
i 

have also crossed the line that passes from the boundary between 
region 2 and region 3 through the origin to the boundary between 
region 6 and region 7 (figure 16b). This line is determined by setting 
the i component of the gradient to zero. That is, 2Ax + By = O. When 
the decision variable is in regions 1, 2, 7, or 8, the value of the 
component is positive. When it crosses over into regions 3, 4, 5 or 6, 
the value of the i component becomes negative. The line is defined 
by the points at which the i component is zero. Therefore, by 
determining the sign of the i component at the evaluation point of 
the decision variable, we can determine if it has jumped across the 
ellipse. While 
the same test 
the ellipse. 
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Fig. 16a. Thin ellipse with major axis in Fig. 16b. Same ellipse, but if decision 
octant 3. While tracking region I, the variable crosses ellipse while tracking 
decision variable crosses ellipse causing region 1, pixel N is chosen to bring 
streak of pixels to be selected that are on decision variable closer or back to side 
opposite side of ellipse. being tracked. 

Similarly, in regions 2 and 3, in order for the decision variable to 
cross the ellipse, it has to cross the line defined by setting the j 
component of the gradient to zero. When the algorithm determines 
that the decision variable has crossed the ellipse, it has to choose the 
pixel that is closer to the side of the ellipse it is tracking. While 
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selecting pixels in region 1, in order for the decision variable to jump 
across the ellipse, the ellipse has to be a thin ellipse and its major 
axis has to have a slope in the third octant. The major axis is the axis 
along which the width of the ellipse is the widest. In region 1 the 
choice of the next pixel is between Nand NW. When the deci~ion 

variable is on the opposite side of the ellipse, pixel N will always be 
closer to the side of the ellipse the algorithm is tracking. In fact, 
choosing pixel N will tend to correct the problem of the decision 
variable being located on the opposite side of the ellipse by bringing 
the decision variable closer to or back to the side of the ellipse that is 
being tracked (figure 16b). In the case of the other regions, we can 
similarly determine which pixel to choose when the decision variable 
crosses the ellipse. 

The first partial differences that are used in the algorithm are given 
by: 

= 2Cy + Bx + C, (04) 
= 2Cy + Bx + C - 2Ax - By + A - B, 
= -2Ax - By + A, 
= -2Ax - By + A - 2Cy - Bx + C + B 
= -2Cy - Bx + C, 

Again, as in the case of standard ellipses, the first partial differences 
are all first order functions, and so the second partial differences are 
all constants. The necessary second partial differences can be 
calculated from the equations above. Instead of keeping track of the 
appropriate component of the gradient to determine if the decision 
variable has crossed the ellipse, we can fortunately use the first 
partial differences. In region 1, for example, the choice of the next 
pixel is between Nand NW and so we have to keep track of the 
values of the first partial differences, Fn and Fn w' In order to 
determine if the i component of the gradient is less than zero, that is 
2Ax + By < 0, we can use the comparison Fn - < -A + B. In the Fnw 
same manner, in the other regions we can avoid the computations 
needed to keep track of the appropriate component of the gradient 
by using the available partial differences. 

The complete algorithm is presented in figure 17. The algorithm is 
original in that it combines existing methods. It uses the midpoint 
method to choose pixels while using the gradient technique to 
determine a change of regions. The technique of using the gradient to 
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solve the problem of thin ellipses, where pixels cross the ellipse, was 
originally suggested by Pratt[PRAT85]. The algorithm uses floating 
point arithmetic because the coefficients of the ellipse function are 
floating point numbers. One way to make the coefficients of the 
ellipse function integers, would be to restrict the focal points and the 
constant a to integer values. However, when a particular ellipse is 
rotated, in order to draw the new ellipse, the focal points have to be 
rounded to the nearest integer value, causing a slightly different 
ellipse to be drawn. Another method to speed up the algorithm 
would be to approximate the floating point values with integer 
values so that each of the inner loops for the regions consist of only 
integer arithmetic. 

As in the case of standard ellipses, we could have used the 
comparison of the two components of the gradient to determine a 
change in regions. This would have eliminated the computations 
needed to calculate the three coordinate points of the boundaries 
between regions and we could avoid calculating the components of 
the gradient by using the available partial differences. However, in 
order to handle thin ellipses, the test condition to exit each region 
would be more complex. While tracking region 1, for example, the 
test condition for the while loop becomes 

while «Fnw < (A-B+C» or (dl < 0) or «Fn - Fnw < cross!) and (y < Ytop») 

The first test, (Fnw < (A-B+C), in the while loop tests whether the 
decision variable has crossed the line that passes from the origin 
through the boundary point between region 1 and region 2. That is, it 
tests whether the j component of the gradient is not greater than the 
i component of the gradient. The second test, (dl < 0), is used only 
when the first test indicates a change in regions that is too early. This 
is similar to the test used for standard ellipses. The final test is used 
in the case of thin ellipses to determine if the decision variable has 
crossed the ellipse. If the decision variable has jumped across the 
ellipse, then the width of the ellipse at the point of the current pixel 
has to be less than one unit length. Therefore, the rest of region 1 is 
represented by a line and the end of region 1 coincides with the end 
of the line or the top of the ellipse. The top of the ellipse, Ytop, is 
calculated by first using the larger of the parameters, a and b, and 
the angle of rotation to represent the ellipse as a line segment and 
then calculate the top end point of the line segment. 
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The reason for not presenting this method as the algorithm of choice, 
instead of the method used in the algorithm in figure 17, is that in a 
small class of thin rotated ellipses, the comparison of the two 
components of the gradient is not an accurate indicator of a change in 
regions. This is caused by the fact that a change in regions using the 
comparison method is determined only when the decision variable 
jumps across the line that passes from the origin through the 
boundary between the regions. In a class of thin rotated ellipses, this 
dividing line between regions can be slopped such that the decision 
variable crosses the line a number of pixels too late. However, even 
this problem can be solved with additional tests in the test condition 
for the while loop. But then by increasing the arithmetic in the inner 
loops of the algorithm, we increase the arithmetic per pixel plotted, 
erasing the benefits obtained from not having to calculate the 
boundary points between regions. 
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procedure GENERAL_ELLIPSE (a, b, theta : real) 
var	 x, y, X:V, 'tV, YR, XH, XL : integer;
 

aSq,Xf,Yf,XfSq,YfSq,A,B,C,D,A2,B2,C2,B_2,kl,k2,k3,k4,
 
Fn,Fnw,Fw,Fsw,Fs,Fn n,Fn nw,Fnw n,Fnw nW,Fw w,Fw nw,Fnw w,
 

Fw sw, Fsw w, Fsw sw,Fs ;;Fs ;;',Fsw ;; dl, d2-; d3, d4-; Xinit., Yinit-; 
XV~Yv,Xr,Yr,Xh,Yh,Xl.Yl,cr~ssl,c;;ss2,cross3,cross4real; 

begin 
aSq := a * a; 
c :- sqrt(aSq - b * b) focal point to standard ellipse } 
Xf = c * cos (theta); focal point rotated theta degrees 
Yf = c * sin(theta); 
XfSq = Xi * Xf; 
YfSq = Yf * Yf; 

A := aSq - XfSq;	 { Coefficients to (G2) } 
B := -2 * Xf * Yf;
 

C aSq - YfSq;
 
D := aSq * (YfSq - A);
 

A2 :- A + A; B2 := B + B; C2 := C + c; 

kl := -B/C2; { boundary point bet reg 8 and 1 }
 
Xv :- sqrt( -D/(A + B*kl + C*kl*kl) ) ;
 

if (Xv < 0) then Xv := -Xv;
 
Yv "= kl * Xv;
 

k2 .- -B/A2; { boundary point bet reg 2 and 3 } 
Yh :- sqrt( -D/(A*k2*k2 + B*k2 + C) ); 
if (Yh < O) then Yh := -Yh; 

Xh .= k2 * Yh; 

k3 .= (A2 - B)/(C2 - B); { boundary point bet reg 1 and 2 } 
Xr := sqrt( -D/(A + B*k3 + C*k3*k3) ); 
Yr := k3 * Xr; 

if (Xr < Yr*kl) then Yr := -Yr; 

k4 := (-A2 - B)/(C2 + B); { boundary point bet reg 3 and 4 } 
Xl :- sqrt( -D/(A + B*k4 + C*k4*k4) ); 
Yl :- k4 * Xl; 

if (Xl> Yl*kl) than Xl := -Xl; 

x:v .- ROUND (Xv) ; YV : = ROUND (Yv) ; { rounded boundary points }
 
YR ROUND (Yr) ; XH "= ROUND (Xh); XL .= ROUND (Xl};
 

x := XIJ; { starting pixel }
 
y := W;
 

Xinit :- x - 0.5; { initial evaluation point of decision variable } 
Yinit := y + 1; 

Fn := C2*Yinit + B*Xinit + C; { initial Fn, Fnw and dl } 
Fnw = Fn - A2*Xinit - B*Yinit + A - B; 
dl := (A*Xinit*Xinit) + (B*Xinit*Yinit) + (C*Yinit*Yinit) + D; 

{initialization of second order part.ial differences } 
Fn n "= C2; Fn nw := Fnw n "= C2 - B; Fnw nw .- A2 - B2 + C2; 

Fw w := A2; Fw nw := Fnw w := A2 - B; Fsw_sw := A2 + B2 + C2; 
Fs s := C2; Fw sw := Fsw w := A2 + B; Fs sw := Fsw s .- C2 + B;-

(constants used in determining ~f decision variable has crossed ellipse } 
crossl ;= B - A; cross2:= A - B + C; cross3:= A + B + C; cross4:= A + B; 

Fig. 17. Algorithm to draw half arc of general ellipse 
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while (y < YR) do begin { ----------------- REGION 1 ------------------ } 
setpixel (x, y) ; 
y := y + 1; 
if (d1 < 0) or (Fn - Fnw < cross1) than 

beqin 
d1 := d1 + Fn; Fn:= Fn + Fn_n; Fnw := Fnw + Fnw_n; 

end
 
elae beqin
 

x := x - 1;
 
d1 := d1 + Fnw; Fn := Fn + Fn_nw; Fnw := Fnw + Fnw_nw;
 

end 
and { ------------------------------------------------------------------- 

{ Change Regions
 
Fw :~ Fnw - Fn + A + B + B_2; Fnw := Fnw + A - C;
 
d2 := d1 + (Fw - Fn + C)/2 + (A + C)/4 - A;
 
while (x > XH) do beqin (----------------- REGION 2 ----------------- 


setpixel{x,y);
 
x := x - 1:
 
if (d2 < 0) or (Fnw - Fw < cross2) than
 

beqin
 
y := y + 1;
 
d2 := d2 + Fnw; Fw:= Fw + Fw_nw: Fnw := Fnw + Fnw_nw;
 

end
 
elae beqin
 

d2 := d2 + Fw; Fw:= Fw + Fw_w; Fnw := Fnw + Fnw_w; 
end
 

and { ------------------------------------------------------------------- 
{ Change Regions
 

d3 := d2 + Fw - Fnw + C2 - B; Fw := Fw + B;
 
Fsw = Fw - Fnw + Fw + C2 + C2 - B;
 
while (x < XL) do beqin {---------------- REGION 3 ----------------- 


setpixel (x, y) ;
 
x := x - 1;
 
if (d3 < 0) or (Faw - Fw > cross3) then
 

beqin
 
d3 :~ d3 + Fw; Fw:2 Fw + Fw_W; Fsw :~ Fsw + Fsw_w; 

end
 
elae beqin
 

y := y - 1;
 
d3 :~ d3 + Faw; Fw:= Fw + Fw_aw; Fsw := Faw + Faw_aw;
 

end 
and ( ------------------------------------------------------------------- 

{ Change Regions } 
Fs := Fsw - Fw - B; d4 := d3 - Faw/2 + Fa + A - (A + C - 8)/4;
 
Fsw := Fsw + C - A; Fs := Fs + C - B_2:
 
'N := -'N;
 
while (y > YV) do beqin ( ---------------- REGION 4 ------------------ }

setpixel (x, y) ; 
y := y - 1; 
if (d4 < 0) or (Fsw - Fs < cross4) then 

beqin 
x := x - 1;
 
d4 := d4 + Fsw;
 Fsw := Fsw + Fsw_sw; 

end
 
elae beqin
 

d1 := d1 + Fs; Fsw := Fsw + Faw_a; 
end 

end ( ------------------------------------------------------------------- 
setpixel (x, y) ; 

end { end GENERAL ELLIPSE f 

Fig. 17. cont. 
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B. FILLED PRIMITIVES 

The algorithms presented m the prevIOUS sections only draw single
pixel outlines of primitives. However, algorithms to draw filled 
primitives have many uses in 2D graphics applications. These 
algorithms can be divided into two tasks: calculating the pixels that 
form the filled primitive, and deciding with what value to fill each 
pixel. 

1. Calculating Representation of Filled Primitive 

The algorithms to scan-convert single-pixel outlines can be easily 
extended to draw filled primitives. Determining which pixels to fill 
involves intersecting successive row of pixels with the single-pixel 
outline to calculate the spans of adjacent pixels in each row that lie 
inside the filled primitive. Therefore, for the intersection of the 
primitive with a particular row, a span is characterized by a start 
pixel, which is the leftmost pixel of the single-pixel outline within the 
row, and an end pixel, which is the rightmost pixel of the single-pixel 
outline within the row. To draw the filled primitive, we fill each 
span that represents the primitive. 

2. Fill Patterns 

Once we have determined the spans that represent the filled 
pnmltlve, we can fill the spans with either a solid color or a pattern. 
Filling the primitive with a solid color involves simply setting each 
pixel within a span to the same color. However, filling the primitive 
with a pattern raises a number of issues. In the simplest case, the 
pattern is a bitmap, where this bitmap is repeated over the 
primitive. Calculating the value of a pixel within a span, involves first 
calculating the corresponding scanline within the bitmap that repeats 
over the span, and then calculating the corresponding bit within that 
scanline of the bitmap that represents the pixel to the colored. If we 
are using the bitmap as an opaque pattern, a 1 in the bitmap 
represent shading the pixel with the foreground color, and a 0 
represents shading the pixel with the background color. On the other 
hand, if we use the bitmap as a transparent pattern, then only when 
the bit is aI, do we shade the pixel with the foreground color. An 
important issue in using patterns is how the pattern repeats over the 
primitive. That is, we need to know where the pattern is anchored to 
determine how the pattern repeats over the primitive or 
equivalently, which bit in the pattern corresponds to the pixel to be 
colored. One technique is to anchor the pattern to the primitive. 
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That is, the top-left pixel of the pattern is anchored to a particular 
pixel of the primitive. The advantage of this technique is that when 
we move the primitive, the pattern moves with the primitive. 
However, every time a primitive is drawn, we have to specify an 
anchor point. A second technique anchors the primitive to the 
window in which the primitive is being drawn. The disadvantage of 
this technique is that if the primitive is moved, the pattern does not 
move with the primitive. An interesting feature of this method is 
that primitives that are painted with the same pattern overlap and 
abut without any discontinuities in each primitives pattern. 

3. Tiling 

Instead of using a bitmap as a pattern, we can use a tile pixmap to 
tile the primitive. Here, we use the same technique as in patterns to 
index into the pixmap. However, instead of setting the pixel to be 
colored to either the foreground or background color, we set its color 
to the color of the corresponding pixel in the tile pixmap. In the case 
of a monochrome display, tiling is the same as using an opaque 
pattern, where the tile is a bitmap. 

C. THICK PRIMITIVES 

Thick primitives can be drawn using either of four methods. The first 
method is a crude approximation that replicates pixels in each 
column (or row) during scan conversion. The second method draws 
two copies of the primitive a thickness t apart and fills in the spans 
between the inner and outer boundaries. The third method traces 
the cross-section of the pen tip along the single-pixel outline of the 
primitive. The fourth method approximates primitives by polylines 
and then uses a thick line for each polyline segment. 

1. Replicating Pixels 

Here, instead of drawing one pixel per iteration of the inner loop of 
the scan-conversion algorithm, we draw multiple pixels. In the scan
conversion algorithm, if the choice of the next pixel is between two 
pixels that lie in the same column, for example E and NE, then we 
draw a stroke of pixels that lie in the column of the next pixel chosen 
and is centered on that pixel. Similarly, if the choice of the next pixel 
is between two pixels that line in the same row, the pixels are 
duplicated in rows. The thickness of the line is specified by the 
number of pixels replicated at each iteration of the inner loop. The 
advantage of this method is that it is very efficient. However, it does 
not produce the most visually pleasing thick primitives. In the case 
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of lines, the end points of the lines are restricted to vertical or 
horizontal edges. Furthermore, lines that are horizontal and vertical 
have a different true thickness from lines at an angle, where the true 
thickness of the primitive is defined as the distance between its 
boundaries perpendicular to the tangent of the primitive. This visual 
discrepancy becomes more apparent when we draw a circle or ellipse 
where the slope of the curve varies continuously. When drawing an 
ellipse, for example, the ellipse will appear thin where the slope of 
the ellipse is horizontal or vertical and will appe'ar thick where the 
slope of the ellipse is a diagonal. 

2. Filling Areas Between Boundaries 

This method draws a thick primitive as the approximation of the 
area that lies between the boundaries formed by stepping a distance 
t/2 on either side of the zero-width curve that is defined by the 
mathematical equation of the primitive. The strength of this method 
is that it is based on the intuitively correct definition of a thick 
primitive. However, when using this method, the extended 
boundaries of the thick primitives are not easily described by using 
only integer arithmetic. In the case of a line, a thick line is really the 
area enclosed by a rectangle or a rotated rectangle. Even if the end 
points of the line fall on integer coordinate points and the thickness, 
t, of the line is an integer, the end points of the bounding lines that 
define the thick line may not fall on integer coordinates. And since 
floating point arithmetic is needed to draw lines with end points that 
do not fall on integer coordinates, we need to use floating point 
arithmetic to select the pixels that define the bounding lines of a 
thick line. Therefore, in order to draw a thick line, we have to 
calculate the pixels that form the bounding lines of the thick line, and 
then, as in the case of filled primitives, use these pixels to calculate 
the spans form the thick line. 
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Fig. 18. Thick circle with radius 8 and thickness 4, 
displaying scanline representation 

In the case of a circle, a thick circle is the area enclosed by two 
concentric bounding circles. If the thick circle is defined by a radius 
R and a thickness t, then the inner bounding circle has a radius R-t/2 
and the outer bounding circle has a radius R+t/2. Therefore, in order 
to draw the thick border of a circle, we scan-convert the single-pixel 
outlines of the inner and outer bounding circles. The pixels that 
represent these outlines are then used to calculate the spans that 
form the thick boundary. In fact, we only need calculate the spans 
that form on octant of the thick circle and then by symmetry 
calculate the spans that form the other octants. 

A simple technique for calculating the spans of thick circles to use 
the pixels that form the inner and outer concentric circles to fill an 
array of entries that represent the scanlines that form the border of 
the thick circle. Figure 18 illustrates a circle with a radius of 8 and a 
thickness of 4, where the inner concentric circle has a radius of 6 and 
the outer concentric circle has a radius of 10. As illustrated, each 
array entry, representing a scanline, contains x-values of the start 
and stop pixels of the left border of the circle and the x-values of the 
start and stop pixels of the right border. The single-pixel outline of 
the outer concentric circle is used to fill in the values of StartLeft and 
StopRight. and the single-pixel outline of the inner concentric circle is 
used to fill in the values of StopLeft and StartRight. The array of 
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entries representing the scanlines are then used to draw the thick 
border of the circle, as illustrated in figure 18. 

Fig. 19. Filled border of thick circle 

Figure 19 illustrates the same thick circle as in figure 18, but with 
the area between the inner and outer concentric circles shaded. The 
pixels that form outer and inner concentric circles are shaded 
differently only for illustrative purposes. The thick border of the 
circle, therefore includes the pixels that form the inner and outer 
concentric circles, in addition to the pixels that lie in between the two 
concentric circles. If both, t/2 and R, are integers then the integer 
version of the circle algorithm can be used to select the pixels that 
form the bounding curves of a thick circle. 

Unfortunately, in the case of standard ellipses, the bounding curves 
that are formed by moving a distance t/2 on either side of the curve 
of the ellipse are not concentric ellipses. However, concentric ellipses 
may be used to approximate a thick ellipse since the functions that 
define the actual bounding curves are 8th order functions [SALM96] 
and the task of selecting the pixels that outline these curves is 
computationally expensive. Therefore, to draw a standard ellipse 
with thickness t and with dimensions a and b, as defined in the 
section on standard ellipses, we need to calculate the pixels that form 
the area between the two bounding concentric ellipses where the 
inner bounding ellipse has dimensions a-t/2 and b-t/2, and the outer 
bounding ellipse has dimensions a+t/2 and b+t/2. Again, as in the 
case of thick circles, the task of drawing a thick ellipse can be 
accomplished by using an array of entries that encode the scanlines 
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that form the thick ellipse. The limit as the width of the ellipse goes 
to zero is the case where the outer and inner concentric ellipses 
coincide with the zero-width curve of the ellipse. Therefore, as the 
width goes to zero, the pixels selected for the thick ellipse are the 
same pixels as those selected for the single-pixel outline of the 
ellipse. Using this method precludes the situation where if we define 
a zero-width ellipse as not being visible (no pixels selected), then 
drawing an ellipse with a thin width may appear as an outline of the 
ellipse with gaps of pixels missing. 

Since general ellipses are defined as standard ellipses that are 
rotated an arbitrary angle, in order to draw a thick general ellipse, 
the bounding concentric ellipses that define the thick standard 
ellipse are rotated and the pixels that lie between the two rotated 
bounding ellipses represent the thick general ellipse. Again, as in the 
case of thick standard ellipses, the task of drawing a thick ellipse can 
be accomplished by using an array of entries that encode the 
scanlines that form the thick general ellipse. 

3. Tracing The Outline With The Pen Tip 

This method uses a pen tip to trace the outline of the pnmlt1Ve. 
That is, a particular point of the pen tip follows the path of the 
single-pixel outline of the primitive. We can use pen tips of any 
shape, however circular pen tips produce the most visually pleasing 
thick primitives. The brute-force algorithm for drawing thick 
primitives using this method, is to draw the pen tip at each pixel of 
the single-pixel outline. However, since the pen tip overlaps at 
adjacent pixels, we will be setting pixels more than once. A better 
technique is to use the spans of the pen tip at each pixel of the 
single-pixel outline to compute the spans that form the thick 
primitive. This technique can be made more efficient by not using 
certain spans of the pen tip depending on the slope of the primitive 
and the shape of the pen tip. When a circular pen tip is used, this 
method produces the most accurate thick primitives. Also, this 
method is easily extensible to any primitive, including primitives 
with sharp corners. 

4. Thick Polyline Approximation 

All primitives can be "piecewise linearly" approximated by 
computing points on the boundary and then connecting these points 
with line segments to from a polyline. In order to closely 
approximate the primitive where the slope of the primitive varies 
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rapidly, the points must be calculated such that the points are closer 
together, and hence the line segments are smaller. Ellipses and 
circles, which are a class of ellipses, can be represented as two 
equations (one for the x and the other for the y value of the points 
that form the ellipse) that are each ratios of parametric polynomials 
[LIEN87]. This representation lends itself readily to such a piecewise
linear approximation of the ellipse. In order to draw the thick 
primitive, the individual line segments are then drawn as rectangles 
with specified thickness. Here however, the end points of the lines 
have to be joined smoothly. 

Again, as in the case of all raster drawing algorithms, the choice of 
which definition of thick primitives to use and the choice of which 
algorithmic approximations to use 
between the speed of the resulting 
appearance of the primitive. 

are dictated 
algorithm 

by 
and 

the trade-offs 
the visual 

5. Patterned Thick Primitives 

Once we have calculated the spans that represent the thick border of 
the primitive, as in the case of filled primitives, we can pattern or 
tile the spans that represent the border. In fact, we can draw filled 
primitives with thick borders, where the border is painted with one 
pattern and the region inside the border is painted with another 
pattern. 

6. Border Styles 

Another useful feature of 2D graphics applications, is the ability to 
draw primitives with various line styles. That is, using dashes to 
draw the border of the primitive. In the case of the single-pixel 
outline of a line, we can incorporate a mask of bits that describes the 
dashed style into Bresenham's line algorithm. Figure 20 illustrates 
using Bresenham's line algorithm for drawing dashed lines in the 
first octant. 
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procedure LINE(Xs,Ys,Xf,Yf, mask: integer) 
var dx, dy, const1, const2, d, x, y : integer; 

begin 
dx := Xf - Xs; 
dy := Yf - Ys; 
d := 2 * dy - dx: 
const1 := 2 * dy; 
const2 := 2 * (dy - dx): 
x := Xs; 
y := Ys: 
if (low order bit of mask is a 1) than 

setpixel (x, y) ; 
while x < Xf do begin 

x - x + 1: 
if d < 0 then choose pixel E 

d := d + const1 
el.e choose pixel NE 

begin 
y = y + 1: 
d := d + const2 

end 
Rotate Right(rnask); ( rotate mask one bit to right) 

-{ shifting low order bit into high order bit position 
if (low order bit of mask is a 1) then 

setpixel(x,y); 
end {whilel 

end 

Fig. 20. Algorithm for drawing lines in the first octant 

In the case of circles and ellipses, we can incorporate a similar mask 
into the scan-conversion routines to draw these primitives. 
However, since as in the case of a circle, only the pixels that form an 
octant of the circle are calculated and then the pixels for the other 
octants are drawn by symmetry, we have to draw the pixels in an 
order that is continuous around the circle. Otherwise, at the 
boundaries between octants, the dashed style may break down. 

In the case of thick primitives, we can extend this method only if we 
use the pen tip method to draw a primitive. However, doing this does 
not produce visually pleasing dashed primitives. In the case of thick 
lines, a thick dashed line is really a number of filled rectangles or 
rotated rectangles that are spaced in a regular manner. Therefore, in 
order to draw a thick dashed line, we have to scan-convert one 
repeatable unit of filled rectangles depending on the dashed style, 
and then draw the line by simply translating this repeatable unit for 
the length of the line. If we are using the polyline approximation to 
draw· primitives, then we can use the dashed lines to draw the 
dashed polyline approximation. However, the dashes must be 
continuous from one segment to the next. 
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III. CLIPPING
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Fig. 21. Clipping primitives to the application window 

Another concern of raster drawing algorithms is that when a 
windowing system is employed, the primitives that are drawn by an 
application have to be clipped to the window that belongs to that 
application. In addition, the application's window may be obscured 
by several other windows requiring the primitive to be clipped to 
several rectangular areas. Therefore, in order for a primitive to be 
drawn in only the visible portions of the application's window, it may 
have to be clipped to several rectangular areas. There are several 
approaches to clipping. One approach to clipping is to perform the 
clipping in the drawing algorithm right before a pixel is set. In the 
case of an unobscured window, clipping is done only to the bounding 
rectangle of the window. Therefore, before a pixel is set, its 
coordinates are compared against the bounding rectangle of the 
window. If the pixel lies inside the window then it is set and if it lies 
outside the window it is not set. The comparison of a pixel located at 
(x,y) and a clip rectangle can be done by the following simple 
s tatemen1. 

if ( (x ~ clip.left) and (x ~ clip. right)
 
(y ~ clip.bottom) and (y ~ clip.top)
 

then setpixel(x,y);
 

In using this approach, the drawing algorithm still calculates all the 
pixels that represent tne primitive, but only sets those pixels that lie 
in the visible portion of the window. 
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In the case of multiple clip rectangles, we could perform the above 
comparison for every clip rectangle. However, the speed of the 
drawing algorithm would decrease as the number of clip rectangles 
increased. A better solution would be to keep a list of visible and 
invisible rectangles. When the current pixel goes outside the current 
clip rectangle, then the list would be traversed to find the new clip 
rectangle in which the current pixel lies. In addition, a flag would 
indicate if the current clip rectangle is visible or invisible and if it is 
visible then the current pixel should be set. 

Although this approach is simple, it is inefficient when most or all of 
the primitive is located outside the window. This inefficiency arises 
because we calculate all the pixels that represent the primitive and 
then clip each pixel to the clip rectangle. A better approach would be 
to determine the visible and invisible sections of the primitive and 
then only draw the visible sections. Therefore, in order to clip a 
primitive, we need to calculate the end points of the sections that are 
visible and then be able to draw those sections. 

A. CLIPPING LINES 

In the case of line segments, the intersection of a line segment with 
the clip window can produce at most one line se"gment. Figure 22 
illustrates a number of line segments that are clipped to a window. 
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Fig. 22. Clipping lines to the application window 

1. Cohen-Sutherland Algorithm 

In order to clip a line to a window, we then only have to calculate the 
end points of the visible segment and then draw the visible line 
segment. Cohen and Sutherland [NEWM79] developed an algorithm 
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var xLeft,xRight,yBottom,yTop : real: {clip rectangle of window} 

procedur8 CLIP LINE(Xl,Yl,X2,Y2 : real} 
type edge-- (LEFT,RIGHT,BOTTOM,TOP); 

code - set of edge: 
var Cl,C2,Cout code; x,y: real: accept,done boolean 

procedur8 ENCODE(x,y real; var C : code}: 
begin 

C := [];
 
if x < xLeft then C := [LEFT]
 
el.e if x > xRight then C := [RIGHT];
 
if x < yBottom then C := C + [BOTTOM]
 
al.e if x > yTop then C := C + [TOP]
 

end 

beqin 
ENOODE(Xl,Yl,Cl}; ENCODE(X2,Y2,C2); 
repeat 

if (Cl = []) and (C2 = []) then {Line is inside window} 
beqin 

accept := true: {trivially accept line} 
done := trua 

end 
al.e if (Cl * C2) <> 1:] then (logical intersection of codes) 

done := true (trivially reject line} 

el.e (failed both tests} 
beqin 

if Cl <> [] then (pick code of an end point} 
Gout := Cl: {than is outside clip recti 

el.e Cout := C2; 

if LEFT in Cout then begin (crosses left edge) 
x := xLeft; 
y := Yl + (Y2 - Yl) * (xLeft - Xl)!(X2 -Xl): 

end el.e 
if RIGHT in Cout then begin (crosses right edge} 

x :- xRight; 
y :- Yl + (Y2 - Yl) * (xRight - Xl)!(X2 -Xl); 

end el.e 
if BOTTOM in Cout then begin {crosses bottom edge} 

y :... yBottom; 
x :- Xl + (X2 -Xl) * (yBottom - Xl)!(Y2 - Yl); 

end el.e beqin {crosses top edge} 
y := yTop: 
x := Xl + (X2 -Xl) * (yTop - Xl)!(Y2 - Yl): 

end: 

if Cout = Cl then 
Xl .= x: Yl "- y; ENCODE(Xl,Yl,Cl): 

el.e 
X2 .= x; Y2 := y; ENCODE(X2,Y2,C2); 

end 
until done; 

if accept then DrawLine(Xl,Yl,X2,Y2): 
end 

Fig. 25. Cohen-Sutherland Line-Clipping algorithm 
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2. Nicholl-Lee-Nicholl Algorithm 

Nicholl, Lee and Nicholl [NICH87] developed a line clipping algorithm 
that avoids computing intersection points which are not end points of 
the final visible line segment and hence uses fewer arithmetic 
operations than the algorithm in figure 25. The algorithm works as 
follows. As before, the edges of the window are extended to divide 
the plane of the window into nine regions. There are three types of 
regions, corner regions, side regions and the region that is the 
window. We pick one end point, pI, of the line, and depending on 
within which type of region the end point lies, it subdivides the 
plane of the window as illustrated in figure 26. 
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Fig. 26. Subdivision of the plane of the window 
depending on the type of region in which pI is located 

The subdivisions are determined by dividing all positions of the end 
point, p2, such that each subdivision corresponds to intersections of 
the line with the same boundaries of the clip rectangle. In figure 26, 
the letters L,R,T and B stand for the left, right, top and bottom 
borders of the clip rectangle. In addition, any region that is bounded 
by solid lines and is labeled with a letter or a letters represents the 
subdivision where if p2 were located in that region, the line would 
cross the border(s) of the clip rectangle that the label indicates. If p2 
is located in a subdivision that is not labeled, then we do not need to 
calculate any intersection points. That is, the line is either completely 
outside or completely inside the clip rectangle. Therefore, the 
algorithm first determines within which of the 9 regions the end 
point pI lies, and then depending on that region it determines the 
location of p2 among the appropriate subdivisions. The algorithm 
incrementally determines the subdivision within which p2 is located, 
by eliminating subdivisions that are easier to check to home in on 
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the correct subdivision. Once we have determined within which 
subdivision p2 is located, we can determine which borders of the 
window to clip against. In this way, only the necessary intersection 
points are calculated. 

The algorithm in figure 27 illustrates the calculations of the 
intersection points when pI is in the top-left corner region. Note that 
the calculations (topproduct, leftproduct, etc.) performed for 
eliminating the easier subdivisions are reused to simplify the 
calculations for subdivisions that are not as easy to check. In 
addition, these calculations are also used again if we need to calculate 
any intersection points. By symmetry, we can derive the calculations 
of the intersection points when pI is in any of the other corner 
regions. We can also similarly derive the calculations if pI is located 
in a side region or the window region. Nicholl, Lee and Nicholl 
describe the computations for each type of region. Instead of 
deriving the calculations for each region that is of the same type, 
they use geometrical transformations and use the calculations for one 
of the regions in that type. If pI lies in the bottom-left corner region, 
for example, then we can use the calculations for the top-left corner 
region in figure 27 by reflecting both the line and the clip rectangle 

\	 about the x-axis and then using the fact that the reflected location of 
pI lies in the top-left corner region. When the final end points of the 
line are calculated, these end points are reflected back across the x
axis to give the end points (if any) of the line to be drawn. 

var xLeft,xRight,yBottom,yTop : real; {clip rectangle of window} 

procedur. CLIP_LINE (Xl,Yl,X2,Y2 : real) 
beqin 

i~ Xl < xLeft than LeftColumn(Xl,Yl,X2,Y2,display) {-------->} 
el.e if Xl > xRight then RightColumn( ... ) {right column} 
el.e CenterColumn( ... ) {center column} 

end 

procedure LeftColumn(Xl,Yl,X2,Y2 : real; var display:boolean); 
beqin 

if X2 < xLeft than display := fal.e; {Trivial reject} 
el.e if Yl > yTop than 

TopLeftCorner(Xl,Yl,X2,Y2,display) {-------->} 
el.e if Yl < yBottom then BotLeftCorner( ... ); {bot-Left corner} 
el.e LeftSide( ... ) {Left Side} 

end 

Fig. 27. Nicholl-Lee-Nicholl Algorithm to 
clip line if pI lies in top left comer 
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procedure TopLeftCorner(Xl,Yl,X2,Y2 : rea~: var display:boo~e&n): 

var deltaX,deltaY,topproduct,leftproduct : rea~: 

beqin 
if Y2 > yTop then display := fa~ae: (Trivial regect} 
e~ae beqin
 

deltaX :- X2 - Xl: deltaY :- Y2 - Yl:
 
topproduct :- (yTop - Yl) * deltaX:
 
leftproduct :- (xLeft - Xl) * deltaY:
 
if topproduct > leftproduct then
 

BelowTopLeftCornerPoint(Xl,Yl,X2,Y2,display, 
deltaX,deltay, leftproduct): {-------->} 

(line passes below top left corner of clip rectangle} 
e~ae 

AboveTopLeftCornerPoint( ... ) {symmetric to below case} 
end 

end 

procedure BelowTopLeftCornerPoint(Xl,Yl,X2,Y2 : rea~; var 
display:boo~ean: deltaX,deltaY,leftproduct real): 

var deltaX,deltaY,topproduct,leftproduct : rea~: 

beqin 
if Y2 >- yBottom then beqin 

if X2 > xRight then beqin {intersects right edge} 
X2 := xRight 
Y2 := Yl + (xRight - xl) * deltaY/deltaX; 

end
 
Xl := xLeft; {intersects left edge}
 
Yl : = yl + leftproduct/deltaX;
 
display :- true
 

end 
e~.e beqin 

bottomproduct :- (yBottom - Yl) * deltaX; 
if bottomproduct > leftproduct then {line passes below } 

display :- fal.e: {bot-left corner of clip rect - reject} 
e~ae beqin 

if X2 > xRight then beqin 
rightproduct :- (xRight - Xl) * deltaY; 
if bottomproduct > rightproduct then beqin 
{line passes below bot-right corner of clip rectangle} 

Y2 := yBottom; {intersect bottom edge} 
X2 := xl + bottomproduct/deltaY; 

end 
e~ae beqin 

X2 := xRight; (intersects right edge} 
Y2 := yl + rightproduct/deltaX; 

end
 
end
 
e~.e beqin
 

Y2 := yBottom; (intersect bottom edge} 
X2 := xl + bottomproduct/deltaY; 

end 
Xl := xLeft; (intersects left edge} 
Yl := yl + leftproduct/deltaX; 
display := true 

and
 
end
 

end
 

Fig. 27. cont. 
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3. Drawing The Clipped Line 

Once we _have determined the end points of the visible line segment, 
we then have to draw the visible segment. The pixels selected to 
draw the line have to be exactly the same as the pixels that 
represent the original unclipped line. That is, if the window grows, 
and the whole line becomes visible, the section that becomes visible 
has to be drawn so it abuts the previous visible segment correctly. 
In addition, if the line is erased later, we cannot undraw pixels that 
are different from those originally set. The algorithms of the 
previous sections describe clipping a line to a clip rectangle and 
produce the end points of the segment that lies within the clip 
rectangle. If these end points have been clipped by one of the edges 
of the clip rectangle, then the end points can have real coordinates. 
We are faced with two problems: starting the line algorithm at a 
clipped (real) end point, and making sure we draw all the pixels from 
the original line that lie within the clip rectangle. 

For a line with a slope in the first octant, for example, the line 
algorithm has to choose the next pixel from the pixels E and NE. It 
does this by choosing the pixel that lies closer to the line. We can 
accomplish the same result by taking the y-value of the line at the x
value of the two pixels, E and NE, and rounding it to determine the 
next pixel. Therefore, all the pixels that form a line can be calculated. 
by using the rounded y-value of the line for each integer x-value 
that spans the line. If a line with a slope in the first octant is clipped 
by the left edge, then the intersection of the line with the edge has 
an integer x coordinate, xleft, and a real y coordinate, (mxleft + b). 
And the pixel at the left edge (xleft, ROUND(mxleft + b)) is one of the 
pixels of the original unclipped line. If we start our incremental line 
algorithm at a pixel that lies on the original line and initialize the 
decision variable correctly, then all the other pixels selected for the 
rest of the line will be the same pixels that form the original 
unclipped line. In order to initialize the decision variable for a line 
with a slope in the first octant, if the first pixel is (xp,yp), then we 
simply calculate the decision variable at the midpoint between the 
pixels E and NE or equivalently at (xp+l,yp+l/2). 

The second problem of making sure we draw all the pixels of the 
unclipped line that lie inside the clip rectangle is not evident when a 
line with a slope in the first octant is clipped by only vertical edges. 

52
 



However, when the same line is clipped by a horizontal edge, there 
may be multiple pixels that form the line along the horizontal edge. 
(see figure 28). When we clip the line, the clipped end point has a 
real x coordinate, (ybot - b)/m, and an integer y coordinate, ybot. 
Although we can show that the pixel at (ROUND«ybot - b)/m), ybot) 
is a pixel that lies on the original unclipped line, this pixel may not 
be the leftmost pixel of the span of pixels shown. From the figure 
and the midpoint method, it is clear that the leftmost pixel is the one 
that lies just above the place on the grid where the line first crosses 
above the midpoint y = ybot - 1/2. Therefore, we simply find the 
intersection of the line with the line ybot - 1/2 and take the ceiling 
of the x-value. That is, we start the algorithm at (CEILING(ybot - 1/2 
-b)/m), ybot). We run into the same problem if the line is clipped by 
the top edge, however, in this case we are calculating the ending 
pixel of the line. Here we clip the line to ytop + 1/2 and the ending 
pixel is the FLOOR of the intersection points x-value. 

ClipLeft 

ClipBottom 

(Xs.Ys) 

Fig 28. line with a slope in the first octant that is clipped 
by a horizontal edge 

To summarize, if we are clipping a line with a slope in the first octant 
against the clip rectangle (ClipTop, ClipLeft, ClipBottom, ClipRight), 
then we use one of the clipping algorithms presented in the previous 
section and clip the line against the clip rectangle (ClipTop + 1/2, 
ClipLeft, Clipbottom - 1/2, ClipRight). The clipping algorithm returns 
the real-valued start point (Xs,Ys) and the real-valued end point 
(Xe,Ye) of the clipped line. The starting pixel (XS,YS) and the x 
coordinate of the ending pixel XE are calculated as follows: 

XS := CSILING(Xs); 
YS := ~OUND(Ys); 

XE := "LOOR(Xe}; 
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We only need the x coordinate of the ending pixel to calculate how 
many pixels to draw. By symmetry, we can solve the same problem 
that occurs when lines with a slope in the second octant are clipped 
by the left and right clip edges. In this case, we clip the line against 
the clip rectangle (ClipTop, ClipLeft - 1/2, ClipBottom, ClipRight + 
1/2). The starting pixel (XS,YS) and the y coordinate of the ending 
pixel YE are calculated as follows: 

XS := ROUND(Xs);
 
YS := CEILING1Ys);
 
YE := FLOOR(Ye);
 

If all the end points of lines are restricted to integer values, then we 
can use the inner loop of the algorithm in figure 3 to select the pixels 
for the rest of the line. However, in order to calculate the initial 
decision variable with the constants, dx and dy, we have to use the 
end points of the original unclipped line. Again, the pixels selected 
will be exactly the same pixels that would represent the original 
unclipped line. The algorithm to draw the visible portion of a line 
with integer end points and with a slope in the first octant is given in 
figure 29. 

var 
begin 

dx := Xf - Xs; 
dy := Yf - Ys; 
const1 := 2 * dy; 
const2 := 2 * (dy - dx); 
x :- CEILING(xs); 
y : = ROUND (ys) ; 
Xend : = FLOOR (xf) ; 
d := 2*dy*(x - Xs) - 2*dx(y - ~s); 

setpixel (x, y) ; 
while x < Xend do begin 

x = x + 1; 
if d < 0 then 

d := d + const1 
el.e 

begin 
y = y + 1; 
d := d + const2 

end 
setpixel(x,y) 

end {while} 
end 

procedure LlNE(Xs,Ys,Xf,Yf: integer; 
xs,ys,xf,yf : real;) 

dx, dy, const1. const2. d, 

choose pixel NE 

choose pixel E 

{end points of original line} 
{end points of clipped line} 

x, y, Xend: integer; 

Fig. 29. Algorithm for drawing the visible portion of lines with a slope In the 
first octant and with integer end points. 
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---------

B. CLIPPING CIRCLES 

In the case of circles the task of clipping a circle is more complex 
because the primitive could intersect the window at more than two 
points causing multiple segments to be visible. In order to clip a 
circle, we first should check if the bounding square of the circle 
intersects the clip rectangle. If the bounding square is completely 
inside the clip rectangle, then the whole circle is visible. On the other 
hand, if the bounding square is completely outside the clip rectangle, 
then the circle is outside the window and is not visible. If the 
bounding square partially intersects the clip rectangle, then the circle 
mayor may not be partially visible. Once we have determined that 
the bounding square partially intersects the clip rectangle, we can 
continue clipping the circle by dividing the circle into quadrants, 
where each quadrant is bounded by a square. We then check if the 
bounding squares of the quadrants intersect the clip rectangle. If the 
bounding square of a quadrant lies completely inside the clip 
rectangle, then the curve of the circle that lies in that quadrant is 
completely visible and hence is drawn. If you recall, the algorithm to 
draw a circle only calculates the pixels for one octant and we have to 
use symmetry to plot the pixels in the other octants. If the bounding 
square of a quadrant lies completely outside the clip' rectangle, then 
the curve of the circle that lies in that quadrant is outside the 
window and hence does not have to be drawn. 

Bounding square of circle Bounding square of quadrant 
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Fig. 30. Bounding box of circle, quadrant and octant 

If the bounding square of the quadrant partially intersects the clip 
rectangle, we can further divide the curve of the circle that lies in 
the quadrant into octants (see figure 30) and then intersect the 
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