levels of design and finally down to implementation. Design would ideally be
specified with some sort ofargumentation model so that design rationale and alterna-

Page 34 of 49 April 1991

Dilip K. Barman

tives could be captured. Tying components together becomes a graphical way for
showing dependencies and would provide enough information to the system that it
could rebuild the application by checking version times and applying semantic rules,
for example for converting a C++ source module into object code and linking it to
library code. Follow-on work could actually attack the system build problem from the
opposite end to allow conventions to suggest defaults27

, and essentially allow a
predefined make file to implicitly annotate the links and nodes. Functionality could
also be added to provide intensional links to a data dictionary or from program
components to their documentation.

The power of the RelType approach is that artifacts of all phases of the
software engineering lifecycle could be easily stored together. RelType could become
a very general software engineering tool and could provide an environment as open
or restrictive as the user wants. It could interface to design tools and integrate all
the data associated with a project in using a given design methodology, for example.
On the other hand, a developer could simply use the implicit make facility (or even
not and explicitly create his/her own executables) by following a given set of
conventions and simply annotate the architecture, design, and code with arbitrary,
non-typed hypertext links.

Computer-!Mediatetl Instnu:tWn

In the past twenty years, quite a variety of educational software has been
developed with a range of claims of benefit to instructor and student. While much
of the resulting software has been less successful than advocates of computers in the
classroom had hoped for, many educators still feel that computers can be useful.
Hypertext systems have met with some success in teaching college-level classes; see,
for example, [Landow, 1988] for a description of the use of Intermedia in teaching
literature and literary criticism.

RelType provides a flexible environment for application builders to use as a
platform for delivering educational software. Teachers could provide a hypertext
network to students apropos to a topic being studied, and define a set of conventions
for typing links. Students could work with their own copies of the network or with
a common copy at disjoint time intervals; version control through appropriate use of
contexts could also be used. After the exercise, the collective work of the students
could be evaluated and simple search on the agreed upon types could be used to find
who found which relationships. A "fat link" view could be provided that would

27e.g., if content of a node points to a file of type ".CC", it is a C++ source file

April 1991 Page 35 of 49

ReIType: Relaxed Types in Hypermedia

coalesce all targets of the same link types28
• Thus, while concurrency control is not

provided, "groupware" or class collaboration for joint learning is nevertheless
encouraged.

For example, a high school class on the civil rights movement in the U.S. might
start offwith a hypertext network with a small set of teacher-defined link types such
as {source of prejudice, perceive prejudice} and node types (government action,
authority-supported action, ignored-by-authority action, minority spokesman, minority
community, non-violentprotest, violentprotest, community standard}. Students would
be given reading assignments or asked to do library research and to add information
they gleaned, using this set of types, as well as including untyped material. By
simple search, all sources ofprejudice, for example, that the students document could
be seen. Figure 12 depicts RelType structures that might result from such an
assignment. Discussion could resolve any conflicts and help the class integrate their
research into a common model.

Perceive Prej.

Source of Prej.

Figure 12 Initial ideas for typing in a high school civil rights scenario

2'Shapiro, 1991] suggests exactly this paradigm of a fat link, which is called a cable, in the SNePS semantic
network; a cable is a set of like-labeled arcs coming out of a node and ending at different nodes.

Page 36 of 49 April 1991

Dilip K. Barman

Linked templates could also be used. Perhaps after a preliminary excursion
as described above, once the students and teacher all had a better problem domain
understanding, the teacher could fashion a template for filling in further details.
Continuing the development of the civil rights example, perhaps an important
element would be confrontations challenging existing traditions.

Before asking students to particularly research confrontations, perhaps a
template as in Figure 13 would be designed, so that students would need at least this
much information to document a confrontation. Prior to detailing confrontations (or,
better, iteratively), the class might take a number of positions that they feel might
resolve the problems associated with achieving equal rights for all Americans. The
open boxes for position nodes indicate intensional attachment points for smart links.
Thus, all documented confrontations would be required to be related to the theoretical
positions and to show one position the action supports and one it is at odds with. The
students' research would not be in a vacuum and would be tied to evolving class
theories. Students may find such an investigative and collaborative approach to
make their study very exciting and would show that problems are multi-faceted and
may have no obviously superior solutions.

/
\

Figure 13 Confrontation template

April 1991 Page 37 of 49

Dilip K. Barman

[Woods, 1991]
Woods, William A "Understanding Subsumption and Taxonomy: A Framework for Progress".

Chapter 1 of [Sowa, 1991a].

[Woods, 1985]
Woods, William A "What's in a Link: Foundations for Semantic Networks". In [Brachman, 1985b],

pages 217-241. Originally in Bobrow, D.G. and A.M. Collins, eds. Representation and
Understanding; Studies in Cognitive Science. New York: Academic Press, 1975, pages 35-82.

Otlier ~ferences

[Cardelli, 1986]
Cardelli, Luca and Peter Wegner. "On Understanding Types, Data Abstraction, and Polymorphism".

Computing Surveys, vol. 17, number 4 (December 1985), pages 471-522.

[Wegner, 1990]
Wegner, Peter. "Concepts and Paradigms of Object-Oriented Programming". OOPS Messenger (ACM

SIGPLAN quarterly), vol. 1, number 1 (Aug. 1990).

April 1991 Page 49 of 49

