
BROWN UNIVERSITY
 
Department of Computer Science 

Master's Thesis
 
CS-90-M6
 

Articulated Objects in BAGS 

by
 
Lisa Kay Borden
 



Articulated Objects in BAGS 

by
 

Lisa Kay Borden
 

B.A., Mills College, 1984
 

Research Project
 

Submitted in partial fulfillment of the requirements for the degree of Master 
of Science in the Department of Computer Science at Brown University. 

May 1990 



This projed by Lisa Kay Borden
 

is accepted in its present form by the Department of Computer Science
 

as satisfying the project requirement for the degree of Master of Science
 

5/q/qo ~LDate _ 

Andries van Dam 



Acknowledgements 

I would like to thank Professors Andries van Dam and John Hughes for 
providing a unique and stimulating environment in which to study computer 
graphics at Brown University. I am indebted to Henry Kaufman for a key idea 
used in this work and many helpful suggestions along the way. Scott Snibbe, 
Brook Conner and Dan Robbins contributed important interface and design 
ideas as well as artistic balance. A special thank you goes to Bob Zeleznik 
for endless debugging support and advice beyond the call of duty. I am also 
grateful to all the members of the Brown Computer Graphics Group for their 
good ideas, good music and good company. 

This work has been sponsored in part through research contracts with 
International Business Machines Corporation, National Cash Register and 
Digital Equipment Corporation, and equipment grants from Sun Microsys­
terns and Hewlett-Packard. 



Articulated Objects in BAGS 

Lisa Kay Borden 

April 2, 1990 

Abstract 

The current aim of research in the Computer Graphics Group at 
Brown University is to explore interactive modeling and animation 
techniques using the Brown Animation Generation System (BAGS). 
This paper describes the implementation of a new modeling technique 
for articulated objects, and high level motion control methods used to 
produce constrained motion of the articulated objects. 



Contents 

1 Introduction 2
 

2 Motivation 3
 
2.1 Creating Complex Objects 4
 
2.2 High-Level Motion Control. 5
 

3 Related Work 5
 
3.1 Existing Work in BAGS . 6
 
3.2 University of Pennsylvania Jack System. 9
 
3.3 MIT Media Laboratory . 10
 
3.4 Summary . . . . . 11
 

4 Implementation 11
 
4.1 The Joint Model ..... . .. 12
 

4.1.1 The Dependency Graph 13
 
4.2 Simulator Software . 17
 
4.3 Motion Control in the Simulator. 18
 

4.3.1 Direct Manipulation 18
 
4.3.2 Inverse Kinematics 19
 

4.4 Interpolation 20
 
4.5 Summary . 22
 

5 Comparison of Inverse Kinematics Algorithms 23
 
5.1 Efficiency ..... 23
 
5.2 Visual effectiveness 24
 
5.3 Robustness 25
 
5.4 Summary . . . . . 25
 

6 Issues for Future Research 26
 

7 Conclusion 27
 

8 Appendix A - Example SCEFO Script 28
 

9 References 31
 

1
 



1 Introduction 

Over the past several years, the Computer Graphics Group at Brown Univer­
sity has developed an interactive software testbed for research in computer 
graphics and animation. This system, the Brown Animation Generation Sys­
tem (BAGS) [STRA88], is used by artists and programmers to model scenes 
consisting of complex objects which change over time, producing animations. 

The current focus of the group is to enhance the interactive nature of 
BAGS so that it is easier for the user, whether classical animator or pro­
grammer, to create sophisticated animations. With this goal in mind, it is 
necessary to provide powerful tools that make both modeling and animation 
accessible and intuitive. 

The tools necessary for interactive animation are diverse. There must be 
an interactive interface for creating both objects and changes over time. A 
variety of methods for creating complex objects is essential for the animator 
to create an interesting scene. For animation, both simple transformations 
and complex motion control methods will enhance the power of the animator. 
The interface to all of these tools must be easily understood and usable 
immediately by a novice for at least basic animations. 

In this paper, we will discuss the contribution to interactive animation 
provided by the research and implementation of articulated objects in BAGS. 
Articulated, or jointed, objects occur in many situations and are natural 
targets for modeling. Human figures and mechanical linkages are common 
examples of objects that an animator might wish to model and animate with 
constrained, correct motion. 

Throughout the discussion, we will refer to the individual moving parts 
in an articulated figure as linksJ or link objectsj and to connections between 
two links in an articulated figure as jointsJ or joint objects. A collection of 
links and joints assembled together into a complex object will be referred to 
as a linkage. The set of routines implementing the articulated object model 
is known as the LINK package. 

First, motivation is given for the addition of such objects and their corre­
sponding motion-control methods. Related systems which contributed to the 
design of the BAGS articulated object model are described. A description 
of the model and its implementation, with the general algorithms used, is 
given. A brief comparison of several available inverse kinematics algorithms 
follows. Finally, conclusions drawn from the research and future directions 

2
 



2 

for this work are presented. 

Motivation 

Currently, BAGS provides a software environment for producing a high­
quality image, or series of images that create an animation. A scene is 
created by modeling a set of 3 dimensional objects, then adding lights and 
cameras to illuminate and view the objects. Animation occurs when these 
objects change over time. Thus, creating an image in BAGS consists of the 
modeling phase, and, optionally, an animation specification phase. 

Both the modeling of objects and their animation are described using the 
SCEne FOrmatting (SCEFO) language [CONN89] implemented as part of 
BAGS. SCEFO is the basis for all images produced in BAGS. The series of 
SCEFO statements which create a scene and animate it is known as a script. 

Until recently, the process for modeling and animation of scenes using 
SCEFO was always accomplished in distinctly separate phases. For modeling, 
there were two separate choices: the user could simply write the script in a 
text editor, if she were familiar enough with SCEFO to accurately model the 
types of objects desired in the scene. To view the image, the SCEFO script 
would be rendered and the user would then make any necessary modifications 
to the script, re-render the image, and iterate this process until the image was 
exactly as desired. While certainly functional, this non-interactive approach 
provided no immediate feedback as to the correctness of the script, and it 
also put the burden of writing SCEFO onto the animator. Since SCEFO is 
essentially a programming language, the animator was also required to be a 
programmer. 

Alternatively, The Interactive Modeler (TIM) software system could be 
used to model the objects without actually having to write the SCEFO state­
ments by hand. TIM provided an interface which allowed users to create 
objects, position them, change their characteristics, alter any modeling pa­
rameter allowed in SCEFO, and then see the results interactively. The user is 
not required to write any SCEFO since the script is generated by TIM. The 
immediate visual feedback also cuts down the time necessary for modeling, 
since changes can be made and viewed at the same time. 

When the user turned to the animation phase, however, skill as a pro­
grammer was again necessary. The user needed to add SCEFO statements 

3
 



to the script to produce animation, re-render the script, view the animation, 
and then modify the script if necessary. This iterative process presents the 
same problems as the iterative modeling option: it is tedious, non-interactive, 
and requires that the animator also be a programmer. 

The importance of an interactive animator has been clearly shown by the 
limitations of the above approaches. At this time, an interactive animator, 
MOO, has been implemented for BAGS and is being developed into the 
powerful tool necessary for creating the sophisticated types of animations 
that are supported in SCEFO. While not all features of SCEFO are currently 
built into MOO, they will be added as time permits. MOO is supported by 
an underlying interactive scene database (DBOSS), which allows multiple 
client programs to interact with the same scene. 

The interactive animator provides an excellent research testbed whose 
flexibility and extensibility are readily exploited. There are at least two 
ways to do this: 1) build into MOO, and its underlying language, SCEFO, 
additional methods of modeling complex objects; and 2) provide animation 
methods, known as high-level motion control, to animate these complex ob­
jects. The work described in this paper was in large part motivated by these 
two goals. 

2.1 Creating Complex Objects 

An articulated object such as a human skeleton represents a complex object 
built up out of simpler objects. If we consider each bone in the skeleton as a 
simple object, we construct the entire articulated figure by linking the simple 
bone objects with joints to create an overall figure. The joints express two 
different types of constraints: a connectivity constraint, which maintains a 
specified distance between links connected by the joint; and a degree of free­
dom constraint, which allows rotation or translation only about a particular 
axis or set of axes appropriate to the joint. 

In constructing a model for an articulated object, it is necessary to embed 
at least these simple constraints into the model. We will examine both previ­
ous work at Brown and other models to see how this information is handled 
by related systems. 

4
 



2.2 High-Level Motion Control 

In addition to a constrained, yet simple model for jointed objects, the focus 
on interactive animation at Brown has created an interest in high-level mo­
tion control methods. High-level or automatic motion control, referred to as 
task-level animation in [ZELT85], is the process of abstracting the motion 
in an animation into higher level descriptions than the simple transforma­
tions that are available in SCEFO. For example, an animator might wish to 
specify that a mechanical robot arm "reach" for a goal object, rather than 
specifying the series of joint rotations that would cause the arm to reach the 
goal. The specification of a set of joint rotations for an articulated object is 
known as forward kinematics; the "reach" problem is termed inverse kine­
matics, since the user is only required to specify the goal, rather than the 
transformations necessary at each joint [JASM89]. With the ability to model 
articulated objects comes a need for easy specification of both forward and 
inverse kinematics. Both of these methods can be termed high-level motion 
control, since internal computation is necessary to translate the user's ab­
straction of motion into the correct constrained motion for all objects in the 
linkage. We will term the high-level motion control methods used in BAGS 
simulators. 

3 Related Work 

Research into and implementation of models for articulated objects in com­
puter graphics and animation has resulted in many sophisticated systems. 
In this section, we examine those systems which influenced the model imple­
mented by this project. The two issues of importance to look at in related sys­
tems are 1) non-redundant, intuitive input specification of the joint/linkage 
information by the user; and 2) efficacy of the motion-control methods asso­
ciated with these systems. 

The first consideration is extremely important if the joint model is going 
to be accessible to animators. As described by [RAFE88], and expanded 
upon by [BEYE88], specifying joints can involve a large amount of input. 
Each joint has potentially six degrees of freedom (DOFs) - three rotational 
and three translational. For each joint, a position and orientation must be 
specified. For each degree of freedom within a joint, allowable constraints 

5
 



such as joint limits must also be specified. 
In addition to minimizing the input necessary for each joint in a linkage, 

it is desirable that the user not be required to specify any other connectivity 
information than the joints themselves. For example, if the user creates joint 
specifications for a shoulder, elbow and wrist in a human arm, she should 
not also have to specify a grouping of the links in the arm so that the arm 
can be moved as one unit. This capability should be automatically built into 
the model. This problem has not previously been solved in BAGS and the 
automatic grouping and maintaining of these connectivity constraints is a 
major contribution of this project. 

The second issue in existing systems concerns how the jointed objects 
are animated. A usable system should support primitive transformations for 
both direct manipulation and, as mentioned previously, some sort of goal­
directed or high-level motion. These methods must perform at real time 
speeds in order to be useful in an interactive setting. This criterion will be 
discussed in Section 5. 

3.1 Existing Work in BAGS 

The addition of jointed objects to BAGS has been discussed and researched 
by several people [RAFE88], [BEYE88], [MOTT88]. This project is indebted 
to the work of Rafey [RAFE88] for many conclusions on the best way to model 
joints. 

Rafey points out that the amount of input necessary for a joint specifi­
cation can grow exceedingly large as the number of joints grow. He solves 
this problem by classifying joints into 9 distinct types (Figure 1). This clas­
sification, taken from [ISAA87], eliminates the need for input specifications 
for unused degrees of freedom. Many joint relationships can be specified by 
a simple pin joint, a one degree of freedom rotational joint. There is no need 
for the user to specify initial angle values or limit constraints for the other 
5 degrees of freedom. The classification of joints by number and type of 
DOFs relieves the user from having to input irrelevant information. Accord­
ingly, the ability to classify joints by type has been included in the current 
implementation of the joint model. 

Beyer [BEYE88] points out that the classification of joints can be ex­
tended from nine types of joints to sixteen (Figure 2). He models these 
joints as constraintsj each joint has from 0 to 3 constraints on the rotational 

6
 



.~ 

,.. 

. ".­

Cr·...•..., .I..... ._. , "... 
_It.. o.-e ... 

• 00' , DO' • GO' 

....... ~ ",.... .,... 
; Figure 1: 9 commoojoint types 

I 32 

CONlnlnll1 PO 
obtect .. compl.I,1y 
Con.tnlnl.: PO lie 1'.0 CONtnlnlll PO tr 1'.1 COnllnln"l PO &r P.2 

Pm Jolnl Ball10lnlUnlvernllolntcon.lnln.c! 

tvC 
Con.tnlnlJ: 1'1Con.tnlnt.: PI" 1\\ Con.lninl.: rt &r 1\2I' Con.lnlnl.: PI " 1\0 

SHdln! lolnl Cylindric" loinI 

J. Con.lnlnls: P2 tr 1'.0 Con.lnlnl.: P2 " 1'.1 Con.lnlnlll'2 lie 1'.2	 COnltnlnlfl P2 
Sph.n on , Pl,nl Cub, on Plln' Cyl.lnder On I Plan. 

J Con.lninll Jl.0 Con.lnlnl: 1\t Con.lnlnll P.2 Con,lnlnl.: nont 
FlylnsJomt 

Figure 2: joints modeled as constraints, with extensions to 16 joint ~ 



and translational degrees of freedom. In reality, there are more than sixteen 
combinations since the axes of motion in Beyer's model are assigned some­
what arbitrarily. For instance, the type of joint labeled "Cube on Plane" 
is a combination of two degrees of translational freedom and one degree of 
rotational freedom. The translational axes are arbitrarily assigned to be the 
X and Z axes in the joint space, while the rotational axis is the Y axis. There 
is no reason why the translational plane cannot be specified by another com­
bination of 2 axes, such as the X and Y axes, and thus the rotational axis 
becomes the Z axis. 

The sixteen classifications specified by Beyer were incorporated into our 
model as a convenient first attempt at providing users with the type of joints 
they most commonly use. As the system is utilized, users may find that they 
want other combinations of degrees of freedom not available, and those types 
of joints should be incorporated. Since the internal mechanism for building 
up a joint from several DOFs is flexible, this should be a simple addition to 
the system. 

Rafey's model for joints solves the redundant input problem using classi­
fication of joints by their degrees of freedom. However, it does not maintain 
any connectivity constraints that are inherently expressed by the existence of 
the joints. Users can create joints, and can rotate objects about those joints, 
but the user is responsible for rotating all the right objects about each joint. 
For instance, if a shoulder joint is created, there is no automatic way for the 
user to rotate the entire arm about the shoulder. A separate complex object 
for the arm must be manually created. If she then specifies an elbow joint, 
she must also create a complex object for the group of objects that exist in 
the lower arm, and which rotate about the elbow. In order to account for 
all possible sets of objects that might rotate about n joints in a linkage, 2n 
complex objects would need to be specified. This can be cumbersome for 
even a small value of n. 

To avoid introducing this complexity, it is desirable for the simulator 
code handling the linkages to maintain the object dependencies present at 
each joint. However, making these dependencies internal to the simulator 
does present one problem. For any given joint there are two sets of objects 
possible for motion. At a knee joint, the transformation might apply to the 
lower leg and foot, or it might apply to the upper leg and its connected parts. 
The notion of a current direction for joint transformations is necessary, and 
this direction can be viewed as a parent/child relationship between the joint 

7
 



and its two connecting links. At any given time, one link is the parent and 
one link is the child. When a transformation is specified at a joint, it is 
the child link and its connected parts which will be transformed. If the 
user then desires to transform the opposite link and its connected parts, the 
parent/child relationship must be reversed. 

Rafey solves this problem by having the input from the user include a 
reference to the moving, or child, link, as well as a reference to the joint. 
This input is sent to a pre-defined SCEFO action for the type of joint desired, 
and the proper links are then updated as well as the joint axes' position and 
orientation. 

The approach taken by the current implementation is slightly different. 
It is based on the concept of a rooted linkage, such as that used by the Jack 
system at the University of Pennsylvania [PHIL89]. The idea of rooting a 
linkage, and its relation to the internal representation of the linkage as an 
initially undirected graph, will be explained in detail in the Implementation 
section. We briefly describe the rooting concept here to explain the choice 
of this concept over Rafey's SCEFO actions. 

The main idea behind rooting a linkage is to establish the parent / child 
relationship of the two links at a joint for each joint in the linkage. Thus, 
the rooting need only be done once for all joints, rather than specifying the 
child link each time a motion is desired. For example, in a human figure, a 
common root is the pelvis [ZHA089]. This creates parent/child relationships 
between the links that account for most common transformations (i.e. the 
lower arm is rotated about the elbow, the leg is rotated about the hip, etc.) 
Once the rooting is done, the user can specify many transformations about 
joints which will respond correctly, and she does not need to specify which is 
the child link that will be transformed. This eliminates redundant input and 
basically allows the user to point to a joint and specify the transformation. 

If the user then wants to transform about a joint in a manner that does 
not conform with the current rooting, she can re-root the linkage at the 
proper place and then specify the transformation. For instance, to rotate 
the upper leg about the knee, the user could root the linkage at either the 
foot or the lower leg, and the proper parent/child link relationships would 
be established. 

In summary, the model proposed by Rafey had both strengths and weak­
nesses. The current model implemented by this project used his classifica­
tions of joints to reduce input, but it was necessary to create a new model of 

8
 



the connectivity relationships expressed by joints in order to relieve the user 
of this burden. 

3.2 University of Pennsylvania Jack System 

As mentioned, researchers at the University of Pennsylvania have imple­
mented the Jack system for manipulating jointed figures [BADL87], [ZHA089]. 
This system has been developed from many years of research into both human 
figure animation and inverse kinematics solutions. 

Jack allows the user to create scenes consisting of segments, sites, joints, 
and constraints. Segments are analogous to link objects, or physical objects 
in the scene. Sites are positions on segments at which joints can be placed to 
connect two segments. Joints are specifiable with every possible combination 
of degrees of freedom. 

The specification of joints in this system is very flexible, and it allows 
a minimum of necessary input to describe a given joint. It has the draw­
back that two separate sites on two segments must be specified for each joint 
added to the scene. This is a result of the sites being specified relative to 
the coordinate frame of the segments. Ideally, a joint should be able to be 
specified by a single position/orientation, and the model will take care of 
the relative positioning of the links connected by the joint. An additional 
drawback is that any complex object in a scene must be built up by connect­
ing segment objects with joints, even when the logical connection between 
these objects does not correspond to a joint. In SCEFO, the methods for 
building complex objects, such as grouping and constructive solid geometry 
(GSG) [CONN89], allow the user to specify a much wider range of complex 
objects in an intuitive fashion. The goal ofthe LINK package is to add to the 
methods for creating complex objects, rather than supersede existing useful 
methods. 

The concept of a rooted linkage used in our model is taken from the 
model used by Jack. As described in [PHIL89], only the current child links 
are transformed when a joint transformation is requested. However, the im­
plementation in Jack requires inversion of matrix transformations whenever 
the rooting of the linkage reverses the direction of the parent/child links. 
To avoid expensive inversions, the implementors of Jack keep two copies of 
the current transformation matrix at a joint, and simply use the appropriate 
matrix when calculating positions. 

9 



In our model, this redundancy is not necessary because the graph of the 
linkage itself does not depend on relative matrices for joints. Each joint 
maintains a global position and orientation that represents all transforma­
tions applied to it at the current time. As long as transformations are applied 
in the proper order to each object, the global position/orientation will always 
be correct. 

The Jack system is also notable for its highly developed inverse kinematics 
motion control system. The system handles multiple reach goals in near to 
real time. Goals can be specified as positions, orientations, position and 
orientation, and several other types of goals such as aligning the end effector 
with a line in space, or orienting the goal so that it lies in a specified plane. 
Single or multiple goals can be specified for an articulated figure, with user­
defined goal weights to determine goal priorities. The algorithm can be given 
a time limit if the current configuration of the linkage and goals is compute 
intensive. Since the algorithm is monotonically convergent toward at least 
one goal, it will simply be cut off at the given limit but will still have reached 
as far toward that goal as possible in the given time. In addition to inverse 
kinematics, direct manipulation of joints is available interactively. The pros 
and cons of the motion control system are discussed in Section 5. 

Jack is a sophisticated system for creating and manipulating jointed fig­
ures, but it is very specific to this one purpose. While concepts from it have 
proven useful, incorporation of the overall structure would be difficult and 
impractical in BAGS. 

3.3 MIT Media Laboratory 

At the Computer Graphics Laboratory of MIT's Media Laboratory, a library 
of inverse kinematics routines exists for solving the reach problem. The algo­
rithm uses the pseudo-inverse Jacobian [SIMS87] solution of minimizing joint 
angle changes to solve given reach goals. This technique produces a global 
perturbation of joint angles that tends to give a reasonably "natural" looking 
movement. Since all joint angles are typically updated at least slightly for 
a given reach, no one angle changes greatly unless that is necessary for the 
goal to be reached. 

While this approach produces natural motion, its margin of error increases 
when the goal is further away. The implementation corrects for this internally 
by dividing the goal up into several subgoals which are points on a straight 

10
 



line between the original position of the end effector and the end goal. The 
number of subdivisions is a parameter that can be changed, so the higher 
the number of iterations, the more likely the algorithm is to reach the goal. 

One feature which was worth incorporating was that of preferred joint 
angles. In the Media Lab system, each joint is specified with a current angle 
and a preferred angle. As the joint is rotated and gets further away from the 
preferred angle, its motion in an inverse kinematics reach is dampened. 

This allows more control for the animator over joints which might pro­
duce discontinuous or undesirable motion in a reach operation. This is im­
plemented in the LINK package as a weighting parameter at each joint. 

A disadvantage of this system that it has in common with Jack is that all 
joints are specified relative to some parent hierarchy. This makes it expen­
sive for the direction of motion, or rooting of the linkage, to change, since 
recomputing all the transformation matrices is necessary. Another drawback 
is that there is no facility for direct manipulation of linkages; only inverse 
kinematics transformations can be specified. 

3.4 Summary 

The model adopted by this work for use in BAGS was influenced by the three 
systems described above, incorporating the notions of joint classification, a 
directed dependency graph for linkages, and preferred joint angles. 

In addition to implementing these concepts, the LINK package and its 
underlying model also includes automatic interpolation for reach movements 
between specified frames; a concise interface to SCEFO for creating joint 
objects and applying transformations to them; and an entirely new inverse 
kinematics method for a fast solution to create animations via high-level 
motion control. The overall implementation of the LINK package is described 
in the next section. 

4 Implementation 

The implementation of this project consisted of two main elements. 

1.	 Design of a SCEFO interface for creating and animating joints and 
linkages. 

11 



2.	 Creation of simulator software to process the modeling and animating 
requests for jointed objects. This software has three components: 

• Software to process the joint specifications in SCEFO. 

• Motion-control software to control direct manipulation (rotations 
and translations) of articulated objects. 

•	 Software implementing a new motion control method for 3-D in­
verse kinematics. 

4.1 The Joint Model 

The design of a model for joints took into account many factors. The pre­
vious research by Rafey showed that minimizing input when specifying joint 
parameters was important. The joints needed to be easily manipulable, since 
users would want to orient and position them correctly. There needed to be 
a simple facility for describing information about each joint. This informa­
tion includes: joint type (BALL, PIN, etc)j which one or two links the joint 
connects; joint limits on each of the appropriate degrees of freedom for the 
specified typej and other parameters possibly related to motion control meth­
ods, such as a weighting parameter for individual joints when applying an 
inverse kinematics algorithm. 

In addition to modeling joints, users needed the ability to animate these 
joints and, correspondingly, the links attached to them. Two types of trans­
formations were considered in this project. 

•	 direct manipulation transformations. These consist of rotation or trans­
lation at a specific joint and degree of freedom within that joint . 

•	 Inverse kinematics, which we will term a reach transformation. 

For both these types of transformations, it is necessary for the user to 
indicate at which joint the transformation will take place (elbow, shoulder, 
etc.) To understand this, the concept of the linkage dependency graph and 
chains of joints and links is useful. 

12
 



4.1.1 The Dependency Graph 

A set of link objects connected by joints can be viewed as an undirected 
graph, where the links are the nodes of the graph and the joints are the 
edges (Figure 3). When the linkage is rooted, the graph becomes directed. 
The direction of all edges is determined by the root node. For each edge 
(joint) connected to the root node, the node at the other end of the edge 
becomes the child of the root node. In Figure 4, we show the example of 
the root node being the pelvis. Since the root node has edges connecting to 
the left thigh, right thigh, and torso, the pelvis becomes the parent to each 
of these nodes, and the edge between them takes on a direction. Once we 
have processed all the root node's edges, we apply the algorithm recursively 
to the child nodes of the root node. For each as yet undirected edge issuing 
from these nodes, the connecting node of that edge is made a child of the 
current node. Edges that have already been processed are marked so that 
the algorithm does not process them more than once. When the entire graph 
has been processed, we have a completely directed graph. 

When a transformation at a joint is desired, the child node of the edge 
in the graph corresponding to that joint is determined. The subtree of the 
graph rooted at this node determines all link objects that will be affected by 
this transformation. If we transformed our human figure at the left hip joint, 
after rooting it at the pelvis, the subtree would consist of the left thigh node, 
left shin node, and left foot node, with the left hip, left knee and left ankle 
joints (edges) connecting these nodes (Figure 5.) 

The simple subtree rooted at the child node of the input joint is sufficient 
for direct manipulation transformations such as rotate and translate. For 
joint reach transformations, we need to determine a chain of joints and links 
in the directed graph. This corresponds to the directed path from the input 
joint (edge) to an end effector link (node) specified by the user. The chain is 
determined by simple depth-first search through the subtree, and of course 
can not be determined unless the linkage has first been rooted. It is not 
necessary that the end effector node be a leaf of the graph; any node is legal 
as long as there is a path from the base joint to the end effector node. 

The chain is necessary to indicate which edges (joints) can be used for 
manipulation during an inverse kinematics algorithm. For example, if the 
user specifies a joint reach transformation that begins at the pelvis joint and 
has the left hand as the end effector, the joints in the chain would consist of 

13
 



C__h_ea_d ~ 

neck.Joint 

left_shoulder 

spine.Joint right_elbowlefceibow 

right_wristleft_wrist pelvis.Joint 

pelvis righchand 

righCfootFigure 3 

Undirected graph 



head 

neck.Joint 

hCshoulder 

spine.Joint righceibow 

lefcwrist pelvis.Joint 

pelvis righchand 

righcshin 

righcankle 

left300t righCfoot
Figure 4 

Directed graph with root at pelvis 



OWn of .ioas from pelvis 10 left hind 

neckjoint 

pelvis.Joml 

spme...Joinl 

pelvis 

Figutt 5 

'. 

Subu'ee conespoadinglo joim rowion 
••••••••••••• - ••••••••••• 1 

a! Iefl I1ip JOim. 

necl:joinl 

spmejoUl\ 

pelVisjoinl 

~ ........•.. 

Fi!Uft 6 



the pelvis joint, spine joint, left shoulder, left elbow, and left wrist (Figure 
6.) Of course, more links than just the child links of these joints may be 
affected by the movement. For instance, the head node will follow along if 
the figure bends at the pelvis joint. However, the neck joint will not be used 
during the inverse kinematics calculation because there is no way it would 
help the left hand achieve its goal. Correspondingly, it is not along the direct 
path from the pelvis node to the left hand node in the graph. 

Once the subtree that is dependent on the joint transformation is de­
termined, the transformation can be applied to all dependent nodes in the 
subtree. If the transformation is of the reach variety, the chain is built and 
its member joints can be used to attempt to reach the goal. 

The determination of the dependency graph, subtrees and chains is trans­
parent to the user, although she must be familiar with the concept of rooting 
the linkage. The main user interface issue lies in the fact that almost all input 
can be regarded as changes to the joint. For modeling, parameters need to 
be set that indicate connectivity, joint type, etc. Animation transforms can 
also be viewed as changes that happen at the joint, and affect all dependent 
links. 

Since the input necessary for both modeling joints and animating them 
relates directly to the joint itself, the choice was made to make the joint 
a SCEFO object. SCEFO objects have the property that they can take 
parameters or fields as input to describe characteristics of the object. In 
addition, all regular transformations that can be specified via SCEFO change 
operations (change ops), can also be applied to joints if they are modeled 
as objects. They can be rotated, translated, etc., and can thus be easily 
positioned and oriented by the user. Modeling the joint as a SCEFO object 
allows a simple and uniform interface to the user for specifying all information 
about a joint. 

In the past year, the concept of meta-objects in BAGS has been devel­
oped. Typically, meta-objects have no visibility in the scene, but contain 
information that is necessary for the modeling or animation of other com­
plex objects. The point and path objects are examples of this. A typical 
usage of a set of point objects is to designate control points in a spline. A 
path object, often determined by the positions of point objects, can also be 
used for such purposes as defining the contour in an object of revolution. 

Since the point meta-object already existed, it seemed the logical choice 
as the model for holding information about joints. Accordingly, a new mem­

14
 



ber of the point object class, called the joint, was added. In order for users 
to model joints in their scene, they simply need to create templates of joint 
objects, and set all necessary fields to define the characteristics of the joint. 
The creation of templates and setting of fields, along with other SCEFO par­
ticulars, is described in [CONN89]. The following is an example of modeling 
a shoulder joint: 

template (left_shoulder) joint; 

change (left_shoulder) 
set_field <0, {"joint_type", BALL}>, 
set _ field <0 {"link1" , "torso"}> ,J 

set_field <0. {"link2". "left_upper_arm"}>; 

Modeling field values in the joint object have the following meaning: 

• joinLtype - type of joint such as PIN joint, BALL joint, etc. Types 
correspond to the sixteen classified by Rafey and Beyer. 

•	 link1, link2 - two links that the joint is connected to. Must be the 
names of SCEFO objects in the scene. 

•	 limiLrot-x, limiLroLy, limiLroLz,
 
limit_trans_:l, limiLtrans_y, limiLtrans-z
 
- several parameters which can be used to set limits on the appropriate 
degrees of freedom for the specified joint type. 

•	 weight - weight to give this joint when invoking the inverse kinematics 
algorithm. This can be used to dampen the motion at some joints in 
order to create a more natural animation. 

The joint object now contains the information of connectivity between 
the torso and the left upper arm, and the type of joint that exists at this 
connection. 

To animate about a joint, the interface is uniform - additional setJield 
change ops are added to the left...shoulder joint object: 

15 



change (left_shoulder) 
set_field <1, {"joint_rotate", {{O.O, 1.0, O.O}, 30}}>, 
set_field <2, {"joint_reach", Hgoal:_position}, "left_hand"}}>; 

This fragment creates two transformations to the joint and its dependent 
link objects. At time 1, the joint will be rotated 30 degrees about its object 
space Y axis. At time 2, the chain starting at the left shoulder and termi­
nating at the left hand will attempt to reach for the point in space indicated 
by the dependency goal:_position. This dependency represents the point in 
space occupied by the center point of the object named goal, and will be 
evaluated at time 2 to determine the exact coordinates of the point. 

Although all connectivity information is contained in the joint objects via 
the "link1" and "link2" parameters, there is no mechanism with just joint 
objects to partition joints into separate linkages. Initially, separate linkages 
were all treated as one large linkage. This was feasible, since the graph of 
the linkage would simply have several unconnected components. However I 

treating each linkage as an individual entity has the advantage that users can 
selectively update certain linkages without having computation performed on 
every joint object in the scene. This partitioning speeds up processing time, 
if there are many linkages, and makes the logical distinction between each 
linkage conceptually clearer when modeling. The addition of a linkage object 
also allows change ops to be applied to it that are more naturally associated 
with an entire linkage, such as setting the root. 

Accordingly, the user must also create a "linkage" object in the SCEFO 
script. This is of type linkage, another meta-object member of the point 
object class. 

The setJield change ops currently implemented for linkage objects are: 

1. add_joint - adds the named joint object to the linkage 

2. root - roots the linkage at the named link object 

The following is an example of SCEFO to create a linkage: 

template (fred) linkage; 

change (fred) 
set_field <0, {"add_joint", "left_knee"}>, 

16 



set_field <0, {lI add_joint", "left_hip"}>, 
set_field <0, {lI add_j oint", "left_ankle"}> 
set_field <0, {li root" , "pelvis"}>; 

This SCEFO fragment creates a leg linkage which is rooted at a stationary 
link object, the pelvis. Although only the two setJield change ops listed 
have been implemented so far, additional change ops for linkages, such as 
(( delete_ioinf', are envisioned. Ideally, the simulator code would be able to 
handle any normal SCEFO change op to a linkage, and would then update 
the individual components of the linkage correctly. This would allow the user 
to do things like rotate, translate or scale the entire linkage in world space. 

For a complete SCEFO script modeling a simple human figure, see Ap­
pendix A. For detailed usage when creating joints and linkages, see [BORD90]. 

4.2 Simulator Software 

The simulator software is currently contained entirely in the LINK package 
[BORD90]. The LINK package is a simulator server which can be called by 
such clients as the interactive animator (MOO), and renderers. Currently, 
the LINK package is being used by MOO, although renderers have not yet 
been integrated as clients. Issues surrounding simulator interaction in a single 
scene are still in the research phase. 

A description of the LINK package's interaction with MOO will suffice to 
describe its main features. When MOO detects that a linkage has been added 
to the scene, it calls the LINKaetivate() procedure with a linkage name and 
time. At that time, the LINK package creates a dependency graph for the 
current linkage, and adds all transformations to joint objects contained in 
the linkage to its own internal list. Once it has read all transformations, it 
applies the transformations that affect the current time to the appropriate 
objects, and updates the representation of those objects via DBOSS. 

Since the simulator is aware of all transformations to a linkage once it is 
activated, it only needs to be notified in two cases: 

1. If a joint object in the linkage has a change op added or modified; and 

2. If the current time changes. 

In case 1, the simulator reevaluates the modified change op and updates 
its own internal representation. If it is a new change op, it is added to 

17
 



the internal list of transformations. Notification of modified or new change 
ops is handled by DBOSS, which allows clients such as the simulator to 
express interest in changes to objects, and receive update messages when 
these changes occur. 

In case 2, the transformations appropriate for the current time are applied 
so that the simulator correctly updates all objects it is controlling. This 
notification must corne directly from the client of the LINK package (in this 
case MOO), since DBOSS has no notion of the current time. 

This simple interface to the LINK package has made it fairly straight­
forward to model and animate linkages in MOO. Although not fully imple­
mented yet, the user interface in MOO for linkages will be simple to complete 
and will provide a fully interactive environment for both creation of complex 
jointed objects, and high-level specification of motion via direct manipulation 
and inverse kinematics. The SCEFO basis exists, and it is a simple matter of 
translating user input choices into SCEFO statements. The interactive na­
ture of DBOSS takes care of the coordination between MOO and the LINK 
package. 

4.3 Motion Control in the Simulator 

There are currently three motion change ops that can be applied to a joint 
object: joint-translate, joint-rotate, and joint-reach. The simulator code is 
responsible for generating the motion of dependent link objects when these 
change ops are added to the scene. It is also responsible for correctly inter­
polating these change ops when they contain more than one control point. 
The following sections examine the two motion control methods of direct 
manipulation and inverse kinematics, as well as the interpolation issue. 

It should be noted that both motion-control methods maintain joint limit 
constraints as well as connectivity constraints. If a transformation attempts 
to rotate or translate a joint past its limit, a warning message is printed and 
the joint is only transformed as far as the limit allows. 

4.3.1 Direct Manipulation 

Direct manipulation of a joint and its dependent links is relatively easy once 
the linkage has been rooted. Since the graph representing the linkage is fully 
directed after rooting, the subtree rooted at the child node of the joint will 

18
 



represent the links that need to be transformed. When a direct manipulation 
such as joinLrotate is requested, an identical rotate is applied to all the proper 
link objects, and their positions and orientations are updated accordingly. To 
do this, a simple depth-first traversal of this subtree is performed. 

4.3.2 Inverse Kinematics 

As mentioned previously, the input to any inverse kinematics method needs 
both a base joint for motion, an end effector link object, and a goal. The end 
effector represents the link that is "reaching" for the goal. Optionally, the 
input can also include a "site" on the end effector to direct the reach a little 
more specifically. An example of this refinement would be the specification 
of the hand as the end effector, and the specification of a fingertip as the 
actual site that makes contact with the goal. 

When the simulator code processes a joinLreach transformation, it first 
builds the chain of joints that will be used to try and reach the goal. This 
chain, along with the goal and end effector site, are sent to the main inverse 
kinematics module. Since any inverse kinematics method will need exactly 
this input to compute a solution, new methoq,s can be easily added. 

The current method implemented in the LINK package is an iterative 
algorithm inspired by an idea first implemented in 2-D. Some inverse kine­
matics algorithms rely on expensive matrix inversion techniques (see Section 
5.) This new method iterates through the chain of joints one by one, using 
the local information to determine how closely this joint can help the end 
effector reach the goal. 

At each joint in the chain, the algorithm projects the goal point into the 
plane of movement defined by the end effector and its axis of transformation, 
which is determined by the current joint. If the joint is a translational joint, 
the goal point is projected onto a line through space which represents the 
allowable motion of the end effector relative to this joint. Once the goal 
is projected, a change to the joint angle or translational value is computed 
which will bring the end effector as close as possible to the goal, and this 
transformation is applied for the current joint and all its dependents. 

The iteration through the chain starts at the most distal (that is, furthest 
from the base of the chain) joint and iterates backwards through the chain 
to the base joint. If we use a human arm as an example, this means that 
the algorithm first tries to reach the hand toward the goal, then the lower 

19
 



arm, and finally the upper arm which is controlled by the base joint, the 
shoulder. If each of these iterations were viewed separately, the motion would 
look awkward and unnatural. However, all iterations are concatenated into a 
single movement, and only the final position is actually updated in the scene. 

Figure 7a shows a simple illustration of a 2 dimensional arm-like linkage in 
an intitial configuration. Figure 7b shows the linkage in several intermediate 
configurations after a series of iterations through the chain. Figure 7c gives 
the final configuration of the arm as it reaches as closely as possible to the 
goal. 

4.4 Interpolation 

An important issue that the simulator code must deal with is that of inter­
polation of motion. For each time in a set of control points specifying a joint 
transformation, the simulator outputs a global position/orientation via the 
SCEFO orient change op. This is done for each object in the linkage, links 
as well as joints. This takes care of the control point times, but the simu­
lator may then be requested by a client program, such as MOO, to produce 
position/orientation for the objects at interpolated times between the two 
control points. 

The values of an orient change op include the from} at and up points of 
the object - that is, the position of the object and its orientation. Since this 
information may be the result of several transformations (i.e a joinLtranslate, 
joinLrotate, or joinLreach, which may itself contain many rotates and trans­
lates), there is no way to use standard interpolation techniques between two 
global orient operators. There is no retention of the motion that produced 
the orient, and a standard interpolation technique, such as linear, is not 
guaranteed to produce correct results. 

Accordingly, the simulator must somehow generate these global in-between 
positions itself. For a simple transformation such as a joinLrotate, this is not 
difficult. Consider the following example: 

change (left_shoulder) 
set_field <0, {"joint_rotate", {{t.o, 0.0, O.O}, O}}> 

<8 , {II]' oint_rotate" , {{t.O, 0.0, O.O}, 90}}>; 

20 



Figure 7a 

Initial configuration of 

ann and goal 

Figure 7b 

Intermediate ann positions after 

several chain iterations 

Figure 7c 

Final configuration of ann 

reaching as closely as possible 

to goal 



The intention of this change op is to rotate the left arm at the shoulder by 
90 degrees, between times a and 8. The simulator code generates internal 
transformation structures that indicate the shoulder should be rotated by a 
degrees at time 0 and 90 degrees at time 8. IT it is then requested to produce 
positions for the objects in the arm at time 4, it generates a transformation 
that rotates the shoulder by 45 degrees. However, internally it must remem­
ber that at time 4 it rotated by 45 degrees, so that at time 8 it now only 
needs to rotate by another 45 degrees, rather than the full 90. Results of 
transformations are concatenated in script/time order and are cumulative. 

Keeping track of what has happened previously (i.e. what in-between 
control points have been generated) is straightforward for simple transfor­
mations such as joint-rotate and joint-translate. However, in a joint-reach 
transformation, the same technique cannot be applied. There is no way for 
the simulator to look back in time and subtract out the motion that has 
already been computed, because this motion was produced by a series of ro­
tations/translations generated by the inverse kinematics algorithm, and these 
specific transformations are not saved. All the simulator will have knowledge 
of is the position and orientation of the arm after the last control point value 
was applied. 

Interpolation of joint-reach transformations is handled by interpolating 
the goal point, using the interpolation method specified for the control point 
containing the reach transformation. Discrete reach transformations to each 
of the interpolated goals are then generated. In the following SCEFO frag­
ment, the user wants the arm to reach from point {l.0, l.0, l.0} to the 
position of a stationary ball, between times aand 8: 

change (left_shoulder) 
set_field <0, {lljoint_reachll , {{1.0, 1.0, 1.0}, IIhand ll }}> 

<a,{ IIjoint_reach ll , {ball:_position, IIhandll }}>; 

IT the client of the simulator then requests output for time 4, the simulator 
will generate an intermediate goal point that is halfway between points {l.0, 
l.0, l.0} and the _position of the ball. This will result in the arm reaching 
for {l.0, l.0, l.0} at time 0, the intermediate goal at time 4, and the ball's 
_position at time 8. 

This approach produces reasonable motion since it is based on the in­
terpolation method specified by the user in the control point. The method 

21
 



defaults to linear interpolation if none is specified, which means the linkage 
will move as much as possible in a straight line toward the goal. However, 
other forms of interpolation such as spline or discrete can also be specified. 

In addition to generating interpolated motion between control point times, 
the simulator generates extra motion if a joint transformation is dependent 
on an object that is moving. If the user specifies the following SCEFO trans­
formation: 

change (leftshoulder) 
set_field <0, {lljoint_reachll , {ball:_position, lIhandll}}>; 

the arm will reach for the ball at time O. If the ball ever moves, at time 0 or 
otherwise, additional transformations are generated to keep the arm following 
the ball. This maintenance of dependencies, which is implemented on top of 
the SCENE Correspondences and Dependencies package (SCAD) [GOLD89], 
allows complex animation to be produced with a single transformation. 

One problem that joinLreach transformations produce is that of granular­
ity. The intermediate goal positions and corresponding reach transformations 
are only generated ifthe the client program, such as MOO, requests positions 
of objects at intermediate times. H the granularity is high, the goals will be 
more widely spaced. Reaching for a goal that is far away will generally pro­
duce a different motion than reaching for a goal that is close. Thus a user 
is not guaranteed. to get the same motion each time the simulation is run, 
unless the exact same sequence of frames is requested. 

This is not really a problem in an interactive setting, where typically all 
the frames are regenerated each time an animation is played back. However, 
if the simulator is integrated into a rendering program, frames may be gener­
ated in a random sequence and sometimes with varying granularity. It might 
be wise to enforce some specified granularity in this setting, so that users do 
not unknowingly get incompatible results from frame to frame. 

4.5 Summary 

The implementation described in this section produced a new SCEFO in­
terface for creating and animating articulated objects in BAGS. This im­
plementation allows for multiple linkages to be created and maintained over 

22
 



time, with both direct manipulation of the joints in the linkage, and indirect 
manipulation via the high-level inverse kinematics algorithm. In addition 
to providing this tool for creating and manipulating a new class of complex 
objects, it was one of the first simulator methods implemented on top of 
DBOSS and proved to be a valuable test of that package, its functionality 
and reliability. 

5	 Comparison of Inverse Kinematics Algo­
rithms 

The selection of an inverse kinematics algorithm for high-level motion control 
was based on the need for a real time algorithm which produced reasonably 
natural motion. A brief comparison of the 3 methods considered, in terms 
of efficiency, visual effectiveness, and robustness will be useful to explain the 
choice of method for this project. Each of the methods in the following list 
has been described in the Related Work and Implementation sections. 

1.	 Pseudo-inverse Jacobian solution used in MIT Media Lab robotlib. 

2.	 Multiple constraints solution used by Jack system at the University of 
Pennsylvania. 

3.	 Iterative linear solution developed at Brown for this project. 

5.1 Efficiency 

In choosing the algorithm implemented by this project, computational com­
plexity was a key factor in its desirability over the other methods. If we 
consider the number of joints in an inverse kinematics chain n, we can evalu­
ate the relative complexity of the methods. Solution 1 computes the inverse 
of a matrix of size n z 9 or n z 6, depending on whether the goal includes ori­
entation information. A normal Gaussian elimination solution for inverting 
the matrix is an O(n3

) operation. Solution 2 also relies on a matrix inver­
sion and is O(n2 ) [ZHA089]. In contrast, solution 3 does a simple iteration 
through the chain using the local information at each joint to determine the 
delta joint angles. A constant amount of work is done at each joint. While 

23
 



the iteration through the chain may be performed a number of times be­
fore the end effector converges to the goal, there is a maximum number of 
iterations which keeps the algorithm linear, or O(n). 

5.2 Visual effectiveness 

Each of the three methods can be demonstrated to produce reasonably nat­
ural motion for specific configurations. The motion produced by solution 1 
was the least tested of the three methods, mainly due to lack of robustness 
in the implementation. However, a superficial assessment showed that the 
global nature of the pseudo-inverse method produced reasonable effects, with 
the change in joint angles distributed evenly throughout the chain. Although 
this motion will not always be desirable (for instance, there is no need to ro­
tate at a shoulder joint if a goal is reachable simply by raising the forearm), 
in other cases the global motion mimics what happens in reality. 

Solution 2 produced very nice motion in near to real time. Since the 
implementation uses a technique of subdividing the goal up into a series of less 
distant subgoals, the motion monotonically converged toward the goal as the 
iterations progressed. In addition, the ability to specify multiple prioritized 
goal made this a very attractive system for producing complex animations. 
Unfortunately, the complexity of the system also worked against its inclusion 
into the LINK package at this time. 

Tests of solution 3 in random configurations determined that reasonable 
motion can be produced with proper use of joint limits and weights. A com­
pletely unconstrained linkage using this method will tend to flop around, 
always bending as far as possible at each joint in order to reach the goal. 
This would, for instance, cause a human figure to possibly bend over back­
wards to reach a troublesome goal, or to bend an excessive amount at the 
pelvis when a less drastic change in all its joint angles would be more natu­
ral. However, imposing joint limits eliminates the physically impossible joint 
angle changes; and imposing joint weights tended to eliminate the excessive 
bending problem. Future research into improving this algorithm would seem 
likely to improve its visual effectiveness. For example, an occasional rever­
sal of the order in which the joints are traversed might produce less abrupt 
motion. 

24 



5.3 Robustness 

The issue of robustness of the implementation was a serious concern in solu­
tion 1. The inversion of the pseudo-Jacobian matrix was not always guaran­
teed to succeed, which leads to anomalies in the motion if many reaches are 
being calculated sequentially. Additionally, the error margin for the calcula­
tions tended to increase dramatically when the goal was further away. The 
solution also produced erroneous results when the reaching linkage was in a 
"singular" configuration [15], such as being extended straight out. 

There was no opportunity to evaluate solution 2 in terms of robustness, 
other than superficial assessment of the live demo. In that demo, the goals 
were nearly always achieved and no errors occurred. However, the linkage 
did occasionally get caught in a "kinked" position where a joint would no 
longer move even though by doing so the goal might be achieved. 

Solution 3 was similar to solution 2 in that most goals that were reachable 
were in fact reached using this algorithm. Since the calculation at each joint 
is a simple check for angle or translational distance between the end effector 
and the goal, matrix inversion errors are not a factor. Although no formal 
calculation of the workspace reachable by a given linkage was done, such as is 
proposed in [KORE84], the repeated usage of the method on several models 
confirmed its general robustness. 

Some configurations did produce the same "kinking" effect that was men­
tioned for solution 2. This is an artifact of the locality of information used 
when determining joint angle changes. It is interesting to note that the more 
expensive method and this new method produced a similar result. 

5.4 Summary 

In summary, the simple iterative inverse kinematics method developed at 
Brown was chosen for inclusion in this project on the basis of its efficiency 
and ability to produce reasonable motion. The Media Lab system was too 
error prone and computationally expensive to be useful at this time. The 
University of Pennsylvania code is a highly developed system and would very 
likely produce good animations. However, its complexity was a discouraging 
factor when attempting to integrate the code into BAGS. Since the visual 
results did not vary significantly, the simpler, more efficient O(n) algorithm 

25
 



6 

was the most practical choice. In the future, it would be interesting to 
integrate both of these outside methods and do a direct comparison of the 
three algorithms under identical conditions. 

Issues for Future Research 

The work described in this paper provided an initial interactive environment 
for creating and animating linkages. Motion control methods were provided 
for direct manipulation of linkage components, and for high-level inverse 
kinematics manipulation. 

While this basis provided a platform for creating a new class of complex 
objects, and easily specifying animations of these objects, much work remains 
to be done. Experimentation with the system and the actual implementation 
revealed several issues that will require further research. 

A key component missing in the current implementation is the ability to 
dynamically add and delete joints from a linkage, or dynamically alter the 
characteristics of a joint during the course of an animation. This would allow 
interesting effects to be created such as the gradual restriction of freedom at 
a joint, the connection of two linkages (one can envision two robots clasping 
hands dynamically and having the first robot drag the second along), or the 
breaking off of a subcomponent into an independent linkage. 

The motion produced by the inverse kinematics simulator also provides 
a basis for much further research. While reasonably realistic motion is pro­
duced using the constraint mechanisms of joint limits and weights, a truly 
realistic simulation would need to take into account the physics of motion, 
and use techniques such as dynamic analysis [BARR88], or physically-based 
modeling [BARR89]. 

Analysis of the simulator motion also clearly shows the need for a collision 
detection simulator of some kind. Again, joint limits will help but they do 
not realistically model collision detection. A collision detection simulator 
would have to work in concert with the joint motion simulator, which raises 
the issue of simulator interaction, a rich area for further research. 

The inverse kinematics algorithm implemented in this project can be 
improved by research into several areas: 

•	 A more sophisticated weighting algorithm would produce better damped 
motion of the joints. The current algorithm is a simple linear weighting 

26 



7 

that sometimes prevents a goal from being reached. In addition, a fast 
interactive previewer of simple animations produced by assigning differ­
ent weights would give the animator essential assistance in determining 
the correct values. 

• Solution of closed-cycle linkages should be added. This involves finding 
solutions for joint chains that have multiple paths from the base joint to 
the end effector [MOTT88]. Currently, cyclical configurations of joints 
and links are allowed, but only one path from base joint to end effector 
is used. The other paths are ignored. Adding cycles also introduces 
ambiguity to the rooting algorithm, and this would need to be resolved. 
A fast algorithm for closed cycles would be a significant contribution 
to the research in this area. 

•	 A scheme for solutions of multiple goals is also a useful research aim. 
While the current system will solve multiple goals, there is no provision 
for joint chains that overlap. One goal will override another in an 
arbitrary fashion. When multiple conflicting goals exist, there needs to 
be some sort of prioritization scheme to determine which goal, if any, 
should be solved. 

Conclusion 

The project described in this paper provided an extension of the BAGS envi­
ronment to allow modeling and animation of a new class of complex object, 
the articulated object. A basic interface to both the animation scripting 
language, SCEFO, and the interactive animation environment was provided. 

A new real time solution to the inverse kinematics problem was imple­
mented, providing a high-level motion control method for animating linkages. 
In the first pass at implementing the algorithm, the goals of reasonable perfor­
mance, reasonably "natural" motion, and the ability to create task oriented 
animations were realized. 

In conclusion, the addition of articulated objects and associated simula­
tion methods to the BAGS environment is a contribution to both interactive 
modeling and interactive animation. It will provide a basis for future de­
velopment of complex animations, as well as a research testbed for motion 
control and simulation methods. 

21 



8 Appendix A - Example SCEFO Script 

/* Part A t B: include/read the necessary files */
 
#include <joints.scefo>
 

read ("cube.off") cube;
 
read ("joint.off") cube;
 
read ("linkage.off") linkage;
 
read (" sphere.off") sphere;
 

/* Part C: model the links */
 
/* These are the links */
 
template (limb) cube;
 
change (limb) scale <0, {O.S,O.OS,O.OS}>,
 

rotate <a, {{1.0, 0.0, O.O}, 4S.0}>; 
template (leftupperarm) limb; 
change (leftupperarm) rotate <a, {{O.O, 0.0, 1.0}, -90.0}>, 

translate <a, {0.7, 1.5, O.O}>; 

template (leftlowerarm) limb;
 
change (leftlowerarm) rotate <a, {{O.O, 0.0, 1.0}, 90.0}>,
 

translate <a, {0.7, 0.5, O.O}>; 
template (hand) cube; 
change (hand) scale <0, {0.1, 0.15, O.Ol}>, 

rotate <0, {{O.O, 1.0, O.O}, 4S.0}>; 
template (lefthand) hand; 
change (lefthand) translate <0, {0.7, 0.0, O.O}>; 

template (torso) limb; 
change (torso) rotate <0, {{O.O, 0.0, 1.0}, 90.0}>, 

translate <0, {1.0, 1.5, O.O}>; 

/* Part D: model the joints */ 
template (jointleftshoulder) joint; 
change (jointleftshoulder) 

set_field <0, {"linkl","torso"}>, 

28 



set field <0 { l link2" "leftshoulder"}>- "	 ,
set_field <0, {lIjoint_type",BALL}> , 
rotate <0, {{1.0, 0.0, O.O}, 90.0}>, 
translate <0, {0.7, 2.0, O.O}>; 

template (leftelbow) joint; 
change (leftelbow)	 set_field <0, {"linkl" , "lef tupperarm"} >, 

set_field <0, {llink2 1 ,"leftlowerarm"}>, 
set_field <0, {Illimit_rot_x", {-180.0, l80.0}}>, 
set_field <0, {ljoint_type",PIN}>; 

template (leftwrist) joint; 
change (leftvrist)	 set_field <0, {"linkl","leftloverarm"}> , 

set_field <0, {llink2", l l efthand"}>, 
set_field <0, {"limit_rot_x", {O.O, l80.0}}>, 
set_field <0, {ljoint_type",PIN}>, 
translate <0, {0.7, 0.0, O.O}>; 

1* Now group the links and joints so you can move them altogether *1
 
1* This movement must come before the linkage object template *1
 
group (body) torso, leftupperarm, leftloverarm, lefthand;
 
group (joints) jointleftshoulder, leftelbow , leftwrist;
 
group (both) body, joints;
 

change (both) translate <0, {-4.0, -2.0, O.O}>;
 

1* Part E: *1
 
1* Now add the linkage object *1
 

template (arm_linkage) linkage;
 

change (arm_linkage) set_field <0, {" root", "torso" }>,
 
set_field <0, {"add_j 0 int II , "jointleftshoulder"}>, 
set_field <0, {lI add_j oint II , "leftelbow"}>, 
set_field <0, {lIadd_joint ll 

, "leftwrist"}>; 

29 



1* Part F: *1
 
1* Now add any joint movement set fields that you want *1
 

template (ball) sphere;
 
change (ball) translate <0, {-2.0, 1.0, -0.3}>;
 

change (jointleftshoulder) 
set_field <0, {lljoint_reach" , {{0.7, 0.0, 0.0 },"lefthandtl}}> 

<5 , {IIJ' oint-reach" , {ball:_position}, "lefthand"}}>; 

30
 



References 

[BADL87] Badler, Norman 1., Manoochehri, Kamran H., and Walters, Gra­
ham, Articulated Figure Positioning by Multiple Constraints, IEEE 
Computer Graphics and Applications, June 1987 

[BARR88] Barr, A. H., and Barzel, R., A Modeling System Based on Dy­
namic Constraints, ACM SIGGRAPH Proceedings, 1988 

[BARR89] Barr, Alan H., Introduction to Physically-Based Modeling, 
Course Notes #30, Topics in Physically-Based Modeling, ACM SIG­
GRAPH '89, Boston, MA 

[BEYE88] Beyer, Thomas B., Dynamic Simulation and Dynamic Con­
straints within an Interactive Animation System, Masters Thesis 
(Draft), Brown University, Dept. of Computer Science, August 1989 

[BORD90] Borden, Lisa K., A Guide to Linkages, Brown University Com­
puter Graphics Group, Providence, RI, March 1990 

[CONN89] Conner, D. Brookshire, A Guide to New Scefo, Brown Univer­
sity Computer Graphics Group, Providence, RI, August 1989 

[FERD86] Ferdman, Alejandro Jose, Robotics Techniques for Controlling 
Computer Animated Figures, Masters Thesis, Massachusetts Insti­
tute of Technology, Dept. of Architecture, 1986 

[GOLD89] Fiske, Barton C., and Gold, Melissa Y., Overview of BAGS In­
ternals for Packages and Commands, Brown University Computer 
Graphics Group, Providence, RI, August 1989 

[ISAA87] Isaacs, Paul M. and Cohen, Michael F., Controlling Dynamic Sim­
ulation with Kinematic Constraints, Behavior Functions and Inverse 
Dynamics, Computer Graphics, Volume 21, Number 4, July 1987 

[JASM89] Jasmin, Pierre, Introduction to Computer Animation, Course 
Notes #9, Introduction to Computer Animation, ACM SIGGRAPH 
'89, Boston, MA 

31 



[KORE84] Korein, James U., A Geometric Investigation of Reach, MIT 
Press, Cambridge, 1984 

[MOTT88] Mott, David C., An Animation System for Motion Specification 
of Articulated Rigid Bodies in Scientific Visualization, Masters The­
sis, Brown University, Dept. of Computer Science, May 1988 

[PHIL89] Phillips, Cary B., Jack User's Guide, Computer Graphics Re­
search Laboratory, University of Pennsylvania, October 1989 

[RAFE88] Rafey, Richter A., A Model for Interactive Specification and Ani­
mation of Jointed Objects, Masters Thesis, Brown University, Dept. 
of Computer Science, May 1988 

[SIMS87] Sims, Karl, Locomotion of Jointed Figures over Complex Terrain, 
Masters Thesis, Massachusetts Institute of Technology, Dept. of Ar­
chitecture, 1987 

[STRA88] Strauss, Paul S., BAGS: Brown Animation Generation System, 
Technical Report CS-88-22, Brown University, Dept. of Computer 
Science, May 1988 

[ZELT85] Zeltzer, David, Toward an Integrated View of Computer Anima­
tion, Proceedings of Graphics Interface 1985, Montreal 

[ZHA089] Zhao, Jianmen, and Badler, Norman I., Real Time Inverse Kine­
matics with Joint Limits and Spatial Constraints, University of 
Pennsylvania Technical Report MS-CIS-89-09, December 1989 

32
 


