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Abstract 

In this thesis we will describe the published garbage collection algorithms 

briefly and offer insight into the problems of designing a garbage collector for an 

object-oriented database. Then we will propose a general design approach for a 

garbage collector for Encore/Observer. Finally it will discuss future issues for 

garbage collection in a distributed environment. 

1. Introduction 

High level languages like Lisp, Prolog, and SmaHtalk80 have efficient, 

automatic memory reclamation. These languages allocate many types of objects 

while a program is running. When any more object can not be allocated in the 

memory, the garbage collector collects the objects which are never used again 

and makes more memory space for other objects. On the other hand, in the C 

language and in Pascal a programmer has to handle memory reclamation by hand, 

that is, these languages provide users with functions for memory allocation and 

deallocation. However it is often dangerous to make the programmer responsible 

because a programmer might wrongly deallocate the memory space of an object 

though it is still used. Some objects are often referenced by more than two 

objects, therefore it is not necessarily true that an object is not needed when it is 

no longer referenced by some particular object. SmaHtalk80 has a memory 

allocation function but does not have a deaIJocation function. In SmaHtalk80, an 

object is reclaimed by the garbage collector after it is no longer referenced by any 

other objects. 

We have a similar garbage problem in object-oriented database systems. In 

many current databases, it is possible to delete data items ( i.e, records). In the 

case of object-oriented databases, if we delete one object (say x), there might be 

other objects that reference this x. The deletion of x can lead to dangling 



references or to references that, when dereferenced, yield some undefined piece 

of storage. The wisdom of deletion semantics in an object-oriented database is 

questionable. In Encore/Observer system, we might prefer to adopt the 

semantics of garbage-collected languages, in which an object can not be deleted 

but, instead, references to objects are destroyed. When all references to an 

object have been removed, the garbage collector reclaims the storage occupied by 

that object. 

Most of the published automatic garbage collection algorithms have been 

designed for main memory or virtual memory, though some are for the persistent 

languages. As we will see in later discussion, a persistent language does not 

necessarily have the same characteristics as an object-oriented database. We can 

not say that the best algorithm for (virtual) memory may be the best one for an 

object-oriented database because of differing performance characteristics in the 

two systems. F~r example, objects stored in an object-oriented database tend to 

have a long lifetime (e.g, permanent); whereas, objects in (virtual) memory are 

often temporary. Hence, garbage should be generated at a slower pace in an 

object-oriented database than in (virtual) memory. In addition, retrieving objects 

from an object-oriented database will take more time than reading an object in 

(virtual) memory. 

2. Published Garbage Collection Algorithms 

Many algorithms have been developed to perform automatic storage 

reclamation. The algorithms can be divided into two groups. 

scavenging algorithms 
scavenge memory by sweeping over it: these include Mark & Sweep 
and Copy-Compact algorithms. 

incremental algorithms 
perform a small portion of reclamation or garbage collection 
bookkeeping with each update. These include Baker's real-time, 



Generation Scavenge, Reference Count and Deutch-Bobrow 
Reference Count algorithms. 

Environments that utilize the scavenging method of automatic storage reclamation 

operate in two modes: one in which garbage is being generated and one in which 

the memory is being scavenged to reclaim the storage space used by the garbage. 

On a single processor, during the generation phase a program is running; during 

the scavenge phase the program must pause. Incremental algorithms break up the 

scavenging phase into small pieces so the pauses are shorter but more numerous. 

In environments that utilize an incremental method, each update takes a little 

extra time and, generally, there are no long pauses. 

2.1 Mark & Sweep 

This method was developed for high level programming languages like 

Lisp. A system written in these languages stops execution when it can not 

allocate the memory space for a n-ew object, and starts to reclaim garbage 

objects. A garbage collector using a Mark & Sweep algorithm ([4], [5], [6], 

[9]) traverses all objects which can be reached from the root (stack or fixed 

address) and marks them. After that, it clears all memory space except the 

memory space used by marked objects. 

2.2 Copy-Compact 

Using a copy-compact algorithm ([13]), the root set of objects is copied 

into an unused portion of memory. All objects that are reachable from the root 

set are also copied into this unused portion of memory. Copy-Compact schemes 

require twice as much memory as is occupied by data: the memory where the data 

currently resides (oldspace) and a portion equal in size to be used for copying 

(copyspace). After each iteration of the algorithm, copyspace becomes oldspace 

and oldspace becomes copyspace. As with Mark & Sweep, long pauses occur 

when the scavenging phase takes place because the copying takes time 



proportional to the number of objects plus the number of references between 

objects. 

Many high level languages like Lisp have been installed on workstations 

recently, and used for AI and program development environments that require 

real-time response. Mark & Sweep and Copy-Compact can not satisfy this 

requirement. Because of this, the following algorithms discribed in Sections 2.3 

• 2.7 have been getting popular. 

2.3 Baker's real-time 

Baker developed a version of copy-compact that partitions objects into 

small groups so that the copying can be done gradually ([1], [9], [12]). In each 

partition a bounded number of objects are copied, thereby limiting the length of 

pauses in the program. Each time a new object is allocated, the pointers from k 

objects in copyspace are traversed. This allows the scavenging of memory to be 

performed incrementally. If a pointer refers to an object in oldspace, the object 

is copied into copyspace and the pointer is updated to refer to the copyspace 

location. Since pointers may still exist that refer to the object in the oldspace 

(after it has been moved to copyspace), a marker must be left in the old space 

objects that indicates that the object now resides in copyspace. Each time an 

object in oldspace is accessed, it is also moved into copyspace. When all objects 

in copyspace have been traced, all the reachable objects have been copied into 

copyspace, and the spaces are exchanged: oldspace becomes the new copyspace 

and the root set of objects is copied into it; and copyspace becomes oldspace. 



2.4 Generation-Scavenge 

The Generation-Scavenge schemes ([1], [12]) assign ages to objects to 

reduce number of objects in memory that need to be considered when doing a 

copy. The age groups are determined by the algorithm implementor. A separate 

portion of memory is allocated for the objects of each age group. Each age 

group's root set consists of the objects in the age group that are pointed to by 

objects in older age groups. In virtual memory, the younger the object, the 

more likely it is to become garbage, so young spaces are scavenged more often 

than older spaces ([3]). The use of temporary variables in programming 

languages causes young objects to become reclaimable sooner. Objects that 

reside in the oldest space are considered to be permanent objects and their space 

is not examined very often to see if it contains any garbage. The pauses caused 

by a !lcavenge are greatly reduced in this scheme since only a subset of the 

objects are traversed at each scavenge. 

2.S Reference Count 

In this algorithm, each object has a reference counter which shows how 

many other objects are referencing it. Each time a reference is removed, the 

count is decremented. When the reference count goes to zero (which means that 

an object is no longer referenced), the garbage collector reclaims the object. 

Although the Reference Count scheme ([6], [10]) eliminates long pauses, it 

introduces considerable overhead into the normal operation of the system because 

it requires continual maintenance of the reference count field. 

2.6 DeutSCh-Bobrow Reference Count 

This scheme ([2]) reduces the actual overhead of continually updating the 

reference count field as mentioned in Section 2.S. It is based on the Observation 



that the most frequent and dynamic object references are quite often transitory. If 

these references are eliminated, then almost all of the reference counting 

overhead will have been eliminated. Since most objects have a reference count of 

one, most of the space typically allocated to hold the counts is wasted. Deutch 

and Bobrow propose keeping a table of the objects that have a zero count (newly 

created objects) and a table of objects that have a count greater than one. The 

tables hold only addresses of the objects, but no other information. When a 

reference to an object on the multireference table is removed, no information is 

kept that would indicate whether that was the last reference to the object. 

Therefore, once an object is on the multi reference table, it can not be removed. 

Their scheme operates in the same way as standard reference counting but uses 

less space because individual reference counts are not needed, although over time 

more space may be used because extra garbage may gather due to the permanent 

effect of being added to the ILultireference table. 

2.7 Atomic Garbage Collection 

Some research ([15], [16]) focuses on atomic garbage collection used for 

transaction systems. An atomic garbage collection algorithm preserves the data 

consistency property. This means that since reliable distributed systems are 

required to maintain data consistency despite crashes (hardware crash, software 

crash), a crash during garbage collection should result in no loss of data. 

Kolodner ([15]) presents an atomic incremental garbage collector designed for the 

transaction-based language Argus. Kolodner's algorithm is based on a traditional 

stop-and-copy collector but is incremental. The main point of Kolodner's 

algorithm is that it allows for efficient crash recovery: in transaction systems, if 

the contents of non-volatile (disk) storage survives a crash, it is advantageous if 

it can be used as the starting point for recovery, instead of recovering entirely 



from a log of modification records. Kolodner's collector allows recovery from 

non-volatile storage even if a crash occurs during collection. His approach 

divides the heap into volatile and stable areas. Objects are created in the volatile 

area. After an object becomes stable it is moved to the stable area at an 

appropriate time. The volatile area can be collected using incremental and/or 

generational collection. Therefore an incremental atomic garbage collector is used 

for only collecting the stable areas. This approach is based on the fact that an 

atomic garbage collection is more expensive than normal garbage collection. Why 

is it expensive? Because the atomicity of an object is related to its transactions 

and those transactions should be recoverable from a system crash. Therefore the 

garbage collector must have an intimate relationship with the recovery system 

when the garbage collector reclaims the garbage. 

3. Important considerations for designing on-disk garbage collection 

We describe some important issues which should be carefully considered in 

designing on-disk garbage collection: 

- The need for dealing with a huge amount of permanent data 
All of the objects which exist on the disk are permanent. The amount 
of data in the database is huge compared with the data in memory 
(The number of objects might exceed a million sometimes). 

- Cost performance on both time and space 
Obviously on-disk garbage collection will take more time than that of 
a programming language because it must deal with huge amounts of 
data on the disk. As a result, a more efficient algorithm which 
requires less time for garbage collection is required. It raises the 
question of which algorithm is the best one with good performance 
both on time and space. Some algorithms require more space (e.c., 
Copy-compact, Generation Scavenge) and some require a long pause 
halting the entire system (e.c., Mark & Sweep, Copy-Compact), 
and therefore become expensive. 

- Time requirement to deal with concurrent users 
Since in an object-oriented database system there exist multiple users 
interacting with the same objects concurrently, if we adopt the 
incremental garbage collection, the pause caused by update of the 



reference count by Reference Count takes a longer time than that of 
the programming language because the new reference count must be 
broadcast to other users. 

Then we have some questions immediately concerning how to approach 

garbage collecting a database file. First, which algorithm should we use, Mark 

& Sweep, or copying, or reference count? Second, should we do a whole 

database at a time or can we do pieces? Third, should we garbage collect off­

line (batch) or on-line (incremental) ? 

We will discuss these issues in the next section by analyzing each 

algorithm. 

4.	 Our approach to adopt a published algorithm for 
the object-oriented database 

Here we discuss which algorithm could be the candidate or suitable 

algorithm for on-disk garbage collection in an object-oriented database. We 

classified published algorithms into two groups shown below. 

(Scavenging algorithms)
 
- Mark & Sweep
 
- Copy-Compact
 

(Incremental algorithms)
 
- Baker's real-time
 
- Generation Scavenge
 
- Reference Count
 
- Deutch-Bobrow Reference Count
 
- Kolodner's Atomic Incremental
 

At first, we eliminate Generation Scavenge from our study because all of 

the objects in the database are permanent. Performance benefits based on 

distinguishing between temporary and permanent data will not show much benefit 

in a persistent environment. Therefore, the assumption that allows Generation 

Scavenge to have a better performance than other algorithms (namely, that 

objects become garbage based on their age) does not necessarily hold for database 

objects. In addition to the above observation, the eVOlution of the garbage in an 

object-oriented database may be the reverse of that of the programming language. 



In an object-oriented database world, the older data might be more likely to 

become garbage while in the programming language world the newer data is more 

likely to become garbage. Though we do not know how the age (in the sense of a 

generation) of the data in an object-oriented database can be defined, if we can 

define it, Generation Scavenge might be effective. 

Second, Copy-compact and Baker's real-time can be eliminated from our 

study for several reasons. Both algorithms require twice as much disk space as is 

occupied by data. As mentioned before, we believe the rate of garbage growth 

on disk is comparatively lower than that of a high level programming language. 

Though garbage data could be born after some system operations (e.c., modify 

and delete references etc.), the rate of growth is much slower than that of 

temporary data in the programming language. In addition, since the database 

does not save temporary data at all, we believe that having another disk space 

only for garbage collection is too expensive in the view of the system design. 

Also copying huge amounts of data (almost the entire disk space) from disk to 

disk is too costly because almost all data on disk are reachable objects because of 

data permanency in the database. 

Third, we omit Deutsch-Bobrow Reference Count from our study because 

the database does not store transitory references at all. We doubt the 

effectiveness of having two tables on disk which require a lot of space in 

proportion to the number of objects. In addition, searching and manipulating the 

reference count of each object from the huge table is too costly. 

Fourth, we will leave out the discussion of whether the Atomic 

Incremental Garbage Collection is applicable to an object-oriented database or not 

for the following reason. We think the most important purpose of the Atomic 

Incremental Garbage Collector is to reorganize the heap to provide good paging 

performance. This reorganizing of the heap during garbage collection is similar 



to the problem of clustering in object-oriented database systems in that the 

collector can increase locality of reference and reduce paging by moving objects 

that are referenced together to the same page by reorganizing the heap, making 

the collector move objects. In object-oriented databases, clustering occurs at 

two levels: (1) partitioning objects into areas, and (2) arranging objects within 

areas. If we adopt the scheme that a garbage collector should do the reclustering 

during a garbage collection, the Atomic Incremental Garbage Collection might be 

important. However, all data in object-oriented databases might be persistent 

data in some databases (see Section 5), therefore stable. If the atomic garbage 

collector for an object-oriented database has to deal with all data in the database, 

it will take a long time totally even if the reclustering processes can be 

incremental. In addition, we don't define clearly about the relation among the 

garbage collection, the process of reclustering the database and the recovery 

system. Our research work for tbis field should begin at this phase. Therefore 

we eliminate tbis scbeme from our study at this time. 

So far we have two basic algorithms left: Mark & Sweep and Reference 

Count. Mark & Sweep is an off-line collection, which requires long pauses and 

uses less space, but it can deal with all data in the database at a time, and is 

therefore simpler. On the other hand, Reference Count is an on-line collection, 

which is likely to be more difficult and imposes some additional overhead during 

collection, but is necessary for continuously running applications. Since we 

doubt the effectiveness of adopting Reference Count, because of the slow 

performance (therefore this might be more expensive) caused by a lot of updates 

of reference count during a real time system operation, we will leave this 

discussion as a future issue. 

In view of the above observations, we decided to use the Mark & Sweep 

algorithm for the Encore/Observer system as described in next section. 



5. Mark & Sweep General Design 

We find the following problems to be solved when we attempt to apply 

Mark & Sweep to an object-oriented database: reachability of an object, 

traversing method to find reachable objects and cyclic object reachability. 

5.1 Object Reachability 

In general, the reachability of an object from the persistent root is used to 

decide whether the object is garbage or not. How is the reachability defined in an 

object-oriented database? Can we use the same definition of the reachability as 

used in the programming language? The answer is no. We explain why next. 

Some object-oriented databases adopt the scheme that an object is 

connected to some persistent root objects. Then database objects have a 

persistent root object. Any object that is reachable from this persistent root is 

also persistent and reachable. This scheme is effective especially for querying. 

Some object-oriented databases adopt the concept of a type's extent: when a type 

is instantiated, the instance is kept in the collection of all instances of the type. 

Then these collections of objects are used in querying. But this scheme 

introduces a new problem ([11]): that all objects are reachable. Therefore 

reachability of an object (as a means of identifying garbage) must be defined 

some other way. 

Our strategy for reachability in Encore is that reachability is defined by the 

availability of the link between two objects. That means we have the function to 

test the reachability Oink availability) between one object and another object. 



5.2 Traversing Method to Find the Reachable Objects 

It is not easy to determine if the language-based depth-first search or 

breadth-first search marking schemes are effective when traversing objects on the 

disk, because sometimes such a search may cause more page faults and/or take a 

much longer time to check all objects (the search might get all objects into 

memory) and there is no effective way to determine which objects to page out. 

Therefore we should consider other traversing techniques for objects on disk 

which seem more suitable. We break traversal into two steps: one for defining 

reachability from the collection and the other for inter-object connections. 

We ado.,t a traversing technique which is based on the segmentation of 

Encore. We will describe it here. Encore adopts a segmentation (clustering) 

technique to access the disk efficiently (in other words, to reduce the number of 

disk I/O). That is, by collecting the inter referencing objects as much as 

possible into one segment and then using the segment as the unit of pre-fetch. 

Encore speeds up the access reducing disk I/O ([U]). In our Mark & Sweep 

scheme#1 and scheme#2 (to be presented in Section 5.4), the algorithms traverse 

all objects for marking on the segment access basis in the second loop in 

scheme#1 and in scheme#2. The algorithm checks every object in one segment by 

traversing every object it references and marks reachable objects because it takes 

advantage of clustering to reduce paging. However the algorithm stops traversing 

further with the next referenced objects' properties. If we continue looking at 

every object in one segment until we finish looking at all segments, eventually 

all reachable objects shall be marked. We believe this traversing technique is 

most suitable in Encore to look at all objects because it takes advantage of 

clustering to reduce paging. 



5.3 Cyclic Object Reclamation 

In programming languages, the Mark & Sweep algorithm sweeps over the 

entire memory space except the memory space used by marked objects to reclaim 

the cyclic objects. However this strategy is too costly for on-disk garbage 

collection because traversing over disk space which contains a large amount of 

data takes a long time. Therefore a new, less expensive strategy to reclaim the 

cyclic objects is required. 

We will adopt a new algorithm described in the section 5.5 to detect cyclic 

objects, one which uses the type hierarchy information of Encore. 

5.4 Two Mark & Sweep Techniques 

In this section, we show two schemes and pseudocode for each for our 

Mark & Sweep algorithms. Scheme#1 checks object reachability by looking at the 

connection between an object and tht: persistent root at first, and second marking 

objects referenced by the object. Scheme#2 checks the reachability by using a 

reference count as a "mark". The object, which has the reference count of 0, is 

reclaimed. The difference between scheme#1 and scheme#2 is that: scheme#1 

checks the reachability from the persistent root directly by using the function 

(which checks the connection between an object and the persistent root), on the 

other hand scheme#2 checks the reachability from the persistent root by using and 

modifying a reference count (if the count is 0, an object is not connected to the 

persistent root). 

5.4.1 Mark & Sweep Scheme#1 

This scheme checks whether the collection of instances of each type are 

connected to the persistent root. If an instance is connected, it is marked into its 

field which shows that this object is reachable from the persistent root. Then the 



algorithm starts traversing each object to mark the other referenced objects. In 

this process, if the object which the algorithm is looking at is not reachable, it 

does not mark any objects referenced by this object because this object is not 

reachable. However, if this object is later referenced by an object that is 

connected to the persistent root (that is, it becomes reachable), this object also 

becomes reachable. As a result, all objects referenced by this object become 

reachable too: the algorithm recursively traverses all following referenced objects 

until it encounters the objects which are connected to the persistent root 0 null 

pointers (NIL). 

Mark·Sweep·l 0 

Marking phase 

for every collection type object c in the segment s 
for every instance i in collection object c 

if ( i is reachable) 
mark i with 

••••••• checked uy macro 
"pit ••••• reachable from the persistent 

root 
for every segment s in database 

for every object x in the segment s excluding a collection type object 
if (x is marked with "p") •••••• x is reachable 

then 
for every instance i' referenced by this object x 

if (i is not marked with" p") 
then call follow mark (i) 
else mark this object with "1" 

follow_mark (p) 
mark this object with" 1" 
for each instance w of property of p 

if (w is not marked with" p") 
call follow_mark (w) 

Sweeping phase .-•••• 

for each segment s in database 
delete all unmarked objects 



5.4.2 Mark & Sweep Scheme #2 

This scheme uses the reference count as a "mark." This means if the count 

is zero, the object is reclaimed in sweeping phase. Similar to Scheme#l, the 

algorithm looks at every object in one segment. If the object references another 

object, its count is incremented. After looking at all objects, the algorithm 

starts to modify the reference count by accessing every segment again. If the 

algorithm finds an object whose reference count is zero, it decrements the 

reference count of all objects referenced by this object by 1 because the object is 

not reachable from the persistent root, therefore the reference from this object h 

not valid. If the reference count of some object decremented by this algorithm 

becomes 0, the algorithm takes the same process recursively. The problem of 

this scheme is the delay or the long pauses caused by cascading mentioned above. 

Mark~Sweep.2 0 

Marking phase 

for every segment s in database 
for every object x in the segment s 

increment the reference count of all objects by 1 referenced by this 
object x 

for every segment s in database
 
for every object x in the segment s
 

if ( reference count of x = 0)
 
call decrement_count (x)
 

decrement count (x)
 
for every property p of x
 

if ( (reference count .1) of p = 0 ) 
then decrement count (p) 
else decremenCreference count of p by 1 

Sweeping phase •••••• 

for each segment s in database
 
delete all unmarked objects
 



5.5 Algorithm to Detect Cyclic Object 

In this section, we are going to describe an algorithm which detects 

cycles. In the database we might have cyclic objects which happen to be created 

by users. These objects obviously should be reclaimed automatically because 

finding them manually is almost impossible in a huge database. Encore maintains 

a type hierarchy which is based on the user schema. Specifically, the type 

hierarchy of Encore keeps information on a directed graph G(V, E), identifying 

which nodes represent each type and which edges represent references between 

two types. By understanding the Encore type hierarchy, we can know the 

possibility of cyclic objects in the system and which types could participate in a 

cycle. Our algorithm checks for this possibility and if a cycle exists among some 

types, it makes the list of these types. It traverses the database segment by 

segment and if it encounter's some instance of the type in the above list, it starts 

checking from this instance, follows the instance of the next type which can be 

known by following the order of the list and repeats the same process until it 

checks each instance of each type in the list to determine if there is a cycle. If it 

finds a cycle, it stores the information of all instances which are in the cycle and 

reclaims them after checking all objects. 

We describe the pseudocode of the cycle check algorithm below. 



INPUT: Graph G (V, E) 

Data Structure : 

4 

3 

2 

1 

3 

1 

search table (stack) reverse table (stack)
:- trace table of vertex : isused to detect 

all possible cycles 
in DFS-VISIT 

Figure 1. search_table and reverse_tabel 



1 2 3 5 2 V 
1 2 4 5 2 V 

cycle check table 
:- possible ordered lists of type which could make a cycle 

Figure 2. cycle-check table 

DFS (G) 

for each vertex u e V[G] 

1t[u] <­ NIL 1t[u] predecessor of u 
for each vertex u e V[G] 

DFS-VISIT (u) 

c1ear_search_table (search_table) : empties the stacks 
DFS-VISIT (u) 

push (u, search_table) 

if IAdj [u] I >= 2 Adj[u] : adjacency list of u 

push (u, reverse_table) 
for each v e Adj [u] 

if (member (v, search_table) = TRUE) : member check 

then push (v, search_table) 

registerJist (search_table, cycle_cheek_table) 

: copy trace data to cycle_check_table 



reverse = pop (reverse_table) 

pop_list (v, reverse, search_table) : pop list elements at a 

time 

push (reverse, reverse_table) 

else 1t[v] =u 

DFS-VIST (v) 

pop (reverse_table) 

This algorithm can list possible cycles into cycle_check_table from graph G. It 

finds out special cycles (the longest path cycles) which contain subcycles in the 

list. To do this, it eliminates the multiple equivalent cycles in the entire cycle. 

After that it checks the relationship among cycles by asking whether one cycle is 

a subcycle of the other or not. 

That is, suppose that we had the cycles Cl, C2, C3, Cn. If the 

length of the cycle path ICjl > ICil (1<= i, j <= n), and Ci E Cj, it eliminates 

all sub-cycles from the list. 

For example in the graph (in Figure 3), we can find eight possible cycles. 

Cl = 1-2-3-5-2 
C2 = 1-2-4-5-2 
C3 = 2-3-5-2 
C4 = 2-4-5-2 
C5 = 3-5-2-3 
C6 4-5-2-4=
 
C7 = 5-2-4-5 
C8 = 5-2-3-5 



Figure 3. example 

At first it eliminates the equivalence cycles from the list by looking for the 

following two conditions, whether ICil = ICjl and whether the list contains the 

very same vertexes in the same order after eliminating the last vertex and sorting 

both lists by vertex number. 

C3, C5 and C8 are equivalent. ._-> eliminates C5, C8 
C4, C6 and C7 are equivalent. ._-> eliminates C6, C7 

Since C3 is a subcycle of Cl and C4 is a subcycIe of C2, only two cycles , 

Cl and C2 are left eventually. 

Cl = 1-2-3-5-2 
C2 = 1-2-4-5-2 

6. Incremental garbage collection 

In Section 5, we described a Mark & Sweep general design assuming that 

the garbage collector runs making the entire system stop. However stopping the 

system is sometimes not desirable in a system that requires continuous operation. 

If the system has a huge amount of data on the disk, the garbage collector might 



cause a very long system halt. In this section, we will discuss the issue of how 

to make the object-oriented Mark & Sweep garbage collector incremental. 

In a programming language the garbage collector and the executing program 

contend for CPU cycles. An incremental garbage collector allows its operations 

to be incremental with that of the program. In the object-oriented environment 

the garbage collector and the program run as separate programs so their execution 

is interleaved by the operating system. But, they do have to contend for object 

locks. So in the object-oriented database, the important resource is the object 

itself and the garbage collector must be able to deal with locked objects. In our 

model, we adopt the following new definition that the inc~emental garbage 

collector keeps running even if objects are locked. Why do we need this 

definition? The reason is that if the algorithm has to wait for the commit of an 

object which is locked for a long time, not only does the total time of garbage 

collection increase but also the effect of waiting might corrupt the normal system 

operation. 

Next we will explain the general algorithm of our incremental garbage 

collection. We regard the garbage collector as one of the multi-tasks in the 

system which runs under the control of the operating system. Therefore it runs 

with some time interval scheduled by the scheduler. The program's transaction 

causes objects to be locked. We have to deal with the effect of these operations 

which happen to occur during the marking phase of the garbage collection. We 

deal with these operations on the segment basis to make the table size for 

checking small. Before we explain the detailed algorithm, we should answer the 

general question of which scheme can be incremental, scheme#1 or scheme#2. 

The answer is both. Though we will describe pseudocode for each later on, we 

will explain the incremental algorithm with scheme#1 to give a general idea 

easily. But if you read the following explanation by using the reference count (0 



or more than 1) as "mark" instead of using with 0 or 1 as "mark" to decide 

whether an object is garbage or not, you can make sure scheme#2 can be 

incremental. Now we will start to explain the algorithm. 

If an object which the garbage collector is looking at is locked, it puts this 

object into a later_check_table and keeps on traversing in the segment. After 

checking all objects in the segment, the garbage collector starts checking the 

objects in a commit_table which stores such objects that committed during the 

garbage collection's segment traversal. After dealing with objects in the 

commit table and deleting those objects (which have the same UID) from the 

later_cheek_table, the garbage collector moves to the next segment and continues 

checking until it finishes traversing all segments and checking all objects in the 

database. If there still exists some objects in the later_check_table, the garbage 

collector waits for the commitment of these objects until the time-out (time span 

is changeaitle by the parameter) occurs. When the time-out occurs, the garbage 

collector marks the objects referenced by these locked objects by using the old 

copy of the locked objects which are in the later_check_table. Some logical 

contradictions shown below might occur if a locked object commits and changes 

the state of some other objects to cause a logical contradiction after the garbage 

collector finishes checking and marking them. 

(1)	 logical contradiction#1 

An object, which the garbage collector interpreted as alive and 

marked with "1" when it was traversed, becomes dead at the point 

that the garbage collector finishes marking all objects. 

(2)	 logical contradiction#2 

An object, which the garbage collector unmarked with "0" (dead) 

when it was traversed, becomes alive (reachable) at the point that 

the garbage collector finished marking all objects. 



Since an object of case (1) will be reclaimed in the next cycle of the 

garbage collection, we don't have to care about this. 

We should consider following three different situations which arise in the 

second case. 

•	 situation#l 

The objects which are not marked because of a lock should be made 

be alive again after the garbage collector finishes sweeping. In some 

object-oriented databases (such as Encore), to guarantee the 

processing of the other application programs like a query which 

might use the locked objects, they have copy (objects before the 

lock) of the locked objects in the memory. Then, since the 

application has a copy of the locked objects in the memory, it is 

possible to make the object alive again by saving the memory copy 

into the disk. 

-	 situation#2 

New objects should be stored into the disk after the garbage collector 

finishes sweeping. This is possible since all new objects are created 

in the memory of the application. 

• situation#3 

If an application program makes the new reference to an object that is 

on disk but not in memory, this object can not be made alive again 

since there is no copy in the memory (for example, if an object 

copies a reference to another object without loading the new 

referenced object into memory). To avoid this, during the garbage 

collection mode, the application program should have a memory 

copy of the referenced object when it makes the new reference. Then 

the garbage collector can make new referenced objects alive. 



In addition to the above, during the sweeping phase, the garbage collector 

protects the unlocked objects from being locked by an application program by 

forcing the transaction to wait so as not to cause another logical contradiction. 

Now we will show the pseudocodes in the following. 

Incremental·Mark.Sweep·l 0 

Marking phase ••••••• 

for every collection type object c in the segment s 
for every instance i of collection type object c 

if ( i is reachable) checked by macro 
mark i with "p" •••• reachable from the persistent 

root 
for every segment s in database 

for every object x in the segment s excluding a collection type object 
if (x is locked) •••• object is locked ? 

then push (x, later_cheek_table, "F") ••• objeet is 
locked 

else if (x is marked with "p") •••••• not locked, 
x is reachable? 

then 
for every instance i' referenced by this 

object 
if (i is locked) 

then push (i, later check table, " 
- S") ­

else if (i is not marked with "p") 
then call follow mark (i) 
else mark this object with 

" 1" 
while (there is an objeet in commit table) 

N=pop (commit_table) - •• pop any object from the table 
pop (N, later_check_table) •• pop the special object 

case (the flag of N) 
F:	 if (N is marked with "p") •••••• not locked, 

N is reachable ? 
then 

for every instance i' referenced by this 
object 

if (i is locked) 
then push (i, later check table, 

"'S") ­
else if (i is not marked with "p") 

then call follow mark (i) 
else mark this object with 

" 1" 
S:	 if (N is not marked with "p") 

then call follow_mark (N) 



else mark this object with 
"1" 

T:	 if (N is not marked with "p") 
call follow mark (N) 

if (time out occurs) ••• -wait for the time out 
then 

while (there is an object in commit_table) 
N=pop (commit_table) •• pop any object from the 

table 
pop (N, later_check_table) •• pop the special object 

case (the flag of N) 
F:	 if (N is marked with "p") •••••• not locked, 

N is reachable ? 
then 

for every instance i' referenced by this 
object 

if (i is locked) 
then push (i, later check table, 

- "S") 
else if (i is not marked with" p") 

then call follow mark (i) 
else mark this object with 

"1" 
S:	 if (N is not marked with "p") 

then call follow mark (N) 
else	 mark this object with 

"1" 
T:	 if (N is not marked with "p") 

call follow_mark (N) 

if (there is a object in later check table) 
then by using a old copy-in memory, •• time out occur 

every object Y in the later check table
case (the flag of Y) - ­

F:	 if (Y is marked with "p") •••••• not locked, 
Y is reachable ? 

then 
for every instance i' referenced by this 

object 
if (i is not marked with "p") 

then call follow mark (i) 
else mark this object with 

" 1" 
S:	 if (Y is not marked with "p") 

then call follow mark (Y) 
else mark this object with 

"1" 
T:	 if (Y is not marked with "p") 

call follow_mark (Y) 

else while (there is an object in later check table) 
while (there is an object in commit table) 

N=pop (commit_table) - •• pop any object from the 
table 



pop (N, later_check_table) -- pop the special object 
case (the flag of N)

F:	 if (N is marked with "p") ••_••• not locked, 
N is reachable ? 

then 
for every instance it referenced by this 

object 
if (i is locked) 

then push (i, later check table, 
- "S") 

else if (i is not marked with "p") 
then call follow mark (i) 
else mark this object with 

"1" 
S:	 if (N is not marked with "p") 

then call foUow mark (N) 
else	 mark this object with 

"1" 
T:	 if (N is not marked with "p") 

call follow_mark (N) 

follow_mark (p) 

mark this object with "1" 
for each instance w of the property of p, 

if (w is locked) 
then if ( w is not in the later check table) 

push (w, later_checkjable, "T") 
else if (instance w are not marked with" pIt) 

call fol.low_mark (w) 

Sweeping phase .-•••• 
prohibit new lock by an application program
 
delete all unmarked objects
 
copy all objects in memory into disk at one time
 
allow new lock by an application program
 

Incremental·Mark-Sweep·2 0 

Marking phase ••••_•• 

for every segment s in database
 
for every object x in the segment s
 

if (x is locked)
 
then push (x, later_chek_table, "F") 
else increment the reference count of all objects by 1 referenced 
by this object x 

while (there is an object in commit_table) 
N=pop (commit table) _. pop any object from the table 

pop (N, later -check table) •• pop the special object 
table_data_pocess (R) 



for every segment s in database
 
for every object x in the segment s
 

if (x is locked)
 
then push (x, later_check_table, "S")
 
else if ( reference count of x = 0)
 

call decrement count (x)
 
while (there is an object in commit_table)
 

N=pop (commit table) .- pop any object from the table 
pop (N, later -check table) -- pop the special object 
table_data_pocess (N) 

if (time-out occurs) 
then 

while (there is an object in commit table) 
N=pop (commit_table) - -- pop any object from the table 

table data pocess (N) 
if (there is a objecCin later check table) 

then by using an old copy in memory, 
every object N in the later_check_tbale 

table_data_pocess (N) 

else 
while (there is an object in later check table) 

while (there is an object in-commIt table) 
N=pop (commit table) -- pop any object from the table 

table_data_pocess (N) 

decrement count (x) 
for every property p of x 

if (p is locked) 
then push (p, later check table, "T") 
else if ( (reference-count-:1) of p =0 ) 

then decrement_count (p)
 
else decrement reference count of p by 1
 

table_data_pocess (N) 
case (the flag of N) 

F:	 increment the reference count of all objects by 1 
referenced by this object N 

S:	 if ( reference count of N = 0) 
call decrement count (N) 

T:	 if ( (reference count ·1) of N =0 ) 
then decrement count (N) 
else decremenCreference count of N by 1 

Sweeping phase --_•• ­

prohibit new lock by an application program
 
delete all unmarked objects
 
copy all objects in memory into disk at one time
 
allow new lock by an application program
 



Last we should note that the described garbage collector can be equipped 

with the important feature of compaction and reclustering after sweeping over the 

garbage objects. This is an important aspect in an object-oriented database. 

6.1 Collecting Garbage Within a Transaction 

Next we will discuss about the reclamation of the objects which are created 

within and left unreferenced at the end of a transaction. Supposed that during a 

transaction we had the case that objects A, B, C are created and referenced by 

an object X at first, however finally only A is referenced by X. At commit time, 

A, B, C are stored on the disk. Obviously Band C are garbage. So if we can 

avoid creating obvious garbage on the disk, we should. To avoid cn~ating this 

inter-transaction garbage, before commit time another local garbage collector 

(we call this "auxiliary garbage collector") which resides in each application 

checks the reachability of all objects and collects garbage. We explain this 

process more. 

In each program space, we have the table which keeps the status 

information of all objects (OLD, NEW, UPDATED etc,.): 0 - old object (no 

change occurred), N - newly created object, U - updated object. 

By checking the reachability of all new objects with the algorithm of 

scheme#2 used in the marking phase and eliminating some of them which are 

garbage from this table, we can avoid creating some garbage on the disk (not by 

sending these to the server). 

7. Future issues 

Implementation and performance on Encore/Observer are urgent future 

issues in this research field. One paper ([13]) shows performance data of 

garbage collection. However they are data for the programming language not for 



the database system. We should measure the performance of the object-oriented 

database system and check whether we need some improvement or not. 

We should collect more performance data (especially the effect of delays 

caused by updates of a reference count during system operation) of Reference 

Count so that we can decide whether it is possible to adopt this scheme for 

object-oriented database systems or not. 

We should discuss whether the Atomic Incremental Garbage Collection is 

applicable to an object-oriented database or not since reclustering the database 

after the sweeping phase is an important issue in an object-oriented database 

world in terms of the efficient use of the disk. 

Distr.ibuted Garbage collection is a more interesting research topic since we 

have to deal with the problem of synchronization among distributed databases 

during garbage collection and the problem of how to handle the reclamation of 

cyclic data among these systems efficiently and so on. This issue might be 

complicated and difficult to handle. 

Recent research work on the garbage collection in the programming 

language mainly focuses on how the garbage collector can divide the objects into 

a couple of groups based on the age (generation) to reduce the time for copying. 

This emphasis on age-based garbage collection may indicate that Generation 

Scavenge might be useful if it can be adopted to an object-oriented database 

world. This research should begin by defining the concept of the generation of 

the objects, that is, what is generation based on in an object-oriented database 

and how can the age of objects be classified. 



8. Acknowledgement 

I would like to thank my advisor Stanley Zdonik for providing motivation 

and encouragement to work for this project. I wish many thanks to Page Elmore 

for helping me to solve a lot of hard problems and for giving constructive advice. 

References 

[1] David Michel Unger, The design and Evaluation of a high Performance 

Smalltalk System (An ACM Distinguished Dissertation 1986) 

[2] L.P. Deutch and D.G. Bobrow, An Efficient Incremental Automatic 

Garbage Collector, Comm. of the ACMI9, 9 (September 1976), 522-576 

[3] H. Lieberman and C. Hewitt, A Real-Time Garbage Collector Based on 

the Lifetimes of Objects, Comm. of the ACM 26,6 (June 1983), 419-429 

[4] J.K. Foderaro and R.J. Fateman, Characterization of VAX Macsyma, 

Proceedings of the 1981 ACM Symposium on Symbolic and Algebraic 

Computation, Berkeley, CA, 1981, 14-19 

[5] J. Cohen, Garbage Collection of Linked Data Structures, ACM
 

Computing Surveys 13, 3 (September 1981), 341-367
 

[6] T.A. Standish, Data Structure Techniques, Addison-Wesley, Reading,
 

MA, 1980
 

[7] H. Schorr and W.M. Waite, An Efficient Machine-Independent 

Procedure for Garbage Collection in Various List Structures, Comm. of 

the ACM 10,8 (August 1967), 501-506 



[8] G.E. Collins, A Method for Overlapping and Erasure of Lists, Comm. 

of the ACM3, 12 (DEC 1960), 655-657 

[9] S. Ballard and S. Shirron, The Design and Implementation of 

VAX/Smalltalk80, in Smalltalk-80, Bits of History, Words of Advice, G. 

Kransner(editor), Addison Wesley, 1983, 127-150 

[10] D. Knuth, The Art of Computer Programming, Volume 1, Addison 

Wesley, Reading, MA, 1973 

[11] Zdonik and Maierr, Readings in Object-Oriented Database Systems, 

302-304, 325-326, 273-278, Morgan Kaufmann 

[12] David Unger, Generation Scavenging : A Non-disruptive High 

Performance Storage Reclamation Algorithm, ACM Software Eng. 

Notes/SIGPLAN Notices Software Engineering Symposium on Practical 

Software Development Environments, Pittsburgh, PA, April 1984, 157-167 

[13] Margaret H. Butler, Persistent LISP: Storing Interobject References in 

a Database, PhD thesis , Report No. UCB/CSD 88/401 Nov. 1987 

[14] Peter B. Bishop, Computer Systems With a Very Large Address Space 

and Garbage Collection, MIT/LCS/TR-178 

[15] Elliot K. Kolodner, Atomic Incremental Garbage Collection and 

Recovery for a Large Stable Heap, MIT/LCS, Proceedings of the Fourth 

International Conference on Persistence Object Systems, Sept. 1990 

[16] David L. Detlefs, Position Paper: Concurrent, Atomic Garbage 

Collection, ECOOP/OPSLA Oct.1990 


