
BROWN UNIVERSITY

Department of Computer Science

Master's Project

CS-89-M5

"Visualization of Disassemblies of Mechanical Objects"

by
Robert C. Zeleznik

Visualization of Disassemblies of

Mechanical Objects

submitted by

Robert C. Zeleznik

in partial fulfIllment of the requirements for the

Master of Science Degree

in Computer Science at Brown University

May 18, 1989

Andries van Dam, advisor

Acknowledgements

I would like to thank Andries van Dam and Brown University for providing continuing
support for students to pursue research in computer graphics. John Hughes was

supportive and provided the initial directions for this project. Henry Kaufman was
extremely helpful in assisting the development of the interactive software that was
necessary for this project. Thanks also to Paul Strauss, Mike Natkin, and the rest of the
Brown Computer Graphics Group for their efforts in building and supporting BAGS, and
their thoughtful advice. Finally, thanks to Lisa Winterbottom for her support and .
understanding throughout this project.

This work has been sponsored in part through research contracts with International
Business Machines Corporation, National Cash Register and Digital Equipment
Corporation, and equipment grants from Sun Microsystems, and Hewlett-Packard.

Contents

1

2

2.1

2.1.1

2.1.2

2.2

3

3.1

3.2

4

5

5.1

5.1.1

5.1.2

5.1.3

5.1.4

5.1.5

5.1.6

5.2

6

7

8

Introduction 1

Disassembly Descriptions 2

Existing Methods 3

Static Images . . 3

Graphic Styles . 3

Detail Regulation 5

Video Based Images 10

Interactive Model-Driven Disassembly Systems 11

Interactive Animations 12

Dependency Encoding 14

Disassembly System Requirements 16

PUDGE - Disassembly Language 18

PUDGE Design 20

Part Objects 20

Actions Objects 21

Apply Objects 21

Context Objects 22

Depend Objects 23

Predicate Objects 23

PUDGE Examples 23

PUDGE Analysis 25

Future Directions 27

Conclusion 29

References . . . 31

ii

INTRODUCTION

The degree to which our educational resources bear a strikingly similar fonn to those

resources that existed a thousand years ago is somewhat disturbing. Indeed, our most vital

educational device is the book, an effective but outdated tool. This is not a disparagement of

books, but an observation that modern technology has made available more expressive and

stimulating mechanisms for disseminating infonnation. In response to this technological gap,

the notion of electronic books has received increasingly more attention, and an ever growing

body of literature is forming upon that topic, as represented, for example, in [YAN85].

In essence, an electronic book is the integration of various media and technology into a

single interactive entity. Integration is accomplished by linking conceptually related blocks of

infonnation together in order to fonn webs of association, called hypertext and hypennedia.

Thus, a reader of an electronic book is not restricted to viewing infonnation in a linear manner

as with standard books. Instead, with appropriate cues from the electronic book itself, a reader

can view a page of the electronic book, and decide to follow any of a number of possible links.

These links can be to video images, to interactive animations of pictorial concepts, or to further

textual infonnation and related material.

Electronic book technology is well suited to repair and instruction manuals as discussed

in [FEIN82] and as evidenced by the Movie Manual described in [BRAN88]. The precise,

goal-oriented nature of repair manuals presents a convenient metric for evaluating the

effectiveness of the manual, by which current efforts have had only limited success. These

efforts have provided only static drawings, or limited video animations, which cannot capture

the temporal and visual nature of repair processes. In addition, it is very difficult to update

standard repair manuals even if only slight structural modifications are made to the assembly.

A central aspect of maintenance and repair manuals is their focus on describing processes

for how to disassemble components of an assembly, in order to repair, or replace them.

Traditionally, these descriptions have been expressed through sets of line and tone art drawings

with accompanying textual blurbs. Such descriptions need to be laboriously crafted by skilled

artisans who precisely understand both the physical descriptions of the objects and the

mechanics of the disassembly process. However, what is troublesome is not the effort

expended by the artists, but rather the unnaturalness of the static, non-interactive media in

which these artists must design process descriptions. Alternative means for describing

disassemblies have been explored with the most promising being the application of laser

technology. Video disk, CD-ROM, optical disk, and DVI technology provide the power to

describe disassembly processes in a more natural way because of their ability to store movies

of actual disassemblies. Although, laser disk technology presents a significant improvement

1

over the static line and tone art drawings, it still is not adequate, especially since it offers only

limited user-interaction. That is, a canned image or animation can be interactively requested,

but cannot be manipulated and altered. With model driven images and animations, a user can

change characteristics of the model, change how the model is viewed, and generate animations

that were never specifically defined by the author of the process model.

The purpose of this thesis is to present a general methodology for describing and

interactively animating a subset of repair manuals - the disassembly processes of mechanical

devices. This approach represents assemblies as pseudo-realistic 3D models and disassembly

descriptions by dependency graphs that can be executed to produce animation scripts. Thus in

theory, the user is able to configure and generate animations of whichever aspects of the

disassembly process they fmd interesting.

This thesis will begin by exploring in detail the existing means for presenting

disassembly descriptions. Each of the existing primary techniques used to convey disassembly

information will be reviewed in order to elicit its shortcomings, and its advantages. Mter

looking at these methods, this thesis will describe the need for, and the objectives of, an

interactive disassembly animation system. Finally, this thesis will present and review an

executable disassembly description language, PUDGE, that was developed to provide

interactive disassembly animations.

1 Disassembly Descriptions

In considering how to describe disassemblies of mechanical objects, two critical issues

must be addressed. First, what is the character of the people that the descriptions are aimed at,

and second what is an acceptable medium for providing these descriptions? Clearly, the latter

issue is influenced by the former.

Descriptions of mechanical disassemblies are often directed towards individuals with

little or no prior knowledge of the devices that they are disassembling. This derives from the

pervasive desire of individuals to, "fix it themselves", even if they have no training whatsoever

in disassembling and repairing devices. However, such descriptions may also be used by

more experienced persons who essentially know how to perform the disassembly, but who

need to reference some information on some subset of the entire disassembly. In either case,

designing a single description uncomplicated enough for a novice and yet sufficiently

descriptive for an expert is a non-trivial task. Compound the disparity between novices and

experts with the inherent differences between individuals, and it becomes clear that a single

description of anything is not ideally suited for all people. Thus, the appropriate paradigm for

describing disassemblies must consider the potentially vast differences between individual's

2

tastes and background knowledge, and allow for dynamic user-directed disassembly

descriptions.

2 Existing Methods

The concern with formally describing the disassembly procedures for mechanical objects

is by no means novel, although these descriptions have become increasingly important, given

the greater complexity of modem object designs. The accepted methodology for describing

these procedures has been to produce a manual that exhaustively describes all disassembly

procedures with the primary explicative technique being a large collection of line and tone art

drawings for each stage of the disassembly (see Figure 2.1). More recently, such traditional

specifications have been augmented or replaced by video based descriptions. It is important,

then, to explore the techniques used in each of these methodologies to determine to what degree

the success of these methods is limited by their media.

2.1 Static Images
Static images, with few exceptions, are the primary graphic illustrations in all

mechanical disassembly descriptions. As such, a well-refined corpus of techniques exists for

the purpose of making these images as clear as possible. One might expect that the more

realistic media, such as photographs, would necessarily be better suited for technical

illustrations. However, as will be discussed next, this has not been borne out in the case of

disassembly descriptions, which are almost always characterized undetailed drawings.

2.1.1 Graphic Styles

The three primary modes of graphic presentation in maintenance and repair manuals are

photography, tone art, and line art. However, the most striking characteristic of the static

images used in technical descriptions is that they are often composed solely of line art, which

depicts only the visible peripheries of objects. Quite often, in instances where more detail is

desirable, tone art, which shades objects in even gradations, is employed to enhance visual

perception. In any case, exactly how much detail is optimal is often an irreconcilable issue

because perception is a highly individualistic procedure [FRIE80]. The following is a

summary of the virtues and deficiencies of each of the three primary graphic styles.

Although the natural expectation is that the realism of photographs would be a

paramount advantage, the least realistic technique - line art - is in actuality the commonest.

This arises from a number of factors, not the least of which is its economy [WIL89].

3

C(---~

;(---'"
'-------"
'--I. --I

i"

AT0261

5. REMOVE PRIMARY REGULATOR VALVE

(a) Remove the retainer with a magnetic finger.

AT0259

(b) Remove the sleeve and plunger.

(e) Remove the spring and valve.

NOTE: Note the number of adjusting rings.

Figure 2.1 Standard disassembly description [TOY86]. Note the use of elision.

4

However, cost aside, the simplicity of line art images itself is a principal cause in its extensive

presence in repair manuals as the rendering method of choice. Line art drawings suffer only

slightly from their lack of 3D cues and generally are no less expressive than more realistic

pictures. Depth and shading cues can be effected by simply regulating the width and darkness

of lines. Further contour cues can be provided by cross hatching surfaces with closely set

lines.

Perhaps, the motivation for utilizing line art is precisely that it offers an elegantly

unadorned means for expressing both detail and reference context information. This

judiciously restrained view toward detail is appropriate, since what is being expressed is an

object or a process and not an image. The merit of pictures is judged by how well they

communicate and not by their artistic value. Thus, the picture's purpose is to help the reader to

correlate the steps of an abstract process description with an actual mechanical object.

In comparing tone art drawings to photographs, it is evident that the visual complexity

of the pictures greatly diminishes, but without a commensurate decrease in the amount of

reference information that the pictures provide. In fact, the wealth of minutiae in photographs

may be distracting, since important components cannot be suitably emphasized, nor can

unimportant ones be effectively de-emphasized. In addition to detail, tone art provides the

limited capability of artificially inducing translucency upon otherwise opaque surfaces (see

Figure 2.1.1.1). As with line art, tone art affords the artist with the capacity to present

unrealistic, yet expressive, axonometric and orthographic views of objects. Thus, tone art

drawings represent a compromise between the fine detail of photographs and the utilitarianism

of line art drawings.

Notwithstanding that the emphasis on process must be stressed over pictorial realism,

photograph-based descriptions are often extremely beneficial. Not only do photographs

overcome any problems with "artist's misconceptions", but they may also provide important

surface, shadowing, texture, and 3D accuracy that is not readily available through other

methods. Photographs are especially important for some intricate objects which may be

confusing if rendered in a less precise fashion. In addition, exploitation of air-brush

techniques can be very effective in suppressing excess detail without loss of realism.

2.1.2 Detail Regulation

It is clear that, although too much detail may be distracting, some level of detail is

essential for an effective description of a mechanical object; otherwise, text could be used by

itself. Therefore, it is critical that a description be able to provide an adequate means for

accessing sufficient detail when necessary but not at the expense of providing too much detail

5

(c)

(a)

(b)

Figure 2.1.1.1 Standard rendering methods [MAGN70].

a) tone art rendering of assembly

b) line art rendering of assembly and its casing

c) combination of tone and line art to render a partially

transparent casing around the assembly

6

in each drawing. Clearly, it would be most convenient if readers were able to select the levels

of detail with which they were most comfortable, preserving the option to switch immediately

between more and less detail without needing to refer to another image. Standard static images

are unable to accommodate such dynamic views by their nature, and so the point of how much

detail to include in each drawing is an extremely important design criterion. In fact, a variety of

techniques are commonly used just for the purpose of providing various levels of detail, and

therefore, varying levels of context information [MAG70]. Among these techniques are

elisions, omissions, cut away and inset views of objects.

The purpose of elisions in technical graphics is to assert that a spatially significant object

exists, but is not of central importance to the drawing. Elisions usually come in the form of a

de-emphasized partial outline of an object without any of its 3D detail - essentially a silhouette.

Elisions are important since they often refer to components that are easily recognizable, but are

not important to the process. Such components provide a spatial context merely by their

presence, and thus, nearly all of the detail of these components can be eliminated without

forfeiting any of their descriptive function.

Similarly, cut away views of an object are used when parts of interest are shielded from

view by some opaque object. In this case, the shielding object is critically important to the

picture; but it is not satisfactory either to omit this object or to allow it to conceal the visual

description of the parts that are important to the process. In these situations, just enough of the

shielding object is "cut away", with visual cues to express that the part has been cut (e.g. a

ragged edge on a cut away surface), so that the objects of interest can be seen.

Omissions on the other hand are used to reduce visual detail by omitting objects that are

not part of the process and that do not provide orientation cues. Although this is probably not a

problem for experienced individuals, such omissions may confuse someone not well versed in

technical explanations.

Inset views are another convenient way of providing adequate context information

without admitting too much detail. Inset views usually assume the form of a drawing of an

assembly with an inset picture of some small part of that assembly. Arrows or lines are used to

indicate that portion of the full assembly to which the inset picture corresponds.

Since providing context information is so important, and yet, as much detail as possible

is eliminated from each drawing in order to emphasize methodology, most disassembly

descriptions offer another means of accessing context information. Where each drawing in a

disassembly description can be thought of as a local road map, it is usually worthwhile to

provide a more global road map in order to really understand what is happening in the larger

scope. The technique for providing this global road map is accomplished through the

7

presentation of a parts explosion. In a parts explosion, all of the constituent parts of an object

are depicted in such away, that the most important spatial relationships between parts are

preserved as seen in Figure 2.1.1.2. That is, each part is drawn so that its position relative to

the parts adjacent to it in the assembly is preserved, and can be clearly identified. In this way,

the reader can develop a general impression of which parts will depend upon and interact with

which other parts during disassembly. Parts explosions are extremely important since, to the

indoctrinated, they can often suffice as the only visual description of a mechanical object.

Incorporated into drawings of parts explosions and, more importantly, process

descriptions are meta-objects[FEIN87]. These objects are the primary visual descriptions of

temporal dependencies and procedures. Again, since what is being described are processes

and not pictures, it is essential that a mechanism exists for describing the temporal relationships

between process elements. Static drawings can only show the state of a system at discrete

instants, such as before and after something has been moved. This is sufficient only for

processes in which actions are simple enough that they can be inferred from a series of

snapshots of the disassembly process. As actions become more complex, it becomes

necessary to present visual descriptions of the actions, and perhaps the interdependence

between actions, themselves. Meta-objects furnish an efficacious mechanism for describing

) processes, as they are a concise visual abstraction of the temporal nature of actions. The set of

meta-objects commonly consists of arrows for indicating the direction in which an object

should be pulled or twisted, and tools (or hands) for depicting how an action can be

accomplished. Of course, text is also used in cases where visual descriptions are not amply

illustrative.

Thus, the approach of centering disassembly descriptions about static images is

primarily one of coercing an intrinsically temporal, 3D concept into a static, 2D paradigm.

Extensive techniques have been developed which make the framework of drawn art and

photography workable. Nevertheless, the fact remains that static 2D images are a sub-optimal

environment in which to present disassembly descriptions.

8

00 Brake Gasket--t- ­

00 Clutch Apply ~_

Gasket

Roll Pin

Manual Valve Lever Shaft

Manual
Valve
Lever

• Collar

Retaining
Spring

00 Planetary Gear

and Intermediate Shaft

• Gasket

00 Case

Parking Lock Pawl

75 (65 in.-Ib. 7.41

Parking
Lock Pawl Bracket

Figure 2.1.1.2 Standard "parts explosion" [TOY86].

9

2.2 Video-based Images

More recently, a considerable amount of attention has been placed upon video

technology, especially that based on video disks [MCC84]. Historically, people have shied

away from video based solutions because of both the cost of mastering, and the technological

problems associated with retrieving information from vast video stores. However, with the

development of increasingly cheaper CD-ROMs and near random-access to megabytes or even

gigabytes of information, mass storage of realistic video footage has become a possibility. The

feasibility issues of storing numerous video snippets of disassemblies and accessing them in

real-time is no longer a primary concern. (Only the storage of realistic video will be

considered, because storing animated video is merely a subset of the more general interactive

disassembly descriptions that will be considered in section 3).

However, given the previous arguments against the inclusion of too much detail, one

might wonder why realistic disassembly videos would even be considered as an improvement

over more standard disassembly descriptions. In this regard, it should be readily apparent that

videos overcome two of the major expressive impediments of static 2D art. First, videos are

capable of explicitly capturing the essence of the steps of a disassembly, both in terms of how

an action is accomplished and what the temporal relationships are between different actions.

) Second, realistic videos provide a natural means for capturing 3D information.

Being able to watch an actual person performing a disassembly of some object is

appealing, because, with video, one would also make use of a corresponding sound track in

order to offload and accentuate a portion of the process cues. The greater ease with which

videos are able to capture 3D information should make disambiguation of parts in complex

scenes a non-issue. However, these gains do not come without cost. As aforementioned,

realistic levels of detail are not necessarily useful as they can detract from the processes that are

being specified. In the case of videos, the detail problem is compounded since the tools,

hands, and arms used to perform the disassembly cannot be elided or omitted. Achieving

useful camera angles may be quite difficult under some circumstances without access to any

methods of detail control.

Due to the information overloading associated with realistic images, one would expect

drawings to still be used, especially as lead-ins to disassembly segments. DVI recognizes this

need by providing hardware support for integrating computer graphics with live video in real­

time. However, this support is primarily limited to overlaying annotations, arrows, textures

and frames on top of video images. In general, though, more attention needs to be paid to

producing animations from disassembly models than to the editing realistic video images.

Certainly, a parts explosion of an intricate device provides more information at a glance than a

10

realistic picture of the same object would provide. This is because animated models allow

concepts to be visually encoded in a way that a realistic video cannot. The very nature of

realistic video makes it difficult to express a concept except through its application to a

particular instance. That is, a realistic video expresses by example, whereas, animated models

can express by example or by abstraction, since they are not rigidly bound to realism.

Finally, the notion of fllming all possible disassemblies of some device seems as

unacceptable as precomputing tables for arbitrary mathematical expressions. Any given system

might have a exponential number of possible disassemblies (see Figure 2.2.1), and in those

cases, it would hardly seem feasible to film videos of all such disassemblies. Also, as updates

need to be made to the disassembly descriptions, previous filmed videos become useless.

Such time and space profligacy would only be justifiable if more conservative measures were

unavailable or were far less expressive.

••• N

Figure 2.2.1 In this example, each of the objects from 1 to N can be independently removed by
pulling them down. However, the block on the left can only be removed by pushing the

remaining of the N blocks to the right. The number of animations is O(2N) since each block
can be either present or removed.

3 Interactive Model-Driven Disassembly Systems

Given the deficiencies of existing methods for describing disassemblies, it is

incumbent to find a more acceptable system for describing disassemblies. The most crucial

elements of such a system are that the system be both interactive and able to vary the detail at

which assemblies are displayed, in addition to being efficient. Unlike static systems which

discourage variety of presentation, dynamic systems demand diversity as the basis for their

appeal to the user's individuality. Furthermore, the system should expand the concept of parts

disassemblies to include non-standard methods. That is, disassembly manuals generally depict

only how one would disassemble a device if all the parts were working properly. If a bolt had

rusted to a screw, it is left up to the reader to decide if there is some easier way to continue than

by somehow breaking the screw. Although, it may not be possible or necessary to consider all

defects in a model, commonly occurring defects should be added to the disassembly model.

11

3.1 Interactive Animations

The motivation for developing model-driven interactive animations is that a single

description of a disassembly is not adequate for all individuals. Some people are better

equipped to comprehend 3D detail than others. Others, having strong procedural and

mechanical acuity, can develop comprehensive mental models of a disassembly from only a

few examples. Interactive animations provide a means for generating multiple descriptions of a

disassembly process in a natural and concise manner. A single disassembly description

provides all the information necessary to describe disassemblies for the beginner as well as the

expert. Conversely, avoiding multiplicity is extremely difficult when the descriptive medium is

either hardcopy or video disk, because no interpretable model exists, only an image.

It should be clear, that the development of an interactive animation system depends

upon the maintenance of a 3D model of the real assembly, in addition to a description of the

disassembly process. These 3D models can be rendered in real-time on a high-performance

workstation, especially those that provide hardware support for 3D rendering. By sustaining a

3D object model at all times, it becomes possible for the user to intervene at any point in an

animation of a disassembly process. Thereby, the user can customize various components of

the visual description, such as the camera position or the rendering method for objects.

Because of the maintenance of an object model, moving the camera or switching between line

art, flat shading, and more realistic lighting and shading models is potentially trivial. In this

way, the essence ofline art drawings can be maintained in concert with the techniques of more

realistic video animation systems. In addition, if the structure of an assembly were to change,

then only one 3D model would have to be revised, instead of redrawing all the images of a

repair manual, or re-shooting all disassembly processes. Certainly, the true realism of realistic

videos is lost, and the techniques of elisions, and cut away views are perhaps made more

difficult to realize, yet it seems that no expressive power has really been conceded.

In fact, cut aways can be achieved to some degree by a straightforward application of

clipping planes. This would not exactly duplicate to cut aways in line art, but the effect would

be quite similar. On the other hand, because of the precise nature of rendering systems,

elisions are more difficult to express dynamically. It is both hard to defme and to render

arbitrary levels of superficial detail for objects. Therefore, omissions or excess detail might

have to suffice. However, in going to a 3D model in which it is expected that objects will be

viewed in many ways, a new technique for controlling context can be utilized - that ofpartial

transparencies. The use of partial transparencies allows for an object to be present in order to

provide context cues, but not so as to obscure objects of interest. In static images and

especially tone art, partial transparencies are much less effective as they tend to ambiguate

12

pictures, rendering them more difficult to understand (Compare the objects of Figure 2.1.1.1).

However, in an interactive environment, partial transparencies can be controlled by the user,

both in terms of what is transparent and the level of its opacity. In so doing, the ambiguities of

static transparent images are clarified.

Another useful technique, that of inset views, takes on a greater power in an

interactive disassembly system since inset views can be instantiated at user discretion. The

user could elect to view a scene from a number of different camera positions, where each of

these views can be mapped onto an inset portion of the one window or onto a different window

altogether. Although these cameras would view the same assembly, they could be

independently manipulated by the user.

The meta-objects utilized in static images can still be applied in the case of interactive

animations but are of lesser significance. As was the case for video disk animations, the

problem that meta-objects were primarily designed for had already been effectively relieved by

the mere fact that animations are not static. That is, the description of how an object should be

moved, which needs to be described abstractly with arrows in the case of static images, can be

viewed explicitly in an animation. In addition, the use of hands and tools to show how parts

should be manipulated is no longer necessary, since much of that infonnation can be inferred

from the actions themselves. It is still possible to incorporate arrows and tools (hands would

of course be more difficult) into an interactive animation as needed.

Additional user interplay would typically be in the fonn of interacting with the system

in some natural fashion in order to change attributes of the camera(s). With the ability to move

the camera, the user can navigate through a device as much as is necessary in order to

understand the context of the disassembly. If a disassembly involved small parts, the user

could zoom into the assembly without losing any detail because of the existence of the

underlying object model. Conversely, the user might zoom out in order to get a better idea of

the larger scope in which the disassembly were occurring. Further customization would be

available in the form of being able to omit objects by simply turning them off or by

reviewing/replaying the animation at different speeds.

It is critical to note that perhaps the most expressive of the static image descriptions,

the parts explosion, becomes even more expressive in the venue of animation. Instead of

abiding by the lack of 3D infonnation inherent to static parts explosions, this infonnation

becomes self-evident with the ability to move the camera. The relative spatial information of

static images is made much more vivid through the ability to move about any given piece of the

parts explosion.

Thus, by merely having the ability to interact with the system instead of being a

13

passive viewer, the user is afforded a much richer learning environment. The ability to

customize the disassembly to personal tastes means that a single disassembly system can be

used by people of vastly different backgrounds without sacrificing any expressive power or

detail.

3.2 Dependency Encoding

Interactive model-driven animations are the first step toward truly modelling a

disassembly. However, they still do not provide the user with the ability to specifically request

a disassembly of interest. The user can customize existing animations to an arbitrary level of

detail but cannot request to see how some particular part would be disassembled (unless there

happened to be a pre-existing animation for just that particular disassembly). Neither could the

user ask questions of the "What ifl" format. The problem is that only the description of

instances of a disassembly (i.e. disassembly scripts) have been stored but no description of

the disassembly process itself (i.e. something to produce a disassembly script) has been

modelled. Consequently, it is necessary to develop some method of encoding the information

necessary to generate disassembly animations from a knowledge-based model of disassembly

processes, as explored in the rudimentary work of Neiman's CAD animations [NEI82].

Modelling processes can be done by either modelling all of the possible instances of

that model, which is akin to the video based methods, or by modelling the interrelationships

between the movements of parts under various conditions of disassembly. As discussed, the

former is insufficient and so this thesis concerns the latter.

The most important characteristic of modelling a disassembly process and not its

instances, is that the user should not be given complete latitude to perform arbitrary actions

upon any part. A disassembly system is not intended to demonstrate the operations of a

device, nor is it a physical simulation. Such license would not facilitate understanding of how

a device should be disassembled. Thus, the disassembly model should not center on general

simulation abilities, but rather it should only pennit of actions that are didactic and that lead

toward a specific goal - the disassembly of some subset of an assembly. That is, it would not

seem useful to allow the functioning of a Rubik's cube, as opposed to its disassembly, to be

modelled in a disassembly system, unless achieving a certain configuration of the cube were

necessary in order to disassemble it.

Therefore, it would not be adequate to encode a system that simply enforced the non­

intersection of parts and forced the user to make all the decisions concerning which parts to

move and how to move them. Further, it would be too naive for a system to blindly inspect the

geometry of an assembly and thereby determine some means of removing its component parts.

14

This is because geometric solutions may not in fact correspond to viable real solutions.

Consider, for example, that in a particular assembly, a screw might be removable by virtue of

its geometric properties alone. Yet, such a removal might not be possible in the actual

assembly, because no screw driver might be able to fit into the assembly in order to unfasten

the screw (some other part would have to be removed first). Or perhaps it might be necessary

that some set of parts might be required to be moved in specific order (perhaps for electrical or

safety reasons) even though there may not be any geometric reason for that ordering. A

number of other examples exist along the these lines, and therefore, disassembly descriptions

must include some abstract knowledge, unattainable through geometric reasoning, about the

type of object that is being modelled.

It is possible that a geometric reasoning system could be used in unison with a

knowledge base, such that, the knowledge base could request geometric information to

evaluate conditional geometric assertions. Simple geometric reasoning, such as determining

whether some part can move along one of its principal axes without intersecting any other part,

is not particularly difficult and will be reviewed later as a possible means for automating the

description of disassemblies. Unfortunately, non-trivial geometric reasoning would probably

be an exceedingly difficult task that would not be realizable in real-time for a number of

hardware generations. In any case, such a geometric reasoner would probably be most

efficient if it cooperated with a knowledge base especially in order to describe correctly

animations for parts such as screws and bolts. That is, it would be difficult to deduce how to

rotate and translate a correctly modelled screw based on the geometry of its grooves. If the

screw were not modelled correctly, then a geometric reasoner would not be able to discern the

difference between a screw and a peg, even though both might have very different disassembly

implications.

From the difficulties inherent in geometric reasoning, it seems that a far more tractable

real-time solution would have all of the necessary motion and dependency information between

parts explicitly described in some formal language. This formal description of the

dependencies between parts, the disassembly process, would by nature be executable. Such a

description would have to allow for the possibility that parts might be removed in different

fashions depending upon the overall context of the assembly. Essentially, such a language

would describe a dynamic dependency graph that would change whenever a part were moved,

or whenever the user specified context information (e.g., a bolt is rusted to a screw). It is

possible that this formal description itself might be the output of an expert system, but that is a

less crucial issue than the actual formal descriptions of disassemblies themselves.

The notion of storing disassembly information as a formal language description allows

15

an interactive system to interpret those rules and generate animations, perhaps exponential in

number, from a compact rule set. Combined with the capabilities of an interactive disassembly

system, such a dependency system could truly describe disassembly processes.

4 Disassembly System Requirements

Given the previous motivation for interactive model-based disassembly animations

systems, it is necessary to outline the functionality that such a system must encompass. This

can be most easily explained by looking at example assemblies and determining what is

necessary to describe their disassembly processes.

Consider ftrst the assembly of Figure 4.1. In this assembly, there is only one possible

disassembly for any part. To remove the small cube, the lid and the screw must be removed

ftrst. Therefore, the formal description of the disassembly of this assembly is trivial. A simple

static dependency graph could be constructed that would explicitly state the motion

dependencies for each object. This graph would not need to consider any context -sensitive

information since the topology of the dependency graph would remain constant no matter what

had previously been disassembled.

Figure 4.1 Context-free disassembly.

However, the assembly of Figure 4.1 is not representative of the majority of

mechanical devices. Figure 4.2 depicts a more interesting assembly in which a single static

dependency graph must allow for context-sensitive dependencies to be expressed. The

removal of the cone from the system of Figure 4.2 can be exacted in 3 distinctly different

ways. The standard method would be to open the latch, rotate the lid, and lift the cone.

However, if the hinge had already been removed then the lid should not be rotated. Instead the

latch should be opened, the lid should be lifted off, and then the cone should be lifted.

Additionally, the user might specify that the latch does not open, and so a third disassembly

16

would remove the hinge, then slide the lid away from the latch, and then lift the cone. In this

way, the context of the assembly defines what actions should actually be executed.

)I
/
 /

)I
Figure 4.2 Context-sensitive disassembly.

Allowing for context-sensitive dependencies is a significant step forward, however it

is still not adequate for some devices. Consider the system of Figure 4.3. In this case the

device is quite simple, but what is interesting is how dependencies need to be dynamically

transferred from one object to another. In this example, by definition any of the three disks can

\. be removed by pulling it to the left, and then up. But if the plate is lifted up, then all the disks
/

above it also must be lifted. Therefore, lifting any disk must depend upon lifting the disk

above it. Although removing any disk can be accomplished without forcing any other actions

to occur, the removal of a disk must cause the dependency graph to change so that the disk

below the removed disk will then depend upon the disk above the removed disk. This system

could be described with a static dependency graph, but it would then be necessary to consider

all possible combinations of disks above the plate and encode specific dependencies for each of

those combinations.

17

Figure 4.3 Dynamically changing disassembly.

5 PUDGE • Disassembly Language

With the preceding in mind, PUDGE, a language for describing disassemblies, was

developed and, in fact, is executable. The general design of PUDGE centers on the notion of a

dynamic dependency graph. As previously described, the problem with static dependency

graphs is that they are only manageable when nodes of the graph depend, in different contexts,

upon only a small number of other nodes. However, if the number of dependencies for a

particular node is dependent upon the problem size, then a static graph must be completely

enumerated, and can become exponential in size. Dynamic dependency graphs provide a more

intuitive and space efficient way to encode such graphs. In a dynamic dependency graph,

nodes correspond either to the application of an action to a part, or to some complex

dependency. An action is only executed after all of its dependencies have been satisfied

(executed). Since dependency references can be made through variables, the topology of the

dependency graph can change dynamically, and, therefore, can be resolved in possibly a

number of different ways depending on the overall status of the disassembly.

For example, consider the dependency graph of Figure 5.1. In this case, the dynamic

nature of the dependency graph is evidenced only by the presence of context nodes. The

dependency that follows a context node will only be executed when the associated context of

the context node is True. Contexts can be arbitrary boolean expressions about the state of the

assembly (e.g. partB moved and partC opened). Therefore, lifting partA depends upon

lifting parte if the context node Ccontext is True. Similarly for shifting partB and lifting

partD. If all of the contexts are True, then each dependency is resolved at the same time

18

(executed) before lifting partA (simultaneity can occur because all actions are buffered).

Lift
PartA

Lift
PartC

ShiftLiftDepend PartB

Lift
PanD

Figure 5.1 Thick squares are actions. Thin squares are dependency nodes. Rounded squares
are context nodes. Arrows specify dependency links.

Now consider the dependency graph of Figure 5.2. In this example, lifting partA, is

initially specified as depending upon shifting partB where reference is by a variable. At some

time X, because of other disassembly events, the very same dependency for lifting partA

might correspond to the dependency for lifting parte and panD simultaneously.

Transformation of the dependency graph can occur because a dependency's reference variables

(essentially pointers to actions or dependencies), and these pointers can be modified at any

point during the disassembly.

At time 0

ISillft IPartB
Lift
PanD

Lift
PartC

Lift
PartA

Shift
PartB

Lift
PanD

Lift
PartC

~H,----.....I

Figure 5.2 Thick squares are actions. Thin squares are dependency nodes. Triangles are variables.
Arrows specify dependency links.

Therefore, one executes a disassembly by specifying a starting point, which is either

an action node, or a dependency node (these nodes are roots of subgraphs of the dependency

19

graph and are seen as squares in Figures 5.1 and 5.2). PUDGE then traverses the graph by

following dependency links that are appropriate to the current context. Whenever an action

node is reached, it is not executed until after all of its dependencies have been resolved. In

addition, when an action is executed, it may be necessary to update the dependency graph,

since the state of the assembly has changed.

5.1 PUDGE Design

PUDGE identifies six basic entities as being important to the description of

disassemblies: Parts, Actions, Applys, Contexts, Dependencies, and Predicates. In following

an object-oriented design, each of these basic types is implemented as an object and will be

referred to as such throughout this description. There are additional Variable objects which are

used to maintain state information. These Variables are only declared within the scope of Part

objects, and can be one of three types: Real, String, and Ptr. Real Variables correspond to C

language floats, String Variables correspond to C language character arrays, and Ptr Variables

are pointers to other Variables where reference is by name (a string). Evaluating a Ptr Variable

returns the evaluation of the Variable that it points to. Evaluating a String or Real Variable

simply returns its value. Thus, the nature of the dependency graph can change by using ptr

) Variables to reference different String Variables that contain names of other objects.

PUDGE is built on top of the BAGS animation system and utilizes its basic animation

data structures. These data structures are managed by a package called SCENE which is a

database for object shapes and animation definitions [STR88]. The PUOGE language is tightly

integrated with the BAGS object modeler and uses its previewer as the means for interactively

viewing animations and defining the parts that comprise assemblies. The BAGS previewer is

designed to run on an HP835 Turbo SRX workstation using the Starbase display list package,

and on the Stellar GX1000 workstation using the PHIGS+ display list standard. The BAGS

object modeler has the ability to interactively make objects invisible, and will have the ability to

change the transparency of objects and move clipping planes. In addition, the modeler

provides the user with the ability to define up to 4 different camera views of an animation and

to move any of these cameras while an animation occurs.

The following is a description of the PUDGE language that is used to define the

disassembly processes and to generate animations of disassembly instances.

5.1.1 Part Objects

Part objects define names for parts in an assembly. Part objects can be animated only

if there exists an object in the SCENE database with the same name as the Part object, but Parts

20

are not required to correspond to such a viewable SCENE object. Thus, the geometric

definitions of parts are properly confined to the animation system. In addition, Variables can

be defined within the scope of a Part. Thus, the definition for a Part and its Variables follows

the syntax:

name { <variable>:<type> [= value]

... J
Each Variable is then accessed by specifying a Part as the scope (prefix) for the

Variable, as in Lid.some_var. The optionally specified value is the initial value of the Variable

and therefore must match the type of the defmed Variable. If the Variable type is Ptr, then the

value can only be the name of some other Variable.

5.1.2 Action Objects

Action objects defme actions which can then be applied to parts. Actions are restricted

to translations along an object axis, or rotations about an object axis. However, an Action can

also correspond to an Action of the same name in the SCENE database. Thus, although it is

expected that most Part motions can be described using only orthogonal motion descriptions,

the more general concept of a SCENE Action is available for non-standard motion descriptions.

The syntax for an Action defmition is:

name or

name { com =value ... J where com is TX, TY, n, RX, RY, RZ, VIS

and T =translate, R =rotate, and X, Y, and Z are axes

If only an Action name is specified, then it must correspond to a SCENE Action,

otherwise, the named action is constructed so that it will perform the specified set of rotations,

translations, and visibility changes. The values for each of the actions can either be a constant

real number, or it can be the name of a Variable which contains either a real number or

recursively is a pointer to a real number. The coordinate system in which an Action transpires

is the coordinate system specified by the Apply object that applies the Action.

5.1.3 Apply Objects

An Apply object applies a specified Action to a specified Part. If the Apply does not

explicitly specify a coordinate system, then the Action is executed such that its coordinate

system refers to the world coordinate system. However, an Apply can specify a coordinate

system in which an Action should occur by specifying the name of some Part. That is, the

coordinate system is set to be the object based coordinate system of the specified Part. In

addition, an Apply can define a set of Variables that should be updated after every time that

21

Apply is executed. This is the method by which dependencies, contexts, and motion

parameters can be dynamically changed. Finally, temporal dependencies can be defined for an

Apply by defining an object that must be evaluated prior to evaluating the Apply. The

dependency object can be another Apply, a Depend object, or a Variable that recursively points

to an Apply or a Depend object. In any case, the Apply will not start its Action until all of the

dependency object's Actions have terminated (if the dependency fails, then the Apply fails).

The duration of an Action is optionally specified in parentheses after Action name. The syntax

for an Apply is:

[?][$(partAname)]partBname:actionName [(time)] { <partC>.<variable> = value

... } [<- [?]dependency_object]

The value specified can be a Variable or an atomic value, with the only requirement

being that the type of the Variable being updated must match the type of the value specified. if

$(partAname) is specified, then the Action is applied with respect to the object based coordinate

system of partAname ($ by itself indicates that the coordinate system should be that of the part

being moved). If a '?' precedes the Apply defmition or the dependency object, then the Apply

or dependency object will be executed only once, succeeding thereafter, and returning the time

at which it was first executed.
\
)

5.1.4 Context Objects

Context objects provide the mechanism for determining whether a dependency is

applicable at some point during the disassembly. When a Context object is encountered during

a disassembly, it returns either the time that the associated context became True, or it returns

False. Contexts can be composed of any boolean combination of Variable comparisons.

Precedence is from left to right except as specified by parentheses. Thus, the syntax for a

Context object is:

name «exp op exp) op exp...) where op is [&& III] and exp is:

[I] var [> I < I == I>= I <= 11=] value or

partlact or contextObj (the name of another Context object)

Values again can be either a constant or a Variable with the requirement that their type

match the type of the Variable being tested. The valid Variable operations are >, <, ==, >=,
<=, !=, and expression operations &&, II,! have meanings equivalent to the same symbols in

the C language. In addition a special test is available to determine whether an Action has been

applied to a Part. The test PartlAction succeeds if Action has been applied to Part and fails

otherwise.

22

5.1.5 Depend Objects
Depend objects provide a general method for specifying dependencies between Applys

and other Depend objects. A Depend object consists of a set of Context objects (or Variables

that refer to Context objects). Associated with each Context object is a set of dependencies.

Again, each dependency can be either an Action object, a Depend object, or a Variable that

refers to an Action or Depend object. Whenever a Depend object is encountered during a

disassembly, it tests each of its Context objects. For any Context object that has an associated

context which is True, its set of associated dependencies are executed. Each dependency is

executed simultaneously, allowing for the possibility of concurrent actions to take place. The

syntax of a Depend object definition is:

name { [?]dependencyl } <- contexcobject_l

... {[?]dependencyN } <- contexcobjeccn

Any dependency that is preceded by a '?' will be executed only once. Thereafter, it

will succeed and return the time it was first executed. A Depend object will fail if either no

context objects are applicable, or any dependency fails when its associated Context object was

True.

5.1.6 Predicate Objects
Predicate objects are the principal interface to the user of the disassembly system. A

user invokes a Predicate object by selecting its name from a list of applicable Predicates with a

graphical locator. Similarly, selecting the display of any Part implicitly generates an evaluation

request for the extraction Predicate of that Part. Evaluation of a Predicate causes its associated

dependency, normally a specification for the removal of some part, to be executed. Each

Predicate object can be thought of as the root of a subgraph of the dependency graph. Thus,

by invoking a Predicate, traversal of the dependency graph begins at the indicated root, and

animation of the disassembly commences.

Predicates should be defined for any context changing events that the user is allowed

to specify, in addition to defining extraction Predicates for each part in the assembly. The

syntax of a Predicate definition is:

name { dependency} where dependency is either an Action or a Depend

5.2 PUDGE Examples

With the preceding in mind, it is appropriate show how PUDOE can be used to

describe the disassemblies of the objects depicted in Figures 4.2 and 4.3.

Re-considering the disassembly of Figure 4.2, there are 3 possible disassemblies for

23

i

the cone. The PUDGE disassembly description defaults to the standard method of removing

the cone unless either the hinge has already been removed or the user has specified that the

latch does not work. The PUDGE disassembly description for this system only takes limited

advantage ofPUDGE's dynamic nature. All context-dependent dependencies are explicitly

stated.

PARTS
Lid
Cone
Box
Hinge

{ in_place:float = 0 }
{}
{}
{}

Latch
ACTIONS
rotate
lift
open
rust
APPLYS
?$Lid:rotate
?$Lid:lift
?$Lid:slide
?$Latch:rust
?$Hinge:lift
?$Cone:lift
CONTEXTS
lid_in_place
latch_ok
latch_nocok
lid_rotatable
hinge_in_place
DEPENDS

(rusty:float = 0)

[RZ=90)

{TY = 3}

[RZ = -90}

{ }

{Lid.in-place = I} <- latch_open

{Lid.in-place = I} <- latch_open

{Lid.in_place = I}

{Latch.rusty = I}

{}

{} <- lid_in_way

(Lid.in-place = 0)

(Latch.rusty = 0)

!(latch_ok)

(!Hingellift && latch_ok && lid_in_place)

!(Hingellift)

lid_in_way	 { lid:rotate } <- lid_rotatable
{ lifClid } <- lid_in_place
{}

latch_open { Latch:open } <- latch_ok
lift_lid { Lid:lift } <- latch_ok

{ Lid:slide } <- latch_not_ok
PREDICATES
remove_lid {lifClid}
remove_cone {Cone:lift}

1* specify Parts and Variables */

/* specify possible Actions */

/* specify Applys for actions */
/* rotating lid depends on opening latch */
/* lifting lid depends on opening latch */

/* one way to make latch rusty */

/* specify Contexts */

/* True if the lid blocks the cone */

1* specify Dependencies */

/* either try to rotate the lid */

/* or remove it by some other means */

/* either lift lid if the latch is working */

/* or slide lhe lid if the latch is broken */

remove_hinge {Hinge:lift}
rusUatch {Latch:rust}

Re-considering the assembly of Figure 4.3, it is necessary to dynamically change the

dependency graph whenever a disk is removed. The following is the PUDGE description for

this system:

24

PARTS
DiskA {prev:string =Plate

next:string = DiskB
up:string = DiskAlift}

DiskB {prev:string =DiskA
next:string = DiskC
up: string = DiskBlift}

DiskC {prev:string = DiskB
up:string =DiskClift}

Plate {next:string = DiskA}
ACTIONS
up {TY=4}
remove { TX = -1 TY = 4 VIS = 0 } 1* move left, then up, then make invisible*/
APPLYS
Plate:up { }
DiskA:up [}
DiksB:up {}
DiskC:up [}
DiskA:remove {DiskA.prev@next = DiskA.next} 1* previous disk depend on next disk */
DiskB:remove {DiskB.preV@next =DiskB.next}
DiskC:remove {DiskC.prev@next =} 1* previous disk depends on nothing */
CONTEXTS
DEPENDS
diskAlift [DiskA:up DiskAnext@up } 1* lifting A depends on lifting what's above A */
diskBlift { DiskB:up DiskB.next@up } 1* lifting B depends on lifting what's above B */
diskClift [DiskC:up }
plateup { Plate:up Plate.next@up } 1* lifting Plate depends on lifting what's above it */
PREDICATES
remove_diskA {diskA:remove}
remove_diskB {diskB:remove}
remove_diskC {diskC:remove}
remove_plate [plateup}

6 PUDGE Analysis

The current implementation of PUDOE successfully illustrates the power of an

interactive, user-directed animation system. User interaction is intuitive and clearly specified,

both in terms of generating disassembly animations and of regulating detail. Disassembly

descriptions can be written for a wide range of mechanical devices and previewed in real-time.

Indeed, in most all cases, the limiting factor for the domain of mechanical disassembly

descriptions is the inability to produce a correct 3D model. Complex assemblies and objects

comprised ofelastic and inelastic tubes, intricate surfaces, and parts that can bend are all

examples of devices that are not only difficult to model, but also are difficult to animate in real­

time. As well as limiting the domain of describable assemblies, generation of 3D models is

also the major temporal bottleneck in producing a disassembly animation.

Nonetheless, the limitations imposed by the modeling and animation system are not

particularly astringent, since the class of assemblies composed of more simple rigid bodies is

25

still quite rich. In addition, The overwhelming majority of assemblies which can be modeled

can also be described in a straightforward fashion in PUDGE. Those examples of devices that

require complicated PUDGE descriptions are usually somewhat contrived; although,

complexity also arises from trying to encode too many contingencies into a disassembly

description. The complexity encountered when encoding contingencies must be viewed in light

of the fact that such encoding is a new concept. Previously, describing contingencies would

have been too complex because of its potentially unlimited scope. That is, when an assembly

is not guaranteed to be in perfect working order, or when many possible similar disassemblies

exist, there are too many conditions to anticipate to attempt to detail every one of them.

Through the use of PUDGE, however, many of these contingencies can be condensed into just

a few lines of a PUDGE description. The drawback, of course, is that the PUDGE

descriptions tend to become more and more inscrutable.

However, the credit for the success of PUDGE must in large measure be attributed to

its interactive nature. By itself, dynamically involving the viewer in the disassembly

description is a powerful pedagogical technique [GAG87], but by further enabling a viewer to

move about an object as it disassembles, 3D comprehension becomes effortless. The

animation alone makes the process description self-evident, alleviating the need for arcane

symbolism. Detail control, in the form of part visibilities and rendering methods, makes the

system suitable to virtually any level of scrutiny. Although pseudo-realistic animations,

incorporating techniques such as pattern mapping and reflections, are not currently available

interactively, they can be produced on video tape. This can be accomplished by saving

disassembly animations in SCEFO, and then rendering them by using other components within

the BAGS environment [STR88].

Another attractive feature of PUDGE is the capability it provides for prototyping

disassemblies. Currently, PUDGE descriptions can be loaded interactively, making it easy to

test animations, then edit and reload the descriptions again. In addition, incomplete PUDGE

descriptions can be written and executed for only 'subsets of an entire assembly, since the user

selects which parts to view during animation. Given PUDGE's object oriented design, a

natural future extension might be to allow for the interactive modification of individual PUDGE

object descriptions.

As mentioned above, disassembly descriptions generally share a very standard

structure, and in these cases PUDGE descriptions can be provided in a correspondingly natural

manner. In reviewing automobile maintenance manuals and home repair guides, it seems that

the vast majority of disassemblies can be decomposed into only a very few distinct motions.

Parts are usually constrained to undergo an extremely restricted set of actions, even though

26

none of the part's degrees of freedom may actually be geometrically constrained. This set of

actions, in nearly all cases, consists of orthogonal motions about one of the part's principal

axes.

Figure 6.1 Dynamically constrained disassembly.

More complicated examples do exist, but usually are the result of dynamic motion

constraints, as in the struts of Figure 3. Animation descriptions for such motions would be
)

impracticable to produce in PUDGE, if they could be produced at all. The difficulty with

constrained motion is really not a limitation of PUDGE, but of the underlying animation

system. For example, opening the lid of the box in Figure 6, logically depends on the

simultaneous constrained motion of the supporting struts on either side of the lid. The gray

strut's movement must satisfy the constraints that the point of attachment between itself and the

lid be maintained, and the point of attachment between itself and the strut below it be

maintained. However, description of such constrained motion in PUDGE would not be natural

or appropriate, unless constrained joint motion were an animation primitive, just as translations

and rotations are. If constrained motion were primitive to the animation system, then opening

the lid of the box, in Figure 6, could be described by a standard dependency and action.

7 Future Directions

In light of the expressive power of a modest language like PUDGE, it seems that

future research in disassembly animation should be directed ostensibly towards the

development of systems and techniques to automate the process of authoring disassembly

descriptions. Such systems might utilize a variety of methods in order to reason about an

assembly, and then, automatically generate a disassembly description. The resultant

27

disassembly description could be specified directly in a fonnallanguage like PUDGE, or might

be expressed as a skeleton of procedural constructs that an animator would have to modify.

Perhaps the most tractable area for automation would be in the production of 3D

exploded views of assemblies, as proposed by Feiner [FEIN82]. Automation of such views

would not replace the need to automate the production of process descriptions, since exploded

views may reveal very little about fonnal disassembly processes. However, the geometrical

reasoning involved with parts explosions is much more pliant than the reasoning involved in

process descriptions. This is because the animations of parts in 3D explosions would not be

bound to the rigorous rules of non-intersection and correctness that process descriptions are.

That is, an animation of a parts explosion does not endeavor to show how parts should actually

be disassembled, but rather attempts to show the approximate spatial relationships between

parts.

Consequently, an exploded view of an assembly might be generated automatically by

first determining the center of the assembly. Then, starting with parts farthest from the center

of the assembly, each part might move along one of its object axes that most closely

approximated the ray from the center of the assembly to the part itself. Doing this in a

hierarchical fashion would probably be necessary to produce appropriate results, and so it
\
; might be necessary to define sub-assemblies within the complete assembly. This would

necessarily be a first approximation for animated parts explosions, because such an algorithm

would not, for instance, sufficiently disambiguate parts that had occupied the same initial

spatial locations (such as a screw and a washer). In addition, although it is acceptable for parts

to intersect as they are being animated, it would not be tolerable for such conditions to exist

after the animation had completed. Thus, additional geometric reasoning would be needed to

insure that parts eventually became disambiguated. Furthennore, heuristics would have to be

found to determine how far and how fast parts should move in order to produce aesthetically

pleasing animations. It is possible that full automation of exploded views is not a realistic

solution, but instead automation might be utilized as a tool to generate animation scripts which

animators would then need to edit.

The automation of process descriptions is a far more difficult task. This arises from

two points: first, that process descriptions include geometric reasoning that would be very

difficult to infer from a 3D object model alone; and second, that process descriptions are not

necessarily tightly coupled with the geometry of an assembly. For example, the motion of an

object like a screw would seem quite difficult to infer from its geometric structure alone. The

motion of other objects like snaps, would require knowledge about the degree to which objects

could bend or twist. A complicated structure like a locomotive linkage might require that the

28

linkage be in a certain position before it could be disassembled. This would mean that the

motion of the entire linkage would have to be inferred simply from its geometry. In addition to

the geometric problems of automation, one must also provide a means for incorporating more

arbitrary knowledge not based on geometry at all. For instance, it is conceivable that in order

to take apart an object resembling a Rubik's cube, one might be required to solve the puzzle

first. Such a disassembly would have no relation to the cube's geometry.

It seems evident from these arguments that automation of process descriptions cannot

follow solely from the geometry of the assemblies. A reasonable solution, perhaps, might

include a provision for geometric reasoning capabilities from within a knowledge based expert

system. The more difficult and abstract process description knowledge could then be asserted

by some knowledge base familiar with the functioning of the system to be disassembled. The

knowledge base would be freed from needing explicit information about the mundane aspects

of a disassembly, since they could be deduced by the geometrical reasoner. For example, the

knowledge base might know only that a screw depended on there being no objects above it,

along its principal axis. A geometrical reasoner would then have no problem returning the set

of objects that were directly above the screw. The knowledge base would then decide for each

object above the screw whether it knew how to remove those objects or whether it needed to

)	 gather more geometric information. This knowledge base might be of a structure similar to the

PUDGE language description in this paper, although it would need to be equipped with a more

sophisticated reasoning system.

8 Conclusion

The application of interactive 3D graphics techniques to disassembly descriptions

promises a much more expressive paradigm for explaining and understanding mechanical

assemblies. In a sense, such an interactive description captures the essence of bulky repair

manuals in a single page of an electronic book. This paradigm is suitable for the gamut of

users from novice to expert, but avoids problems with versioning, since the information flow

between the system and the user is definable by the user, and stems from a single disassembly

description. None of the descriptive techniques of static 2D images and realistic videos is

necessarily sacrificed in advancing to 3D object models, and, in fact, new more expressive

techniques become available. The methodology, presented in this thesis for describing

interactive disassembly animations using PUDGE, is natural for both the viewer and for the

problem.

However, the work required to produce 3D disassembly description models is

somewhat more complicated than that required to produce static images and videos. Certainly,

29

the refmement of a language like PUDGE to include both geometric and more sophisticated

language constructs would ease some of the burdensome aspects of creating process

descriptions. Yet, it seems that more fruitful results will probably result from channeling

future research towards the development of expert disassembly systems to automate the

authoring of disassembly descriptions. Given the inaccessibility of purely geometric

arguments to correct disassembly solutions, the extent to which real-time geometric reasoning

can work in unison with these knowledge bases is unclear. Nonetheless, expert systems, with

explicit access to some geometric reasoning and with sufficient infonnation about a particular

mechanical domain, should in principle be able to produce disassembly descriptions without

human intervention.

30

References

[BRAN88]

[FEIN82]

[FEIN87]

[FRIE80]

[GAG87]

[MAG70]

[MCC84]

;

[NEI82]

[STR88]

[TOY86]

[YAN85]

[WIL89]

Brand, Stewart. The Media Lab. Penguin Books, NY: 1988.

Feiner, S., Nagy, S., and van Dam, A. "An Experimental System for Creating

and Presenting Interactive Graphical Documents." ACM Transactions on

Graphics, Vol. 1, No.1, January 1982,59-77.

Feiner, S., Computer Generation ofPictorial Explanations. Ph.D, Thesis,

Technical Report CS-87-30, Computer Science Dept., Brown University,

Providence, RI, April1987.

Friedman, S. and Stevenson, M. "Perception of Movement in Pictures.", In M.

Hagen (ed.), The Perception ofPictures NY: Academic Press, 1980,225-255.

Gagne, R. Instructional Technology: Foundations. Lawrence Erlbaum

Associates, Publishers, NJ: 1987.

Magnan, G. Using Technical Art: An Industry Guide. Wiley-Interscience, NY:

1970.

McCracken, D. and Akscyn, R. "Experience with the Zog Human Computer

Interface System." Inernational Journal ofMan-Machine Studies., 21 :4,

October 1984,293-310.

Neiman, D. "Graphical Animation from Knowledge." Proceedings ofthe

AAAI 82, Pittsburgh, PA, August 18-20, 1982,373-376.

Strauss, P., BAGS: The Brown Animation Generation System. Ph.D, Thesis,

Technical Report CS-88-22, Computer Science Dept., Brown University,

Providence, RI, April1988.

1985 Toyota Camry Repair Manual. Toyota Motor Corporation, Japan: 1986.

Yanke1ovitch, N., Meyrowitz, N., and van Dam, A. "Reading and Writing the

Electronic Book." Computer, October 1985.

Wildbur, P. Information Graphics. Van Nostrand Reinhold Co, NY: 1989.

31

