
,• .
BROWN UNIVERSITY

Department of Computer Science

Master's Thesis

CS-90-Ml

, 'Handling Uncertainties in Classifying Junctions"

by

Seungseok Hyun

.1

Handling Uncertainties in

Classifying Junctions

by

Seungseok Hyun

B.S., Korea University, 1988

Department of Computer Science

Brown University

Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in the

Department of Computer Science at Brown University

February, 1990

This thesis by Seungseok Hyun is accepted in its present form by the
Department of Computer Science as satisfying the thesis requirement for the
degree of Master of Science.

Date

Thomas L. Dean

Advisor

Handling Uncertainties in

Classifying Junctions of Corridors

Seungseok Hyun

February 20, 1990

Abstract

This paper describes some extensions to the Geographer Module of
Huey. Keeping track of and handling motion errors and incorporating
the uncertainty of a feature detector into the decision procedure are
explained. We also introduce a new set of geometric features and add
a new action for reducing positional errors. These extensions provide
efficiency and robustness to the Geographer Module.

o

Contents

1 Introduction 2

2 WHEREAMI Module 5

3 Feature Detector Module 8

4 Decision Model 13

5 Conclusion 18

6 Acknowledgment 20

7 Reference 20

A List of Constants 22

B List of Source Codes 23

List of Figures

1 Example of a Map . 3

2 Control Architecture of the Geographer Module 4

3 Positional Uncertainty Between Two Positions 7

4 List of Equivalent Classes of Junctions 9

5 Example of a Partial Result 10

6 List of Features 11

7 Extended Influence Diagram 13

1

1 Introduction

A robot working in the real world has to face many uncertainties. For ex
ample, its sensors are erroneous and sometimes misleading, and its effectors
are not accurate, therefore, its beliefs about the environment are not always
true. In order to survive in the real world, a robot must be able to handle
these uncertainties.

Our major concern is to devise methods to handle positional and sensory
uncertainties of the robot and to choose the best action under such uncertain
circumstances in a control system for a practical task. Huey is a real mobile
robot with sonars as its sensors and three motor driven wheels as its effec
tors. The Geographer Module of Huey is a module for exploring unknown
environments. This paper describes some of the components for this module.

The task of the Geographer Module is to build an indoor map consisting of
corridors and junctions of corridors. The map can be represented as a graph
whose arcs correspond to corridors, and vertices correspond to junctions. We
adopt the concept of a locally distinctive place (LDP henceforth) and regard
each junction as an LDP [7]. These-LDP's can be partitioned into equivalent
classes which are based on the geometric relationships (e.g. cross junctions,
T junctions, and L junctions) of the corridors which join at these LDP's.
Figure 1 shows an example of such a map.

The Corridor Following Module and the Junction Classifying Module are
two of the sub-modules of the Geographer Module. The Corridor Following
Module moves the robot from one junction to another, and the Junction Clas
sifying Module determines the equivalent class of a junction. Therefore, the
overall map building task will include some interleaved sequence of corridor
following and junction classifying tasks.

The corridor following task is done with a simple strategy which moves
Huey along the center line of a corridor, watching the sonar data for an
abrupt change which, presumably, indicates that Huey is in the vicinity of a
junction. After detecting such an abrupt change, Huey is positioned at the
entry position of the junction which is at the end of the traveled corridor.

As the Corridor Following Module finishes positioning Huey at the entry
position of a junction, the Junction Classifying module takes control over
Huey and tries to classify the junction into an equivalent class. The feature,

2

• II

• :LDP

MapAn Indoor Layout of a Building

Figure 1: Example of a Map

a geometric relationship between a wall and the entry position, provides a
clue for the classification. The junction classifying module employs feature
detectors which detect such a relationship by composite sensing and move
ment operations. The Junction Classification Module decides the equivalent
class of the junction by issuing appropriate feature detectors.

The task decomposition is roughly parallel to the control architecture of
the Geographer Module. Each module of the architecture is responsible for
a specific task, and a message-passing mechanism is used for the commu
nication between modules. The control architecture is shown in Figure 2.
The WHEREAMI(it reads "where am i") module keeps track of positions
and positional errors. The Low-Level Controller controls the mobile base of
Huey, and the Sonar Controller handles the sonar ring.

The previous version of the Geographer Module was implemented by
Chekaluk and Randazza [3, 10]. Although it worked quite well, there were
some points which could be improved:

•	 The system keeps the expected motion errors(expected positional er
rors) but does not use them.

3

-j-- 1\

~IJ~'''T"'' i

r----(--~~__ I I
Fe.lure Deledor

WHEREAMI I t
~ ILow-Level Controller Son.. Controller

Son.rRingRobotS....

t
--I

Communication by • Message Passing

Figure 2: Control Architecture of the Geographer Module

•	 The Junction Classifying Module assumes that the feature detectors
are always 100% correct.

•	 The system does not take advantage of any partial results from the
feature detectors.

•	 Positional errors keep growing, but the system has no method of re
ducing them.

In the following sections, we describe our approaches to improve the pre
vious version of Geographer Module. In section 2, we explain how to keep
track of positions and expected motion errors. Incorporating partial results
and positional uncertainties in the Feature Detector Module is explained in
section 3. Section 4 presents the decision model that chooses the best action
under uncertain circumstances in the Junction Classifying Module.

4

2 WHEREAMI Module

Huey's measurement of the distance translated or the angle rotated has some
unavoidable errors due to the limited precision of the motors and the shaft
encoders. It is common for the motors to coast while trying to stop, since
Huey is quite massive and has no brakes. It is also quite possible that Huey
might slide on a wet or waxed floor. Each single error may be small enough
to be ignored, but the accumulated error is significant. Therefore, we need
to keep track of these motion errors and to consider them in the decision
procedures of the Huey Geographer.

When Huey wants to move to a nearby position that it has visited before,
the relative coordinates of the previous position with respect to its current
position are required. There may be many such positions that Huey will
wish to re-visit later. Thus, it is necessary that Huey has a method to store
these positions and to retrieve relative coordinates between such positions
efficiently.

These requirements are handled by the WHEREAMI Module. It stores
motion errors and such positions that Huey may wish to re-visit later. This
module provides the relative relationships between any two positions in order
to meet the requirements. The WHEREAMI Module is based upon Smith
and Cheeseman's work on the representation and estimation of spatial un
certainty [13]. Their work offers a general method for estimating the nominal
relationship and expected error between two coordinate frames representing
the relative locations of objects. In our domain, the objects corresponds
to the positions Huey has visited before and Huey's current position. The
nominal relationship and expected error are determined by translations and
rotations of Huey. Since the robot moves from one position to another in a
single step, we can represent the relationships between positions using a list
structure where new positions are appended in a chronological order.

Smith and Cheeseman's work does not use an absolute coordinate system;
every position is the origin of its own frame of reference. As a result, there is
no difference between positions and frames of reference. The relationship be
tween positions(or frames) is represented by an approximate transformation
(AT henceforth) from one position(or frame) to another. An AT consists of
an estimated mean relation of one position relative to another and a covari

5

ance matrix that expresses the uncertainty of the estimate. An estimated
mean is a triple (X, Y, 0) where X and Yare the values of a Cartesian co
ordinate system which represent a movement between two positions, and 0
is the difference of the orientations between the final position and the initial
position. The covariance matrix C is a 3 x 3 matrix which represents the
covariances of X, Y and 0 :

al is the variance of i, and ai is the standard deviation of i, where i E
{x,y,O}. Pi,j is the correlation coefficient for i and j. For example, after
Huey moves 30 cm forward, the AT from the initial position and the final
position will consist of the mean relation (0,30,0) and the covariance matrix
determined by a simulation.

Every time Huey moves, the simulation generates a fixed number of ran
dom samples and computes covariances from the samples. We assume a
simple model of motion errors, and the simulation generates random samples
according to this model. The model assumes that the error of a translation is
proportional to the distance traveled, and the error can not exceed a certain
amount determined by the distance traveled. In the current implementation,
each simulation generates 50 random samples, and the model assumes that
a translational error lies within 3% of the distance translated and a rota
tional error within 1% of the degrees rotated. The model also assumes that
a translation(rotation) does not affect Huey's orientation(position) at all. In
the previous example, the simulator generates Xi, Yi, Oi, where a :::; i < 50,
Xi = 0, Yi = 30 + 0.03 x 30 x rnd(i), and Oi = 0.1 And the covariance
matrix is computed from these Xi, Yi, and Oi. Although this model does not
consider the translation speed, which might seem crucial in some cases, it
works well in our domain, simply because the Geographer Module only uses
a set of relatively slow speeds. If Huey were to travel at much a faster speed,
this model can be easily extended to accommodate faster translation speeds.
Rotation is treated in a similar way.

lrnd(i) is a function which generates a random number between -1 and 1.

6

Huey is placed here.

that Huey is placed within this
rectangular region.

Pdot (x,y,C) computes the probability that

\

P region (lx,lyoC) computes the probability

Figure 3: Positional Uncertainty Between Two Positions

In order to retrieve a relation between two arbitrary positions, we use
the compound operator and the inverse operator.2 The compound operator
compounds two AT's into one. If there are three positions L 1 , L 2 and L 3 ,

and we know both the AT's from L 1 to L 2 and from L 2 to L 3 , the compound
operator will produce the AT from L 1 to L 3 . In the case when the system
knows the AT from L 1 to L 2 , the inversed AT can be obtained by the
inverse operator. By applying appropriate sequence of compound and inverse
operators, any relationship between two positions can be calculated easily.

Positional uncertainties can be estimated by the covariance matrix of an
AT, assuming that the probability distribution of our knowledge of motions
is a multivariate (x, y, 0) Gaussian distribution. Figure 3 shows a positional
uncertainty between two positions, L 1 and L 2 , after Huey has moved from
L 1 to L 2 • AT1 is the approximate transformation for the movement. The
points of equal positional uncertainty form an ellipse which has the expected
position as its center. Using AT1, which consists of a mean triple (Xl, YI, (1)

and the 3 x 3 covariance matrix C, we can obtain the probability that Huey
is placed at the position which is (x, y) away from L 2 in the frame of reference

2The Smith and Cheeseman's paper contains the actual derivations of these
operators[13] .

7

of L1 as follows [13].

Pdot(X, y, C) =

1 1 [x2 2px,yxy y2]
----;:.===== exp - - + + - (1)
21rJu;u;(1 - PX,y)2 2(1 - P;,y) u; uxuy u; ,

u; Px,yUxUy PX,(}UXU(})
C = Px,yUxUy u; Py,(}UiU(}

Px,(}uxu(} py,(}Uyu(} U(}(

where P is the correlation coefficient for x and y, and Pdot(X, y, C) is a vari
ation of the bivariate Gaussian distribution. In our domain, the probability
that Huey is placed within a region offers a good estimate of the positional
certainty. The probability function Pregion(lx, ly, C) is written as

r.. !JL

Pregion(lx, ly, C) = 1~-!t i~-I.f Pdot(X, y, C)dydx (2)

This computes the probability that the robot lies within a rectangular region
whose center is L 2, and the length of whose x-axis side is lx, and the length of
whose y-axis side is ly in the frame of reference of L 1 • We chose a rectangular
region in the equation, because a positional certainty measurement by a
rectangular shaped region has a better correlation with the certainty of a
feature detector in our domain, since a rectangular shape is dominant (i.e.
corners, corridors.)

Equation 2 is computed using the rectangle rule [4]. In order to make
the computation fast, the step size of the current version is 2 em which may
be too big to provide an accurate integration result. We could get more
accurate integration result by using a smaller step size or other numerical
integration method, but it is not clear how much the accuracy of computing
this integration will affect the overall decision procedure.

Feature Detector Module

The Junction Classifying Module assumes that the number of equivalent
classes of junctions are limited to a typical indoor environment (e.g. build
ings.) The complete list of such junctions is shown in Figure 4. We numbered

8

3

••••••
21

{-
o

II·····
Ii······~	 ·...a..•I········•

43 5

6 l·····\ 7 8 •.···..····1~•.t .. '

A Vicinity of a Junction .: An Entry Position

Figure 4: List of Equivalent Classes of Junctions

each equivalent class for convenience and use the number when we refer to
it. For example, Class 0 is the equivalent class for a cross junction. In order
to classify a junction, the Junction Classifying Module examines the features
of the junction using the Feature Detector Module which reports whether a
certain feature exist or not.

In the previous version of the Feature Detector Module, features such
as walls, convex corners, and concave corners were recognized. A detector
for such features prunes the possible equivalent classes of a junction when

~	 the feature detector is totally successful in recognizing an expected feature.
But it does not take advantage of partial results that may occur from the
detector. For example, Figure 5 shows a situation where the robot failed to
recognize the top-right convex corner in a Class 3 junction. If we just accept
that there is no such corner, we can only eliminate Class 0 and Class 2 from
the possible equivalent classes of the junction. But if we interpret the partial
result as the indication that Wall 1 exists, we can then eliminate Class 1,
Class 4, Class 5, Class 6, and Class 7 from the possible equivalent classes,
making it more efficient.

9

L Wall I

Looked for Conv.. Corn"

I:	 Initial Entry Position

2:	 Wall I is detected here.

3:	 Huey failed to detect the convex
corner here.

Figure 5: Example of a Partial Result

Features of finer granularity such as a wall rather than a corner help
incorporate a partial result, and also the detectors for such features are much
simpler. We introduce six such features which are shown in Figure 6. They
are also numbered; we refer to the top-left wall as Feature O. A Class 1
junction has Feature 2, Feature 3, Feature 4, and Feature 5 according to
this numbering. This set of features does not contain all possible features
such as the wall between Feature 2 and Feature 3 in a Class 1 junction.
But we argue that existence(non-existence) of the wall can be determined by
non-existence(existence) of Feature 0 or Feature 1, and that such omission
does not seriously affect the efficiency of the junction classification procedure.
Also the similarity between the six features makes it simple to implement the
detectors. The Feature Detector Module has six detectors for each of these
features.

Randazza [10] devised and implemented a robust wall detection algorithm
which only assumes that the orientation to the target wall, the wall a detec
tor is looking for, is known beforehand. This assumption is a reasonable
one, because a feature detector is supposed to start at the entry position
of a junction. This algorithm exploits the spatial arrangement of the sonar
transducers in the sonar ring in order to detect a wall. The Feature Detector

10

4 5

4

(
5 •

Entry Position A Class 1 junction bas Feature 2, Feature 3,
Feature 4 and Feature S.

Figure 6: List of Features

Module adopts this algorithm in measuring the certainty that a wall exists.
We define a wall as a vertical planar surface which is longer than f. A feature
detector first moves Huey to the position where the wall detection algorithm
is expected to detect a target wall and then starts to traverse the target
wall, running the wall detection algorithm periodically. If the wall detection
algorithm reports that the target wall dose not exist, or that the distance
traversed so far is longer than f, the feature detector will stop traversing the
target wall and return to the entry position. The certainty that the target
wall exists is determined by a model which assumes that the certainty is
proportional to the distance traversed. Thus, the probability that the target
wall exists given the distance traversed is

d if d < f"l
Pwau(d) = (3)

{ 1 otherwise

where d is the distance traversed.

Equation 3 assumes that Huey starts a feature detector at the entry posi
tion of a target junction, the junction being classified, and that the detector
starts to traverse a target wall where the wall is expected to be detected.

11

But this assumption can not always hold, since the positional certainty may
decrease as Huey moves around. Experiments show that a feature detector
often fails to detect a target wall correctly if it starts at a position which
was far from the entry position. Therefore, we should consider the positional
certainty of the start position of a feature detector when we decide the cer
tainty that a target wall exists. For that purpose, we introduce the notion
of region of tolerance (RT henceforth). The feature detectors are guaranteed
to work properly if they start within an RT, and the entry position of a tar
get junction is the center of an RT. The size of an RT is represented by Tx

and Ty which are the length of the x-axis side and the length of the y-axis
side respectively. The actual numbers of these lengths were determined from
experiments.

Let the AT from an entry position to the start position of a feature
detector consist of a mean triple (x*, y*, 0*) and a covariance matrix C*. The
mean triple values are all zeros, because the feature detector starts at the
position which it believes to be the entry position, therefore, the probability
that Huey is placed within the RT when the feature detector starts is

(4)

where Pregion(Tx, Ty , C*) is from Equation 2.

We use c*, the positional certainty of a start position relative to an entry
position, to degrade the probability that a target wall exists. Since all the
features are walls in reality, we will use the term target feature instead of
target wall. The degraded probability that a target feature exists is then

Pjeature(d, c*) = PWal/(d) +]{1(0.5 - Pwal/(d))(1 - c*), (5)

o::;]{l ::; 1

where]{l is a constant which denotes the degree of degrading and is adjusted
by experiments, and PWal/(d) is from Equation 3. Equation 5 offers a simple
model of a feature detection. For example, in the case that d is 50 cm
and c* is 0.9, the probability that a target feature exists is Pjeature(50, 0.9),
and the probability that it does not exist is 1 - Pjeature(50, 0.9). A feature
detector uses this model in deciding the certainty of its result. The result of
a feature detector has the form of an ordered pair (a, E), where a E {0,1}
and € E 2R such that 0 ::; € ::; 1. a = 1 means that a target feature exists,

12

4

Figure 7: Extended Influence Diagram

and (:; is the certainty of this answer. In the previous example, the result will
be (1, Pjeature(50, 0.9)) or (0,1 - Pjeature(50, 0.9)), and both results have the
same meaning and effect.

Decision Model

Among available feature detectors, the Junction Classifying module selects
the next detector and assimilates the result of the detection. Since each
feature detection is a relatively expensive operation which contains many
movements and sonar readings, the Junction Classifying Module optimizes
the sequence of detections in order to minimize the number of operations,
using the technique by Bayesian decision theory[2]. The influence diagram
technique is used to represent the model of the detector selection and result
assimilation[12, 11]. We have extended the influence diagram used in the
previous version of the Junction Classifying Module in order to deal with
the uncertainty of the result of a feature detector. The extended influence
diagram is shown in Figure 7.

The node H represents the hypothesis about the equivalent class of a

13

target junction. H = 0 means that the target junction is a Class 0 junction.
The nodes Fi represent whether a Feature i exists (i.e. Fi = 1) or not (i.e.
Fi = 0). We added the nodes D i to the previous influence diagram which
represent the result of the Feature i detection. D i = a means that the Feature
i detector has returned the result (a, t). The decision node P represents the
decision to select the next feature detector, and the value node V represents
the utility of such a decision.

The influence diagram has three prior distributions, P(H), P(FiIH), and
P(DilFi)' P(H = i) is the beliefthat the target junction is a Class i junction.
The conditional probability distribution P(FiIH = j) gives the probability
of the existence of Feature i in a Class j junction using the definitions of the
feature and the equivalent class. For example, P(F1 = 11H = 0) = 1, and
P(F1 = 0IH = 0) = 0.3

The certainty of a feature detection is represented by the conditional
distribution P(DiIFi). P(Di = alFi = a) is the probability that the Feature
i detection is correct, and P(Di = alFi = ...,a) is the probability that the
detection is wrong.4 Given that the Feature i detection returns (a, t), the
distribution is

P(Di = a\Fi = a) =t
P(Di = alFi = ...,a) =l-t

Since the conditional distribution P(DiIFi) can be determined only after the
feature detector has finished the detection for Feature i, we add the influence
diagram dynamically the node Di and the arc from Fi to Di. Figure 7 shows
the situation where it has finished two feature detections for Feature 0 and
Feature i.

The hypothesis about the equivalent class of a target junction has the
initial distribution P(H = i) = 11"1' where 0 :::; i < IHI.5 A new result of a
feature detection is assimilated by updating the distribution P(H) to P'(H)

3See Figure 4 and Figure 6.

4-,0 = 1, and -,1 = o.

51HI is the size of the hypothesis space, i.e. 9 in our domain.

14

as follows.

P'(H = i) = P(H = ilDj = a)

_ P(Di=aIH=i)P(H=i)

- P(Dj=a)

_ P(H=i) I:~=O[P(Dj=a\Fj=j)P(Fj=jIH=i)] (6)
- I:l~lo 1 I:~=O[P(Dj=aIFj=j)P(Fj=jIH=h)P(H=h)]

_ P(H=i)[e.P(Fj=aIH=i)+(l-e)P(Fj=--.aIH=i)]

- I:l~~-l [e.P(Fj=aIH=h)P(H=h)+(l-e)P(Fj=--.aIH=h)P(H=h)]

where the result of the Feature j detection is (a, E), and 0 ~ i < IHI. P'(H)
is the new belief about the equivalent class of a target junction after the
detection of Feature j.

We use Equation 6 to calculate the posterior distribution of the hypothesis
instead of the inference engine for influence diagrams[3, 11], because we can
predict which kinds of queries about the diagram are necessary, and such
queries are fixed. Such direct computation saves running time and space of
the Junction Classifying Module.

In order to facilitate the analysis of the utility of a feature detector, we
rephrase Equation 6 by introducing a probability function Ph(i,j, 1, c*). This
function computes the same posterior distribution as P'(H = i), given that
the feature detector for Feature j has traversed the target wall 1cm, and that
the positional certainty of the start position relative to the entry position was
c* .

P(H=i) [Pj eature(l,c")P(Fj =l\H=i)+(l-Pj eature (l,c"))P(Fj=oIH=i)] (7)
I:l~~ 1 [Pjeature(I,c")P(Fj=lIH=h)P(H=h)+(l-Pjeature(I,c"))P(Fj=OIH=h)P(H=h)]

Pjeature(l, c*) is from Equation 5, and c* was calculated using Equation 4.
Ph(i,j, 1, c*) provides a microscopic view on how the posterior distribution is
determined, which is necessary for the analysis.

The feature detector selection requires the utility of each feature detector;
the detector which has the best utility will be selected. A major component

15

of the utility is the discrimination function. This computes the expectation
on how much a feature detector changes the hypothesis about the equivalent
class of a target junction[2, 3].

The discrimination function measures the difference between the current
hypothesis and the expected posterior hypothesis. Let c* be the positional
certainty of the start position relative to the entry position from Equation 4.
Then, the discrimination function of the Feature i detector is

IHI-l
Discrim(i,c*)= L P(d=l) L IPh(h,i,l,c*)-P(H=h)1 (8)

le{o,l} h=O

where P(d) is the distribution which represents the expectation on the dis
tance traversed in the Feature i detection. We assume that P(d = £) =
P(Fi = 1), and P(d = 0) = P(Fi = 0) in the current implementation. The
value of the Discrim(i, c*) is the expectation on how much the Feature i
detector will alter the hypothesis. If we consider the cost of the Feature i
detector, the overall utility of the Feature i detector will be

Udetector (i, c*) = J{2 x Discrim(i, c*) - J{3 X Cdetector (i) (9)

Cdetector (i) is the cost function which is based upon the time consumed by
the Feature i detector. J{2 and J{3 are constants used for weighting and were
adjusted through experiments. From Equation 9, the Feature d* detector is
the best detector which is determined as follows.

d* = max Udetector(d, c*) (10)
deD .

where D is the set of the features which have not yet been examined.

It is possible to lose the entry position of a target junction, as Huey con
tinues to explore features, hence, we sometimes need a method for reducing
the positional uncertainty. We adopt a new action called reacquire action
which repeats the operations of the last stage of a corridor following and
makes Huey reacquire the entry position of the target junction. The Junc
tion Classifying Module decides when to execute the reacquire action. This
decision is also based upon the utility of the reacquire action.

We can derive the utility of the reacquire action using the same idea
used for the utility of a feature detector. The reacquire action does not

16

change the hypothesis about the equivalent class of a target junction. The
positional certainty of the entry position will be reset to 1 as a side effect.
From Equation 7, Equation 8, and Equation 9, the higher positional certainty
yields better discrimination. Therefore, we use the difference between the
discrimination of the best detector after the reacquire action and that of
the best detector alone as a major component of the utility of the reacquire
action. The difference is

Diff(d*, c*) = Discrim(d* ,1) - Discrim(d*, c*)

Then the utility of the reacquire action is

Ureacquire(d*, c*) = J{4 x Diff(d*, c*) - J{s x Creacquire (11)

where Creacquire is a constant which is the cost of the reacquire action based
upon time consumed by the action. J{4 and J{s are arbitrary constants for
weighting.

We have derived the utilities of the feature detector and the reacquire
action. The Junction Classifying Module chooses the best action using these
utilities. A list of available actions for the Junction Classifying Module in
cludes the feature detectors not yet invoked, the reacquire action, and the
quitting action which ends the junction classification task and reports the
result to the Geographer Module Module. The Junction Classifying Module
runs a simple decision algorithm as follows:

1.	 If the set of available feature detectors is empty, quit with reporting i
such that P(H = i) ~ P(H = j) where 0 ~ i < IHI , 0 ~ j < IHI, and
i # j.

2.	 If there exists i such that P(H = i) > b where 0 ~ i < IHI, quit with
reporting i.

3. Calculate	 c* which is the positional certainty of the current position
relative to the entry position-The current position will be the start
position of a feature detector.

4. Select the best Feature d* detector according to Equation 10.

17

5

5.	 If Udetector(d*,c*) > Ureacquire(d*,c*), invoke the Feature d* detector,
otherwise execute the reacquire action first and then invoke the Feature
d* detector.

The Junction Classifying Module repeats the above algorithm until it ex
hausts the list of applicable feature detectors, or until a hypothesis for an
equivalent class of the target junction is found with high probability.

Conclusion

We have described the extensions to the previous version of Huey Geogra
pher. The extensions were keeping track of motion errors and incorporating
such errors into a feature detector, extending the influence diagram to han
dle the uncertainty of a feature detector, introducing a new set of features
which are finer in granularity, and adding new action for reducing positional
uncertainty. All the extensions were implemented and tested on the robot
Huey.6

Some experiments have demonstrated that the current version of Huey
Geographer is more efficient than the previous version in the sense that it
requires less number of wall traversals. For example, in a Class 3 junction,
the previous version requires wall traversals which amount to six feature
detections in the current version. The current version classifies a Class 3
junction only after three feature detections. Due to the limited length of the
power line, we could not test exhaustively all the equivalent classes in our
domain. However, the finer granularity of the new features helps to reduce
the number of wall traversals, because the feature detectors of the previous
'version examine some wall segments (i.e. the features in the current version)
in duplicate and can not recognize them in detection failures.

Incorporating motion errors and handling the uncertainty of feature de
tectors help avoid premature commitment to the equivalent class of a target
junction based on uncertain feature detections. Adding the reacquire action
offers a method to keep the positional uncertainty under control, making the
Junction Classifying Module more robust.

6The Appendix has the list of source codes.

18

The weakest point of the current version of the Geographer Module is
the assumption that the domain has a limited number of equivalent classes
of junctions. If Huey operates in a new environment which has equivalent
classes not included in Figure 4, the Junction Classifying Module should
be extended to include the new equivalent classes and features. The recent
work by Leonard and Durrant-Whyte[9] could be applied to eliminate this
assumption. Their work offers a method to build a map which is just a list of
target locations, where targets are geometric features such as corners, planes,
and cylinders. Their system keeps the interpretations about the targets and
reduces them as a robot moves around and acquires more sonar data from
its environments. We could devise some strategies of motion and sensing to
prune the interpretations quickly and assign utilities to such strategies. The
technique described in Section 4 could be used for choosing the best strategy.
A junction and a corridor could be represented by the targets around it.

The obvious next step. of the Geographer project is building an actual
map[8]. A map shown in the Figure 1 can be built using the current Geogra
pher Module, if we had a method to identify a previously visited LDP. Adding
other kinds of sensors such as a camera would facilitate such an identifica
tion, but it is still interesting to build a map using only sonar sensors. In the
case that the equivalent classes in Figure 4 contains all the equivalent classes
of an environment, and that junctions of an equivalent class are not near to
each other, it seems likely that the system can identify a previously visited
LDP correctly using the result of the junction classification, the positional
information from dead-reckoning, and the map built so far. It would also
be interesting to analyze the identification certainty using the certainty of a
junction classification, the motion error, and the information about the envi
ronment such as the distribution of equivalent classes, the average distances
between two junctions of an equivalent class[l].

Great flexibility can be obtained if the feature detector can be interrupted
at any point during its execution[6]. Then the time dependent planning tech
nique can be applied to the Junction Classifying Module which optimizes the
classification procedure according to the time constraint set by a module of
higher level task[5]. The feature detectors should be redesigned so that it
will be able to provide the probability of the existence of a feature at any
time, and that new sensory data will be assimilated into the probability. It is
not clear how much the time-dependent technique will increase the efficiency

19

of the Junction Classifying Module, but it is certain that the Junction Clas
sifying Module with time constraint will facilitate the decision procedure of
the module which allocates time to exploration and execution of a task.

6 Acknowledgment

First of all, I would like to thank Tom Dean for his advice throughout this
research. I also like to thank the former "Control Architecture Team" mem
bers, Rob Chekaluk and Meg Randazza, for offering the basis of this research.
Many thanks go to Moi Lejter for helping the implementation and experi
ments. Finally, I would like to thank Jin Joo Lee for her comments on this
paper.

7 Reference

1.	 Basye, Kenneth and Dean, Thomas and Vitter, Jeffrey Scott, "Coping
with Uncertainty in Map Learning", Proceedings IleAl 11, Detroit,
Michigan, pp. 663-668, IJCAI, 1989.

2.	 Cameron, Alec and Durrant-Whyte, Hugh, "A Bayesian Approach to
Optimal Sensor Placement", Technical Report, Department of Engi
neering Science, University of Oxford, October 1988.

3.	 Chekaluk, Robert A., "Using Influence Diagrams in Recognizing Locally
Distinctive Places", M.Sc. Thesis, Department of Computer Science,
Brown University, 1989.

4.	 Conte, Samuel D. and Boor, Carl de, Elementary Numerical Analysis:
An Algorithmic Approach, 3rd Ed., McGraw-Hill, Inc., 1980.

5.	 Dean, Thomas and Boddy, Mark, "An Analysis of Time-Dependent
Planning", Proceedings AAAI-88, pp. 49-54, AAAI, 1988.

6.	 Dean, Thomas, "Decision-Theoretic Control of Inference for Time
Critical Applications", Technical Report No. CS-89-44, Department
of Computer Science, Brown University, November 1989.

20

7.	 Kuipers, Benjamin J., "Modeling Spatial Knowledge", Cognitive Sci
ence, 2: pp. 129-153, 1978.

8.	 Kuipers, Benjamin J. and Yung-Tai Byun, "A Robust, qualitative
method for robot spatial reasoning", Proceedings AAAI-88, pp. 774
779, AAAI, 1988.

9.	 Leonard, John J. and Durrant-Whyte, Hugh F., "A Unified Approach
to Mobile-Robot Navigation", Technical Report, Department of Engi
neering Science, University of Oxford, September 1989.

10. Randazza, Margaret J., "The Feature Recognition Module of the LDP
System for the Robot Huey", M.Sc. Thesis, Department of Computer
Science, Brown University, 1989.

11.	 Rege, Ashutosh and Agogino, Alice M., "Topological Framework for
Representing and Solving Probabilistic Inference Problems in Expert
Systems", IEEE Transactions on Systems, Man, and Cybernetics, Vol.
18, No. 3, May/June 1988.

)

12.	 Shachter, Ross D., "Evaluating Influence Diagrams", Operations Re
search, Vol. 34, No.6 November-December 1986.

13.	 Smith, Randall C. and Cheeseman, Peter, "On the Representation
and Estimation of Spatial Uncertainty", The International Journal of
Robotics Research, Vol. 5, No.4, pp. 56-68, Winter 1986.

21

A List of Constants

The current implementation has some constants which were determined from
experiments and intuitions. For those who might want to extend or just
understand the current version of the Geographer Module, we give the values
of all the constants used in the current version as follows:

• £ in Equation 3 is 60 em.

• Tx in Equation 4 is 60 em.

• T y in Equation 4 is	 40 em.

• K 1 in Equation 5 is 1.

• K 2 in Equation 9 is 1.

• K3 in Equation 9 is 0.1.
)
j

•	 Cdetector(i) in Equation 9 is 60, where 0 ~ i ~ 5. We assume that all
detectors consume same amount of time.

• K4 in Equation 11	 is 2.

• Ks in Equation 11	 is 0.1.

• Crequire in Equation 11 is 40.

• 6 in the decision algorithm is 0.75.

22

B List of Source Codes

23

/*
CFMinterface.h*

*
* This file is the header file for interfacing with Corridor Follower
* Module.
*/

/* type for request and	 reply messages */

typedef struct {
int typei
int returnMsgi

CFMmsgi

/* type numbers for the	 type field */

#define typeCFMcorridor 1
#define typeCFMreacquire 2

/* type numbers for the	 returnMsg */

#define CFM OPEN 101 /* corridor following successful */
#define CFM DEADEND 102 /* meets a dead end */
#define CFM FAILED 103 /* failed due to ??? */
#define CFM LOST 104 /* lost ??? */

/* interface

CFMfollow

ingoing type

outgoing: type, returnMsg

returnMsg is CFM OPEN	 The robot found a new LDP. The robot is at
an entrance of the new LDP.
Everything is normal.

returnMsg is CFM DEADEND	 The robot met a deadend while traversing a
hallway. The robot returned to the
entrance of the initial LDP with the opposite
orientation to the initial one.

returnMsg is CFM FAILED	 Some obstacles were playing too near to
the robot while the robot was traversing a
hallway. the robot gave up going on and
returned to the entrance of the initial
LDP with the opposite orientation to
the initial one.

returnMsg is CFM LOST	 The robot doesn't know what to do, the robot
is in a hallway, got lost its position.
This is the worst case.

*/

#include <stdio.h>

#include "/pro/ai/robot/software/ipc/src/ipc.h"

#include "/pro/ai/robot/software/misc/src/error.h"

#include "CFMinterface.h"

#include <setjmp.h>

/* CFM.c

*
* main program of CFM module

*
* author Seungseok Hyun

* date Aug. 21, 1989
*/

/* main
*
* main gets requests by the ipc message passing mechanism,

* calls procedures in corridor.c according to the requests, and

* replies.

*

*/

jmp_buf errorHandler;

clientId WAI_id, LLC_id, SC_id;

main ()

{

clientId senderId, myOwnId;

CFMmsg message;

int request Length;

myOwnId = NSregisterSelf("CFM", 10);

while ((WAI_id = NSgetClient ("WAI"» == nullClient)

sleep "1) ;

while ((LLC_id = NSgetClient ("LLC"». nullClient)

sleep(l);

while ((SC_id = NSgetClient ("SC"» nullClient)

sleep(l);

/* This program never halts. */

while (1)

requestLength sizeof (CFMmsg) ;

do
senderId = IPCrecvMessage(&message, &requestLength, 5);

while (senderId == nullClient)i

switch (message. type) {
case typeCFMcorridor:

message.returnMsg = CFMcorridor();
IPCsendMessage(&message, sizeof(CFMmsg), senderId);
break;

case typeCFMreacquire:
message.returnMsg = CFMreacquire()i
IPCsendMessage(&message, sizeof(CFMmsg), senderId);
break;

default:
fprintf(stderr,"*** CFM got wrong request.\n");

- -

- -

- -

- -

- -
- -

- -

#define TRUE 1
tdefine FALSE 0

,	 tdefine NOT KNOWN -9991
#define DISTANCE FOR FIRST MOVEMENT 8 /* 8 em */
#define CENTERING_ERROR 4 /* 4 em */

#define TRAVELING SPEED 11 /* 11 em/sec */

#define HALF TRAVELING SPEED 5 /* 5 em/sec */

#define SMALL SAFTY RADIUS 30 /* 30 em */
#define LARGE SAFTY RADIUS 40 /* 40 em */

#define MAX DISTANCE TO WALL 100 /* 100 em */

#define CFM TURN SPEED 15 /* 15 degrees/sec */
#define CFM_S LOW_TURN_SP EED 10 /* 10 degrees/sec */
#define CFM VERY SLOW TURN SPEED 5 /* 5 degrees/sec */

#define CFM SLOW SPEED	 5 /* 5 em/sec */
#define CFM VERY SLOW SPEED 3 /* 3 em/sec */

#define CFM NUMBER OF RETRY 2 /* 2 times */

#define CFM ENTERING BACK 40 /* 40 em */
#define CFM ENTERING BACKUP 15 /* 15 em */

#define CFM MOVE PARALLEL 30

#define CFM MOVE RIGHTWARD 31

#define CFM MOVE LEFTWARD 32

#define CFM ADJUST DEGREE	 24 /* 24 degrees */
#define CFM ERROR COMP	 2 /* 2 degrees */

#define CFM MOVING BACK	 30 /* 30 em */

#include "CFM.h"

#include "/pro/ai/robot/software/huey/frm/src/sonar.h"

#include "/pro/ai/robot/software/huey/frm/src/frm.h"

/* CFMcenter ()

*
*
*
*
*
*

This functions places the robot at the center of a hallway.

author Seungseok Hyun
Date September 15, 1989

* Credits
*
*
*
*
*
*
*
*
*
*
*

algorithm
author : Jin Joo Lee
date September, 1989

functions
SONARget_average_data(), SONARorient-parallel(), rotate_robot(),
translate_robot()

author Margaret J. Randazza

date : September, 1989

*/

CFMcenter ()
(

short ring[NUM_SONARS];

int i, smallest, smallestIndex;

int shorterSide;

/* check which side is nearer to the robot */

SONARget_average_data(ring);

smallest = SONAR_RANGE + 1;

for (i ~ 0; i <= 15; i++)

if (ring[i] < smallest) {
smallest = ring[i];
smallest Index

}
= i;

if (smallestIndex >= FRONT SONAR && smallest Index <= BACK_SONAR)
shorterSide RIGHT;

else
shorterSide LEFT;

/* make the robot parallel to the nearer side */

SONARorient-parallel(shorterSide);

/* make the robot to move to the center of a hall way */

rotate_robot (-90, CFM_TURN SPEED);
do{

SONARget_average_data(ring);

translate_robot (ring [FRONT_SONAR] - ring[BACK SONAR],

CFM_VERY_SLOW_SPEED);
} while (abs(ring[FRONT_SONAR] - ring[BACK_SONAR]) > CENTERING_ERROR);
rotate_robot (90, CFM_TURN_SPEED);

I

#include "CFM.h"
#include "CFMinterface.h"

.. #include "/pro/ai/robot/software/huey/frm/src/ sonar. h"
#include "/pro/ai/robot/software/huey/frm/src/frm.h"

/* CFMcorridor ()

*
* This function moves the robot to an entrance of a LDP in front of the
* robot.

*

* author Seungseok Hyun

* Date September 15, 1989

*

* Credits

*

*	 algorithm

author : Jin Joo Lee
*
* date september, 1989

*

functions*

* start_robot translation(), stop robot translation()

* SONARget_average_date()

*	 author Margaret J. Randazza

* date : September, 1989

*

*/

int CFMcorridor()
, {

short ring[NUM SONARS]:

int result, ternpResult:

int numberOfFailure, tempNumberOfFailure:

extern int movingDirection:

numberOfFailure = 0:

/* place the robot at the center of a hallway */

CFMcenter():

/* traverse	 a hallway */

result = CFMfollow():

if (result != CFM_OPEN) {
translate_robot (-CFM_MOVING_BACK, HALF_TRAVELING_SPEED):
CFMcenter():
tempResult = CFMfollow():
while ((tempResult != CFM_OPEN) &&

numberOfFailure < CFM NUMBER_OF_RETRY) {
numberOfFailure++:
translate_robot (-CFM_MOVING_BACK, HALF TRAVELING_SPEED):
CFMcenter():
tempResult = CFMfollow():

}

if (tempResult == CFM_OPEN)

result = CFM OPEN:

/* back to starting LDP */

- -

- -

if (result == CFM DEADEND) (
rotate_robot (180, CFM_SLOW_TURN_SPEED);
translate_robot (CFM_MOVING_BACK, HALF_TRAVELING_SPEED);
CFMcenter () ;
tempResult = CFMfollow();
tempNumberOfFailure = 0;
while (tempResult != CFM OPEN &&

tempNumberOfFailure <= CFM_NUMBER_OF_RETRY) (

tempNumberOfFailure++;

translate_robot (-CFM_MOVING_BACK, HALF TRAVELING_SPEED);

CFMcenter()j

tempResult = CFMfollow();

}

if (tempResult == CFM_DEADEND) (

return(CFM_LOST)j

/* place the robot at an appropriate position for mjr's module */

start robot translation(-HALF TRAVELING SPEED);

switch (mov"ingDirection) {-

case CFM MOVE PARALLEL:

do {

SONARget average data(ring)j

} while «ring[3] > MAx DIST TO WALL &&

ring[4] > MAX=DI STANCE_TO_WALL) II

(ring[4] > MAX_DIST_TO_WALL &&

ring[5] > MAX_DISTANCE_TO_WALL) II

(ring[ll] > MAX_DIST_TO_WALL &&

ring[12] > MAX DISTANCE TO WALL) I I

(ring[12] > MAX-DIST TO WALL &&

ring[13] > MAX=DISTANCE_TO_WALL));

break;

case CFM MOVE RIGHTWARD:

do {

SONARget average data(ring);

} while «ring[2] > MAx DIST TO WALL &&

ring[3] > MAX=DISTANCE_TO_WALL) I I

(ring[3] > MAX DIST TO WALL &&

ring[4] > MAX-DISTANCE TO WALL) I I

(ring[lO] > MAX DIST TO-WALL &&

ring[ll] > MAX-DISTANCE TO WALL) I I

(ring[ll] > MAX=DIST_TO_WALL &&

ring[12] > MAX_DISTANCE_TO_WALL));

break;

case CFM MOVE LEFTWARD:

do (

SONARget average data(ring);

} while «ring[4] > MAx DIST TO WALL &&

ring[5] > MAX=DISTANCE_TO_WALL) II

(ring[5] > MAX DIST TO WALL &&

ring[6] > MAX=DISTANCE_TO_WALL) I I

(ring[12] > MAX_DIST_TO_WALL &&

ring[13] > MAX DISTANCE TO WALL) I I

(ring[13] > MAX=DIST_TO_WALL &&

ring[14] > MAX_DISTANCE_TO_WALL));

break;

}

stop_robot_translation();

switch (movingDirection) {

case CFM MOVE RIGHTWARD:
rotate_robot (-CFM_ADJUST_DEGREE, CFM_SLOW_TURN_SPEED)j
break;

- -

- -

case CFM MOVE LEFTWARD:
rotate_robot (CFM_ADJUST_DEGREE, CFM_SLOW_TURN_SPEED);
break;

translate_robot (-CFM_ENTERING_BACK+CFM_ENTERING_BACKUP ,
HALF TRAVELING SPEED);

/* center the robot *7 -

CFMcenter();

return(result);

int CFMreacquire()
(

short ring[NUM SONARS];

int result;

extern int movingDirection;

/* move backward */

translate_robot (-CFM_ENTERING BACK, TRAVELING_SPEED);

/* traverse a hallway */

result = CFMfollow() ;

/* place the robot at an appropriate position for mjr's module */

start robot translation(-HALF TRAVELING SPEED);
switch (movlngDirection) {-

case CFM MOVE PARALLEL:
do (

SONARget_average_data(ring);
~} while «ring [3] > MAX_DIST_TO_WALL &&

ring[4] > MAX DISTANCE TO WALL) I I
(ring[4] > MAX=DIST_TO_WALL &&
ring[5] > MAX_DISTANCE_TO_WALL) II

(ring[ll] > MAX DIST TO WALL &&
ring[12] > MAX=DISTANCE_TO_WALL) I I

(ring[12] > MAX_DIST_TO_WALL &&
ring[13] > MAX_DISTANCE_TO_WALL));

break;
case CFM MOVE RIGHTWARD:

do (
SONARget_average_data(ring);

} while «ring[2] > MAX_DIST_TO_WALL &&
ring[3] > MAX DISTANCE TO WALL) I I

(ring[3] > MAX=DIST_TO_WALL &&
ring [4] > MAX_DISTANCE_TO_WALL) I I

(ring[lO] > MAX_DIST_TO_WALL &&
ring[l:l.] > MAX_DISTANCE_TO_WALL) II

(ring[ll] > MAX_DIST_TO_WALL &&
ring[12] > MAX_DISTANCE_TO_WALL));

break;
case CFM MOVE LEFTWARD:

do (
SONARget_average_data(ring);

} while «ring[4] > MAX_DIST_TO_WALL &&
ring[5] > MAX DISTANCE TO WALL) I I

(ring [5] > MAX=DIST_TO_WALL &&
ring[6] > MAX DISTANCE TO WALL) I I

(ring[12] > MAX DIST TO-WALL &&

ring[13] > MAX_DI STANCE_TO_WALL) I I
(ring[13] > MAX_DIST~TO_WALL &&
ring[14] > MAX_DISTANCE_TO_WALL»;

break;

}

stop robot translation();

switch (mo~ingDirection) {

case CFM_MOVE_RIGHTWARD:
rotate_robot(-CFM_ADJUST_DEGREE, CFM SLOW_TURN_SPEED);
break;

case CFM_MOVE_LEFTWARD:
rotate_robot(CFM_ADJUST_DEGREE, CFM_SLOW_TURN_SPEED);
break;

translate_robot (-CFM_ENTERING_BACK+CFM_ENTERING_BACKUP ,
HALF_TRAVELING_SPEED);

/* center the robot */

CFMcenter();
return(result);

#include "CFM.h"

#include "CFMinterface.h"

,#include "/pro/ai/robot/ software/huey/frm/src/ sonar. h"
#include "/pro/ai/robot/software/huey/frm/src/frm.h"
#include <stdio.h>

/ * CFMfollow ()

*
*
*
*
*
*
*

This functions moves the robot along a hallway until the robot detects
an opening of the walls of the hallway, or the hallway is blocked.

author Seungseok Hyun

date October 12, 1989

* Credits

*
*
*
*
*
*
*
*
*
*
*

algorithm
author : Jin Joo Lee
date September, 1989

functions
start_robot_translation(), stop_robot_translation()
SONARget_average_data()

author Margaret J. Randazza

date : September, 1989

*/

int movingDirection;

. int CFMfollow ()
{

short ring[NUM_SONARS];
int i, smallest, smallestSonar;
int smaLlestLeft, smallestRight;

while (1) {

SONARget_average_data(ring);

/* check if the hallway is blocked. */

switch (movingDirection) {
case CFM MOVE PARALLEL:

if (~ing[15] < LARGE SAFTY_RADIUS I I
ring[O] < LARGE_SAFTY_RADIUS I I
ring[1] < LARGE_SAFTY_RADIUS) {

stop_robot_translation();

fprintf(stderr,"CFM_DEADEND\n");

return(CFM_DEADEND);
}
break;

case CFM MOVE RIGHTWARD:
if (~ing[14] < LARGE_SAFTY_RADIUS I I

ring[15] < LARGE_SAFTY RADIUS II
ring[O] < LARGE_SAFTY_RADIUS) {

stop_robot_translation();
fprintf (stderr, "CFM_DEADEND\n") ;

return(CFM_DEADEND);
}

break;
case CFM MOVE LEFTWARD:

if (~ing (0] < LARGE_SAFTY_RADIUS II
ring[l] < LARGE_SAFTY_RADIUS II
ring[2] < LARGE SAFTY RADIUS) {

stop robot translation();
fprintf (stderr, "CFM_DEADEND\n"); -

return(CFM_DEADEND);
}
break;

/* check if there's an opening to a side */

switch (movingDirection) {
case CFM MOVE PARALLEL:

if «(ring[3] > MAX DIST TO WALL &&
ring [4] > MAX:=DISTANCE_TO_WALL) I I

(ring[4] > MAX_DIST_TO_WALL &&
ring[S] > MAX_DISTANCE_TO_WALL) I I

(ring[ll] > MAX_DIST_TO_WALL &&
ring[12] > MAX_DISTANCE_TO_WALL) I I

(ring[12] > MAX DIST TO WALL &&
ring[13] > MAX:=DISTANCE_TO_WALL))

stop_robot_translation();
return(CFM_OPEN);

}

break;
case CFM MOVE RIGHTWARD:

if «(ring[2] > MAX_DIST TO_WALL &&
ring[3] > MAX_DI STANCE_TO_WALL) I I

(ring[3] > MAX_DIST_TO_WALL &&
ring[4] > MAX_DISTANCE_TO_WALL) I I

(ring[lO] > MAX_DIST_TO_WALL &&
ring [11] > MAX_DISTANCE_TO_WALL) II

(ring[ll] > MAX DIST TO WALL &&
ring[12] > MAX_DISTANCE_TO WALL))

stop_robot_translation();
return(CFM_OPEN);

}

break;
case CFM MOVE LEFTWARD:

if «(ring[4] > MAX_DIST_TO_WALL &&
ring[S] > MAX_DISTANCE_TO_WALL) I I

(ring[S] > MAX_DIST_TO_WALL &&
ring[6] > MAX_DIS TANCE_TO_WALL) 1'1

(ring[12] > MAX_DIST_TO_WALL && ,
ring[13] > MAX_DI STANCE_TO_WALL) II

(ring[13] > MAX DIST TO WALL &&
ring[14] > MAX_DISTANCE_TO WALL))

stop_robot_translation();
return(CFM_OPEN);

}

break;

/* check if the robot is too near to walls */

switch (movingDirection) {
case CFM_MOVE_PARALLEL:

smallestLeft = SmallestOfThree(ring[ll], ring[12],
ring[13]);

- -

smallestRight = SmallestOfThree(ring[3], ring[4], ring[S]);
if (abs(smallestLeft - smallestRight) > 7*CENTERING_ERROR) (

stop robot translation();
if (smallestLeft > smallestRight) (

movingDirection = CFM_MOVE_LEFTWARD;
rotate_robot (-CFM_ADJUST_DEGREE,

CFM_SLOW_TURN_SPEED);
}
else (

movingDirection = CFM_MOVE_RIGHTWARD;
rotate_robot (CFM_ADJUST_DEGREE,

CFM_SLOW_TURN_SPEED) ;
}

start robot_translation(TRAVELING_SPEED);
}

break;
case CFM MOVE RIGHTWARD:

smallestLeft = SmallestOfThree(ring[10], ring[ll],
ring[12]) ;

smallestRight = SmallestOfThree(ring[2], ring[3], ring[4]);
if (smallestLeft > smallestRight) (

stop_robot_translation();

movingDirection = CFM_MOVE_PARALLEL;

rotate_robot(-(CFM_ADJUST_DEGREE - CFM_ERROR COMP),

CFM SLOW TURN SPEED);
start_robot_translation(TRAVELING_SPEED);

}

break;
case CFM MOVE LEFTWARD:

smallestLeft = SmallestOfThree(ring[12], ring[13],
ring [14]) ;

smallestRight = SmallestOfThree(ring[4], ring[S], ring[6]);
if (smallestLeft < smallestRight) {

stop_robot_translation();

movingDirection = CFM_MOVE_PARALLEL;

rotate_robot(CFM_ADJUST_DEGREE - CFM_ERROR COMP,

CFM SLOW TURN SPEED);
start_robot_translation(TRAVELING_SPEED);

}

break;

int SmallestOfThree(i,j,k)

int i,j,k;

{

if (i < j)

if (i < k) return(i);

else return (k) ;

else

if (j < k) return(j);

else return (k) ;

/* FDMinterface.h

*
*
*
*

header file for the interface with Feature Detection Module

*/

/* message types */

fdefine typeFDMdetectWallZero 10
fdefine typeFDMdetectWallOne 11
fdefine typeFDMdetectWallTwo 12
fdefine typeFDMdetectWallThree 13
fdefine typeFDMdetectWallFour 14
fdefine typeFDMdetectWallFive 15

/* type definition of the message */

typedef struct {
int type;
int entryPosition;
float certainty;

FDMmsg;

#include <stdio.h>

#include "/pro/ai/robot/software/ipc/src/ipc.h"

#include "/pro/ai/robot/software/misc/src/error.h"

#include "FDMinterface.h"

/* FDM.c

*

* main program of FDM module

*
* author Seungseok Hyun

* date Jan. 19, 1990
*/

/* main

*
* main gets requests by the ipc message passing mechanism,
* calls procedures in fdm.c according to the requests, and
* replies.

*
*/

main ()
{

clientId senderId;

FDMmsg message;

int requestLength;

float DetectWallZero(), DetectWallOne(), DetectWallTwo(),

DetectWallThree(), DetectWallFour(), DetectWallFive();

myOwnId = NSregisterSelf ("FDM", 10);

while ((WAI_ id = NSgetClient ("WAI"» == nullClient)

sleep(l);

while «LLC_id = NSgetClient (nLLC"» nullClient)

sleep(l);

while «SC_id = NSgetClient ("SC"» nullClient)

sleep(l);

/* This program never halts. */

while (1) {

requestLength sizeof(FDMmsg);

do
senderId = IPCrecvMessage(&message, &requestLength, 5);

while (senderId == nullClient);

switch (message.type) {
case typeFDMdetectWallZero:

message.certainty = DetectWallZero(message.entryPosition);
IPCsendMessage(&message, sizeof(FDMmsg), senderId);
break;

case typeFDMdetectWallOne:
message.certainty = DetectWallOne(message.entryPosition);
IPCsendMessage(&message, sizeof(FDMmsg), senderId);
break;

case typeFDMdetectWallTwo:

message.certainty = DetectWallTwo(message.entryPosition);
IPCsendMessage(&message, sizeof(FDMmsg), senderld);
break;

case typeFDMdetectWallThree:
message.certainty = DetectWallThree(message.entryPosition);
IPCsendMessage(&message, sizeof(FDMmsg), senderld);
break;

case typeFDMdetectWallFour:
message.certainty = DetectWallFour(message.entryPosition);
IPCsendMessage(&message, sizeof(FDMmsg), senderld);
break;

case typeFDMdetectWallFive:
message.certainty = DetectWallFive(message.entryPosition);
IPCsendMessage(&message, sizeof(FDMmsg), senderld);
break;

default:
fprintf(stderr, "FDM unknow type request \n");
break;

- -

- --

L
/*
* header file for Feature Detection Module
*
*
*/

Jtdefine TRUE 1
Jtdefine FALSE 0

Jtdefine min(a,b) ((a) < (b) ? (a) : (b))

Jtdefine sign (a) ((a) ? « (a) >= 0) ? 1 : -1) 0)

Jtdefine HALF SECOND 10
Jtdefine ONE SECOND 20
Jtdefine TEN SECONDS 200
Jtdefine ONE MINUTE 1200
Jtdefine FOREVER 12000000

Jtdefine FRONT SONAR 0 /* Sonar directly at the front of the robot */

Jtdefine RIGHT SONAR 4 /* Sonar directly to the right of the robot */

Jtdefine LEFT SONAR 12 /* Sonar directly to the left of the robot */

Jtdefine BACK SONAR 8 /* Sonar directly to the back of the robot */

Jtdefine LEFT 1

Jtdefine RIGHT 2

Jtdefine FRONT 3

fdefine BACK 4

Jtdefine VERY SLOW SPEED 4 /* A very slow speed for translation */
, Jtdefine SLOW SPEED 10 /* A slow speed for translation */
}Jtdefine SLOW TURN SPEED 16 /* For rotations between 5 and 90 degrees */

Jtdefine SAFTY RADIUS 50 /* 40 cm */

Jtdefine MAX DIST TO WALL 100 /* 100 cm */

Jtdefine WALL LENGTH 60 /* 60 cm */

fdefine WEIGHT K 1.0

Jtdefine SONAR ERROR 4 /* 4 cm */

tinclude <stdio.h>

tinclude "/pro/ai/robot/software/huey/wai/src/WAIinterface.h"

tinclude "/pro/ai/robot/software/misc/src/error.h"

tinclude "/pro/ai/robot/software/ipc/src/ipc.h"

tinclude "utils.h"

tinclude "fdm.h"

/*
* Feature Detection Module

*
*
* Author: Seungseok Hyun

*

* Date: Jan. 19, 1990

*/

/* Wall numbering

*

* 0 I I 1
* I I
* 2 3

*
* 4 5
* x

*

* x entry position of an LDP

*

*/

\/* external global variables for client Ids. These are set by */
:/* FDM.c */

extern clientId WAI_id, SC_id, LLC_id, myOwnId;

/* DetectWallZero()
*
* DetectWallZero detects the front-left wall of an LDP,
* and returns the certainty of the detection.

*
* It assumes that the robot is placed at the entry position of an
* LDP.

*
*/

float DetectWallZero(entryPosition)

int entryPosition;

{

unsigned short ring[16];

int distanceTravelled, distanceAtStart, distanceAtCurrent;

int centerPosition, portPosition;

float result, certaintyWall, certaintyPosition;

float CertaintyWall();

WAIreplyMsg *Get_Point_Data();

int openRight, openLeft;

certaintyPosition = Get_Point_Data(typeFHMcertaintyToCurrent,
entryPosition)->certainty;

portPosition = -1;

/* move to the center of a junction */

/* set open direction */

openRight = FALSE;

openLeft = FALSE;

SONARget average data(ring);
if «ring[3] > MAx DIST TO WALL && ring[4] > MAX_DIST_TO_WALL) I I

(ring[4] > MAX=DIST=TO=WALL && ring[S] > MAX_DIST_TO_WALL))
openRight TRUE;

if «ring[ll] > MAX_DIST_TO_WALL && ring[12] > MAX DIST TO WALL) I I
(ring[12] > MAX_DIST_TO_WALL && ring[13] > MAX DIST TO WALL))
openLeft = TRUE;

fprintf(stderr, "openRight %d openLeft %d \n", openRight, openLeft);

/* save CenterPosition */

centerPosition = Save_Point();

/* go forward until it meets a corridor, or it has moved more than */
/* the length of a corridor, or */
/* it meets an obstacle. */

distanceAtStart = distanceAtCurrent

SONARget_average_data(ring);

if (openLeft == TRUE)
while (ring[lS] > SAFTY_RADIUS && ring[O] > SAFTY_RADIUS &&

ring[l] > SAFTY_RADIUS &&
(ring[ll] > MAX_DIST_TO_WALL I I ring[12] > MAX DIST_TO_WALL I I
ring[13] > MAX_DIST_TO_WALL) &&

(distanceAtCurrent - distanceAtStart) <= MAX_DIST_TO_WALL)

distanceAtCurrent = get_current_distance();
SONARget_average_data(ring);

}

else if (openRight == TRUE)
while (ring[lS] > SAFTY_RADIUS && ring[O] > SAFTY_RADIUS &&

ring[l] > SAFTY RADIUS &&
(ring[3] > MAX_DIST_TO_WALL I I ring[4] > MAX DIST TO_WALL I I
ring[S] > MAX_DIST_TO_WALL) &&

(distanceAtCurrent - distanceAtStart) <= MAX_DIST_TO_WALL)

distanceAtCurrent = get_current_distance();
SONARget_average_data(ring);

/* stop the robot */

distanceTravelled = 0;

if (ring[lS] <= SAFTY_RADIUS I I ring[O] <= SAFTY RADIUS I I

ring[l] <= SAFTY_RADIUS) {

}
else if (ring[ll] <= MAX_DIST_TO_WALL I I ring[12] <= MAX DIST TO WALL I I

ring[13J <= MAX_DI ST_TO_WALL) {

/* make parallel to the right wall */

SONARorientyarallel(LEFT);

portPosition = Save_Point();

/* set the robot 50 cm(safty radius) off from the wall */

SONARget average data(ring);
while (abs«int)-ring[O] - SAFTY_RADIUS) > SONAR ERROR) {

translate robot«int) ring[O] - SAFTY RADIUS, VERY SLOW_SPEED);
sONARget_average_data(ring);

distanceAtStart = distanceAtCurrent

/* start to move forward */

start robot_translation(SLOW_SPEED);

SONARget_average_data(ring);

while (ring[15] > SAFTY RADIUS && ring[O] > SAFTY RADIUS &&
ring[l] > SAFTY_RAoIUS &&
SONARwall exist (LEFT) &&
(distanceAtCurrent - distanceAtStart) <= WALL_LENGTH) {

distanceAtCurrent = get_current_distance();
SONARget_average_data(ring);

}

distanceTravelled = distanceAtCurrent - distanceAtStart;

/* stop the robot */

stop_robot_translation();

/*go back to the entry position */

if (portPosition != -1) Move To Point(portPosition, STRAIGHT);

Move_To_Point(centerPosition~Y=FIRST);

Move_To_Point(entryPosition,Y_FIRST);

/* compute the probability */

certaintyWall = CertaintyWall(distanceTravelled);

result = certaintyWall + (0.5 - certaintyWall) *
(1.0 - certaintyPosition) *
WEIGHT_K;

fprintf(stderr, " certaintyWall %f, certaintyPosition %f, result %f\n",
certaintyWall, certaintyPosition, result);

return(result);

/* DetectWallOne()

*
* DetectWallOne detects the front-right wall of an LDP,
* and returns the certainty of the detection.

*
* It assumes that the robot is placed at the entry position of an
* LDP.

*
*/

float DetectWallOne(entryPosition)
int entryPosition;

unsigned short ring[16];

int distanceTravelled, distanceAtStart, distanceAtCurrent;

int centerPosition, portPosition;

float result, certaintyWall, certaintyPosition;

float CertaintyWall();

WAIreplyMsg *Get Point Data();

int openRight, openLeft;

certaintyPosition = Get Point Data(typeFHMcertaintyToCurrent,

- - entryPosition)->certainty;

portPosition = -1;

/* move to the center of a junction */

/* set open direction */

openRight = FALSE;

openLeft = FALSE;

SONARget_average_data(ring);

if «ring[3] > MAX_DIST_TO_WALL && ring[4] > MAX_DIST TO_WALL) I I

(ring[4] > MAX_DIST_TO_WALL && ring[5] > MAX_DIST_TO_WALL »
openRight TRUE;

if «ring[11] > MAX_DIST_TO_WALL && ring[12] > MAX_DI ST_TO_WALL) I I
(ring[12] > MAX_DIST_TO_WALL && ring[13] > MAX DIST TO WALL »
openLeft = TRUE;

fprintf(stderr, "openRight %d openLeft %d \n", openRight, openLeft)i

/* save CenterPosition */

centerPosition = Save_Point();

/* go forward until it meets a corridor, or it has moved more than */
/* the length of a corridor, or */
/* it meets an obstacle. */

distanceAtStart = distanceAtCurrent

SONARget_average_data(ring);

if (openRight == TRUE)
while (ring[15] > SAFTY_RADIUS && ring[O] > SAFTY_RADIUS &&

ring[1] > SAFTY RADIUS &&
(ring[3] > MAX_DIST_TO_WALL I I ring[4] > MAX DIST TO WALL I I
ring[5] > MAX DIST TO WALL) &&
(distanceAtCur~ent =dIstanceAtStart) <= MAX_DIST_TO_WALL)

distanceAtCurrent = get_current_distance();
SONARget_average_data(ring);

}
else if (openLeft == TRUE)

while (ring[15] > SAFTY RADIUS && ring[O] > SAFTY RADIUS &&

ring[l] > SAFTY RADIUS &&
(ring[ll] > MAX DIST TO WALL I I ring[12] > MAX_DIST_TO_WALL I I
ring[13] > MAX_DIST TO WALL) &&

(distanceAtCurrent - distanceAtStart) <= MAX_DI ST_TO_WALL)

distanceAtCurrent = get_current_distance{);
SONARget_average_data{ring);

/* stop the robot */

stop_robot_translation{);

distanceTravelled = 0;
if (ring[15] <= SAFTY_RADIUS I I ring[O] <= SAFTY RADIUS I I

ring[l] <= SAFTY_RADIUS) {
}

else if (ring[3] <= MAX_DIST TO_WALL I I ring[4] <= MAX DIST TO WALL I I
ring[5] <= MAX_DIST_TO_WALL) {

/* make parallel to the right wall */
SONARorient-parallel{RIGHT);

portPosition = Save_Point{);

/* set the robot 50 cm{safty radius) off from the wall */

SONARget_average_data{ring) ;
while (abs{{int)ring[O] - SAFTY RADIUS) > SONAR ERROR) {

translate_robot{{int) ring [0] - SAFTY_RADIUS~ VERY SLOW_SPEED);
SONARget_average_data{ring);

distanceAtStart = distanceAtCurrent

/* start to move forward */

start robot_translation{SLOW_SPEED);

SONARget_average_data{ring);

while (ring[15] > SAFTY_RADIUS && ring[O] > SAFTY RADIUS &&

ring[l] > SAFTY RADIUS &&

SONARwall_exist(RIGHT) &&

(distanceAtCurrent - distanceAtStart) <= WALL_LENGTH) (

distanceAtCurrent = get_current_distance{);

SONARget_average_data{ring);

}

distanceTravelled = distanceAtCurrent - distanceAtStart;

/* stop the robot */

stop_robot_translation{) ;

/*go back to the entry position */

if (portPosition != -1) Move To Point{portPosition, STRAIGHT);

Move To point{centerPosition~Y-FIRST);

MOve=TO=point{entryposition, Y_FIRST);

/* compute the probability */

certaintyWall = CertaintyWall{distanceTravelled);

result = certaintyWall + (O.5 - certaintyWall) *
(1.0 - certaintyPosition) *

WEIGHT_K;
fprintf{stderr, " certaintyWall %f, certaintyPosition %f, result %f\n",

certaintyWall, certaintyposition, result);

return{result);

/* DetectWallTwo{)

*
* DetectWallTwo detects the left-front wall of an LDP,
* and returns the certainty of the detection.

*
* It assumes that the robot is placed at the entry position of an
* LDP.

*
*/

float DetectWallTwo{entryPosition)
int entryPosition;
(

unsigned short ring[16];

int distanceTravelled, distanceAtStart, distanceAtCurrent;

int centerPosition, portPosition;

float result, certaintyWall, certaintyPosition;

float CertaintyWall{);

WAIreplyMsg *Get_Point_Data{);

portPosition = -1;

certaintyPosition = Get_Point_Data{typeFHMcertaintyToCurrent,

entryPosition)->certainty;

/* move to the center of a junction */

translate_robot {SAFTY_RADIUS, SLOW_SPEED);

/* turn left 90 degree */

/* save CenterPosition */

centerPosition = Save_Point{);

/* go forward until it meets a corridor, or it has moved more than */
/* the length of a corridor, or */
/* it meets an obstacle. */

distanceAtStart = distanceAtCurrent

SONARget_average_data (ring) ;

while {ring[15] > SAFTY RADIUS && ring[O] > SAFTY RADIUS &&

ring[l] > SAFTY RADIUS &&
(ring[ll] > MAX-PIST_TO_WALL I I ring[12] > MAX_DIST_TO_WALL I I
ring[13] > MAX_DIST TO WALL) &&

(distanceAtCurrent - distanceAtStart) <= MAX_DIST_TO_WALL)

distanceAtCurrent = get_current_distance();

SONARget_average_data(ring);

/* stop the robot */

stop_robot_translation();

distanceTravelled = 0;

if (ring[15] <= SAFTY RADIUS I I ring[O] <= SAFTY RADIUS 1 I

ring[l] <= SAFTY~RADIUS) {
}
else if (distanceAtCurrent - distanceAtStart > MAX_DI ST_TO_WALL) {
}
else if (ring[3] <= MAX DIST_TO_WALL I I ring[4] <= MAX_DIST_TO WALL I I

ring[5] <= MAX_DIST_TO_WALL) {

/* make parallel to the right wall */

SONARorient-parallel(RIGHT);

portPosition = Save_Point();

/* set the robot 50 cm(safty radius) off from the wall */

SONARget_average_data(ring);
while (abs«int)ring[O] - SAFTY_RADIUS) > SONAR_ERROR) {

translate robot«int) ring[O] - SAFTY RADIUS, VERY SLOW_SPEED);
sONARget_average_data(ring);

distanceAtStart = distanceAtCurrent

/* start to move forward */

start robot_translation(SLOW_SPEED);

SONARget_average_data(ring);

while (ring[15] > SAFTY_RADIUS && ring[O] > SAFTY RADIUS &&
ring[l] > SAFTY_RADIUS &&
SONARwall_exist(RIGHT) &&
(distanceAtCurrent - distanceAtStart) <= WALL_LENGTH) {

distanceAtCurrent = get_current_distance();
SONARget_average_data(ring);

}

distanceTravelled = distanceAtCurrent - distanceAtStart;

/* stop the robot */

/*go back to the entry position */

if (portPosition != -1) Move To Point(portPosition, STRAIGHT);

Move To Point (centerPosition; Y-FIRST);

Move=To=point(entryPosition, Y_FIRST);

/* compute the probability */

certaintyWall = CertaintyWall(distanceTravelled);

result = certaintyWall + (0.5 - certaintyWall) *
(1.0 - certaintyPosition) *
WEIGHT K;

fprintf (stderr, " certaintyWall %f, certaintyPosition %f, result %f\n",
certaintyWall, certaintyPosition, result);

return (result) ;

/* DetectWallThree()

*
* DetectWallThree detects the right-front wall of an LDP,
* and returns the certainty of the detection.

*
* It assumes that the robot is placed at the entry position of an
* LDP.

*
*/

float DetectWallThree(entryPosition)
int entryPosition;

unsigned short ring[16];

int distanceTravelled, distanceAtStart, distanceAtCurrent;

int centerPosition, portPosition;

float result, certaintyWall, certaintyPosition;

float CertaintyWall();

WAIreplyMsg *Get_point_Data();

portPosition = -1;

certaintyPosition = Get Point Data(typeFHMcertaintyToCurrent,

- - entryPosition)->certainty;

/* move to the center of a junction */

/* turn right 90 degree */

rotate_robot (90, SLOW TURN_SPEED);

/* save CenterPosition */

centerPosition = Save_Point();

/* go forward until it meets a corridor, or it has moved more than */
/* the length of a corridor, or */
/* it meets an obstacle. */

distanceAtStart = distanceAtCurrent

SONARget_average_data(ring)i

while (ring[15] > SAFTY_RADIUS && ring[O] > SAFTY_RADIUS &&
ring[l] > SAFTY_RADIUS &&
(ring[3] > MAX_DIST_TO_WALL I I ring[4] > MAX DIST TO WALL I I
ring[5] > MAX DIST TO WALL) &&
(distanceAtCur~ent ~ dIstanceAtStart) <= MAX_DIS T_TO_WALL)

distanceAtCurrent = get current distance()i

sONARget_average_data(rIng)i

/* stop the robot */

distanceTravelled = Oi
if (ring[15] <= SAFTY_RADIUS I I ring[O] <= SAFTY RADIUS I I

ring[l] <= SAFTY_RADIUS) {
}
else if (distanceAtCurrent - distanceAtStart > MAX_DIST_TO_WALL)
}
else if (ring[ll] <= MAX_DIST_TO_WALL I I ring[12] <= MAX DIST TO WALL I I

ring[13] <= MAX_DIS T_TO_WALL) {

/* make parallel to the right wall */

SONARorient-parallel(LEFT)i

portPosition = save_point()i

/* set the robot 50 cm(safty radius) off from the wall */

SONARget_average_data(ring)i
while (abs«int)ring[O] - SAFTY_RADIUS) > SONAR ERROR) {

translate_robot«int) ring[O] - SAFTY_RADIUS, VERY SLOW_SPEED);
SONARget_average_data(ring)i

distanceAtStart = distanceAtCurrent

/* start to move forward */

start robot_translation (SLOW_SPEED) i

SONARget_average_data(ring)i

while (ring[15l > SAFTY RADIUS && ring[O] > SAFTY RADIUS &&
ring[l] > SAFTY_RAoIUS &&
SONARwall exist(LEFT) &&
(distanceAtCurrent - distanceAtStart) <= WALL_LENGTH) {

distanceAtCurrent = get_current_distance()i
SONARget_average_data(ring)i

}

distanceTravelled = distanceAtCurrent - distanceAtStarti

/* stop the robot */

stop_robot_translation();

/*go back to the entry position */

if (portPosition != -1) Move_To_point(portPosition, STRAIGHT);

Move_To_Point(centerPosition, Y_FIRST);

Move_To_Point(entryPosition, Y_FIRST);

/* compute the probability */

certaintyWal1 = CertaintyWall(distanceTravelled);

result = certaintyWall + (0.5 - certaintyWall) *
(1.0 - certaintyPosition) *

WEIGHT K;
fprintf(stderr, " certaintyWall-%f, certaintyPosition %f, result %f\n",

certaintyWall, certaintyposition, result);

return(result);

/* DetectWaIIFour()

*
* DetectWallFour detects the left-back wall of an LDP,
* and returns the certainty of the detection.

*
* It assumes that the robot is placed at the entry position of an
* LDP.

*
*/

float DetectWaIIFour(entryPosition)
int entryPosition;
(

unsigned short ring[16];

int distanceTravelled, distanceAtStart, distanceAtCurrent;

int centerPosition, portPosition;

float result, certaintyWall, certaintyPosition;

float CertaintyWall();

WAIreplyMsg *Get_point_Data();

portPosition = -1;

certaintyPosition = Get_point_Data(typeFHMcertaintyToCurrent,

entryPosition)->certainty;

/* move to the center of a junction */

/* turn left 90 degree */

/* save CenterPosition */

centerPosition = Save_Point();

/* go forward until it meets a corridor, or it has moved more than */
/* the length of a corridor, or */
/* it meets an obstacle. */

distanceAtStart = distanceAtCurrent

SONARget_average_data(ring);

while (ring[15] > SAFTY_RADIUS && ring[O] > SAFTY_RADIUS &&
ring[l] > SAFTY RADIUS &&
(ring[ll] > MAX=DIST_TO_WALL I I ring[12] > MAX DIST TO_WALL I I
ring[13] > MAX DIST TO WALL) &&

(distanceAtCurrent --distanceAtStart) <= MAX_DIST_TO_WALL)

distanceAtCurrent = get_current_distance();
SONARget_average_data(ring);

/* stop the robot */

stop_robot_translation();

distanceTravelled = 0;
if (ring[15] <= SAFTY_RADIUS I I ring[O] <= SAFTY RADIUS I I

ring[l] <= SAFTY_RADIUS) {
}
else if (distanceAtCurrent - distanceAtStart > MAX_DIST_TO_WALL) {
}
else if (ring[ll] <= MAX_DIST_TO_WALL I I ring[12] <= MAX DIST TO WALL I I

ring[13] <= MAX_DIST_TO_WALL) {

/* make parallel to the right wall */
SONARorient-parallel(LEFT);

portPosition = Save_Point();

/* set the robot 50 cm(safty radius) off from the wall */

SONARget_average_data(ring);
while (abs«int)ring[O] - SAFTY RADIUS) > SONAR ERROR) {

translate_robot «int) ring [0] - SAFTY_RADIUS~ VERY SLOW_SPEED);
SONARget_average_data(ring);

distanceAtStart = distanceAtCurrent get_current~distance();

/* start to move forward */

SONARget_average_data(ring);

while (ring[15] > SAFTY_RADIUS && ring[O] > SAFTY RADIUS &&
ring[l] > SAFTY_RADIUS &&
SONARwall_exist(LEFT) &&
(distanceAtCurrent - distanceAtStart) <= WALL_LENGTH) {

distanceAtCurrent = get_current_distance();

SONARget_average_data(ring);

distanceTravelled = distanceAtCurrent - distanceAtStart;

/* stop the robot */

stop_robot_translation();

/*go back to the entry position */

if (portPosition != -1) Move To point(portPosition, STRAIGHT);

Move_To_point(centerPosition; Y=FIRST);

Move_To_Point(entryPosition, Y_FIRST)i

/* compute the probability */

certaintyWal1 = CertaintyWall(distanceTravelled)i

result = certaintyWal1 + (0.5 - certaintyWall) *
(1.0 - certaintyPosition) *
WEIGHT Ki

fprintf(stderr, " certaintyWall-%f, certaintyPosition %f, result %f\n",
certaintyWall, certaintyPosition, result);

return(result);

/* DetectWaIIFive()

*
* DetectWallFive detects the right-back wall of an LDP,
* and returns the certainty of the detection.

*
* It assumes that the robot is placed at the entry position of an
* LDP.

*
*/

float DetectWall~ive(entryPosition)

int entryPositioni
{

unsigned short ring[16]i

int distanceTravelled, distanceAtStart, distanceAtCurrenti

int centerPosition, portPositioni

float result, certaintyWall, certaintyPosition;

float CertaintyWall()i

WAIreplyMsg *Get_Point_Data()i

portPosition = -li

certaintyPosition = Get Point Data(typeFHMcertaintyToCurrent,

- - entryPosition)->certainty;

/* move to the center of a junction */

/* turn right 90 degree */

rotate_robot (90, SLOW TURN_SPEED);

/* save CenterPosition */

centerPosition = Save_Point();

/*
/*

go forward until it meets
the length of a corridor,

a corridor,
or

or it has moved more than */
*/

/* it meets an obstacle. */

distanceAtStart = distanceAtCurrent

SONARget_average_data(ring);

while (ring[15] > SAFTY_RADIUS && ring[O] > SAFTY_RADIUS &&
ring[l] > SAFTY_RADIUS &&
(ring[3] > MAX_DIST_TO_WALL I I ring[4] > MAX_DIST_TO_WALL I I
ring[5] > MAX DIST TO WALL) &&
(distanceAtCur~ent =distanceAtStart) <= MAX_DIST_TO_WALL)

distanceAtCurrent = get_current_distance();

SONARget_average_data(ring);

/* stop the robot */

distanceTravelled = 0;

if (ring[15] <= SAFTY_RADIUS I I ring[O] <= SAFTY RADIUS I I

ring[l] <= SAFTY_RADIUS) {
}
else if (distanceAtCurrent - distanceAtStart > MAX_DIST_TO_WALL) {
}
else if (ring[3] <= MAX_DIST_TO_WALL I I ring[4] <= MAX_DIST_TO_WALL I I

ring[5] <= MAX_DI ST_TO_WALL) {

/* make parallel to the right wall */

SONARorient-parallel(RIGHT);

portPosition = Save_Point();

/* set the robot 50 cm(safty radius) off from the wall */

SONARget average data(ring);
while (abs((int)~ing[O] - SAFTY_RADIUS) > SONAR_ERROR) (

translate_robot((int) ring[O] - SAFTY_RADIUS, VERY SLOW_SPEED);
SONARget_average_data(ring);

distanceAtStart = distanceAtCurrent

/* start to move forward */

SONARget_average_data(ring);

while (ring[15] > SAFTY_RADIUS && ring[O] > SAFTY RADIUS &&

ring[l] > SAFTY_RADIUS &&

SONARwall_exist(RIGHT) &&

(distanceAtCurrent - distanceAtStart) <= WALL_LENGTH) {

distanceAtCurrent = get_current_distance();

SONARget_average_data(ring);
}

distanceTravelled = distanceAtCurrent - distanceAtStart;

/* stop the robot */

/*go back to the entry position */

if (portPosition != -1) Move_To_Point(portPosition, STRAIGHT);

Move To Point(centerPosition, Y FIRST);

Move=To=point(entryPosition, Y_FIRST);

/* compute the probability */

certaintyWall = CertaintyWall(distanceTravelled);

result = certaintyWall + (0.5 - certaintyWall) *
(1.0 - certaintyPosition) * WEIGHT Ki

fprintf(stderr, " certaintyWall %f, certaintyPosition %f, result %f\n",
certaintyWall, certaintyPosition, result);

return(result);

/* CertaintyWall()

*
* This computes the certainty that a wall exists given the
* distance traversed.

*
*/

float CertaintyWall(wallLength)
int wallLength;
{

if (wallLength > WALL_LENGTH)

return(1.0);

else

return ((float) wallLength / WALL_LENGTH);

- -
- -

- -
- -

/* JCMinterface.h

header file for the interface with Junction Recognizer Module
*
*
*
*

*/

#define typeJCMrecognizeJunction 10

/* message type for a request and a reply */

typedef struct {
int type;
int entryPosition;
int result;

JCMmsg;

/* junction type constants */

#define
#define
#define
#define

CROSS JUNCTION
T_JUNCTION
T RIGHT JUNCTION- -
T LEFT JUNCTION- -

o
1
2
3

#define L RIGHT JUNCTION
#define L LEFT JUNCTION
#define OPNE SPACE

4
5
6

#define OPEN SPACE RIGHT
#define OPNE SPACE LEFT 8

7

#include <stdio.h>

#include "/pro/ai/robot/software/ipc/src/ipc.h"

#include "/pro/ai/robot/software/misc/src/error.h"

#include "JCMinterface.h"

/* JCM.c

* * main program of Junction Recognizer Module

*
* author Seungseok Hyun

* date Jan. 24, 1990
*/

/* main
*
* main gets requests by the ipc message passing mechanism,

* calls procedures in jcm.c according to the requests, and

* replies.

*

*/

clientld myOwnld, WAI_id, FDM_id, CFM id;

main ()
{

clientld senderld;

JCMmsg message;

int requestLength;

myOwnld = NSregisterSelf("JCM", 10);

while ((WAI_id = NSgetClient ("WAI")) == nullClient)

sleep(l);

while ((FDM_id = NSgetClient ("FDM")) nullClient)

sleep (1) ;

while ((CFM_id = NSgetClient ("CFM")) nullClient)

sleep(l);

/* This program never halts. */

while (1) {

requestLength sizeof (JCMmsg) ;

do
senderld = IPCrecvMessage(&message, &requestLength, 5);

while (senderId == nuIIClient);

switch (message.type) {
case typeJCMrecognizeJunction:

message.result = RecognizeJunction(message.entryPosition);
IPCsendMessage(&message, sizeof(JCMmsg), senderld);
break;

default:
fprintf(stderr, "JCM unknow type request \n");
break;

/*
*
*
*
*/

jcm.h

header file for jcm.c

#define THRESHOLD HYPOTHESIS 0.75 /*
/*

if any hypothesis exceeds
stop detecting features

this */
*/

#define FALSE
#define TRUE

a
1

#define K1
#define K2
#define K3
#define K4
#define K5

1.0
1.0
0.1
2.0
0.1

#define COST DETECTOR
#define COST_REACQUIRE

60
40

tinclude <stdio.h>

tinclude "jcm.h"

tinclude "JCMinterface.h"

tinclude "/pro/ai/robot/software/huey/fdrn/src/FDMinterface.h"

tinclude "/pro/ai/robot/software/huey/fdrn/src/fdm.h"

tinclude "/pro/ai/robot/software/ipc/src/ipc.h"

tinclude "/pro/ai/robot/software/misc/src/error.h"

tinclude "/pro/ai/robot/software/huey/wai/src/WAlinterface.h"

tinclude "/pro/ai/robot/software/huey/cfm/src/CFMinterface.h"

/* jcm.c

*
*
*

functions for Junction Classifying Module

*/

/*
* external variables
*/

extern clientld myOwnld, WAI_id, FDM_id, CFM_id;

/* global variables for probability distributions

*
*
 The distributions we try to represent correspond to the following
* influence diagram.

*
*
*
*
*
*
*
*
*
*

(H)

I
V

I

I
V

I
V

(FO) (F2) (F5)

I
V

I
V

(DO) (D2)

I
V

(D5)

*
*

H Hypothesis Node (it has 9 states.)
Fn Feature (wall) node(it has 2 states.)

*
 Dn Detector Node (it has 2 states.)

*

*/

float H[9] ; /* Pr(H) */

float F[6] [2] [9]; /* Pr(FIH) */

float D[6] [2] [2]; /* Pr(DIH) , not used actually */

/* other global variables */

int DetectorUsed[6];

/* RecognizeJunction()

*
*
*
*
*
*

input entry position (int)

output junction type

RecognizeJunction() sends requests to FDM module, and decide
the junction type.

. */

int RecognizeJunction(entryPosition)
int entryPosition;
(

int i;

int bestDetectori
float utilityBestDetector, utilityReacquiringi
float probabilityWalli

void UpdateHypothesis()i
float DetectWall()i
void ReacquireEntryPosition()i
float UtilityReacquiring()i
int ChooseBestDetector()i
int NumberDetectorAvailable()i
int BestHypothesis()i
void InitializeDistributions()i
float positionCertaintYi
WAIrequestMsg waiRequestMsgi
WAIreplyMsg waiReplyMsgi
int msgLengthi

/* initialize the a priori distributions */

InitializeDistributions()i

/* other initialization */

for (i = Oi i <= 5i i++)
DetectorUsed[i] = FALSEi

/* choose the next action until it runs out detectors, or */

/* a hypothesis exceeds THRESHOLD_HYPOTHESIS */

while (NumberDetectorAvailable() != 0 &&
H[BestHypothesis()] < THRESHOLD_HYPOTHESIS) {

/* get the positional certainty from WAr */

waiRequ&stMsg.type = typeFHMcertaintyToCurrenti
waiRequestMsg.positionl = entryPositioni
IPCsendMessage(&waiRequestMsg, sizeof(WAlrequestMsg), WAI_id)i
msgLength = sizeof(WAlreplyMsg)i
while (nullClient == IPCrecvMessage(&waiReplyMsg, &msgLength, 5))i
positionCertainty = waiReplyMsg.certainty;
fprintf(stderr, " Current positional certainty is %f\n",

positionCertaintY)i

/* choose the best detector */

bestDetector = ChooseBestDetector(&utilityBestDetector,

positionCertaintY)i

I
/* set this detector status 'used' */

DetectorUsed[bestDetector] = TRUE;

/* get the utility of reacquiring */

utilityReacquiring UtilityReacquiring(bestDetector,
positionCertaintY)i

/* if the utility of reacquiring is better, do it */

/* before the detector */

if (utilityReacquiring > utilityBestDetector) {

ReacquireEntryPosition()i

/* save	 new entry position */

waiRequestMsg.type = typeFHMsavePosition;

IPCsendMessage(&waiRequestMsg, sizeof(WAIrequestMsg), WAI_id);

msgLength = sizeof(WAIreplyMsg);

while (nullClient == IPCrecvMessage(&waiReplyMsg, &msgLength, 5));

entryPosition = waiReplyMsg.position;

fprintf(stderr," New entry position %d\n", entryPosition);

/* run the detector */

probabilityWall = DetectWall(bestDetector, entryPosition);

/* update the hypothesis */

UpdateHypothesis(bestDetector, probabilityWall);

}

return(BestHypothesis());

/* NumberDetectorAvailable()

*
*	 input : none (it uses global variables)

* output: number of unused detectors

*
* This function returns the number of detectors not yet invoked.

*
*/

int NumberDetectorAvailable()
{

int result, i;

result = 0; •

for (i = 0; i <= 5; i++)

if (DetectorUsed[i] FALSE) result++;

fprintf(stderr," Number detector available %d\n", result);

return(result);

/* BestHypothesis()
*
*	 input :none (it uses global variables)

output:the best hypothesis among H[O] to H[8]*
*
* This function returns the hypothesis which has the greatest
* probability.

*
*/

int BestHypothesis()
{

int i;

int result;

result = 0;

for (i=l; i <= 8; i++)

if (H[i] > H[result]) {

result = i;

fprintf(stderr," Best Hypothesis is %d\n", result);

return (result) i

/* ChooseBestDetector()

*
* input : positionCertainty
* output: the best detector number,
* the utility of the best one (by pointer parameter)

*
* This function chooses the best detector to invoke next.

*
*/

int ChooseBestDetector(utility, positionCertainty)
float *utilitYi
float positionCertaintYi
{

int ii

int resulti

float tempi

float Discrim() i

/* compute utility, select the best one */

utility = O.Oi / smallest utility */

fprintf(stderr," Choosing Best Detector ... \n")i

for (i = Oi i <= 5 i i++)

if (DetectorUsed[i] == FALSE) {
temp = K2 * Discrim(i, positionCertainty) K3 * COST DETECTOR;
fprintf(stderr, " Utility of detector %d is %f\n", i,-temp)i
if (temp > *utility) {

result = ii

*utility = tempi

}
fprintf(stderr," ... best one is %d\n", result)i

return(result)i

/* DiscrimO
*
* input detector number, positionCertainty

* output: discrimination value of the detector

*
* This function computes the discrimination value of a detector.

*

*/

float Discrim(detector, positionCertainty)

int detectori

float positionCertaintYi

{

int r, hi

float resulti

float temp, temp2;

float PrPosteriory(), PrF(), PrFeature();

result = O.Oi
for (r = Oi r <= WALL LENGTH; r = r + WALL_LENGTH) {

temp 0.0;

for (h = Oi h <= 8i h++) {

temp2 = PrPosteriory(h,detector,PrFeature(r, positionCertainty»
- H[h);

if (temp2 < 0.0) temp2 = -temp2;

temp = temp + temp2;
}

result = result + PrF(detector, r/WALL_LENGTH) * temp;

return(result);

/* PrF ()

*
*
*
*
*
*

input feature, state
output: Pr(F_feature = state)

This function computes the Pr(F_{feature} state)

*/

float PrF(feature, state)

int feature;

int state;

{

float result;
int h;

result 0.0;

for (h 0; h <= 8; h++)
result = result + F[feature] [state] [h] * H[h];

return(result);

/* PrPosteriory()

*
*
*
*
*
*
*
*/

input : hypothesis number, detector number, certainty of the detector
output: posteriory Pr(HID)

This function computes the posterior distribution of P' (H=h),
given the distanced traversed and the certainty of the start position.

float PrPosteriory(h, d, c)
int h; /* hypothesis */
int d; /* detector */
float c; /* certainty of the detector */
(

float result;
int i;
float temp1, temp2;

temp1 H[h) *
 ((1.0 - c) * F[d) [0) [h) + c * F[d) [1] [h));

temp2 0.0;

for (i = 0; i <= 8; i++)

temp2 = temp2 + H[i) *
 ((1.0 - c) * F[d] [0] [i] + c * F[d] [1] [i]);

if (temp2 0.0) {
result = temp1 ;

}
else result = templ / temp2;

return(result);

/* PrFeature ()

*
* input : distance, positional certainty
* output: the certainty of a detecting a wall
*
* This function computes the probability that the feature exists given
* distanced traversed and the positional certainty of the start position.

*
*/

float PrFeature(d, p)

int d; /* distance */

float p; /* positional certainty */

(

float wallCertainty;
float result;

if (d >= WALL LENGTH)

wallCertainty 1.0;

else

wallCertainty (float) d / (float) WALL_LENGTH;

result =	 wallCertainty + (0.5 - wallCertainty) * (1.0 - p) * Kl;

return(result);

/* UtilityReacquiring()

*
* input : best detector, positional certainty
* output: utility of a reacquiring

*

* This function computes the utility of the reacquire action.

*

*/

float UtilityReacquiring(d, p)

int d; /* detector */

float p; /* positional certainty */

(

float result;
float Discrim();

result =	 K4 * (Discrim(d, 1.0) - Discrim(d, p))

K5 * COST_REACQUIRE;

fprintf(stderr, " Utility of Reacquiring is %f given certainty %f\n",
result, p);

return(result);

/* DetectWall ()

*
* input : detector number, entryPosition name
* output: the certainty of the detecting the wall

*

* This function calls the detector by the message-passing mechanism.
*
*/

float DetectWall(detector, entryPosition)
int detector, entryPosition;
(

FDMmsg requestMsg, replyMsg;

int lengthMsg;

float result;

switch (detector)
case 0:

requestMsg.type typeFDMdetectWallZero;

break;

case 1:

requestMsg.type typeFDMdetectWallOne;

break;

case 2:

requestMsg.type typeFDMdetectWallTwo;

break;

case 3:

requestMsg.type typeFDMdetectWallThree;

break;

case 4:

requestMsg.type typeFDMdetectWallFour;

break;

case 5:

requestMsg.type typeFDMdetectWallFive;

break;

default:

fprintf(stderr,"*** wrong detector number\n");

fprintf(stderr, " detect wall %d ,	 entryposition is %d\n", detector,
entryPosition) ;

requestMsg.entryPosition entryPosition;

IPCsendMessage(&requestMsg, sizeof(requestMsg), FDM_id);

lengthMsg = sizeof(FDMmsg);

while (nullClient == IPCrecvMessage(&replyMsg,&lengthMsg, 100));

result = replyMsg.certainty;

return (result) ;

/* UpdateHypothesis()

*
* input : detector number, certainty of the detecting the wall

* output: void

*
* This function updates the hypothesis about hte equivalent class of
* a target junction, after a feature detection.

*
,*/

void

UpdateHypothesis(detector, certainty)

int detector;

float certainty;

{

int h;

fprintf(stderr, " Hypothesis Updating ... \n");
for (h = 0; h <= 8; h++) (

H[h] = PrPosteriory(h, detector, certainty);
fprintf(stderr," Hypothesis %d is %f\n", h, H[h]);

}

fprintf(stderr,"\n");

/* ReacquiringEntryPosition()

*
* input : none

* output: void

*
* This function invokes the reacquire action(in CFM module) by
* the message-passing mechanism.

*
*/

void
ReacquireEntryPosition()
{

CFMmsg requestMsg, replyMsg;

int msgLengthi

requestMsg.type = typeCFMreacquirei

IPCsendMessage(&requestMsg, sizeof(CFMmsg), CFM_id);

msgLength = sizeof(CFMmsg);

while (nullClient == IPCrecvMessage(&replyMsg, &msgLength, 200))i

if (replyMsg.returnMsg == CFM_OPEN)
fprintf(stderr," Reacquiring successful\n");

else
fprintf(stderr," Reacquiring failed %d\n", replyMsg.returnMsg)i

tinclude <stdio.h>
" tinclude "jcm.h"

tinclude "JCMinterface.h"

/* jcm init. c

*
* functions for initialize Junction Recognizer Module

*

*/

/* global variables for probability distributions

*
* The distributions we try to represent correspond to the following
* influence diagram.

* (H)

I

*

*

*

I I I
V V V*

* (FO) (F2) (FS)

*
 I I I
V V V*

* (DO) (D2) (DS)

*
* H Hypothesis Node (it has 9 states.)
* Fn Feature (wall) node(it has 2 states.)
* Dn Detector Node (it has 2 states.)

*/

extern float H[9]; /* Pr(H) */

extern float F[6] [2] [9]; /* Pr(FIH) */

extern float D [6] [2] [2]; /* Pr(DIH) */

/* other global variables */

extern int Det-ectorUsed [6] ;

/* rnitializeDistributions()

*
* This functions initialize the a priori distributions.

*

*/

void

rnitializeDistributions()

{

int i,j,k;

/* even distributions for H */

for (i = 0; i <= 8; i++)

H[i] = 1.0 / 9.0;

/* initialize Pr(FIH) */

for (i = 0; i <= 5; i++)

for (j = 0; j <= 1; j++)

for (k = 0; k <= 8; k++)

F[i] [j] [k] = 0.0;

/* Pr(FOIH) */
F [0] [1] [0] 1. 0;
F [0] [0] [1] 1. 0;
F [0] [1] [2] 1. 0;

F[0][1][3] 1.0:
F[O] [0] [4] 1.0:
F[0][0][5] 1.0:
F [0] [0] [6] 1. 0:
F [0] [1] [7] 1. 0:
F [0] [0] [8] 1. 0:

/* Pr(FlIH) */
F[l] [1] [0] 1.0:
F[l] [0] [1] 1.0:
F[l] [1] [2] 1.0;
F[1][1][3] 1.0:
F[l] [0] [4] 1.0:
F [1] [0] [5] 1. 0:
F [1] [0] [6] 1. 0:
F[l] [0] [7] 1.0:
F[1][1][8] 1.0:

/* Pr(F2IH) */
F[2][1][0] 1.0:
F[2][1][1] 1.0:
F[2] [0] [2] 1.0:
F[2] [1] [3] 1.0:
F[2][0][4] 1.0:
F [2] [1] [5] 1. 0:
F[2][0][6] 1.0;
F[2][0][7] 1.0:
F[2][0][8] 1.0:

/* Pr(F3IH) */
F [3] [1] [0] 1. 0:
F [3] [1] [1] 1. 0:
F [3] [1] [2] = 1. 0:
F [3] [0] [3] = 1. 0:
F[3][1][4] = 1. 0:
F [3] [0] [5] =--1.0;
F [3] [0] [6] 1. 0:
F [3] [0] [7] 1. 0:
F [3] [0] [8] 1. 0:

/* Pr(F4IH) */
F[4][lJ[0] 1. 0;
F [4] [1] [lJ 1. 0:
F[4] [OJ [2J 1. 0:
F[4J[lJ[3] 1. 0:
F [4J [OJ [4] 1. 0:
F [4] [lJ [5] 1. 0:
F[4] [lJ [6] 1. 0:
F[4][OJ[7J 1. 0:
F[4J[lJ[8J 1. 0;

/* Pr(F5IH) */
F [5J [1] [0] 1. 0:
F [5] [lJ [1] 1. 0:
F [5J [lJ [2] 1. 0;
F [5] [0] [3] 1. 0:
F [5J [1] [4] 1. 0:
F [5J [OJ [5] 1. 0;
F [5J [lJ [6] 1. 0:
F [5J [lJ [7] 1. 0:
F [5] [OJ [8J 1. 0:

/*
* WAIinterface.h

*
* header file for interfacing with WHEREAMI module

*
*
*/

/* type for a request to WHEREAMI module */

typedef struct {
int typei
int distancei
int anglei
int Xi
int Yi
int position1i
int position2i
int position3i

WAIrequestMsgi

/* type for a reply from WHEREAMI module */

typedef struct {
int typei
int positioni
int Xi
int stdXi
int Yi
int stdYi
int anglei
int stdAnglei
int distancei
int stdDistancei
int errorMsgi
float certai~tYi

WAIreplyMsgi

/*
* type numbers for the "type" field

*

*/

#define typeFHMsavePosition 1

#define typeFHMsavePositionDelta 2

#define typeFHMposition 3

#define typeFHMpositionFromCurrent 4

#define typeFHMorientation 5

#define typeFHMorientationFromCurrent 6

#define typeFHMclearMemory 7

#define typeMCMdistance 8

#define typeMCMangle 9

#define typeFHMcertaintyToCurrent 10

/*

error messages
*

*

*/

#define SORRY RETRY LATER 101
#define OK 102

/*
A VERY SIMPLE SPEC OF THE INTERFACE TO WHEREAMI module

Ingoing and Outgoing messages

Each following item in Ingoin(Outgoing) entry tells relevant field
names in a WAIrequestMsg(WAIreplyMsg) type ingoing(outgoing)
message. Relevant ingoing message fields should be assigned values
properly before a client send a request message.

FHMsavePosition
Ingoing : type
Outgoing: type, position, errorMsg

in case the robot is moving: SORRY RETRY LATER for errorMsg

FHMsavePositionDelta
Ingoing : type, x, y, angle
Outgoing: type, position, errorMsg

in case the robot is moving: SORRY RETRY LATER for errorMsg

FHMposition
Ingoing type, positionl, position2
Outgoing: type, x, stdX, y, stdY, errorMsg

FHMpositionFromCurrent
Ingoing : type, positionl
Outgoing: type, x, stdX, y, stdY, errorMsg

in case the robot is moving: SORRY RETRY LATER for errorMsg

FHMorientation
Ingoing : type, positionl, position2
Outgoing: type, angle, stdAngle, errorMsg

FHMorientationFromCurrent

Ingoing : type, positionl

Outgoin~: type, angle, stdAngle, errorMsg

in case the robot is moving: SORRY RETRY LATER for errorMsg

FHMcertaintyToCurrent

Ingoing: type, positionl

Outgogin: type, certainty, errorMsg

It returns the certainty of the current position w.r.t. positionl

FHMclearMemory

Ingoing : type

Outgoing: type, errorMsg

MCMdistance

Ingoing type, positionl, position2

Outgoing: type, distance, stdDistance, errorMsg

MCMangle

Ingoing type, positionl, position2, position3

Outgoing: type, angle, stdAngle, errorMsg

*/

#include <stdio.h>
#include "/pro/ai/robot/software/ipc/src/ipc.h"
#include "/u/mlm/projects/robot/lowLevelControl/src/llc.h"
#include "WAlinterface.h"
#include "whereami.h"
#include <math.h>

/* WAI. c

*
*
*
*
*

main program of WHEREAMI module

author Seungseok Hyun
date Aug. 21 , 19 8 9

*/

/* main
*
*
*
*
*

main gets requests by the ipc message passing mechanism,
calls procedures in whereami.c according to the requests,
replies.

and

*/

main ()
{

clientld senderld, myOwnld, LLCldi
WAlrequestMsg *requesti
WAlreplyMsg replYi
positionName pOS!i
Twopositions pos2;
ThreePositions POS3i
Coordinate coori
Orientation orii
Distance dis-;
Angle angi
Delta deltai
int requestLengthi
LLCmessage *receiveMsgLLC, sendMsgLLCi
int movingOni
long startTranslate, startRotatei
long tempi
char *buffi
void FHMclearMemorY()i

PositionName FHMsavePosition(), FHMsavePositionDelta()i
Coordinate FHMposition() ;
Coordinate FHMpositionFromCurrent()i
Orientation FHMorientation()i
Orientation FHMorientationFromCurrent()i
Distance MCMdistance()i
Angle MCMangle()i
void DRMdeadReckoning(), DRMinitialize()i
float FHMcertaintyToCurrent()i

myOwnld = NSregisterSelf("WAI", 10);

/* send requests for notifying Translate (Rotate) Start (End) */
LLCld = NSgetClient(CONTROLLER_NAME)i
sendMsgLLC.type = LLCmessageNotifYi
sendMsgLLC.data = LLCtranslateStarti
IPCsendMessage(&sendMsgLLC, sizeof(LLCmessage), LLCld);
sendMsgLLC.data = LLCrotateStarti

I

IPCsendMessage(&sendMsgLLC, sizeof(LLCmessage), LLCId);

sendMsgLLC.data = LLCtranslateEnd;

IPCsendMessage(&SendMsgLLC, sizeof(LLCmessage), LLCId);

sendMsgLLC.data = LLCrotateEnd;

IPCsendMessage(&SendMsgLLC, sizeof(LLCmessage), LLCId);

/* Dead Reckoning Module initialization */

DRMinitialize() ;

movingOn = FALSE;

buff = (char *) malloc(lOO);

/* This program never halts. */

while (1)

requestLength sizeof(WAIrequestMsg);

while«senderId = IPCrecvMessage(buff, &requestLength, 5))
== nullClient)

if (senderId != nullClient) (
fprintf(stderr,"WAI got a message\n");
fprintf(stderr,"The length of msg is %d\n", requestLength);

if (requestLength != sizeof(WAIrequestMsg))

receiveMsgLLC (LLCmessage *) buff;

switch (receiveMsgLLC->type)
case LLCtranslateStart:

movingOn = TRUE;
startTranslate = receiveMsgLLC->data;
break;

case LLCtranslateEnd:
movingOn = FALSE;
temp = receiveMsgLLC->data - startTranslate;
DRMdeadReckoning(int) temp, 0);
break;

case LLCrotateStart:
movingOn = TRUE;
startRotate = receiveMsgLLC->data;
break;

case LLCrotateEnd:
movingOn = FALSE;
temp = receiveMsgLLC->data - startRotate;
DRMdeadReckoning(O, (int) temp);
break;

}

else {

request (WAIrequestMsg *) buff;

switch (request->type) {

case typeFHMsavePosition:

if (movingOn == TRUE) (
reply.errorMsg = SORRY RETRY LATER;
reply.type = typeFHMsa;ePosition;
IPCsendMessage(&reply, sizeof(WAIreplyMsg); senderId);

}

else (
reply.position = FHMsavePosition();
reply.type = typeFHMsavePosition;
reply.errorMsg = OK;

IPCsendMessage(&reply, sizeof(WAlreplyMsg), senderld);
}

break;

case typeFHMsavePositionDelta:
if (movingOn == TRUE) {

reply.errorMsg = SORRY RETRY LATER;
reply.type = typeFHMsavePositionDelta;
IPCsendMessage(&reply, sizeof(WAlreplyMsg), senderld);

}

else {
delta.valueX request->xi
delta.valueY request->y;
delta.theta request->anglei
reply.position = FHMsavePositionDelta(delta);
reply.type = typeFHMsavePositionDelta;
reply.errorMsg = OK;
IPCsendMessage(&reply, sizeof(WAlreplyMsg), senderld);

}

break;

case typeFHMposition:
pos2.position1 = request->position1;
pos2.position2 = request->position2;
coor = FHMposition(pos2);
reply.x = irint(coor.valueX);
reply.y = irint(coor.valueY);
reply.stdX sqrt(coor.covMatrix[O] [0]);
reply.stdY = sqrt(coor.covMatrix[l] [1]);
reply.type = typeFHMposition;
reply.errorMsg = OK;
IPCsendMessage(&reply, sizeof(WAlreplyMsg), senderld);
break;

case typeFHMpositionFromCurrent:
if (movingOn == TRUE) {

reply.errorMsg = SORRY_RETRY_LATER;
reply.type = typeFHMpositionFromCurrent;
IPCsendMessage(&reply, sizeof(WAlreplyMsg), senderld);

}

else {
pos1 = request->position1;
coor = FHMpositionFromCurrent(pos1);
reply.errorMsg = OK;
reply.x = irint(coor.valueX)i
reply.y = irint(coor.valueY);
reply.stdX sqrt(coor.covMatrix[O] [0]);
reply.stdY = sqrt (coor.covMatrix[l] [1]);
reply.type = typeFHMpositionFromCurrenti
IPCsendMessage(&reply, sizeof(WAlreplyMsg), senderld);

}

break;

case typeFHMorientation:
pos2.position1 = request->position1;
pos2.position2 = request->position2;
ori = FHMorientation(pos2);
reply.angle = ori.theta;
reply.stdAngle = ToDegree(sqrt(ori.covMatrix[2] [2]));
reply.type = typeFHMorientation;
reply.errorMsg = OK;
IPCsendMessage(&reply, sizeof(WAlreplyMsg), senderld);

break;

case typeFHMorientationFromCurrent: •if (movingOn == TRUE) (
reply.errorMsg = SORRY RETRY LATER;

reply.type = typeFHMorlentatlonFromCurrent;

IPCsendMessage(&reply, sizeof(WAlreplyMsg), senderld);

}

else (
posl = request->positionl;
ori = FHMorientationFromCurrent(posl);
reply.angle = ori.theta;
reply.stdAngle = ToDegree(sqrt(ori.covMatrix[2] [2]));
reply.type = typeFHMorientationFromCurrent;
reply.errorMsg = OK;
IPCsendMessage(&reply, sizeof(WAlreplyMsg), senderld);

}

break;

case typeFHMclearMemory:
FHMclearMemory();
reply.type = typeFHMclearMemory;
reply.errorMsg = OK;
IPCsendMessage(&reply, sizeof(WAlreplyMsg), senderld);
break;

case typeFHMcertaintyToCurrent:
if (movingOn == TRUE) (

reply.errorMsg = SORRY_RETRY_LATER;
reply.type = typeFHMcertaintyToCurrenti
IPCsendMessage(&reply, sizeof(WAlreplyMsg), senderld);

}

else (
posl = request->positionl:
reply.type = typeFHMcertaintyToCurrent:
reply.certainty = FHMcertaintyToCurrent(posl):
reply.errorMsg = OK:
IPCsendMessage(&reply, sizeof(WAlreplyMsg), senderld);

}

break:

case typeMCMdistance:
pos2.positionl = request->positionli
pos2.position2 = request->position2;
dis = MCMdistance(pos2)i
reply.distance = dis.distance;
reply.stdDistance = dis.stdDistance:
reply.type = typeMCMdistance:
reply.errorMsg = OK;
IPCsendMessage(&reply, sizeof(WAlreplyMsg), senderld);
break:

case typeMCMangle:

pos3.positionl request->positionl:

pos3.position2 request->position2;

pos3.position3 request->position3;

ang = MCMangle(pos3):

reply.angle = ang.angle;

reply.stdAngle = ang.stdAngle:

reply.type = typeMCMangle:

reply.errorMsg = OK;

IPCsendMessage(&reply, sizeof(WAlreplyMsg), senderld):

break:

/*

*

* type definitions for message data

*

*/

typedef struct distance{
double distancei
double stdDistancei

Distancei

typedef struct _angle
int anglei
int stclAnglei

Anglei

typedef int PositionNamei

typedef struct twoPositions{
PositionName positionli
PositionName position2i

TwoPositionsi

typedef struct threePositions
PositionName positionli
positionName position2i
PositionName position3i

ThreePositionsi

typedef struct coordinate
double valueXi
double valueYi
double covMatrix[3] [3]i

Coordinatei

typedef struct ~rientation

int thetai
double covMatrix[3] [3]i

Orientationi

typedef struct _delta

double valueXi

double valueYi

int thetai

Deltai

/*
*

* type definitions for internal data structures

*
*

*/

typedef struct frame {
PositionName frameNamei
double forwardMeanXi
double forwardMeanYi
int forwardMeanThetai
double forwardCovMatrix[3] [3];
struct frame *forwardChaini

*Framei

typedef struct -polar {

double
double
int
double

Polar;

pi;
theta;
covMatrix[3] [3];

r;

/*
*
* constants
*
*/

#define PI 3.1415927

#define FORWARD
#define BACKWARD
#define UNKNOWN
#define TRUE
#define FALSE

0
1
2
1
0

/* given the error of rotation is 1%
#define ROT ERROR 0.01

*/

/* given the error of translation is 3%
#define TRANS ERROR 0.03

*/

/* the size of ellipse for determining the positional certainty is
/* defined by X-AXIS and Y-AXIS.
#define X AXIS 30.0 /* 30 cm */
#define Y AXIS 20.0 /* 20 cm */
#define CERTAINTY RADIUS 1600.0 /* r 40 cm */
.define DELTA 2

*/
*/

/* Variance simulator repeatition number
#define N REPEAT 50

*/

#include "whereami.h"
#include <stdio.h>
#include <math.h>

#define DEBUG 1

/*

*
*
*
*
*
*
*
*
*
*
*

WHEREAMI module

The procedures in this file are called by the main program in WAI.c

Smith and Cheeseman's model is used to track the position of
the robot.

Author: Seungseok Hyun

Date: Aug. 10, 1989

*/

/*

*
 External global variables
*/

Frame startFrameList, endFrameList, currentFrame;

int numberFrames;

char *malloc();

/*DRMinitialize()

, *

*
*

This subroutine initializes the internal data structures

*/

void DRMinitialize()
(

int i,j;

startFrameList = endFrameList = NULL;

currentFrame = (Frame) malloc((unsigned) sizeof(struct _frame));
currentFrame->forwardMeanX = 0.0;
currentFrame->forwardMeanY = 0.0;
currentFrame->forwardMeanTheta = 0;

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

currentFrame->forwardCovMatrix[i] [j] 0.0;

numberFrames = 0;

/*DRMdeadReckoning()

*
*
*
*

This subroutine is a temporal version for mjr's modules.

The final version will get messages from mlm's modules.

.*

'*/

void DRMdeadReckoning(distance, angle)
int distance, angle;
(

int i, j;

double xl, y1, x2, y2, x3, y3;

int theta1, theta2, theta3;

double matrixH [3] [3], matrixK [3] [3], matrixC1 [3] [3], matrixC2 [3] [3];

double matrixC3[3] [3], matrixHt[3] [3], matrixKt[3] [3];

double matrixTemp1[3] [3], matrixTemp2[3] [3], matrixTemp3[3] [3];

double matrixTemp4[3] [3];

double Variance();

double ToRadian();

void MatrixTranspose(), MatrixAdd(), MatrixMultiply();

if (angle == 0) { /* translation */

xl = currentFrame->forwardMeanX;

y1 = currentFrame->forwardMeanY;

theta1 = currentFrame->forwardMeanTheta;

x2 = 0.0;

y2 = distance;

theta2 = 0;

/* from Smith and Cheeseman, equation (1) */

x3 x2 * cos(ToRadian(theta1))
y2 * sin(ToRadian(theta1)) + xl;

y3 x2 * sin(ToRadian(theta1)) +

y2 * cos(ToRadian(theta1)) + y1;

theta3 = (theta1 + theta2) % 360;

matrixH[O] [0] = matrixH [1] [1] matrixH[2] [2] 1. 0;
matrixH[O] [1] = matrixH [1] [0] matrixH [2] [0] matrixH[2] [1]

= 0.0;

matrixH[O] [2] -1.0 * (y3 - y1);

rna t r iXH [1] [2] x3 - xl;

matrixK[O] [2] matrixK[l] [2] matrixK[2] [0] matrixK[2] [1]
= 0.0;

matrixK[2] [2] 1. 0;

matrixK[O] [0] matrixK[l] [1] = cos(ToRadian(theta1));

matrixK[O] [1] -1.0 * sin(ToRadian(theta1));

matrixK[l] [0] sin(ToRadian(theta1));

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++){

matrixC2 [i] [j] 0.0;
matrixC1[i] [j] = currentFrame->forwardCovMatrix[i] [j];

matrixC2 [1] [1] Variance«double) abs(distance), TRANS_ERROR);

/* from Smith and Cheeseman, equation (4) */

MatrixTranspose(matrixH, matrixHt);

MatrixTranspose(matrixK, matrixKt);

MatrixMultiply(matrixH, matrixC1, matrixTemp1);

MatrixMultiply(matrixTemp1, matrixHt, matrixTemp2);

MatrixMultiply(matrixK, matrixC2, matrixTemp3);

MatrixMultiply(matrixTemp3, matrixKt, matrixTemp4);

MatrixAdd(matrixTemp2, matrixTemp4, matrixC3);

currentFrame->forwardMeanX = x3;

currentFrame->forwardMeanY = y3;

currentFrame->forwardMeanTheta theta3;

for (i = 0; i < 3; i ++)

for (j = 0; j < 3; j ++)
currentFrame->forwardCovMatrix[i] [j] matrixC3 [i] [j];

}
else if (distance == 0) { /* rotation */

xl = currentFrame->forwardMeanX;
y1 = currentFrame->forwardMeanY;
theta1 = currentFrame->forwardMeanTheta;

x2 0.0;

y2 0.0;

/* angle increses counter-clockwise in Smith&Cheeseman model */

theta2 = -1 * angle;

/* from Smith and Cheeseman, equation (1) */

x3 x2 * cos(ToRadian(theta1))
y2 * sin(ToRadian(theta1)) + xl;

y3 x2 * sin(ToRadian(theta1)) +

y2 * cos(ToRadian(theta1)) + y1;

theta3 = (theta1 + theta2) % 360;

matrixH [0] [0] = matrixH[l] [1] matrixH [2] [2] 1. 0;
matrixH[O] [1] = matrixH[l] [0] matrixH [2] [0] matrixH [2] [1]

= 0.0;

matrixH [0] [2] -1.0 * (y3 - y1);

matrixH[l] [2] x3 - xl;

matrixK [0] [2] matrixK[l] [2] matrixK [2] [0] matrixK [2] [1]
= 0.0;

matD"ixK[2] [2] 1. 0;

matrixK[O] [0] matrixK[l] [1] = cos(ToRadian(thetal));

matrixK [0] [1] -1.0 * sin(ToRadian(thetal));

rnat r ixK [1] [0] sin(ToRadian(theta1));

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++) {

matrixC2[i] [j] 0.0;
matrixC1[i] [j] = currentFrame->forwardCovMatrix[i] [j];

}

matrixC2[2] [2] = Variance(ToRadian(abs(angle)), ROT_ERROR);

/* from Smith and Cheeseman, equation (4) */
MatrixTranspose(matrixH, matrixHt);
MatrixTranspose(matrixK, matrixKt);

MatrixMultiply(matrixH, matrixCl, matrixTemp1);

MatrixMultiply(matrixTempl, matrixHt, matrixTemp2);

MatrixMultiply(matrixK, matrixC2, matrixTemp3);

MatrixMultiply(matrixTemp3, matrixKt, matrixTemp4);

MatrixAdd(matrixTemp2, matrixTemp4, matrixC3);

currentFrame->forwardMeanX = x3;

currentFrame->forwardMeanY = y3;

currentFrame->forwardMeanTheta theta3;

for (i = 0; i < 3; i ++)

for (j = 0; j < 3; j ++)
currentFrame->forwardCovMatrix[i] [j] matrixC3[i] [j];

}
else{

fprintf (stderr, n\tsorry, \nn);

fprintf (stderr,

n\tsimultaneous translation and rotation not yet supported.\nn);

/*FHMsavePosition()

*
* Input : void

* Output : PositionName

*
This saves the current position and returns the name of the position.*

*
* insert currentFrame into the linked list and computer backward stuff.

*
*/

PositionName FHMsavePosition()

PositionName NewFrameName();

void MatrixAdd(), MatrixTranspose(), MatrixMultiply();

double ToRadian();

int i,j;

/* insert at the end of the linked list */

if (startFrameList == NULL && endFrameList == NULL) {
startFrameList = endFrameList = currentFrame;
endFrameList->forwardChain = ~~LL;

}

else{

endFrameList->forwardChain currentFrame;

currentFrame->forwardChain NULL;

endFrameList = currentFrame;

/* get a new name for this position(frame) */

endFrameList->frameName = NewFrameName();

/* allocate new space to currentFrame */

currentFrame = (Frame) malloc((unsigned) sizeof(struct frame));

currentFrame->forwardMeanX = 0.0;

currentFrame->forwardMeanY = 0.0;

currentFrame->forwardMeanTheta = 0;

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

currentFrame->forwardCovMatrix[i] [j] o.0;

/* return name */

return(endFrameList->frameName);

/*FHMsavePositionDelta()

*
Input: Coordinate*

* Output : PositionName

*
* This saves the current position and returns the name of the position.

*
* insert currentFrame into the linked list and computer backward stuff.

*
*/

PositionName FHMsavePositionDelta(delta)
Delta delta;
(

PositionName NewFrameName();

void MatrixAdd(), MatrixTranspose(), MatrixMultiply();

double ToRadian();

int i,j;

/* angle increses counter-clockwise in Smith&Cheeseman model */

delta.theta = - delta.theta;

/* insert at the end of the linked list */

if (startFrameList == NULL && endFrameList == NULL) {
startFrameList = endFrameList = currentFrame;
endFrameList->forwardChain = NULL;

}

else{
endFrameList->forwardChain currentFrame;
currentFrame->forwardChain NULL;
endFrameList = currentFrame;

endFrameList->forwardMeanX += (delta.valueX *
cos(ToRadian(endFrameList->forwardMeanTheta))
delta.valueY * sin(ToRadian(endFrameList->forwardMeanTheta)));

endFrameList->forwardMeanY += (delta.valueX *
sin(ToRadian(endFrameList->forwardMeanTheta)) +
delta.valueY * cos(ToRadian(endFrameList->forwardMeanTheta)));

endFrameList->forwardMeanTheta += delta.theta;

/* get a new name for this position(frame) */

endFrameList->frameName = NewFrameName();

/* allocate new space tocurrentFrame */

currentFrame = (Frame) malloc((unsigned) sizeof(struct _frame));

currentFrame->forwardMeanX = (-delta.valueX) *
cos (ToRadian(-delta.theta)) - (-delta.valueY) *
sin(ToRadian(-delta.theta));

currentFrame->forwardMeanY = (-delta.valueX) *
sin(ToRadian(-delta.theta)) + (-delta.valueY) *
cos(ToRadian(-delta.theta));

currentFrame->forwardMeanTheta = - delta. theta;

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

currentFrame->forwardCovMatrix[i] [j] 0.0;

/* return name */

return(endFrameList->frameName);

/*FHMposition()

*
*
*
*
*
*
*

Input : TwopositionNames

Output : Coordinate

This returns the x,y coordinate of the first position in the
frame whose origin is the second position.

*/

Coordinate FHMposition(positionNames)

TwoPositions positionNames;

{

Coordinate result;

Frame tempFrame, FHMcompound();

int i,j;

tempFrame = FHMcompound(positionNames);

result.valueX tempFrame->forwardMeanX;
result.valueY tempFrame->forwardMeanY;

for (i = 0; i < 3; i++)
for (j ~ 0; j <
 3; j++)

result.covMatrix[i] [j] tempFrame->forwardCovMatrix[i] [j];

return(result);

/*FHMpositionFromCurrent

*
*
*
*

Input : positionName

Output : Coordinate

* This function returns the x,y coordinate of the position w.r.t.
* the current position of the robot.

*

*/

Coordinate FHMpositionFromCurrent(positionName)

PositionName positionName;

{

Coordinate result;

Frame tempFrame, FHMcompoundFromCurrent();

int i,j;

tempFrame = FHMcompoundFromCurrent(positionName);

result.valueX tempFrame->forwardMeanX;
result.valueY tempFrame->forwardMeanY;

for (i = 0; i <
 3; i++)
for (j = 0; j <
 3; j++)

result.covMatrix[i] [j] tempFrame->forwardCovMatrix[i] [j];

return(result);

/*FHMcertaintyToCurrent()

*
*
* Input : positionName

* Output: double

*
* The certainty that the robot lies within the ellipse defined by
* X AXIS and Y AXIS w.r.t. the position is calculated.

*
*/

float FHMcertaintyToCurrent(positionName)
positionName positionName;
(

Frame tempFrame, FHMcompoundToCurrent();

double sigmaX, sigmaY, rho, rhoSquare;

double sigmaxsquare, sigmaYsquare;

double tempA, tempB, tempC;

double x,y;

int i, j;

float result;

tempFrame = FHMcompoundToCurrent(positionName);

sigmaX = sqrt(tempFrame->forwardCovMatrix[O] [0]);

sigmaY = sqrt(tempFrame->forwardCovMatrix[l] [1]);

sigmaXsquare = tempFrame->forwardCovMatrix[O] [0];

sigmaYsquare = tempFrame->forwardCovMatrix[l] [1];

rho tempFrame->forwardCovMatrix[O] [1] / (sigmax * sigmaY);

for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++)

fprintf <.stderr, n%f ", tempFrame->forwardCovMatrix [i] [j]) ;
fprintf (stderr, "\n") ;

rhoSquare = rho * rho;

tempA 1.0 / (2.0 * PI * sqrt(sigmaXsquare * sigmaYsquare
* (1.0 - rhoSquare»);

tempB -1.0 / (2.0 * (1.0 - rhoSquare»;

result = 0.0;

/* approximation of integral */

if (sigmaXsquare != 0.0) {
for (x = 0.0 ; x < X_AXIS; x = x + DELTA)

for (y = 0.0 ; y < Y_AXIS; y y + DELTA) {
tempC = tempA * exp(tempB * (x*x/sigmaXsquare +

2.0 * rho * x * y / (sigmaX * sigmaY) +
y*y/sigmaYsquare»;

result += tempC * DELTA * DELTA;

}

else{

if (sigmaYsquare == 0.0) {

fprintf(stderr, "result is 1.0 by zero covariance matrix\n")i
return(1.0);

tempA = 1.0 / (sigrnaY * sqrt(2.0 * PI));
for (y = 0.0 ; y < Y_AXIS; Y Y + DELTA) {

tempC = tempA * exp(-1.0 * y * y / (2.0 * sigrnaYsquare));
result += tempC * DELTA;

I

result = 2.0 * result;

/* fix errors of the approximate calculation */

if (result> 1.0)

result = 1.0;

fprintf(stderr,"result is %f\n", result);

return(result);

/*FHMorientation()

*
*
*
*

Input : TwoPositionNames
Output : Orientation

* This returns the orientation of the first position in the
* frame whose origin is the second position.
*

*/

Orientation FHMorientation(positionNames)
TwoPositions positionNames;
{

Orientation result;

Frame tempFrame, FHMcompound();

int i,j;

tempFrame = FHMcompound(positionNames);

/* angle increses counter-clockwise in Smith&Cheeseman model */

result.theta = - tempFrame->forwardMeanTheta;

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

result.covMatrix[i] [j] tempFrame->forwardCovMatrix[i] [j];

return (result) ;

/*FHMorientationFromCurrent()
*
*
*
*

Input : positionName

Output : Orientation

* This returns the orientation of the position w.r.t.
* the frame whose origin is the current position of the robot.

*

*/

Orientation FHMorientationFromCurrent(positionName)

positionName positionName;

{

Orientation result;

Frame tempFrame, FHMcompoundFromCurrent();

I

int i,ji

tempFrame = FHMcompoundFromCurrent(positionName)i

/* angle increses counter-clockwise in Smith&Cheeseman model */

result.theta = - tempFrame->forwardMeanThetai

for (i = Oi i < 3i i++)
for (j = Oi j < 3i j++)

result.covMatrix[i] [j] tempFrame->forwardCovMatrix[i] [j];

return (result) i

/ *FHMcompound ()

*
* Input : TwoPositions

* Output : Frame
*
* This subroutine does the "compound" operator in Smith and Cheeseman

*
*/

Frame FHMcompound(positionNames)
TwoPositions positionNamesi
{

Frame p, pl, p2, q;
int order;
double x, y, covMatrix[3] [3]i
int theta;
int i,ji
double matrixH[3] [3], matrixHt[3] [3], matrixK[3] [3], matrixKt[3] [3];
double x3, y3;
int theta3;
double matrixC3[3] [3];
double mat rixTemp1 [3] [3], matrixTemp2[3] [3], matrixTemp3[3] [3];
double matrixTemp4[3] [3];
double matrixR[3] [3], matrixRt[3] [3];
double xp, yp;
int thetapi
double matrixCp[3] [3];
Frame resulti
double ToRadian()i

p = startFrameList;
pl NULL;
p2 = NULLi

/* find the position names in the frame list */

order UNKNOWNi

while (p != NULL) {
if (p->frameName positionNames.positionl)

pl = p;
if (p2 == NULL) order = BACKWARD;
else break;

}
else if (p->frameName == positionNames.position2)

p2 = Pi
if (pl == NULL) order = FORWARD;
else break;

p p->forwardChain;

x = 0.0;

y = 0.0;

theta = 0;

for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)

covMatrix[i] [j] = 0.0;

if (p1 == NULL I I p2 == NULL)
fprintf(stderr,

n\tposition name does not exist. Or same position narnes\nn);
else {

if (order == FORWARD) {

P p2;

q = p1;

}

else {

p p1;

q = p2;

do {

P = p->forwardChain;

x3 = p->forwardMeanX * cos (ToRadian(theta))
p->forwardMeanY * sin (ToRadian(theta)) +
x;

y3	 p->forwardMeanX * sin (ToRadian(theta)) +
p->forwardMeanY * cos (ToRadian(theta)) +
y;

theta3 = (theta + p->forwardMeanTheta) % 360;

cnat r ixH [0] [0] mat rixH [1] [1] rnatrixH [2] [2] 1. 0;

rnatrixH [0] [1] rnatrixH [~] [0] rnatrixH [2] [0] rnatrixH [2] [1]

= 0.0;

rnatrixH[O] [2] -1.0 * (y3 - y);

rnatrixH[l] [2] x3 - x;

rnatrixK[O] [2] rna t r ixK [1] [2] rnat r ixK [2] [0] = rna.t r ixK [2] [1]
= 0.0;

rnat r ixK [0] [0] rnatrixK [n [1] cos (ToRadian (theta)) ;

rnatrixK [2] [2] 1. 0;

rnatrixK [0] [1] -1.0 * sin(ToRadian(theta));

rnat r iXK [1] [0] sin(ToRadian(theta));

MatrixTranspose(rnatrixH, rnatrixHt);

MatrixTranspose(rnatrixK, rnatrixKt);

MatrixMultiply(rnatrixH, covMatrix, rnatrixTernpl);
MatrixMultiply(rnatrixTernp1, rnatrixHt, rnatrixTernp2);
MatrixMultiply(rnatrixK, p->forwardCovMatrix, rnatrixTernp3);
MatrixMultiply(rnatrixTernp3, rnatrixKt, rnatrixTernp4);
MatrixAdd(rnatrixTernp2, rnatrixTernp4, rnatrixC3);

x = x3;

y = y3;

theta = theta3;

for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)
covMatrix[i] [j] = rnatrixC3 [i] [j];

} while (p != q);

if (order == BACKWARD) {
xp -1.0 * x * cos(ToRadian(theta»

y * sin(ToRadian(theta»;
yp x * sin(ToRadian(theta» - y * cos(ToRadian(theta));
thetap = -1 * theta;
rnatrixR[2] [0] rnatrixR[2] U.] 0.0;
matrixR[2] [2] -1.0;
matrixR[O] [0] matrixR[l] [1] -1.0 * cos(ToRadian(theta);
matrixR[O] [1] -1.0 * sin(ToRadian(theta));
matrixR[l] [0] sin(ToRadian(theta));
matrixR[O] [2] yp;
matrixR[l] [2] -1.0 * xp;

MatrixTranspose(matrixR, matrixRt);

MatrixMultiply(matrixR, covMatrix, matrixTemp1);
MatrixMultiply(matrixTemp1, rnatrixRt, matrixCp);

x = xp;
y = yp;
theta =	 thetap;
for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)
covMatrix[i] [j] = matrixCp[i] [j];

result = (Frame) malloc«unsigned) sizeof(struct _frame»);
result->forwardMeanX = x;
result->forwardMeanY = y;
result->forwardMeanTheta = theta;
for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)
result->forwardCovMatrix[i] [j] covMatrix[i] [j];

return (r;.esult) ;

/*FHMcompoundFromCurrent()

*
*	 Input : positionName

Output : Frame*
*
* This subroutine does the "compound" operator in Smith and Cheeseman

*
*/

Frame FHMcompoundFromCurrent(positionName)
positionName positionName;
{

Frame p, p1;

double x, y, covMatrix[3] [3];

int theta;

int i,j;

double matrixH[3] [3], matrixHt[3] [3], matrixK[3] [3], matrixKt[3] [3];

double x3, y3;

int theta3;

double matrixC3[3] [3];

double matrixTemp1 [3] [3], matrixTemp2 [3] [3], matrixTemp3 [3] [3];

double matrixTemp4[3] [3];

double matrixR[3] [3], matrixRt[3] [3];

double xp, yp;

int thetap;

double matrixCp[3] [3];

Frame result;
double ToRadian();

p = startFrameList;
p1 = NULL;

/* find the position names in the frame list */

while (p != NULL) {
if (p->frameName == positionName)

p1 = p;
P = p->forwardChain;

x = 0.0;

y = 0.0;

theta = 0;

for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)
covMatrix[i] [j] = 0.0;

if (p1 == NULL)
fprintf(stderr,"\tposition name does not exist. \n");

else{
p = p1;
if (p1 != endFrameList) {

do {

p = p->forwardChain;
x3 = p->forwardMeanX * cos (ToRadian(theta»

p->forwardMeanY * sin (ToRadian(theta» +
x;

y3	 p->forwardMeanX * sin (ToRadian(theta» +
p->forwardMeanY * cos (ToRadian(theta» +
y;

theta3 = (theta + p->forwardMeanTheta) % 360;

matrixH[O] [0] matrixH[l] [1] matrixH[2] [2] 1. 0;
matrixH [0] [1] matrixH[l] [0] matrixH[2] [0]

matrixH[O] [2]
rnat r ixH [2] [1] 0 . 0 ;
-1. 0 * (y3 - y);

matrixH[l] [2] x3 - x;

rnat r ixK [0] [2] matrixK[l] [2] matrixK [2] [0]
rna t rixK [2] [1] o.0;

matrixK[O] [0] matrixK [1] [1] cos(ToRadian(theta»;
matrixK [2] [2] 1. 0;
rna t r iXK [0] [1] -1.0 * sin(ToRadian(theta»;
matrixK [1] [0] sin(ToRadian(theta» ;

MatrixTranspose(matrixH, matrixHt);

MatrixTranspose(matrixK, matrixKt);

MatrixMultiply(matrixH, covMatrix, matrixTemp1);

MatrixMultiply(matrixTemp1, matrixHt, rnatrixTemp2);

MatrixMultiply(matrixK, p->forwardCovMatrix, matrixTemp3);

MatrixMultiply(matrixTemp3, matrixKt, matrixTemp4);

MatrixAdd(matrixTemp2, matrixTemp4, matrixC3);

x = x3;

y = y3;

theta = theta3;

for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)
covMatrix[i] [j] = matrixC3 [i] [j];

while (p != endFrameList);

/* merge with CurrentFrame */

x3	 currentFrame->forwardMeanX * cos(ToRadian(theta))
currentFrame->forwardMeanY * sin(ToRadian(theta)) +
X;

y3	 currentFrame->forwardMeanX * sin(ToRadian(theta)) +
currentFrame->forwardMeanY * cos(ToRadian(theta)) +
y;

theta3 = (theta + currentFrame->forwardMeanTheta) % 360;

matrixH [0] [0] matrixH[l] [1] matrixH [2] [2] 1. 0;
matrixH [0] [1] matrixH[l] [0] matrixH[2] [0] matrixH [2] [1]

= 0.0;
matrixH [0] [2] -1. 0 * (y3 - y);
matrixH [1] [2] x3 - X;

matrixK [0] [2] matrixK [1] [2] matrixK[2] [0] = matrixK[2] [1]
= 0.0;

matrixK[O] [0] matrixK[l] [1] cos(ToRadian(theta));
matrixK[2] [2] 1.0;
rnat r ixK [0] [1] -1.0 * sin(ToRadian(theta));
matrixK[l] [0] sin(ToRadian(theta));

MatrixTranspose(matrixH, matrixHt);
MatrixTranspose(matrixK, matrixKt);

Mat rixMult iply (matrixH, covMatrix, matrixTemp1);
Mat rixMult iply (matrixTemp1, matrixHt, matrixTemp2);
MatrixMultiply(matrixK, currentFrame->forwardCovMatrix,

matrixTemp3);
MatrixMultiply(matrixTemp3, matrixKt, matrixTemp4);
MatrixAdd(matrixTemp2, matrixTemp4, matrixC3);

X = x3;

y = y3;

theta = theta3;

for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)

covMatrix[i] [j] = matrixC3[i] [j];

/* reverse conversion */

xp -1.0 * x * cos(ToRadian(theta))

y * sin(ToRadian(theta));
yp x * sin(ToRadian(theta)) - y * cos(ToRadian(theta));
thetap = -1 * theta;
matrixR[2] [0] matrixR[2] [1] 0.0;
matrixR [2] [2] -1.0;
matrixR[O] [0] matrixR[l] [1] -1.0 * cos (ToRadian(theta));
matrixR[O] [1] -1.0 * sin(ToRadian(theta));
matrixR[l] [0] sin(ToRadian(theta));
matrixR[O] [2] yp;
rnat r ixR [1] [2] -1. 0 * xp;

MatrixTranspose(matrixR, matrixRt);

MatrixMultiply(matrixR, covMatrix, matrixTemp1);

MatrixMultiply(matrixTemp1, matrixRt, matrixCp);

x = xp;

y = yp;

theta = thetap;

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

covMatrix[i] [j] = matrixCp[i] [j];

result = (Frame) malloc((unsigned) sizeof(struct _frame»;
result->forwardMeanX = x;
result->forwardMeanY = y;
result->forwardMeanTheta = theta;
for (i = 0; i < 3; i++)

for (j = 0; j < 3; 'j++)
result->forwardCovMatrix[i] [j] covMatrix[i] [j];

return(result);

/*FHMcompoundToCurrent()

*
* Input : positionName

* Output : Frame

*
* This subroutine does the "compound" operator in Smith and Cheeseman

*
*/

Frame FHMcompoundToCurrent(positionName)
PositionName positionNamei
(

Frame p, pl;

double x, y, covMatrix[3] [3];

int theta;

int i,j;

double matrixH[3] [3], matrixHt[3] [3], matrixK[3] [3], matrixKt[3] [3];

double x3, y3;

int theta3;

double matrixC3[3] [3];

double matrixTempl[3] [3], matrixTemp2[3] [3], matrixTemp3[3] [3];

double matrixTemp4[3] [3];

Frame result;

double ToRadian();

fprintf(stderr," ToCurrent position is %d\n", positionName);

p = startFrameList;
pl = NULL;

/* find the position names in the frame list */

while (p != NULL) {

if (p->frameName == positionName)

pl = p;

p = p->forwardChain;

x = 0.0;
y = 0.0;
theta = 0;
for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)
covMatrix[i] [j] = 0.0;

if (pl == NULL)
fprintf (stderr, "\tposition name does not exist. \n");

else{
p = pl;
if (pl != endFrameList) {

do {

P = p->forwardChain;

x3 = p->forwardMeanX * cos (ToRadian(theta))

p->forwardMeanY * sin (ToRadian(theta)) +
X;

y3	 p->forwardMeanX * sin (ToRadian(theta)) +
p->forwardMeanY * cos (ToRadian(theta)) +
y;

theta3 = (theta + p->forwardMeanTheta) % 360;

rnatrixH[O] [0] matrixH [1] [1] matrixH [2] [2] 1. 0;
rnatrixH[O] [1] rnatrixH [1] [0] rnatrixH [2] [0]

rnatrixH[2] [1] 0.0;

rnatrixH[O] [2] -1.0 * (y3 - y);

rnatrixH[l] [2] x3 - X;

rnatrixK[O] [2] matrixK [1] [2] rnatrixK[2] [0]
matrixK [2] [1] 0.0;

rnatrixK [0] [0] rnatrixK[l] [1] cos(ToRadian(theta));
rnatrixK [2] [2] 1. 0;
rnatrixK[O] [1] -1.0 * sin(ToRadian(theta));
rnatrixK[l] [0] sin(ToRadian(theta));

MatrixTranspose(matrixH, matrixHt);

MatrixTranspose(matrixK, matrixKt);

Mat rixMult iply (matrixH, covMatrix, matrixTemp1);
MatrixMultiply(matrixTemp1, matrixHt, rnatrixTemp2);
MatrixMultiply(matrixK, p->forwardCovMatrix, matrixTemp3);
MatrixMultiply(matrixTemp3, matrixKt, matrixTemp4);
MatrixAdd(matrixTemp2, matrixTemp4, matrixC3);

X = x3;

y = y3;

theta = theta3;

for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)

covMatrix[i] [j] = rnatrixC3[i] [j];

} while (p != endFrameList);

1* merge with CurrentFrame *1

x3	 currentFrame->forwardMeanX * cos(ToRadian(theta))
currentFrame->forwardMeanY * sin(ToRadian(theta)) +
X;

y3	 currentFrame->forwardMeanX * sin(ToRadian(theta)) +
currentFrame->forwardMeanY * cos(ToRadian(theta)) +
y; I

theta3 = (theta + currentFrame->forwardMeanTheta) % 360;

matrixH [0] [0] matrixH[l] [1] matrixH[2] [2] 1. 0;
matrixH [0] [1] matrixH[l] [0] rna t rixH [2] [0] matrixH[2] [1]

= 0.0;
matrixH [0] [2] -1. 0 * (y3 - y);
rnatrixH [1] [2] x3 - X;

matrixK [0] [2] matrixK [1] [2] matrixK[2] [0] = matrixK[2] [1]
= 0.0;

rnatrixK[O] [0] matrixK[l] [1] cos(ToRadian(theta));
rnatrixK[2] [2] 1. 0;
rnatrixK[O] [l] -1.0 * sin(ToRadian(theta));
rnatrixK [1] [0] sin(ToRadian(theta);

MatrixTranspose(matrixH, rnatrixHt);
MatrixTranspose(rnatrixK, rnatrixKt);

MatrixMultiply(matrixH, covMatrix, matrixTempl);
MatrixMultiply(matrixTempl, matrixHt, matrixTemp2);
MatrixMultiply(matrixK, currentFrame->forwardCovMatrix,

matrixTemp3);
MatrixMultiply(matrixTemp3, rnatrixKt, matrixTemp4);
MatrixAdd(rnatrixTemp2, rnatrixTemp4, matrixC3);

x = x3;

Y = y3;

theta = theta3;

for (i = 0; i <
 3; i++)

for (j = 0; j <
 3; j++)
covMatrix[i] [j] = matrixC3[i] [j];

result = (Frame) malloc«unsigned) sizeof(struct _frame»;

result->forwardMeanX = X;

result->forwardMeanY = y;

result->forwardMeanTheta = theta;

for (i = 0; i <
 3; i++)

for (j = 0; j <
 3; j++)
result->forwardCovMatrix[i] [j] covMatrix[i] [j];

return(result);

/* FHMclearMemory()

*

* Input : void
* Output: void

*

* This functions clears the memory allocated for positions so far.

*

*/

void
FHMclearMemory()
{

Frame p,q;

p = startFrameList;

while p!= NULL) {
q p;
p p->forwardChaini
free(q)i

}
DRMinitialize();

/*MCMdistance()

*
*
*
*

Input : TwoPositions
Output : Distance

* This returns the distance between two position.

*

* search two positions in the linked list, and get relative coordinate
* between them, and then compute distance.
*/

Distance MCMdistance(positionNames)

TwoPositions positionNames;

!	 {

Distance result;

Polar polarTemp;

Frame tempFrame, FHMcompound();

Polar ToPolar();

tempFrame FHMcompound(positionNames);

polarTemp ToPolar(tempFrame);

result.distance = polarTemp.r;

result.stdDistance = sqrt(polarTemp.covMatrix[O] [0]);

return(result);

/ *MCMangIe ()

*
* Input : ThreePositions

* Output : Angle

*

* This returns the angle of three positions.

*

*

*

*/

\	 Angle MCMangle(positionNames)

ThreePositions positionNames;

{

TWOPositions tempPositions;

Frame tempFrame1, tempFrame2, FHMcompound();

Polar polarTemp1, polarTemp2;

int r1, .r2;

Angle result;

Polar ToPolar() ;

tempPositions.position1 = positionNames.position1;

tempPositions.position2 = positionNames.position2;

tempFrame1 = FHMcompound(tempPositions);

tempPositions.position1 = positionNames.position3;

tempFrame2 = FHMcompound(tempPositions);

polarTemp1 = ToPolar(tempFrame1);

polarTemp2 =-ToPolar(tempFrame2);

result.stdAngle = ToDegree(sqrt(polarTemp1.covMatrix[1] [1] +
polarTemp2.covMatrix[1] [1]));

r1 ToDegree(polarTemp1.pi);

r2 ToDegree(polarTemp2.pi);

if (rl < 0)

rl = 360 + r1;

if (r2 < 0)

r2 = 360 + r2;

result.angle = rl-r2;

if (result.angle > 180)

result.angle = - (360 - result.angle);
else if (result.angle < -180)

result.angle = 360 + result.angle;

....

return(result);

/ * TOPolar ()

*
input : Frame*

* output : Polar

*
* mapping from Cartesian coordinate system to polar coordinate system

*
*/

Polar ToPolar(frameArg)
Frame frameArg;

Polar result;

double matrixR[3] [3], matrixRt[3] [3], matrixTemp[3] [3];

result.r = sqrt(frameArg->forwardMeanX * frameArg->forwardMeanX +
frameArg->forwardMeanY * frameArg->forwardMeanY);

result.pi = atan2(frameArg->forwardMeanY, frameArg->forwardMeanX);
result.theta = frameArg->forwardMeanTheta;

matrixR [0] [2] matrixR[l] [2] = matrixR[2] [0] matrixR[2] [1] 0.0;
matrixR [2] [2] 1. 0;

if (result.r != 0.0) {
matrixR[O] [0] frameArg->forwardMeanX / result.r;
matrixR[O] [1] frameArg->forwardMeanY / result.r;
matrixR[l] [0] frameArg->forwardMeanY / (result.r * result.r)i
matrixR[l] [1] frameArg->forwardMeanY / (result.r * result.r);

}

else{
fprintf(stderr, "\t The result of ToPolar transformation");
fprintf(stderr, ,,\t may be wrong.");
matrixR[O] [0] = matrixR[O] [1] = matrixR[l] [0]

= matrixR[l] [1] = 1.0;

MatrixTranspose(matrixR, matrixRt);

MatrixMultiply(matrixR, frameArg->forwardCovMatrix, matrixTemp)i

MatrixMultiply(matrixTemp, matrixRt, result.covMatrix);

return(result);

/ * ToRadian ()

*

* input : int degree

* output : double

*

* returns a radian of a degree

*

*/

double ToRadian(degree)

int degree;

{

return((double) PI * degree / 180.0);

/ * ToDegree ()

*
* input : double radian
* output : int
*
* returns a degree of a radian
*
*/

int ToDegree(radian)
double radian;
{

return«int) (radian * 180.0 / PI»;

/* MatrixTranspose(O
*
*
* 3x3 matrix transposition
*
*/

void MatrixTranspose(source, target)
double source[3] [3], target [3] [3];
{

int i, j;

for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)

target[j] [i] = source[i] [j];

/* MatrixAddO
*
* 3x3 matrix addition

*

*/

void MatrixAdd(matrixl, matrix2, result)
double matrixl [3] [3], matrix2 [3] [3], result [3] [3];
{

int i, j;

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

result [i] [j] = matrixl [i] [j] + matrix2 [i] [j];

/* MatrixMultiply()
*

*

* 3x3 matrix mautiplication

*

*/

void MatrixMultiply(matrixl, matrix2, result)

double matrixl [3] [3], matrix2 [3] [3], result [3] [3];

{

int i,j,k;

for (i = 0; i < 3: i++)
for (j = 0; j < 3; j++){

result [i] [j] = 0.0;
for (k = 0: k < 3; k++)

result[i] [j] += rnatrixl[i] [k] * rnatrix2[k] [j];

- -, }

/* NewFrameName()

*

*

* generates new name, PositionName type is an alias of into

*

*/

positionName NewFrameName()
{

positionName tempName;

tempName = numberFrames;

numberFrames++;

return(tempName);

/* Variance ()
*

*

* get the variance of a given motion and an error using a simple
* simulation

*

*/

double Variance(motion_length, error)

\ double motion_length, error;

{

double sum, sumXsquare, mean, result, X;

double SimRandom();

int i;

sum = sumXsquare = 0.0;

for (i = 0; i < N_REPEAT; i++) {

X = motion_length + motion_length * error * SimRandom();
sum += X;
sumXsquare += X * X;

mean sum / N REPEAT;

result = sumXs~are / N REPEAT - (mean * mean);

return(result);

/*

*
SimRandom() returns random numbers between -1.0 and 1.0*

*

*/

double SimRandom()

- {

double result;

result = (rand() - 1.07375e+09) / 1.07375e+09;

return (result) ;

