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Overview  
I   will   explain   the    motivations    behind   the   overall   architecture   design,    model   design   and  
architecture ,   and    performance   gains    in   the   Research/Implementation   section.   The   motivations  
behind   how   the   bot   works   will   be   addressed   in   the   README   section.   

Research/Implementation   process  
The   problem   is   framed   in   two   different   approaches:   reinforcement   learning   and   supervised  
learning.   

1. Reinforcement   Learning:    DQN   
2. Model   architecture   and   Performance   
3. Competitive   Analysis   of   All   Supplied   Bots  
4. Supervised   Learning:    Policy   Network  
5. Final   Model   &   Learned   Weights  

 

 
Image   1  

Reinforcement   Learning:   DQN  
Recent   successes   such   as    AlphaGo    and    AlphaGo   Zero    spike   a   trend   of   training   deep   neural  
networks   on   large   amount   of   self-play   data   to   learn   better   representations   [1].   As   I   designed   the  
strategy   for   Tron,   I   began   to   look   at   how   reinforcement   learning   trains   agents   to   play   single,  
adversarial   and   multi-agent   games   effectively.   
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https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/blog/article/alphago-zero-starting-scratch


In   the   reinforcement   learning   homework,   we   implemented   the   SARSA   and   SARSA-lambda  
algorithms   to   store   state-action   values   in   the   Q   table.   Those   Q-learning   algorithms   work   best  
when   there   are   a   few   states.   However,   in   the   case   of   Tron,   the   problem   space   is   too   large   for  
Tabular   Q-learning   algorithms   because   each   game   cell   can   have   many   cell_types   and  
powerup_types.   The   combinations   of   all   possible   states   are   too   big   to   store   in   the   Q   table.  
Therefore,   I   started   to   look   for   deep   learning   solutions   that   use   neural   networks   to   predict  
q-values   without   storing   all   the   state-action   pairs.   Instead   of   looking   up   q-values   in   a   Q   table,   the  
neural   network   would   develop   an   estimation   function   that   can   predict   the   q-value   of   any  
state-action   pair.   Now   the   question   is   which   framework   to   use.   
 
After   reading   many   popular   papers   on   deep   neural   networks,   I   decided   to   go   with   a   simple,  
elegant   model   called    Deep   Q-learning    or    DQN .   DQN   “connects   a   reinforcement   learning  
algorithm   to   a   deep   neural   network   which   operates   directly   on   RGB   images   and   efficiently  
process   training   data   by   using   stochastic   gradient   updates”   [2].   DQN   stores   the   agent’s  
experience   in   an   N-size   buffer,   called    experience   replay ,   at   each   time-step   [3].   Then,   Q-learning  
is   applied   to   some   samples   of   experience   from   the   replay   buffer.   Afterward,   the   agent   selects   an  
action   that   would   maximize   the   reward.   DQN   trains   samples   from   the   replay   buffer   to   fulfill   the  
i.i.d.   (independent   and   identically   distributed)   requirement.   
 
With   DQN,   I   built   a   large   and   a   small   neural   network   to   predict   q-value.   Since   the   nature   of   the  
game   board   is   similar   to   an   image,   I   decided   to   go   with   the   convolution   neural   network   used   by  
AlphaGo.   

Model   architecture   and   Performance  
AlphaGo   uses   192   filters   for   each   conv2d   layer,   which   would   be   extremely   slow   to   train.   Hence,  
I   reduced   it   to   64   filters   in   each   conv2d   layer.   Here   is   the   large   model   architecture   similar   to  
AlphaGo’s   CNN:   
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Image   2  

 
However,   this   giant   architecture   is   slow   to   train   and   doesn’t   reduce   the   loss   function   efficiently.  
Therefore,   I    reduced   the   large   model   into   a   smaller   one .   Specifically,   I   took   out   7   residual  
blocks,   simplified   14   convolution   layers   into   2,   and   excluded   skipped   connections.   Here   is   a  
summary   of   the   small   CNN:   
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Image   3  

 
My    bot   performances    trained   on   each   CNN   are   shown   below.   

 
Image   4   

When   trained   on   the    small   network ,   my   bot   struggles   on   joust   and   divider   when   competed   with  
the   random   bot.   When   competed   with   the   wall   bot,   my   bot   only   struggles   at   the   empty_room.  
 
When   trained   on   the    large   network ,   my   bot    consistently   beats   the   random   bot   and   consistently  
loses   to   the   wall   bot .   While   the   performance   versus   wall   bot   is   worse   than   the   small   network,  
the   large   network   has   more   consistency   across.   Therefore,   I   decided   to   let   the   bot   trained   on   a  
large   network   compete   with   ta   bots.   
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Image   5  

 
Sadly,   my   bot   not   only   loses   to   beat   wall   bot   but   also   loses   to   ta1   and   ta2   entirely.   
 
Given   the   superior   performance   of   the   supplied   bots,   I   first   experimented   with   different   reward  
structures.   For   example,   I   compared   only   rewarding   the   last   step   versus   rewarding   every   step.  
While   rewarding   the   last   step   is   the   most   common   approach   in   reinforcement   learning   games,   I  
want   to   know   if   there   are   any   merits   in   keeping   the   bot   on   the   Tron   game   for   long.   This   novel  
approach   did   not   improve   the   performance   much   either.   
 
Therefore,   I   began   to   analyze   their   performances   and   research   other   ways   to   learn   from   the   bots.  

Competitive   Analysis   of   Supplied   Bots  
I   conducted   the   following   study   to   see   which   bot   has   the   best   move.   From   the   table   below,    ta2  
outperforms   ta1,   random,   and   wall   bots   in   most   cases.   There   is   one   scenario   (divider)   where   the  
wall   bot   slightly   outperforms    ta2 ,   so   I   plan   to   learn   from   ta2   bot   and   pick   up   some   strategy   from  
the   wall   bot.   
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Image   6  

Supervised   Learning:   Policy   Network   
AlphaGo   trains   a   “supervised   learning   policy   network   directly   from   expert   human   moves   in   the  
Go   game”   [4].   

   
Input   features   to   AlphaGo’s   Policy   Network   [4]  

 

8  



In   a   similar   spirit,   I   am   going   to   learn   from   the   best   player   (ta2)   in   the   Tron   game   with   the   feature  
described   below.   To   mimic   the   behavior   from   all   supplied   bots,   I   started   to   train   the   policy    π ,  
which   predicts    an   action   for   each   state   ( π:   s   →   a).    The   goal   is   to   let    π    learn   from   the   master  
moves   and   best   players,   so   it   can   become   the   best   player   too.   

Preprocessing   

● Data   generation :   I   created    selfplay.py    which   would   generate   the   following   training  
datasets:   

○ ta2   vs   (rand,   wall,   ta1,   ta2)   on   all   maps   as   well   as   the   reverse   order  
○ ta1   vs   ( rand,   wall,   ta1,   ta2)   on   all   maps   as   well   as   the   reverse   order  

● Training   labels :   
○ X=19   planes   (see   below)  
○ Y=numpy   array((4,))   with   one-hot   encoding   for   the   4   classes  

● Training/Validation/Testing   Split:    70/20/10  
● Augmentation :   I   augmented   the   training   data   by   apply   coordinate   transformations,   i.e.  

"flipping"   the   board   along   various   axes.   The   final   augmented   list   of   (state,   action)   is  
flipped   in   8   different   ways.  

● Data   size:    200   (times)   x   4   (maps)   x   8   (augmentation)   x   60   (moves/game)   =   ~400k  
training   samples   for   each   round.  

Model   Training   

1. Feature   Selection :   19   planes   (number   of   channels   in   the   convolutional   layers).   The  
planes   represent   the   following   information:  
1.1. walls   =   1  
1.2. barriers   =   1  
1.3. current_player_position   =   1   (only   one)  
1.4. opponent_position   =   1   (only   one)  
1.5. speed_locations   =   1  
1.6. bomb_locations   =   1  
1.7. trap_loc   =   1  
1.8. armor_loc   =   1  
1.9. current_player_has_armor   =   ones   

1.10. opponent_has_armor   =   ones  
1.11. current_player_has_speed_with_four_steps  
1.12. current_player_has_speed_with_three_steps  
1.13. current_player_has_speed_with_second_steps  
1.14. current_player_has_speed_with_one_steps  
1.15. opp_player_remaining_speed   ==   4  
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1.16. opp_player_remaining_speed   ==   3  
1.17. opp_player_remaining_speed   ==   2  
1.18. opp_player_remaining_speed   ==   1  
1.19.   is_current_player_one   

2. Learning   rate:    Use   the   default   setting   of   the   Keras.Adam   optimizer,   which   would   be  
automatically   adapted   as   epoch   number   increases.  

3. Optimizer:    I   chose   Adam   optimizer   because   of   its   popularity   and   ability   to   adapt   the  
learning   rate   on   its   own.   

4. To   optimize   the   weights   in   the   most   efficient   manner,   I   trained   many   versions   of   the  
models   on   each   bot   and   map   while   varying   the   epoch   (5,   50,   100,   500)   and   batch_size  
(32,   64,   128).   The   sweet   spot   happens   when    epoch=50    and    batch_size   =   64 .   

5. To   combat   overfitting,   I   started   with   strong   regularization   (L2(1e-4)   for  
kernel_regularizer   and   two   Dropout   layers),   data   augmentation,   and   simple,   small  
architecture.   

 
The   small   CNN’s   model   architecture   is   the   same   as   the   small   CNN   (image   3)   used   by   DQN;   the  
only   difference   is   that   the   final   layer   is   replaced   with   softmax   for   multiclass   classification   (four  
actions).   
 
The   following   performance   (Image   7)   is   a   result   of   three   training   stages:   ta2   self-play,   ta2   x   ta1  
battle,   and   a   different   ta2   self-play.   

 
Image   7  

 
After   training   for   a   few   hours,   the   training   and   validation   loss   converged   to   0.7   and   the  
performance   (Image   8)   improved:   

 
 

Image   8  
 
Given   that   the   loss   score   has   converged   to   about   0.7,   I   decided   to   create   a   larger   CNN   to   utilize  
the   power   of   the   model.   
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The   model   architecture   is   the   same   as   the   large   CNN   (image   2)   used   by   DQN;   the   only  
difference   is   that   the   final   layer   is   replaced   with   softmax   for   multiclass   classification   (four  
actions).   Due   to   architectural   differences,   I   trained   the   large   CNN   with   ta2   self-play   from   scratch.  
While   the   large   CNN   takes   longer   to   train,   the   performance   (Image   9)   after   a   few   epochs   is  
promising:   

 
Image   9  

 
Policy   Network   with   large   CNN   achieves   the   best   performance   so   far,   so   I   continue   running   it   for  
hours.   Here   is   a   snapshot   with   12   hours   of   training:   

 
Image   10  

Final   Model   &   Learned   Weights  
With   the   outstanding   performance   of   Policy   Network   trained   on   large   CNN,   I   chose   it   (stored   in  
largenetwork_policy )   to   be   the   final   strategy.   The   large   CNN   architecture   (Image   11)   is  
quite   similar    to   DQN’s   large   CNN   architecture   (Image   2).   The   only   difference   is   the   final   layer.  
DQN   uses   linear   for   regression   while   Policy   Network   uses    softmax   for   multiclass  
classification .   The   multiclass   classification   shows   the   probability   for   all   four   directions,   and   the  
agent   will   select   the   one   with   the    highest   probability .   
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Image   11  
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README   for   Tron   Bot  

Running   Unit   Tests  

#   run_tests.py   runs   tests   on   all   combinations   of   bots   and   maps  
python   run_tests.py   

Training   Policy   Network  
● Collect   moves   for   replay   by   running   the   games   with   specified   bot   pairs   with    python  

selfplay.py  
● Once   the   raw   training   data   is   created,   run    python   trainingdatageneration.py  

to   take   in   the   data   from   the   replay   history,   augment   it   and   convert   it   into   training   data  
(numpy   arrays).   

● Largenetwork.py    trains   the   CNN   and   stores   the   best   weights   in   checkpoint   files.  
● In    bots.py ,   you   can   see   how   the   trained   Policy   Network   works.   I   first   load   the  

previously   trained   weights.   Then,   I   use   the   trained   policy   network   to   decide   the   best  
action   and   conduct   a   safety   check   on   the   selected   action.   The   safety   check   rules   out  
suicidal   actions.  

Past   Attempt  
Note   that   this   approach   is    not    used   in   the   final   submission.    The   DQN   training   model   can   be  
found   in    trainingdqn.py    with   the   following   hyperparameters:   

● EPOCHS=100  

● BATCH_SIZE   =   32,  

● REPLAY_BUFFER_SIZE   =   20000,   

● GAMMA   =   0.999,   

● EPSILON_DECAY   =   0.99,   

● EPSILON_MIN   =   0.1,   

● EPISODES   =   500,   

● TARGET_NETWORK_UPDATE_INTERVAL   =   10,   

● CHECK_PERFORMANCE_INTERVAL   =   50  

 
Furthermore,   I   used   an    epsilon-greedy    approach,   starting   with   a   high   epsilon   (1.0),   which  
anneals   to   0.01   over   the   episodes.   This   is   to   encourage   exploration   at   the   beginning   and  
exploitation   in   the   later   stage.   
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Shortcomings   
1. The   model   achieved   a   decent   performance:   validation   loss=0.6547   and   validation  

accuracy=0.6174.   Therefore,   it   can’t   perfectly   mimic   TA2   bot’s   moves   yet.   
2. The   current   approach   blindly   mimics   TA2   bot’s   moves,   so   at   best   it   would   beat   TA2   bot  

for   50%   of   the   time.  

Potential   areas   of   improvement   
If   I   had   more   time,   I   would   do   the   following:   

● Decrease   the   training   time   with   Episodic   Backward   Updates   for   DQN   [5].   
● Augment   deep   learning-based   approach   with   searches   and   heuristics   (e.g.   A*)   when   there  

are   limited   steps.   
● Monte   Carlo   Tree   Search  
● Ensemble   several   successful   approaches   I   tried.   
● Boost   the   model   performance   with   feature   engineering  

 
If   I   had   access   to   GPU,   I   would   do   the   following:   

● Train   the   large   CNN   from   both   approaches   on   more   data   
● Further   increase   the   model   power   via   architecture  
● Try   different   sets   of   hyperparameter   tuning   to   reach   the   sweet   spot.  
● Try   strategies   for   adversarial   and   multi-agent   DQN   games,   such   as   Opponent   Modeling  

in   Deep   Reinforcement   Learning   [6].  
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