
i

have also crossed the line that passes from the boundary between
region 2 and region 3 through the origin to the boundary between
region 6 and region 7 (figure 16b). This line is determined by setting
the i component of the gradient to zero. That is, 2Ax + By = O. When
the decision variable is in regions 1, 2, 7, or 8, the value of the
component is positive. When it crosses over into regions 3, 4, 5 or 6,
the value of the i component becomes negative. The line is defined
by the points at which the i component is zero. Therefore, by
determining the sign of the i component at the evaluation point of
the decision variable, we can determine if it has jumped across the
ellipse. While
the same test
the ellipse.

selecting pixels in
to determine if the

region 4,
decision

by
vari

symmetry,
able has ju

we
mped

can
ac

use
ross

line passing from boundary between re

2 and 3 to bOlmdary between r egions 6
gions
and ~

1\
I ,\

\

\ \

I \ \
I,
I

I
i \ \

I I
,I i\ \

I

I II

i
 i

\ I I \
I

II 1\,iI

I
I

\\
\

,

\\~

\\ \ !
I

\' 'I
I \~\ 1 I

I ~\' I 1I

iII

I \\
! \\,

Fig. 16a. Thin ellipse with major axis in Fig. 16b. Same ellipse, but if decision
octant 3. While tracking region I, the variable crosses ellipse while tracking
decision variable crosses ellipse causing region 1, pixel N is chosen to bring
streak of pixels to be selected that are on decision variable closer or back to side
opposite side of ellipse. being tracked.

Similarly, in regions 2 and 3, in order for the decision variable to
cross the ellipse, it has to cross the line defined by setting the j
component of the gradient to zero. When the algorithm determines
that the decision variable has crossed the ellipse, it has to choose the
pixel that is closer to the side of the ellipse it is tracking. While

29

selecting pixels in region 1, in order for the decision variable to jump
across the ellipse, the ellipse has to be a thin ellipse and its major
axis has to have a slope in the third octant. The major axis is the axis
along which the width of the ellipse is the widest. In region 1 the
choice of the next pixel is between Nand NW. When the deci~ion

variable is on the opposite side of the ellipse, pixel N will always be
closer to the side of the ellipse the algorithm is tracking. In fact,
choosing pixel N will tend to correct the problem of the decision
variable being located on the opposite side of the ellipse by bringing
the decision variable closer to or back to the side of the ellipse that is
being tracked (figure 16b). In the case of the other regions, we can
similarly determine which pixel to choose when the decision variable
crosses the ellipse.

The first partial differences that are used in the algorithm are given
by:

= 2Cy + Bx + C, (04)
= 2Cy + Bx + C - 2Ax - By + A - B,
= -2Ax - By + A,
= -2Ax - By + A - 2Cy - Bx + C + B
= -2Cy - Bx + C,

Again, as in the case of standard ellipses, the first partial differences
are all first order functions, and so the second partial differences are
all constants. The necessary second partial differences can be
calculated from the equations above. Instead of keeping track of the
appropriate component of the gradient to determine if the decision
variable has crossed the ellipse, we can fortunately use the first
partial differences. In region 1, for example, the choice of the next
pixel is between Nand NW and so we have to keep track of the
values of the first partial differences, Fn and Fn w' In order to
determine if the i component of the gradient is less than zero, that is
2Ax + By < 0, we can use the comparison Fn - < -A + B. In the Fnw
same manner, in the other regions we can avoid the computations
needed to keep track of the appropriate component of the gradient
by using the available partial differences.

The complete algorithm is presented in figure 17. The algorithm is
original in that it combines existing methods. It uses the midpoint
method to choose pixels while using the gradient technique to
determine a change of regions. The technique of using the gradient to

30

solve the problem of thin ellipses, where pixels cross the ellipse, was
originally suggested by Pratt[PRAT85]. The algorithm uses floating
point arithmetic because the coefficients of the ellipse function are
floating point numbers. One way to make the coefficients of the
ellipse function integers, would be to restrict the focal points and the
constant a to integer values. However, when a particular ellipse is
rotated, in order to draw the new ellipse, the focal points have to be
rounded to the nearest integer value, causing a slightly different
ellipse to be drawn. Another method to speed up the algorithm
would be to approximate the floating point values with integer
values so that each of the inner loops for the regions consist of only
integer arithmetic.

As in the case of standard ellipses, we could have used the
comparison of the two components of the gradient to determine a
change in regions. This would have eliminated the computations
needed to calculate the three coordinate points of the boundaries
between regions and we could avoid calculating the components of
the gradient by using the available partial differences. However, in
order to handle thin ellipses, the test condition to exit each region
would be more complex. While tracking region 1, for example, the
test condition for the while loop becomes

while «Fnw < (A-B+C» or (dl < 0) or «Fn - Fnw < cross!) and (y < Ytop»)

The first test, (Fnw < (A-B+C), in the while loop tests whether the
decision variable has crossed the line that passes from the origin
through the boundary point between region 1 and region 2. That is, it
tests whether the j component of the gradient is not greater than the
i component of the gradient. The second test, (dl < 0), is used only
when the first test indicates a change in regions that is too early. This
is similar to the test used for standard ellipses. The final test is used
in the case of thin ellipses to determine if the decision variable has
crossed the ellipse. If the decision variable has jumped across the
ellipse, then the width of the ellipse at the point of the current pixel
has to be less than one unit length. Therefore, the rest of region 1 is
represented by a line and the end of region 1 coincides with the end
of the line or the top of the ellipse. The top of the ellipse, Ytop, is
calculated by first using the larger of the parameters, a and b, and
the angle of rotation to represent the ellipse as a line segment and
then calculate the top end point of the line segment.

3 1

The reason for not presenting this method as the algorithm of choice,
instead of the method used in the algorithm in figure 17, is that in a
small class of thin rotated ellipses, the comparison of the two
components of the gradient is not an accurate indicator of a change in
regions. This is caused by the fact that a change in regions using the
comparison method is determined only when the decision variable
jumps across the line that passes from the origin through the
boundary between the regions. In a class of thin rotated ellipses, this
dividing line between regions can be slopped such that the decision
variable crosses the line a number of pixels too late. However, even
this problem can be solved with additional tests in the test condition
for the while loop. But then by increasing the arithmetic in the inner
loops of the algorithm, we increase the arithmetic per pixel plotted,
erasing the benefits obtained from not having to calculate the
boundary points between regions.

32

procedure GENERAL_ELLIPSE (a, b, theta : real)
var	 x, y, X:V, 'tV, YR, XH, XL : integer;

aSq,Xf,Yf,XfSq,YfSq,A,B,C,D,A2,B2,C2,B_2,kl,k2,k3,k4,

Fn,Fnw,Fw,Fsw,Fs,Fn n,Fn nw,Fnw n,Fnw nW,Fw w,Fw nw,Fnw w,

Fw sw, Fsw w, Fsw sw,Fs ;;Fs ;;',Fsw ;; dl, d2-; d3, d4-; Xinit., Yinit-;
XV~Yv,Xr,Yr,Xh,Yh,Xl.Yl,cr~ssl,c;;ss2,cross3,cross4real;

begin
aSq := a * a;
c :- sqrt(aSq - b * b) focal point to standard ellipse }
Xf = c * cos (theta); focal point rotated theta degrees
Yf = c * sin(theta);
XfSq = Xi * Xf;
YfSq = Yf * Yf;

A := aSq - XfSq;	 { Coefficients to (G2) }
B := -2 * Xf * Yf;

C aSq - YfSq;

D := aSq * (YfSq - A);

A2 :- A + A; B2 := B + B; C2 := C + c;

kl := -B/C2; { boundary point bet reg 8 and 1 }

Xv :- sqrt(-D/(A + B*kl + C*kl*kl)) ;

if (Xv < 0) then Xv := -Xv;

Yv "= kl * Xv;

k2 .- -B/A2; { boundary point bet reg 2 and 3 }
Yh :- sqrt(-D/(A*k2*k2 + B*k2 + C));
if (Yh < O) then Yh := -Yh;

Xh .= k2 * Yh;

k3 .= (A2 - B)/(C2 - B); { boundary point bet reg 1 and 2 }
Xr := sqrt(-D/(A + B*k3 + C*k3*k3));
Yr := k3 * Xr;

if (Xr < Yr*kl) then Yr := -Yr;

k4 := (-A2 - B)/(C2 + B); { boundary point bet reg 3 and 4 }
Xl :- sqrt(-D/(A + B*k4 + C*k4*k4));
Yl :- k4 * Xl;

if (Xl> Yl*kl) than Xl := -Xl;

x:v .- ROUND (Xv) ; YV : = ROUND (Yv) ; { rounded boundary points }

YR ROUND (Yr) ; XH "= ROUND (Xh); XL .= ROUND (Xl};

x := XIJ; { starting pixel }

y := W;

Xinit :- x - 0.5; { initial evaluation point of decision variable }
Yinit := y + 1;

Fn := C2*Yinit + B*Xinit + C; { initial Fn, Fnw and dl }
Fnw = Fn - A2*Xinit - B*Yinit + A - B;
dl := (A*Xinit*Xinit) + (B*Xinit*Yinit) + (C*Yinit*Yinit) + D;

{initialization of second order part.ial differences }
Fn n "= C2; Fn nw := Fnw n "= C2 - B; Fnw nw .- A2 - B2 + C2;

Fw w := A2; Fw nw := Fnw w := A2 - B; Fsw_sw := A2 + B2 + C2;
Fs s := C2; Fw sw := Fsw w := A2 + B; Fs sw := Fsw s .- C2 + B;-

(constants used in determining ~f decision variable has crossed ellipse }
crossl ;= B - A; cross2:= A - B + C; cross3:= A + B + C; cross4:= A + B;

Fig. 17. Algorithm to draw half arc of general ellipse

33

while (y < YR) do begin { ----------------- REGION 1 ------------------ }
setpixel (x, y) ;
y := y + 1;
if (d1 < 0) or (Fn - Fnw < cross1) than

beqin
d1 := d1 + Fn; Fn:= Fn + Fn_n; Fnw := Fnw + Fnw_n;

end

elae beqin

x := x - 1;

d1 := d1 + Fnw; Fn := Fn + Fn_nw; Fnw := Fnw + Fnw_nw;

end
and { ---

{ Change Regions

Fw :~ Fnw - Fn + A + B + B_2; Fnw := Fnw + A - C;

d2 := d1 + (Fw - Fn + C)/2 + (A + C)/4 - A;

while (x > XH) do beqin (----------------- REGION 2 -----------------

setpixel{x,y);

x := x - 1:

if (d2 < 0) or (Fnw - Fw < cross2) than

beqin

y := y + 1;

d2 := d2 + Fnw; Fw:= Fw + Fw_nw: Fnw := Fnw + Fnw_nw;

end

elae beqin

d2 := d2 + Fw; Fw:= Fw + Fw_w; Fnw := Fnw + Fnw_w;
end

and { ---
{ Change Regions

d3 := d2 + Fw - Fnw + C2 - B; Fw := Fw + B;

Fsw = Fw - Fnw + Fw + C2 + C2 - B;

while (x < XL) do beqin {---------------- REGION 3 -----------------

setpixel (x, y) ;

x := x - 1;

if (d3 < 0) or (Faw - Fw > cross3) then

beqin

d3 :~ d3 + Fw; Fw:2 Fw + Fw_W; Fsw :~ Fsw + Fsw_w;

end

elae beqin

y := y - 1;

d3 :~ d3 + Faw; Fw:= Fw + Fw_aw; Fsw := Faw + Faw_aw;

end
and (---

{ Change Regions }
Fs := Fsw - Fw - B; d4 := d3 - Faw/2 + Fa + A - (A + C - 8)/4;

Fsw := Fsw + C - A; Fs := Fs + C - B_2:

'N := -'N;

while (y > YV) do beqin (---------------- REGION 4 ------------------ }

setpixel (x, y) ;
y := y - 1;
if (d4 < 0) or (Fsw - Fs < cross4) then

beqin
x := x - 1;

d4 := d4 + Fsw;
 Fsw := Fsw + Fsw_sw;

end

elae beqin

d1 := d1 + Fs; Fsw := Fsw + Faw_a;
end

end (---
setpixel (x, y) ;

end { end GENERAL ELLIPSE f

Fig. 17. cont.

34

B. FILLED PRIMITIVES

The algorithms presented m the prevIOUS sections only draw single
pixel outlines of primitives. However, algorithms to draw filled
primitives have many uses in 2D graphics applications. These
algorithms can be divided into two tasks: calculating the pixels that
form the filled primitive, and deciding with what value to fill each
pixel.

1. Calculating Representation of Filled Primitive

The algorithms to scan-convert single-pixel outlines can be easily
extended to draw filled primitives. Determining which pixels to fill
involves intersecting successive row of pixels with the single-pixel
outline to calculate the spans of adjacent pixels in each row that lie
inside the filled primitive. Therefore, for the intersection of the
primitive with a particular row, a span is characterized by a start
pixel, which is the leftmost pixel of the single-pixel outline within the
row, and an end pixel, which is the rightmost pixel of the single-pixel
outline within the row. To draw the filled primitive, we fill each
span that represents the primitive.

2. Fill Patterns

Once we have determined the spans that represent the filled
pnmltlve, we can fill the spans with either a solid color or a pattern.
Filling the primitive with a solid color involves simply setting each
pixel within a span to the same color. However, filling the primitive
with a pattern raises a number of issues. In the simplest case, the
pattern is a bitmap, where this bitmap is repeated over the
primitive. Calculating the value of a pixel within a span, involves first
calculating the corresponding scanline within the bitmap that repeats
over the span, and then calculating the corresponding bit within that
scanline of the bitmap that represents the pixel to the colored. If we
are using the bitmap as an opaque pattern, a 1 in the bitmap
represent shading the pixel with the foreground color, and a 0
represents shading the pixel with the background color. On the other
hand, if we use the bitmap as a transparent pattern, then only when
the bit is aI, do we shade the pixel with the foreground color. An
important issue in using patterns is how the pattern repeats over the
primitive. That is, we need to know where the pattern is anchored to
determine how the pattern repeats over the primitive or
equivalently, which bit in the pattern corresponds to the pixel to be
colored. One technique is to anchor the pattern to the primitive.

35

That is, the top-left pixel of the pattern is anchored to a particular
pixel of the primitive. The advantage of this technique is that when
we move the primitive, the pattern moves with the primitive.
However, every time a primitive is drawn, we have to specify an
anchor point. A second technique anchors the primitive to the
window in which the primitive is being drawn. The disadvantage of
this technique is that if the primitive is moved, the pattern does not
move with the primitive. An interesting feature of this method is
that primitives that are painted with the same pattern overlap and
abut without any discontinuities in each primitives pattern.

3. Tiling

Instead of using a bitmap as a pattern, we can use a tile pixmap to
tile the primitive. Here, we use the same technique as in patterns to
index into the pixmap. However, instead of setting the pixel to be
colored to either the foreground or background color, we set its color
to the color of the corresponding pixel in the tile pixmap. In the case
of a monochrome display, tiling is the same as using an opaque
pattern, where the tile is a bitmap.

C. THICK PRIMITIVES

Thick primitives can be drawn using either of four methods. The first
method is a crude approximation that replicates pixels in each
column (or row) during scan conversion. The second method draws
two copies of the primitive a thickness t apart and fills in the spans
between the inner and outer boundaries. The third method traces
the cross-section of the pen tip along the single-pixel outline of the
primitive. The fourth method approximates primitives by polylines
and then uses a thick line for each polyline segment.

1. Replicating Pixels

Here, instead of drawing one pixel per iteration of the inner loop of
the scan-conversion algorithm, we draw multiple pixels. In the scan
conversion algorithm, if the choice of the next pixel is between two
pixels that lie in the same column, for example E and NE, then we
draw a stroke of pixels that lie in the column of the next pixel chosen
and is centered on that pixel. Similarly, if the choice of the next pixel
is between two pixels that line in the same row, the pixels are
duplicated in rows. The thickness of the line is specified by the
number of pixels replicated at each iteration of the inner loop. The
advantage of this method is that it is very efficient. However, it does
not produce the most visually pleasing thick primitives. In the case

36

of lines, the end points of the lines are restricted to vertical or
horizontal edges. Furthermore, lines that are horizontal and vertical
have a different true thickness from lines at an angle, where the true
thickness of the primitive is defined as the distance between its
boundaries perpendicular to the tangent of the primitive. This visual
discrepancy becomes more apparent when we draw a circle or ellipse
where the slope of the curve varies continuously. When drawing an
ellipse, for example, the ellipse will appear thin where the slope of
the ellipse is horizontal or vertical and will appe'ar thick where the
slope of the ellipse is a diagonal.

2. Filling Areas Between Boundaries

This method draws a thick primitive as the approximation of the
area that lies between the boundaries formed by stepping a distance
t/2 on either side of the zero-width curve that is defined by the
mathematical equation of the primitive. The strength of this method
is that it is based on the intuitively correct definition of a thick
primitive. However, when using this method, the extended
boundaries of the thick primitives are not easily described by using
only integer arithmetic. In the case of a line, a thick line is really the
area enclosed by a rectangle or a rotated rectangle. Even if the end
points of the line fall on integer coordinate points and the thickness,
t, of the line is an integer, the end points of the bounding lines that
define the thick line may not fall on integer coordinates. And since
floating point arithmetic is needed to draw lines with end points that
do not fall on integer coordinates, we need to use floating point
arithmetic to select the pixels that define the bounding lines of a
thick line. Therefore, in order to draw a thick line, we have to
calculate the pixels that form the bounding lines of the thick line, and
then, as in the case of filled primitives, use these pixels to calculate
the spans form the thick line.

37

Arra

repr

]

Scanline from
StanLeft to StopRight

Scanline from
StartLeft to StopLeft
and from
StartRight to StopRight

]

Scanline from
StartLeft to StopRight

I I I
~~ m

~«:

y entry ":~ ,
~r~

:
esenting Scanline - ,,<l ~ -::; , f!l:~

StanLeft _P""'
~

.. .. - .,
l- I-StopLeft ... ,....

--e l- I ~
f-' ...

StanRight -l,....-p :::: I-

StopRight - ID ~ W.
~'lS ~ W I f~
~ ,:<:I ~

: r,il
.....

~

.~ F~ ~:

Fig. 18. Thick circle with radius 8 and thickness 4,
displaying scanline representation

In the case of a circle, a thick circle is the area enclosed by two
concentric bounding circles. If the thick circle is defined by a radius
R and a thickness t, then the inner bounding circle has a radius R-t/2
and the outer bounding circle has a radius R+t/2. Therefore, in order
to draw the thick border of a circle, we scan-convert the single-pixel
outlines of the inner and outer bounding circles. The pixels that
represent these outlines are then used to calculate the spans that
form the thick boundary. In fact, we only need calculate the spans
that form on octant of the thick circle and then by symmetry
calculate the spans that form the other octants.

A simple technique for calculating the spans of thick circles to use
the pixels that form the inner and outer concentric circles to fill an
array of entries that represent the scanlines that form the border of
the thick circle. Figure 18 illustrates a circle with a radius of 8 and a
thickness of 4, where the inner concentric circle has a radius of 6 and
the outer concentric circle has a radius of 10. As illustrated, each
array entry, representing a scanline, contains x-values of the start
and stop pixels of the left border of the circle and the x-values of the
start and stop pixels of the right border. The single-pixel outline of
the outer concentric circle is used to fill in the values of StartLeft and
StopRight. and the single-pixel outline of the inner concentric circle is
used to fill in the values of StopLeft and StartRight. The array of

38

entries representing the scanlines are then used to draw the thick
border of the circle, as illustrated in figure 18.

Fig. 19. Filled border of thick circle

Figure 19 illustrates the same thick circle as in figure 18, but with
the area between the inner and outer concentric circles shaded. The
pixels that form outer and inner concentric circles are shaded
differently only for illustrative purposes. The thick border of the
circle, therefore includes the pixels that form the inner and outer
concentric circles, in addition to the pixels that lie in between the two
concentric circles. If both, t/2 and R, are integers then the integer
version of the circle algorithm can be used to select the pixels that
form the bounding curves of a thick circle.

Unfortunately, in the case of standard ellipses, the bounding curves
that are formed by moving a distance t/2 on either side of the curve
of the ellipse are not concentric ellipses. However, concentric ellipses
may be used to approximate a thick ellipse since the functions that
define the actual bounding curves are 8th order functions [SALM96]
and the task of selecting the pixels that outline these curves is
computationally expensive. Therefore, to draw a standard ellipse
with thickness t and with dimensions a and b, as defined in the
section on standard ellipses, we need to calculate the pixels that form
the area between the two bounding concentric ellipses where the
inner bounding ellipse has dimensions a-t/2 and b-t/2, and the outer
bounding ellipse has dimensions a+t/2 and b+t/2. Again, as in the
case of thick circles, the task of drawing a thick ellipse can be
accomplished by using an array of entries that encode the scanlines

39

that form the thick ellipse. The limit as the width of the ellipse goes
to zero is the case where the outer and inner concentric ellipses
coincide with the zero-width curve of the ellipse. Therefore, as the
width goes to zero, the pixels selected for the thick ellipse are the
same pixels as those selected for the single-pixel outline of the
ellipse. Using this method precludes the situation where if we define
a zero-width ellipse as not being visible (no pixels selected), then
drawing an ellipse with a thin width may appear as an outline of the
ellipse with gaps of pixels missing.

Since general ellipses are defined as standard ellipses that are
rotated an arbitrary angle, in order to draw a thick general ellipse,
the bounding concentric ellipses that define the thick standard
ellipse are rotated and the pixels that lie between the two rotated
bounding ellipses represent the thick general ellipse. Again, as in the
case of thick standard ellipses, the task of drawing a thick ellipse can
be accomplished by using an array of entries that encode the
scanlines that form the thick general ellipse.

3. Tracing The Outline With The Pen Tip

This method uses a pen tip to trace the outline of the pnmlt1Ve.
That is, a particular point of the pen tip follows the path of the
single-pixel outline of the primitive. We can use pen tips of any
shape, however circular pen tips produce the most visually pleasing
thick primitives. The brute-force algorithm for drawing thick
primitives using this method, is to draw the pen tip at each pixel of
the single-pixel outline. However, since the pen tip overlaps at
adjacent pixels, we will be setting pixels more than once. A better
technique is to use the spans of the pen tip at each pixel of the
single-pixel outline to compute the spans that form the thick
primitive. This technique can be made more efficient by not using
certain spans of the pen tip depending on the slope of the primitive
and the shape of the pen tip. When a circular pen tip is used, this
method produces the most accurate thick primitives. Also, this
method is easily extensible to any primitive, including primitives
with sharp corners.

4. Thick Polyline Approximation

All primitives can be "piecewise linearly" approximated by
computing points on the boundary and then connecting these points
with line segments to from a polyline. In order to closely
approximate the primitive where the slope of the primitive varies

40

rapidly, the points must be calculated such that the points are closer
together, and hence the line segments are smaller. Ellipses and
circles, which are a class of ellipses, can be represented as two
equations (one for the x and the other for the y value of the points
that form the ellipse) that are each ratios of parametric polynomials
[LIEN87]. This representation lends itself readily to such a piecewise
linear approximation of the ellipse. In order to draw the thick
primitive, the individual line segments are then drawn as rectangles
with specified thickness. Here however, the end points of the lines
have to be joined smoothly.

Again, as in the case of all raster drawing algorithms, the choice of
which definition of thick primitives to use and the choice of which
algorithmic approximations to use
between the speed of the resulting
appearance of the primitive.

are dictated
algorithm

by
and

the trade-offs
the visual

5. Patterned Thick Primitives

Once we have calculated the spans that represent the thick border of
the primitive, as in the case of filled primitives, we can pattern or
tile the spans that represent the border. In fact, we can draw filled
primitives with thick borders, where the border is painted with one
pattern and the region inside the border is painted with another
pattern.

6. Border Styles

Another useful feature of 2D graphics applications, is the ability to
draw primitives with various line styles. That is, using dashes to
draw the border of the primitive. In the case of the single-pixel
outline of a line, we can incorporate a mask of bits that describes the
dashed style into Bresenham's line algorithm. Figure 20 illustrates
using Bresenham's line algorithm for drawing dashed lines in the
first octant.

41

procedure LINE(Xs,Ys,Xf,Yf, mask: integer)
var dx, dy, const1, const2, d, x, y : integer;

begin
dx := Xf - Xs;
dy := Yf - Ys;
d := 2 * dy - dx:
const1 := 2 * dy;
const2 := 2 * (dy - dx):
x := Xs;
y := Ys:
if (low order bit of mask is a 1) than

setpixel (x, y) ;
while x < Xf do begin

x - x + 1:
if d < 0 then choose pixel E

d := d + const1
el.e choose pixel NE

begin
y = y + 1:
d := d + const2

end
Rotate Right(rnask); (rotate mask one bit to right)

-{ shifting low order bit into high order bit position
if (low order bit of mask is a 1) then

setpixel(x,y);
end {whilel

end

Fig. 20. Algorithm for drawing lines in the first octant

In the case of circles and ellipses, we can incorporate a similar mask
into the scan-conversion routines to draw these primitives.
However, since as in the case of a circle, only the pixels that form an
octant of the circle are calculated and then the pixels for the other
octants are drawn by symmetry, we have to draw the pixels in an
order that is continuous around the circle. Otherwise, at the
boundaries between octants, the dashed style may break down.

In the case of thick primitives, we can extend this method only if we
use the pen tip method to draw a primitive. However, doing this does
not produce visually pleasing dashed primitives. In the case of thick
lines, a thick dashed line is really a number of filled rectangles or
rotated rectangles that are spaced in a regular manner. Therefore, in
order to draw a thick dashed line, we have to scan-convert one
repeatable unit of filled rectangles depending on the dashed style,
and then draw the line by simply translating this repeatable unit for
the length of the line. If we are using the polyline approximation to
draw· primitives, then we can use the dashed lines to draw the
dashed polyline approximation. However, the dashes must be
continuous from one segment to the next.

42

III. CLIPPING

Window ,----------:;.,.L-----,

,.,
'" ,,,,

, ,, ,

",'"
",'"

Application ",'"
'"

, "
~'"

Fig. 21. Clipping primitives to the application window

Another concern of raster drawing algorithms is that when a
windowing system is employed, the primitives that are drawn by an
application have to be clipped to the window that belongs to that
application. In addition, the application's window may be obscured
by several other windows requiring the primitive to be clipped to
several rectangular areas. Therefore, in order for a primitive to be
drawn in only the visible portions of the application's window, it may
have to be clipped to several rectangular areas. There are several
approaches to clipping. One approach to clipping is to perform the
clipping in the drawing algorithm right before a pixel is set. In the
case of an unobscured window, clipping is done only to the bounding
rectangle of the window. Therefore, before a pixel is set, its
coordinates are compared against the bounding rectangle of the
window. If the pixel lies inside the window then it is set and if it lies
outside the window it is not set. The comparison of a pixel located at
(x,y) and a clip rectangle can be done by the following simple
s tatemen1.

if ((x ~ clip.left) and (x ~ clip. right)

(y ~ clip.bottom) and (y ~ clip.top)

then setpixel(x,y);

In using this approach, the drawing algorithm still calculates all the
pixels that represent tne primitive, but only sets those pixels that lie
in the visible portion of the window.

43

In the case of multiple clip rectangles, we could perform the above
comparison for every clip rectangle. However, the speed of the
drawing algorithm would decrease as the number of clip rectangles
increased. A better solution would be to keep a list of visible and
invisible rectangles. When the current pixel goes outside the current
clip rectangle, then the list would be traversed to find the new clip
rectangle in which the current pixel lies. In addition, a flag would
indicate if the current clip rectangle is visible or invisible and if it is
visible then the current pixel should be set.

Although this approach is simple, it is inefficient when most or all of
the primitive is located outside the window. This inefficiency arises
because we calculate all the pixels that represent the primitive and
then clip each pixel to the clip rectangle. A better approach would be
to determine the visible and invisible sections of the primitive and
then only draw the visible sections. Therefore, in order to clip a
primitive, we need to calculate the end points of the sections that are
visible and then be able to draw those sections.

A. CLIPPING LINES

In the case of line segments, the intersection of a line segment with
the clip window can produce at most one line se"gment. Figure 22
illustrates a number of line segments that are clipped to a window.

.' ,..__.._.._.\t--:-=---..:.;..'-''-''-''-"-"----,

.'

Application '. '

Window ".

··,··

··· ···

I

,·,,·
I
I

Fig. 22. Clipping lines to the application window

1. Cohen-Sutherland Algorithm

In order to clip a line to a window, we then only have to calculate the
end points of the visible segment and then draw the visible line
segment. Cohen and Sutherland [NEWM79] developed an algorithm

44

var xLeft,xRight,yBottom,yTop : real: {clip rectangle of window}

procedur8 CLIP LINE(Xl,Yl,X2,Y2 : real}
type edge-- (LEFT,RIGHT,BOTTOM,TOP);

code - set of edge:
var Cl,C2,Cout code; x,y: real: accept,done boolean

procedur8 ENCODE(x,y real; var C : code}:
begin

C := [];

if x < xLeft then C := [LEFT]

el.e if x > xRight then C := [RIGHT];

if x < yBottom then C := C + [BOTTOM]

al.e if x > yTop then C := C + [TOP]

end

beqin
ENOODE(Xl,Yl,Cl}; ENCODE(X2,Y2,C2);
repeat

if (Cl = []) and (C2 = []) then {Line is inside window}
beqin

accept := true: {trivially accept line}
done := trua

end
al.e if (Cl * C2) <> 1:] then (logical intersection of codes)

done := true (trivially reject line}

el.e (failed both tests}
beqin

if Cl <> [] then (pick code of an end point}
Gout := Cl: {than is outside clip recti

el.e Cout := C2;

if LEFT in Cout then begin (crosses left edge)
x := xLeft;
y := Yl + (Y2 - Yl) * (xLeft - Xl)!(X2 -Xl):

end el.e
if RIGHT in Cout then begin (crosses right edge}

x :- xRight;
y :- Yl + (Y2 - Yl) * (xRight - Xl)!(X2 -Xl);

end el.e
if BOTTOM in Cout then begin {crosses bottom edge}

y :... yBottom;
x :- Xl + (X2 -Xl) * (yBottom - Xl)!(Y2 - Yl);

end el.e beqin {crosses top edge}
y := yTop:
x := Xl + (X2 -Xl) * (yTop - Xl)!(Y2 - Yl):

end:

if Cout = Cl then
Xl .= x: Yl "- y; ENCODE(Xl,Yl,Cl):

el.e
X2 .= x; Y2 := y; ENCODE(X2,Y2,C2);

end
until done;

if accept then DrawLine(Xl,Yl,X2,Y2):
end

Fig. 25. Cohen-Sutherland Line-Clipping algorithm

48

2. Nicholl-Lee-Nicholl Algorithm

Nicholl, Lee and Nicholl [NICH87] developed a line clipping algorithm
that avoids computing intersection points which are not end points of
the final visible line segment and hence uses fewer arithmetic
operations than the algorithm in figure 25. The algorithm works as
follows. As before, the edges of the window are extended to divide
the plane of the window into nine regions. There are three types of
regions, corner regions, side regions and the region that is the
window. We pick one end point, pI, of the line, and depending on
within which type of region the end point lies, it subdivides the
plane of the window as illustrated in figure 26.

Pl

LB

L

T

R

B

Pl
L

LT i

LB:

LR

PI 10Cllled in corner region PI 10CIIled in window region PIIOCllled in side region

Fig. 26. Subdivision of the plane of the window
depending on the type of region in which pI is located

The subdivisions are determined by dividing all positions of the end
point, p2, such that each subdivision corresponds to intersections of
the line with the same boundaries of the clip rectangle. In figure 26,
the letters L,R,T and B stand for the left, right, top and bottom
borders of the clip rectangle. In addition, any region that is bounded
by solid lines and is labeled with a letter or a letters represents the
subdivision where if p2 were located in that region, the line would
cross the border(s) of the clip rectangle that the label indicates. If p2
is located in a subdivision that is not labeled, then we do not need to
calculate any intersection points. That is, the line is either completely
outside or completely inside the clip rectangle. Therefore, the
algorithm first determines within which of the 9 regions the end
point pI lies, and then depending on that region it determines the
location of p2 among the appropriate subdivisions. The algorithm
incrementally determines the subdivision within which p2 is located,
by eliminating subdivisions that are easier to check to home in on

49

the correct subdivision. Once we have determined within which
subdivision p2 is located, we can determine which borders of the
window to clip against. In this way, only the necessary intersection
points are calculated.

The algorithm in figure 27 illustrates the calculations of the
intersection points when pI is in the top-left corner region. Note that
the calculations (topproduct, leftproduct, etc.) performed for
eliminating the easier subdivisions are reused to simplify the
calculations for subdivisions that are not as easy to check. In
addition, these calculations are also used again if we need to calculate
any intersection points. By symmetry, we can derive the calculations
of the intersection points when pI is in any of the other corner
regions. We can also similarly derive the calculations if pI is located
in a side region or the window region. Nicholl, Lee and Nicholl
describe the computations for each type of region. Instead of
deriving the calculations for each region that is of the same type,
they use geometrical transformations and use the calculations for one
of the regions in that type. If pI lies in the bottom-left corner region,
for example, then we can use the calculations for the top-left corner
region in figure 27 by reflecting both the line and the clip rectangle

\	 about the x-axis and then using the fact that the reflected location of
pI lies in the top-left corner region. When the final end points of the
line are calculated, these end points are reflected back across the x
axis to give the end points (if any) of the line to be drawn.

var xLeft,xRight,yBottom,yTop : real; {clip rectangle of window}

procedur. CLIP_LINE (Xl,Yl,X2,Y2 : real)
beqin

i~ Xl < xLeft than LeftColumn(Xl,Yl,X2,Y2,display) {-------->}
el.e if Xl > xRight then RightColumn(...) {right column}
el.e CenterColumn(...) {center column}

end

procedure LeftColumn(Xl,Yl,X2,Y2 : real; var display:boolean);
beqin

if X2 < xLeft than display := fal.e; {Trivial reject}
el.e if Yl > yTop than

TopLeftCorner(Xl,Yl,X2,Y2,display) {-------->}
el.e if Yl < yBottom then BotLeftCorner(...); {bot-Left corner}
el.e LeftSide(...) {Left Side}

end

Fig. 27. Nicholl-Lee-Nicholl Algorithm to
clip line if pI lies in top left comer

50

procedure TopLeftCorner(Xl,Yl,X2,Y2 : rea~: var display:boo~e&n):

var deltaX,deltaY,topproduct,leftproduct : rea~:

beqin
if Y2 > yTop then display := fa~ae: (Trivial regect}
e~ae beqin

deltaX :- X2 - Xl: deltaY :- Y2 - Yl:

topproduct :- (yTop - Yl) * deltaX:

leftproduct :- (xLeft - Xl) * deltaY:

if topproduct > leftproduct then

BelowTopLeftCornerPoint(Xl,Yl,X2,Y2,display,
deltaX,deltay, leftproduct): {-------->}

(line passes below top left corner of clip rectangle}
e~ae

AboveTopLeftCornerPoint(...) {symmetric to below case}
end

end

procedure BelowTopLeftCornerPoint(Xl,Yl,X2,Y2 : rea~; var
display:boo~ean: deltaX,deltaY,leftproduct real):

var deltaX,deltaY,topproduct,leftproduct : rea~:

beqin
if Y2 >- yBottom then beqin

if X2 > xRight then beqin {intersects right edge}
X2 := xRight
Y2 := Yl + (xRight - xl) * deltaY/deltaX;

end

Xl := xLeft; {intersects left edge}

Yl : = yl + leftproduct/deltaX;

display :- true

end
e~.e beqin

bottomproduct :- (yBottom - Yl) * deltaX;
if bottomproduct > leftproduct then {line passes below }

display :- fal.e: {bot-left corner of clip rect - reject}
e~ae beqin

if X2 > xRight then beqin
rightproduct :- (xRight - Xl) * deltaY;
if bottomproduct > rightproduct then beqin
{line passes below bot-right corner of clip rectangle}

Y2 := yBottom; {intersect bottom edge}
X2 := xl + bottomproduct/deltaY;

end
e~ae beqin

X2 := xRight; (intersects right edge}
Y2 := yl + rightproduct/deltaX;

end

end

e~.e beqin

Y2 := yBottom; (intersect bottom edge}
X2 := xl + bottomproduct/deltaY;

end
Xl := xLeft; (intersects left edge}
Yl := yl + leftproduct/deltaX;
display := true

and

end

end

Fig. 27. cont.

5 1

3. Drawing The Clipped Line

Once we _have determined the end points of the visible line segment,
we then have to draw the visible segment. The pixels selected to
draw the line have to be exactly the same as the pixels that
represent the original unclipped line. That is, if the window grows,
and the whole line becomes visible, the section that becomes visible
has to be drawn so it abuts the previous visible segment correctly.
In addition, if the line is erased later, we cannot undraw pixels that
are different from those originally set. The algorithms of the
previous sections describe clipping a line to a clip rectangle and
produce the end points of the segment that lies within the clip
rectangle. If these end points have been clipped by one of the edges
of the clip rectangle, then the end points can have real coordinates.
We are faced with two problems: starting the line algorithm at a
clipped (real) end point, and making sure we draw all the pixels from
the original line that lie within the clip rectangle.

For a line with a slope in the first octant, for example, the line
algorithm has to choose the next pixel from the pixels E and NE. It
does this by choosing the pixel that lies closer to the line. We can
accomplish the same result by taking the y-value of the line at the x
value of the two pixels, E and NE, and rounding it to determine the
next pixel. Therefore, all the pixels that form a line can be calculated.
by using the rounded y-value of the line for each integer x-value
that spans the line. If a line with a slope in the first octant is clipped
by the left edge, then the intersection of the line with the edge has
an integer x coordinate, xleft, and a real y coordinate, (mxleft + b).
And the pixel at the left edge (xleft, ROUND(mxleft + b)) is one of the
pixels of the original unclipped line. If we start our incremental line
algorithm at a pixel that lies on the original line and initialize the
decision variable correctly, then all the other pixels selected for the
rest of the line will be the same pixels that form the original
unclipped line. In order to initialize the decision variable for a line
with a slope in the first octant, if the first pixel is (xp,yp), then we
simply calculate the decision variable at the midpoint between the
pixels E and NE or equivalently at (xp+l,yp+l/2).

The second problem of making sure we draw all the pixels of the
unclipped line that lie inside the clip rectangle is not evident when a
line with a slope in the first octant is clipped by only vertical edges.

52

However, when the same line is clipped by a horizontal edge, there
may be multiple pixels that form the line along the horizontal edge.
(see figure 28). When we clip the line, the clipped end point has a
real x coordinate, (ybot - b)/m, and an integer y coordinate, ybot.
Although we can show that the pixel at (ROUND«ybot - b)/m), ybot)
is a pixel that lies on the original unclipped line, this pixel may not
be the leftmost pixel of the span of pixels shown. From the figure
and the midpoint method, it is clear that the leftmost pixel is the one
that lies just above the place on the grid where the line first crosses
above the midpoint y = ybot - 1/2. Therefore, we simply find the
intersection of the line with the line ybot - 1/2 and take the ceiling
of the x-value. That is, we start the algorithm at (CEILING(ybot - 1/2
-b)/m), ybot). We run into the same problem if the line is clipped by
the top edge, however, in this case we are calculating the ending
pixel of the line. Here we clip the line to ytop + 1/2 and the ending
pixel is the FLOOR of the intersection points x-value.

ClipLeft

ClipBottom

(Xs.Ys)

Fig 28. line with a slope in the first octant that is clipped
by a horizontal edge

To summarize, if we are clipping a line with a slope in the first octant
against the clip rectangle (ClipTop, ClipLeft, ClipBottom, ClipRight),
then we use one of the clipping algorithms presented in the previous
section and clip the line against the clip rectangle (ClipTop + 1/2,
ClipLeft, Clipbottom - 1/2, ClipRight). The clipping algorithm returns
the real-valued start point (Xs,Ys) and the real-valued end point
(Xe,Ye) of the clipped line. The starting pixel (XS,YS) and the x
coordinate of the ending pixel XE are calculated as follows:

XS := CSILING(Xs);
YS := ~OUND(Ys);

XE := "LOOR(Xe};

53

We only need the x coordinate of the ending pixel to calculate how
many pixels to draw. By symmetry, we can solve the same problem
that occurs when lines with a slope in the second octant are clipped
by the left and right clip edges. In this case, we clip the line against
the clip rectangle (ClipTop, ClipLeft - 1/2, ClipBottom, ClipRight +
1/2). The starting pixel (XS,YS) and the y coordinate of the ending
pixel YE are calculated as follows:

XS := ROUND(Xs);

YS := CEILING1Ys);

YE := FLOOR(Ye);

If all the end points of lines are restricted to integer values, then we
can use the inner loop of the algorithm in figure 3 to select the pixels
for the rest of the line. However, in order to calculate the initial
decision variable with the constants, dx and dy, we have to use the
end points of the original unclipped line. Again, the pixels selected
will be exactly the same pixels that would represent the original
unclipped line. The algorithm to draw the visible portion of a line
with integer end points and with a slope in the first octant is given in
figure 29.

var
begin

dx := Xf - Xs;
dy := Yf - Ys;
const1 := 2 * dy;
const2 := 2 * (dy - dx);
x :- CEILING(xs);
y : = ROUND (ys) ;
Xend : = FLOOR (xf) ;
d := 2*dy*(x - Xs) - 2*dx(y - ~s);

setpixel (x, y) ;
while x < Xend do begin

x = x + 1;
if d < 0 then

d := d + const1
el.e

begin
y = y + 1;
d := d + const2

end
setpixel(x,y)

end {while}
end

procedure LlNE(Xs,Ys,Xf,Yf: integer;
xs,ys,xf,yf : real;)

dx, dy, const1. const2. d,

choose pixel NE

choose pixel E

{end points of original line}
{end points of clipped line}

x, y, Xend: integer;

Fig. 29. Algorithm for drawing the visible portion of lines with a slope In the
first octant and with integer end points.

54

B. CLIPPING CIRCLES

In the case of circles the task of clipping a circle is more complex
because the primitive could intersect the window at more than two
points causing multiple segments to be visible. In order to clip a
circle, we first should check if the bounding square of the circle
intersects the clip rectangle. If the bounding square is completely
inside the clip rectangle, then the whole circle is visible. On the other
hand, if the bounding square is completely outside the clip rectangle,
then the circle is outside the window and is not visible. If the
bounding square partially intersects the clip rectangle, then the circle
mayor may not be partially visible. Once we have determined that
the bounding square partially intersects the clip rectangle, we can
continue clipping the circle by dividing the circle into quadrants,
where each quadrant is bounded by a square. We then check if the
bounding squares of the quadrants intersect the clip rectangle. If the
bounding square of a quadrant lies completely inside the clip
rectangle, then the curve of the circle that lies in that quadrant is
completely visible and hence is drawn. If you recall, the algorithm to
draw a circle only calculates the pixels for one octant and we have to
use symmetry to plot the pixels in the other octants. If the bounding
square of a quadrant lies completely outside the clip' rectangle, then
the curve of the circle that lies in that quadrant is outside the
window and hence does not have to be drawn.

Bounding square of circle Bounding square of quadrant

2:

,------------~ o :__\ .t R

..J2R:
r----,fiC--i

R '--""'---'- - - - I
Bounding

,----------- , rectangles
: : ~ of octants[2

Fig. 30. Bounding box of circle, quadrant and octant

If the bounding square of the quadrant partially intersects the clip
rectangle, we can further divide the curve of the circle that lies in
the quadrant into octants (see figure 30) and then intersect the

55

SPR082 Sproull R. F. Using program transformations to derive
line-drawing algorithms. ACM Transactions on Graphics,!,
4, (Oct. 1982), 259-273.

VANA84 Van Aken 1. R. An efficient ellipse-drawing algorithm.
IEEE CG&A, (Sep 1984), 24-35.

VANA85 Van Aken J. R. and Novak M. Curve-drawing algorithms
for raster displays. ACM Transactions on Graphics, 4, 2,
(Apr 1985), 147-169.

v

