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ABSTRACT

Combinatorial optimization problems naturally arise in many
application areas, including logistics, manufacturing, supply-
chain management, and resource allocation. They often give
rise to complex and intricate programs, because of their
inherent computational and software complexity. There is
thus a strong need for software tools which would decrease
the distance between the specification and the final program.

This paper contains a brief description of COMET, an
object-oriented language supporting a constraint-based ar-
chitecture for neighborhood search. It contrasts COMET
to constraint programming languages and shows how con-
straint programming and COMET provides many of the same
benefits for constraint satisfaction and neighborhood search
respectively. In particular, COMET supports a layered ar-
chitecture cleanly separating modeling and search aspects
of the programs, constraints encapsulating incremental al-
gorithms, and various control abstraction to simplify neigh-
borhood exploration and meta-heuristics.
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1. INTRODUCTION

Combinatorial optimization problems are ubiquitous in
many parts of our societies. From the airline industry to
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courier services, from supply-chain management to manu-
facturing, and from facility location to resource allocation,
many important decisions are taken by optimization soft-
ware every day. In general, optimization problems are ex-
tremely challenging both from a computational and software
engineering standpoint. They cannot be solved exactly in
polynomial time and they require expertise in algorithmics,
applied mathematics, and the application domain. More-
over, the resulting software is often large, complex, and in-
tricate, which makes it complicated to design, implement,
and maintain. This is very ironic, since many optimization
problems can be specified concisely. The distance between
the specification and the final program is thus considerable,
which indicates that software tools are seriously lacking in
expressiveness and abstractions in this application area.

Because of the nature of optimization problems, no single
approach is likely to be effective on all problems, or even
on all instances of a single problem. It is thus of primary
importance that all major approaches to optimization be
supported by high-level tools automating many of the te-
dious and complex aspects of these applications. Histori-
cally, most of the research has focused on constraint and
mathematical programming, which are now supported by a
rich variety of modeling and programming tools (e.g., [11,
20, 46, 27, 49, 12]). In contrast, neighborhood search, one of
the oldest optimization techniques, has been largely ignored
until recently (e.g., [10, 44, 31, 54]). This is a serious gap in
the repertoire of tools for optimization. This limitation is
further exarcerbated by the fact that solving optimization
problems remains a very experimental endeavour: what will,
or will not, work in practice is hard to predict. Proper soft-
ware tools facilitate this experimentation and often result
in higher quality solution techniques, since users are more
likely to try out various avenues.

At a conceptual level, neighborhood search explores a
graph where nodes represent solutions (or configurations)
and arcs represent transitions from a solution to a neighbor-
ing solution. How to define this neighborhood graph and
how to explore it effectively are fundamental issues which
have received considerable attention in recent years. Neigh-
borhood search is the technique of choice for a variety of
fundamental applications. For instance, at the time of writ-
ing, the best approach to the travelling tournament prob-
lem, an abstraction of Major League Baseball scheduling,
is a neighborhood search method which significantly out-
performs constraint and mathematical programming. The
same can be said of many important problems, such as vehi-
cle routing, frequency allocation, and many resource alloca-



tion and scheduling problems. Equally important perhaps
is the belief that hybrid algorithms, which combines several
approaches in innovative ways, are likely to produce the next
level of improvements in that area. Recent results in routing
and scheduling have indicated the promises of hybridization.
Yet neighborhood search algorithms are weakly supported
in modeling and programming tools.

The COMET project, which emerged from earlier research
on LOCALIZER, was initiated to address these needs. COMET
is an object-oriented language supporting a constraint-based
architecture for neighborhood search and featuring novel
declarative and control abstractions. COMET decreases the
size of neighborhood search programs significantly and en-
hances compositionaly, modularity, and reuse for this class
of applications.

From a language standpoint, COMET drew much inspira-
tion from constraint programming. It features both a lay-
ered architecture with modeling and search components, and
a rich constraint vocabulary, which includes numeric and
structural constraints. Its control abstractions depart from
typical constraint programming languages however, since
the issues raised by neighborhood search, i.e., graph ex-
ploration, differ in nature from those of systematic search,
which is mostly concerned by tree searching. In particu-
lar, first-class closures is a common theme in these abstrac-
tions and make it possible to achieve elegance and simplicity,
while not sacrificing efficiency.

From a computational model standpoint, COMET signifi-
cantly differ from existing constraint programming systems,
which is natural since it supports a very distinct class of ap-
plications. In COMET, constraints are not used to prune the
search space. Rather they maintain properties that are then
used to direct the graph exploration effectively. For instance,
a constraint typically maintains how much its variables con-
tribute to its violations and this information is often useful
to choose the next neighbor. In addition, constraints are dif-
ferentiable objects, which means that they can be queried to
determine the impact of local moves on their properties. At
an implementation level, constraints, and differentiable ob-
jects in general, encapsulate efficient incremental algorithms
which arise in many applications. However, at a conceptual
level, there are some nice similarities between COMET and
traditional constraint programming systems. In particular,
both of them cleanly separate the problem modeling from
the search in the source program, although the execution
interleaves these components in complex ways. As a conse-
quence, they provide attractive modularity, compositional-
ity, and extensibility, which are critical in this application
area.

This paper presents a brief overview of COMET from a
constraint programming perspective, because it gives us a
wonderful opportunity to acknowledge the scientific vision of
Paris Kanellakis. As early as 1994, Paris was gently encour-
aging us to study how constraint programming languages
could accommodate neighborhood search. Paris was actively
involved in Constraint Query Languages (CQL) [23] and
functional programming [22] at the time (among many other
topics) and he had made, earlier in his career, fundamental
contributions to neighborhood search [24], so he could some-
how “foresee” some of the synergies described in this paper.
Our first contribution in this area was the LOCALIZER sys-
tem mentioned earlier. But it is only recently that we re-
alized how much a constraint and functional programming
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Figure 1: The CP Architecture

perspective brings to neighborhood search through differen-
tiable objects [32] and first-class closures [52]. The seeds
planted by Paris in 1994 have now given us some exciting
research avenues, which we are gladly pursuing.

The rest of this paper is organized as follows. Section 2
briefly introduces constraint programming and its applica-
tion to combinatorial optimization, which is the most widely-
used branch of constraint programming at this point. Sec-
tion 3 informally describes the constraint-based architecture
for neighborhood search of COMET. Section 4 concludes the
paper by contrasting these two approaches at various levels,
highlighting their similarities and their differences.

2. CONSTRAINT PROGRAMMING

Constraint programming is a recent entry to the field of
programming languages. Its essence is a two-level archi-
tecture integrating a constraint and a programming compo-
nent as shown in Figure 1. The constraint component, often
called the constraint store, provides the basic operations of
the architecture and consists of a reasoning system about
fundamental properties of constraint systems. The con-
straint store contains the constraints accumulated at some
computation step and supports various queries and oper-
ations over them. Operating around the constraint store
is a programming-language component that specifies how
to combine the basic operations, often in nondeterministic
ways, since search is so fundamental in many applications
of constraint programming.

The constraint-programming framework has been applied
to many areas, including computer graphics (e.g., [5]), soft-
ware engineering (e.g., test generation in [14]), databases
(e.g., [23]), hybrid systems (e.g., [26, 16]), finance (e.g., [3,
19]), engineering (e.g., [15, 18]), circuit design (e.g., [45]),
computational molecular biology (e.g., [4]) and, of course,
combinatorial optimization. Given the diversity of these
application areas, it is not surprising that the programming
and constraint components can be of fundamentally different
nature. However, when restricting attention to combinato-
rial optimization, constraint programming systems are gen-
erally based on a common set of design principles that stem
from their roots in Constraint Logic Programming (CLP)
([7, 8, 21, 47]). More precisely, the constraint programming
approach to combinatorial optimization can be character-
ized (at this point) by two main features:

1. an expressive language to state combinatorial opti-



mization problems, including a rich constraint language
and the ability to specify search procedures;

2. a new computational model to solve combinatorial op-
timization problems which focuses on using constraints,
or feasibility information, to reduce the search space.

This section reviews these two features independently and
restricts attention to combinatorial optimization only.

2.1 ThelLanguage

Solving a combinatorial-optimization problem in constraint
programming amounts to describing the problem constraints
and to specifying a search procedure.

Constraints in constraint programming are generally ex-
pressed in a rich language that includes linear and nonlinear
constraints, the ability to index arrays with variables, logi-
cal combinations of constraints, cardinality constraints, and
higher-order constraints, as well as structural, or “global”,
constraints. Global constraints are a natural way to inte-
grate many algorithms from theoretical computer science
and operations research. They capture a substructure that
arises in many applications and is amenable to efficient prun-
ing. In addition, some constraint languages also offer set
variables and set constraints.

The ability to specify a search procedure is another funda-
mental feature of constraint-programming languages. This
aspect of constraint programming was present since its in-
ception (e.g., [51, 8, 47]) and was considered critical to ob-
tain reasonable efficiency on difficult combinatorial prob-
lems. Much research in recent years was devoted to language
support for search procedure (e.g., [27, 48, 49]). Very high-
level nondeterministic constructs are now available to spec-
ify the search tree to explore in elegant and concise ways.
Simultaneously, the language Oz [41] pioneered novel fea-
tures to program search strategies (e.g., limited discrepancy
search [17]), which specifies how to explore the search tree.
Support for search strategies are now available in several
modern languages [37, 53].

It is also important to stress that the constraint pro-
gramming framework is essentially language-independent.
Early constraint languages were based on logic program-
ming. Object-oriented libraries have been very successful in
bringing constraint programming to industry, while model-
ing languages now address the need of mathematical mod-
elers.

2.2 The Computation M odel

Besides its programming language contributions, constraint
programming has also contributed a novel way of approach-
ing the solving of combinatorial optimization problems, which
focuses mostly on exploiting feasibility information. The
computational model of constraint programming is a com-
bination of two processes:

1. a constraint satisfaction engine which uses constraints
independently (or locally) to reduce the domains of the
variables.

2. a search engine which decomposes a problem into sub-
problems when constraint satisfaction cannot reduce
the search space.

The search element of the computational model is, in essence,
similar to the branch-and-bound approach of integer pro-
gramming. The main originality in the computational model
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Figure 2: The CP Constraint Store

of constraint programming lies in the underlying constraint-
satisfaction algorithms or, more generally, in the constraint-
store organization.

Figure 2 depicts the architecture of the constraint store.
The core of the architecture is the domain store that asso-
ciates a domain with each variable. The domain of a variable
represents its set of possible values at a given computation
state (e.g., at a node in the tree search). Gravitating around
these domains are the various constraints, each of which has
no knowledge of the other constraints. Associated with each
constraint is a constraint-satisfaction algorithm whose pri-
mary role is to perform two main tasks:

1. to determine if the constraint is consistent with the
domain store, i.e., if there exist values for the variables
in their domains that satisfy the constraint;

2. to apply a filtering algorithm to remove, from the do-
mains of the constraint variables, values that do not
appear in any of its solutions.

In addition, the constraint-satisfaction algorithm may add
new constraints to the constraint store as we discuss later
in the paper.

The constraint solver can then be viewed as a simple
iterative algorithm whose basic step consists of selecting
a constraint and applying its constraint-satisfaction algo-
rithm. The algorithm terminates when a constraint is in-
consistent with respect to the domain store or when no
more domain reductions are possible. Note that, on ter-
mination, there is no guarantee that there exists a solu-
tion to the constraint store. The constraints may all have
a local solution with respect to the domain store but these
solutions may be incompatible globally. This architecture,
which is now the cornerstone of most modern constraint-
programming systems, was pioneered by the CHIP system
[11, 47, 51]) which included a solver for discrete finite do-
mains based on constraint-satisfaction techniques (e.g., [29,
34, 56]).

It is important to emphasize that, unlike integer and linear
programming, constraint-programming systems may support
arbitrarily complex constraints. These constraints are not re-
stricted to linear constraints, or even nonlinear constraints,
and they may represent complex relations between their
variables. For instance, a constraint may require that all its
variables be assigned distinct values or that a set of activities
do not overlap in time. As a consequence, it is useful, and
correct, to think of a constraint as representing an interest-
ing subproblem of the application and it is one of the funda-
mental issues in constraint programming to isolate classes



int n = 512;

range Size = 1..n;
var Size queen[Size];
int negli in Size] =
int pos[i in Size]

_l;
i;

solve {
forall(i in Domain) {
alldifferent(queen) ;
alldifferent (queen,neg);
alldifferent (queen,pos);

}
+;
search {
forall(i in Size
ordered by increasing dsize(queen[i]))
tryall(v in Size);
queen[i] = v;

b
Figure 3: A Simple N-Queens Constraint Program

of constraints that are widely applicable and amenable to
efficient implementation.

It is also important to stress that, ideally, the constraint-
satisfaction algorithm associated with a constraint should be
complete (i.e., it should remove all inconsistent values) and
run in polynomial time. Such complete algorithms enforce
arc consistency [29]. However, enforcing arc consistency may
sometimes prove too hard (i.e., it may be an NP-hard prob-
lem), in which case simpler consistency notions are defined
and implemented. This is the case, for instance, in schedul-
ing algorithms.

2.3 A Simple Example

We now illustrate constraint programming on a simple
example, which we will also use for neighborhood search
later on. The n-queens problem consists of placing n queens
on a chessboard of size n X n so that no two queens lie on
the same row, column, or diagonal. Since no two queens
can be placed on the same column, a simple program of this
problem consists of associating a queen with each column
and searching for an assignment of rows to the queens so
that no two queens are placed on the same row or on the
same diagonals. Figure 3 depicts a program for the n-queens
problem in the modeling language OPL.

The OPL program illustrates the structure typically found
in constraint programs: the declaration of the data, the dec-
laration of decision variables, the statement of constraints,
and the search procedure, as will be illustrated shortly. The
program first declares an integer n, and a range Size. It
then declares an array of n variables, all of which take their
values in the range 1..n. In particular, variable queen[i]
represents the row assigned to the queen placed in column i.
The next two instructions declare arrays of constants which
will be used to state the constraints.

The solve instruction defines the problem constraints,
i.e., that no two queens should attack each other. It in-
dicates that the purpose of this program is to find an as-
signment of values to the decision variables that satisfies all
constraints. The basic idea in this program is to generate,
for all 1 <i < j < n, the constraints
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Figure 4: The 5-Queens Problem After One Choice

queen[i] <> queen[j]
queen[i] - i <> queen[j] - j
queen[i] + i <> queen[j] + j

where the symbol <> means “not-equal.” This is achieved
by the “global” alldifferent constraint [38] with proper
offsets. As mentioned earlier, structural constraints of this
type are critical in large and complex applications, since
they encapsulate efficient pruning algorithms for substruc-
tures arising in many applications.

The rest of the program specifies the search procedure.
Its basic idea is to consider each decision variable in se-
quence and to generate, in a nondeterministic way, a value
for each of them. If, at some computation stage, a failure
occurs (i.e., the domain of a variable becomes empty), the
implementation backtracks and tries another value for the
last queen assigned. More precisely, the forall instruction
corresponds to an ordered and-node in artificial intelligence
terminology and executes its body for each value i in Size.
The tryall instruction corresponds to an ordered or-node
in artificial intelligence terminology and is nondeterministic,
i.e., it specifies a choice point with a number of alternatives
and one of them must be selected. In the context of the
queens problem, each of these alternatives corresponds to
the assignment of a row to a queen. Note that the forall
instruction features a dynamic ordering of the variables: at
each iteration, it selects the variable with the smallest do-
main, implementing the so-called first-fail principle.

To illustrate the computational model, consider the five-
queens problem. Constraint propagation does not reduce
the domains of the variables initially. OPL thus generates
a value, say 1, for one of its variables, say queen[1]. Af-
ter this nondeterministic assignment, constraint propaga-
tion removes inconsistent values from the domains of the
other variables, as depicted in Figure 4. The next step of
the generation process tries the value 3 for queen[2]. OPL
then removes inconsistent values from the domains of the re-
maining queens (see Figure 5). Since only one value remains
for queen[3] and queen[4], these values are immediately
assigned to these variables and, after more constraint prop-
agation, OPL assigns the value 4 to queen[5]. A solution to
the five-queens problem is thus found with two choices and
without backtracking, i.e., without reconsidering any of the
choices.



Figure 5: The 5-Queens Problem After Two Choices

Differentiable Object

Incrementa

Figure 6: The Comet Architecture.

It is important to stress the clean separation between the
constraints and the search procedure description in this pro-
gram. Although these two components are physically sepa-
rated in the program, they cooperate in solving the problem.
Whenever a variable is assigned a value, a constraint propa-
gation step is initiated, which prunes the search space. This
pruning in turn affects the control behaviour through back-
tracking or through the heuristics.

3. NEIGHBORHOOD SEARCH

We now turn to COMET and we show that much of the
style, and many of the benefits, of constraint programming
carry over to neighborhood search. In particular, we show
that COMET also implements a layered architecture, cleanly
separates modeling and search, and supports a rich language
for constraints and search procedures. The technical details
and the computational model significantly differ however,
due to the nature of the underlying approach to combinato-
rial optimization.

3.1 TheArchitecture

The architecture is shown in Figure 6. It consists of a
declarative and a search component organized in three lay-
ers, which we now review.
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3.1.1 Invariants

The kernel of the architecture is the concept of invariants
(or one-way constraints) over algebraic and set expressions
[30]. Invariants are expressed in terms of incremental vari-
ables and specify a relation which must be maintained under
assignments of new values to its variables. For instance, the
code fragment

inc{int} s(m) <- sum(i in 1..10) alil;

declares an incremental variable s of type int (in a solver
m) and an invariant specifying that s is always the summa-
tion of a[1],...,a[10]. Each time, a new value is assigned
to an element a[i], the value of s is updated accordingly
(in constant time). Note that the invariant specifies the re-
lation to be maintained incrementally, not how to update
it. Incremental variables are always associated with a lo-
cal solver (m in this case). This makes it possible to use a
very efficient implementation by dynamically determining a
topological order in which to update the invariants. As we
will see later, COMET supports a wide variety of algebraic,
graph, and set invariants.

3.1.2 Differentiable Objects

Once invariants are available, it becomes natural to sup-
port the concept of differentiable objects, a fundamental ab-
straction for local search programming. Differentiable ob-
jects maintain a number of properties (using invariants or
graph algorithms) and can be queried to evaluate the effect
of local moves on these properties. They are fundamen-
tal because many neighborhood search algorithms evaluate
the effect of various moves before selecting the neighbor to
visit. Two important classes of differentiable objects are
constraints and functions. A differentiable constraint main-
tains properties such as its satisfiability, its violation degree,
and how much each of its underlying variables contribute to
the violations. It can be queried to evaluate the effect of lo-
cal moves (e.g., assignments and swaps) on these properties.
A differentiable function maintains the value of a (possibly)
complex function and can also be queried to evaluate the
variation in the function value under local changes.

Differentiable objects capture combinatorial substructures
arising in many applications and are appealing for two main
reasons. On the one hand, they are high-level modeling tools
which can be composed naturally to build complex neighbor-
hood search algorithms. As such, they bring into neighbor-
hood search some of the nice properties of modern constraint
satisfaction systems. On the other hand, they are amenable
to efficient incremental algorithms that exploit their com-
binatorial properties. The use of combinatorial constraints
is implicitly emerging from a number of research projects:
It was mentioned in [55] as future research and used, for
instance, in [6, 13, 35] as building blocks for satisfiability
problems. Combinatorial functions play a similar role for
optimization problems, where it is important to evaluate
the variation of complex objective functions efficiently.

The Al1Different constraint, which we encountered ear-
lier, is an example of differential object. In its simplest
form, Al1Different(a) receives an array a of incremental
variables and holds if all its variables are given different val-
ues. The AllDifferent constraint maintains a variety of
properties incrementally. They include its violation degree,
i.e., how many constraints a[i]l # alj] are violated, as well



abstract class Constraint {
inc{int} true();
inc{int} violationDegree();
inc{int} violatiomns(inc{int} var);
int getAssignDelta(inc{int} var,int val);
int getSwapDelta(inc{int} v,inc{int} w);

Figure 7: The Abstract Class Constraint

as the set of variables which occur in such violations. Ob-
serve that the same structural constraint, which is natural in
many applications, is being used in two very different ways:
to prune the search space in constraint programming and to
maintain incremental properties in COMET.

In CoMET, differentiable constraints are objects imple-
menting the abstract class Constraint, an excerpt of which
is shown in Figure 7. The first three methods give access to
incremental variables that maintain important properties of
the constraint: its satisfiability, its violation degree, and the
violations of its variables. The other two methods shown
in Figure 7 are particularly interesting as they evaluate the
effect of assignments and swaps on the violation degree of
the constraint. Method getAssignDelta(var,val) returns
the variation of the violation degree when variable var is as-
signed value val. Similarly, method getSwapDelta(v,w) re-
turns the variation of the violation degree when the values of
variables v and w are swapped. Although this paper presents
several differentiable constraints available in COMET, ob-
serve that COMET is an open language where users can add
their own constraints by subclassing Constraint. (Similar
considerations apply to differentiable functions.)

Constraints can be composed naturally using Constraints
systems. A constraint system groups a collection of con-
straints together and maintains the satisfiability and viola-
tion degree of the set incrementally. The violation degree of
a set of constraints is the summation of the violation degrees
of its constraints. Being constraints themselves, constraint
systems are differentiable and can also be queried to evaluate
the effect of local moves. Constraint systems make neigh-
borhood search algorithms more compositional and easier
to extend. In particular, they allow new constraints to be
added in the declarative component of an algorithm without
changing the search component.

These two layers, invariants and differentiable objects,
constitute the declarative component of the architecture.

3.1.3 Control Abstractions

The third layer of the architecture is the search compo-
nent which aims at simplifying the neighborhood exploration
and the implementation of heuristics and meta-heuristics,
two other critical aspects of neighborhood search algorithms.
The search component features high-level constructs and ab-
stractions to foster and increase separation of concerns. It
features multidimensional selectors, since selection is gen-
erally quite involved in neighborhood search, as well as a
variety of abstractions to express the neighborhood explo-
ration concisely and to control the graph exploration. They
include events, the neighbor constructs, as well as check-
points, which simplify the implementation of variable-depth
neighborhood search.

One of the main issues addressed by these abstractions is
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the temporal disconnection between the definition of a be-
havior and its use which typically plagues the implementa-
tion of neighborhood search algorithms. This issue arises in
meta-heuristics and in neighborhood exploration for appli-
cations whose neighborhoods are heterogenous and consists
of various types of moves (e.g., [28, 25, 9, 2]). COMET ab-
stractions heavily rely on first-class closures to address this
temporal disconnection and implements events, neighbors,
and checkpoints.

3.2 The QueensProblem

int n = 512;

range Size = 1..n;

LocalSolver m();
UniformDistribution distr(Size);

inc{int} queen[i in Size] (m,Size)
int negl[i in Size] = -i;
int pos[i in Sizel = i;

1= distr.get();

ConstraintSystem S(m);

S.post(new AllDifferent(queen));

S.post(new AllDifferent(queen,neg));

S.post(new AllDifferent(queen,pos));

inc{set{int}} conflicts(m);

conflicts <- argMax(q in Size) S.violations(queen[ql);
m.close();

while (S.violationDegree())
select(q in conflicts)
selectMin(v in Size) (S.getAssignDelta(queen[ql,v))
queen[q] := v;

Figure 8: The Queens Problem in Comet.

We now reconsider the queens problem for neighborhood
search. Figure 8 depicts a COMET program which shares
many features with the earlier program, although the two
programs implement fundamentally different algorithms. The
algorithm in Figure 8 implements the min-conflict heuristic
[33]. It starts with an initial random configuration. Then,
at each iteration, it chooses the queen violating the largest
number of constraints and moves it to a position minimizing
its violations. This step is iterated until a solution is found.

Once again, the COMET program associates a queen with
every column and it uses queen[i] to denote the row of
the queen on column i. As before, the program starts by
declaring the size of the board and a range. It then declares
a local solver, which will hold the incremental variables, the
invariants, and the constraints, and a uniform distribution.
The next instruction

inc{int} queen[i in Size] (m,Size) := distr.get();

declares the incremental variables and initializes them ran-
domly. Note that each such variable receives, in its construc-
tor, the local solver and, in this case, its range of values.
Incremental variables are central in COMET. They are used
in invariants and constraints, and changes to their values
trigger events and induce a propagation step that updates
all invariants and constraints directly or indirectly affected
by the changes. Note the use of the assignment operator :=,
which assigns a value of type T' to an incremental variable of
type inc{T}. By contrast, the operator = assigns references.
The following two instructions declare the traditional arrays
for storing the offsets.



The next block of instructions is particularly interesting
and describes the declarative or modeling component of the
application. Instruction

ConstraintSystem S(m);

declares a constraint system S, while the instructions

S.post(new AllDifferent(queen));
S.post(new AllDifferent(queen,neg));
S.post(new AllDifferent(queen,pos));

add the problem constraints to S. Observe that these are
the very same constraints as in the constraint programming
solution. The final instructions of the declarative component

inc{set{int}} conflicts(m);
conflicts <- argMax(q in Size) S.violations(queen[ql);

are particularly interesting. The first instruction declares
an incremental variable conflicts whose values are of type
“set of integers”. The second instruction imposes an invari-
ant ensuring that the values of conflicts always be the
set of queens that violate the most constraints. Observe
that S.violations(queen[q]) returns an incremental vari-
able representing the number of violations in S. Operator
argMax(i in S) E simply returns the set of values v in S
which maximizes E. The last instruction

m.close()

closes the model, which enables COMET to construct a de-
pendency graph to update the constraints and invariants
under changes to the incremental variables.

Observe that the declarative component only specifies the
properties of the solutions, as well as the data structures to
maintain. It does not specify how to update the constraints,
e.g., the violations of the variables, or how to update the
conflict set. These are performed by the COMET runtime
system, which uses optimal incremental algorithms in this
case.

The final part of the program

while (S.violationDegree())
select(q in conflicts)
selectMin(v in Size) (S.getAssignDelta(queen[q]l,v))
queen[q] := v;

states the search strategy. It iterates until the violation
degree of the system is zero, meaning that all constraints
are satisfied. Each iteration randomly selects a queen q in
the conflict set, selects a value v for queen q that minimizes
the number of violations, and assigns v to queen[q]. Note
that the target row selection carried out by

selectMin(v in Size) (S.getAssignDelta(queen[ql,v))

uses the ability to query the constraint system to find out
the impact of assigning v to queen q. This query can be
performed in constant time, thanks to the invariants main-
tained in each of the constraints.

There are a couple of observations to make at this point.
First, observe that the search and declarative components
are clearly separated in the program, as was the case with
the constraint programming solution. It is thus easy to mod-
ify one of them without affecting the other. For instance, it
is possible to add new constraints to the constraint system
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without any change to the search component. Similarly, it
is easy to replace the search component without affecting
the declarative component. Although the two components
are physically separated in the program code, they closely
collaborate during execution. The search component uses
the declarative component to guide the search, while the as-
signment queen[q] := v starts a propagation phase which
updates all invariants and constraints. Once again, these are
the same appealling features as constraint programming. Fi-
nally, observe the high-level nature of the resulting program.
The declarative component is close to a formal specification
of the problem, while the search component is a very ab-
stract description of the search strategy. In fact, it can be
observed that this search component is not at all problem-
specific and could almost be reused as such in other contexts.

COmCsl B CImC iy §

[ ’ [ ’

2 0

] s ] .

H n ° n °

2 . . -1

2 -1

| = o
IIIIIIIIIIIIIIIIIIII B |

u : [ o

m : u -

1 -1

u 1 m :

| 2 [ | 0

| L ILIN § LILIN §

0 . 0

0 -1
I I

|| ° u :

|| ' || °

1 0

2 1

0 1

LILIN § LILIR §

0 1

L : |l ’
B | I

Figure 9: The First Six Steps of the Comet Program

Figure 9 illustrates the computation model and depicts
the first six iterations of the algorithm. Figure 10 also shows
a plot of the number of violations over time. Each box
represents the board and is adorned at the bottom with a
color-coded bar showing which queen are currently violating
constraints. The color intensity indicates the violation level.
Darker tabs correspond to more violations. Below the color-
coded bar, a tab shows which queen is picked for the next



Figure 10: The Number of Violations over Time

Size State(s) Solve(s) Total(s) Iter
8 0.01 0.02 0.03 249
16 0.01 0.00 0.01 21
32 0.02 0.01 0.03 56
64 0.04 0.02 0.06 80
128 0.10 0.08 0.18 238
256 0.17 0.12 0.29 206
512 0.35 0.37 0.72 304
1024 0.71 1.64 2.35 628
2048 1.43 6.07 7.50 1100
4096 2.95 22.56 25.51 2092
8192 6.16 85.91 92.07 4040
16384 14.69 333.89 348.58 7968
32768 42.10 1320.43 1362.53 15899

Table 1: Experimental Results for N-Queens.

transition and the tab to the right of the board shows the
row the selected queen should be assigned to. Additionally,
the column of numbers on the right of each board displays
the gain that will result from the transition. In essence, the
figure displays many of the properties maintained by the
COMET program incrementally. In the first step, queen 4
is selected and randomly moved to position 6 reducing the
number of violations by 2. (It could have been moved to
positions {1, 3,7,8}). In the second step, queen 7 is moved
to position 6, reducing the number of violations by one.
Note that, in the fifth iteration, the algorithm decides not
to move the selected queen as this is, locally, one of the
most profitable moves. As a side note, observe that the
result of forbidding such moves is not beneficial in general.
Indeed, the algorithm is then forced to consider moves which
degrade the value of the objective, it oscillates around 1 and
2 violations, and it takes much longer to terminate.

Table 1 reports some experimental results for the pro-
gram. The program runs in O(n) space and each iteration
takes time O(n), since it is necessary to find the value mini-
mizing the number of conflicts. In general, the propagation
step takes constant time because the conflict set is small
and does not change very much. The table reports the to-
tal CPU time in seconds on a 1.1Ghz PC running Linux,
as well as the time for stating the constraints and for the
search. It also reports the number of iterations. The results
clearly indicate that the implementation is extremely com-
petitive with low-level encodings of the algorithm [6] and is
quadratic in time experimentally.
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In summary, COMET makes it possible to design a very
efficient algorithm at the same level of abstraction as typical
constraint programs for the task. Moreover, although the
underlying algorithms are quite different, the two solutions
share the same structure, compositionality, and modularity.
Note that constraint programming solutions take quadratic
space, which reduces their applicability to large number of
queens.

3.3 TheProgressive Party Problem

We now describe a second application, the Progressive
Party (PP) problem, to illustrate the functionalities of COMET
on more realistic applications. The (PP) problem is inter-
esting for several reasons. On the one hand, it is often used
as a benchmark for comparing approaches and algorithms
in combinatorial optimization, since it is non-trivial. On
the other hand, it features a variety of heterogeneous con-
straints which makes it an interesting exercise in modeling.
The COMET program illustrates the use of a constraint sys-
tem and combinatorial constraints. It also features a tabu
search with an intensification component.

3.3.1 TheProblem

The progressive party problem can be described as fol-
lows (as is traditional, we assume that host boats have been
selected). We are given a set of boats (the hosts), a set
of crews (the guests), and a number of time periods. Each
host has a limited capacity and each crew has a given size.
The problem consists of assigning a host to every guest for
each time period in order to satisfy three sets of constraints.
First, the capacity of the hosts cannot be exceeded by the
guest crews. Second, every guest must visit a different host
at each time period. Finally, no two guests can meet more
than once over the course of the party.

Figure 11 depicts the core of the COMET program. It re-
ceives as inputs two ranges Hosts and Guests that denote
the set of hosts and the set of guests respectively. In addi-
tion, it receives two arrays of integers cap and crew where
cap[h] is the capacity of host h and crew[g] is the size of
guest g. Once again, the neighborhood search algorithm for
the PP problem features a declarative and a search compo-
nent.

3.3.2 The Declarative Component

The declarative component primarily declares the incre-
mental variables and the problem constraints. It features a
variety of combinatorial constraints and illustrates how to
associate weights with constraints, a common technique in
neighborhood search (e.g., [43]). The instructions

inc{int} rl[p in Periods] = boatlg,pl;
S.post(new AllDifferent(r),2);

specify that a guest g never visits a host more than once over
the course of the party. Observe that the post method which

specifies a weight of 2 for the constraint. The instructions

inc{int} c[g in Guests] = boatlg,pl;
S.post(new WeightedAtmost(c,crew,cap),2);

specify the capacity constraints for period p. Constraint

WeightedAtmost (c,crew, cap)



LocalSolver m();
UniformDistribution distr(Hosts);
inc{int} boat[Guests,Periods] (m,Hosts)
ConstraintSystem S(m);
forall(g in Guests) {
inc{int} rlp in Periods] = boatl[g,p];
S.post(new AllDifferent(r),2);

1= distr.get();

forall(p in Periods) {
inc{int} c[g in Guests] = boatlg,pl;
S.post(new WeightedAtmost(c,crew,cap),2);

forall(i in Guests, j in Guests : j > i) {
inc{int} rilp in Periods] = boat[i,pl;
inc{int} rjlp in Periods] = boat[j,pl;
S.post(new MeetAtmost(ri,rj,1));

inc{int} vd = S.violationDegree();
m.close();

int tabulength = 2;
int tabu[Guests,Periods,Hosts]
Solution solution(m); int best
int it = 0; int stable = 0;
int stableLimit = 2000;
while (vd) {
int old = vd;
selectMax(g in Guests,p in Periods)
(S.violations(boat[g,pl))
selectMin(h in Hosts: tabulg,p,h] <= it ||
S.getAssignDelta(boat[g,p],h) + vd < best)
(S.getAssignDelta(boat[g,p],h)) {
tabulg,p,boat[g,p]] = it + tabulLength;
boat[g,p] := h;
if (vd < old && tabuLength > 2)
tabuLength = tabuLength - 1;
if (vd >= old && tabulength < tbl)
tabuLength = tabulLength + 1;

_1;
vd;

if (vd < best) {
best = vd; stable = 0;
solution = new Solution(m);
} else {
if (stable == stableLimit) {
solution.restore();
stable = 0; it = it + tabulLength;

}

it = it + 1; stable = stable + 1;

}
}

Figure 11: The Progressive Party Problem in Comet

is a generalized cardinality constraint [50, 1] which holds if
> crewli]  (c[i] = j) < caplj]
iE€Guests

for all j € Hosts. Once again, this constraint is differen-
tiable and captures a subproblem arising in many applica-
tions. Finally, the instructions

inc{int} rilp in Periods] = boatl[i,p];
inc{int} rjlp in Periods] = boatl[j,pl;
S.post(new MeetAtmost(ri,rj,1));

specify that no two guest crews meet more than once. The
constraint meetAtmost(a,b,1) is also a cardinality constraint
which holds if

#{i€R | ali] =[]} <!

where R is the range of arrays a and b.

Hosts/Periods 6 7 8 9 10
1-12,16 0.98 1.64 5.13 90.19

1-13 0.61 0.90 1.17 4.41  21.00
1,3-13,19 0.90 1.53 5.28 253.92
3-13,25,26 1.21 1.81 7.02 82.66
1-11,19,21 450  24.35

1-9,16-19 6.20 161.16

Table 2: Experimental Results for the PP Problem.
3.3.3 The Search Component

The search component is a tabu-search procedure mini-
mizing the violation degree of the constraint system. It first
selects a guest crew g and a time period t such that variable
boat[g,t] appears in the most conflicts. It then selects a
non-tabu host for the pair (g,t) that minimizes the viola-
tion degree of the system. The host selection features an
aspiration criteria

S.getAssignDelta(boat[g,p]l,h) + vd < best

which overrides the tabu status when the assignment im-
proves upon the best “solution” found so far.

The search also includes an intensification process. The
key idea behind the intensification is to restart from the best
found solution when the number of violations has not de-
creased for a long time. The search uses the solution concept
of COMET for implementing the intensification in a simple
manner. The instruction

Solution solution(m);

declares a solution which stores the current value of all de-
cision variables, i.e., incremental variables whose values are
not specified by an invariant. Each time a better solution is
found, the instruction

solution = new Solution(m);

makes sure that solution now maintains the best solution
found so far. After a number of iterations without im-
provements, the instruction solution.restore() restores
the best available solution and resumes the search from this
state. Once again, observe the simplicity of the search com-
ponent which can be described very concisely.

3.3.4 Experimental Results

Before presenting the results, it is useful to emphasize that
the program provides a very high-level and natural modeling
of the application. Yet, as the results show, the algorithm
compares extremely well with low-level codes developed for
this application. The experiments use the same host con-
figurations as in [55] to evaluate the algorithm. For each of
these configurations, we consider problems with 6 periods
(as in [55]) but also with 7, 8, 9, and 10 time periods. Table
2 reports median CPU Time in seconds for 10 runs of the al-
gorithm. As can be seen, the algorithms easily outperforms
the approach in [55].

3.4 Jobshop Scheduling

Many complex applications in areas such as scheduling
and routing use complex neighborhoods consisting of several
heterogeneous moves. For instance, the elegant tabu-search
of Dell’Amico and Trubian [28] consists of the union of two
subneighborhoods, each of which consisting of several types



of moves. Similarly, many advanced vehicle routing algo-
rithms [25, 9, 2] use a variety of heterogeneous moves.

The difficulty in expressing these algorithms come from
the temporal disconnection between the move selection and
execution. In general, a tabu-search or a greedy local search
algorithm first scans the neighborhood to determine the best
move, before executing the selected move. However, in these
complex applications, the exploration cannot be expressed
using a (multidimensional) selector, since the moves are het-
erogeneous and obtained by iterating over different sets. As
a consequence, an implementation would typically create
classes to store the information necessary to characterize
the different types of moves. Each of these classes would in-
herit from a common abstract class (or would implement the
same interface). During the scanning phase, the algorithm
would create instances of these classes to represent selected
moves and store them in a selector whenever appropriate.
During the execution phase, the algorithm would extracts
the selected move and apply its execute operation. The
drawbacks of this approach are twofold. On the one hand,
it requires the definition of a several classes to represent the
moves. On the other hand, it fragments the code, separating
the evaluation of a move from its ezecution in the program
source. As a result, the program is less readable and more
verbose.

COMET supports a neighbor construct, which relies heav-
ily on closures and eliminates these drawbacks. It makes it
possible to specify the move evaluation and execution in one
place and avoids unnecessary class definitions. More impor-
tant, it significantly enhances compositionality and reuse,
since the various subneighborhoods do not have to agree on
a common interface or abstract class. The neighbor con-
struct are of the form

neighbor(§,N) M

where M is a move, J is its evaluation, and N is a neigh-
bor selector, i.e., a container object to store one or several
moves and their evaluations. COMET supports a variety of
such selectors and users can define their own, since they
all implement a common interface. For instance, a typical
neighbor selector for tabu-search maintains the best move
and its evaluation. The neighbor instruction queries selec-
tor N to find out whether it accepts a move of quality §, in
which case the closure of M is submitted to N.

The neighbor construct significantly simplifies the imple-

mentation of the effective tabu-search algorithm of Dell’Amico

and Trubian (DT) for jobshop scheduling. We first review
the basic ideas behind the DT algorithm and then sketch
how the neighborhood exploration is expressed in COMET.
Algorithm DT uses neighborhood NC = RNA U NB, where
RNA is a neighborhood swapping vertices on a critical path
(critical vertices) and NB is a neighborhood where a criti-
cal vertex is moved toward the beginning or the end of its
critical block. More precisely, RNA considers sequences of
the form (p,v, s), where v is a critical vertex and p, v, s rep-
resent, successive tasks on the same machine, and explores
all permutations of these three vertices. Neighborhood NB
considers a maximal sequence (v1,...,v;,...,0,) of critical
vertices on the same machine. For each such subsequence
and each vertex v;, it explores the schedule obtained by plac-
ing v; at the beginning or at the end of the block, i.e.,
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Since these schedules are not necessarily feasible, NB actu-
ally considers the leftmost and rightmost feasible positions
for v; (instead of the first and last position). NB is con-
nected which is an important theoretical property of neigh-
borhoods.

We now show excerpts of the neighborhood implementa-
tion in COMET. The top-level methods are as follows:

void executeMove() {
MinNeighborSelector N();
exploreN(N) ;
if (N.hasMove())
call(N.getMove());
}

void exploreN(NeighborSelector N)

exploreRNA(N) ;
exploreNB(N) ;

Method executeMove creates a selector, explores the neigh-
borhood, and executes the best move (if any). Method
exploreN explores the neighborhood and illustrates the com-
positionality of the approach: It is easy to add new neigh-
borhoods without modifying existing code, since the sub-
neighborhoods do not have to agree on a common interface
or abstract class. The implementation of exploreRNA and
exploreNB is of course where the neighbor construct is used.

1. void exploreNB(NeighborSelector N) {

2 forall(v in _jobshop.getCriticalVertices()) {

3 int Im = _jobshop.leftMostFeasible(v);

4 if (m > 0) {

5. int delta = _jobshop.moveBackwardDelta(v,1lm);
6 if (acceptNBLeft(delta,v))

7 neighbor(delta,N)

8 _jobshop.moveBackward (v,1m) ;

9. }

10. int rm = _jobshop.rightMostFeasible(v);

11. if (rm > 0) {

12. int delta = _jobshop.moveForwardDelta(v,rm) ;
13. if (acceptNBRight(delta,v))

14. neighbor(delta,N)

15. _jobshop.moveForward(v,rm) ;

16. }

17.

18.}

Figure 12: Neighborhood NB in COMET.

Figure 12 gives the implementation of exploreNB: method
exploreRNA is similar in spirit, but somewhat more complex,
since it involves 5 different moves, as well as additional con-
ditions to ensure feasibility. Method exploreNB uses the
instance variable _jobshop, which is a differentiable object
representing the disjunctive graph, a fundamental concept
in jobshop scheduling [39]. This differential object main-
tains the release and tail dates of all vertices, as well as the
critical paths, under various operations on the disjunctive
graph. The exploreNB method iterates over all critical ver-
tices. For each of them it finds the leftmost feasible insertion
point in its critical block (line 3). If such a feasible insertion
point exists, it evaluates the move (line 5) and then tests if
the move is acceptable (line 6). In the DT algorithm, this
involves testing the tabu status, a cycling condition, and the
aspiration criterion. If the move is acceptable, the neighbor
instruction is executed. The move itself consists of moving
vertex v by 1lm positions backwards. Note that, although



ABZ5 | ABZ6 | ABZ7 | ABZ8 | ABZ9 | MT10 | MT20 | ORB1 | ORB2 | ORB3 | ORB4 | ORB5
DT 139.5 86.8 | 320.1 | 336.1 | 320.8 | 155.8 | 160.1 | 157.6 | 136.4 | 157.3 | 156.8 | 140.1
DT* 6.2 3.8 14.2 15.1 14.2 6.9 7.1 7.0 6.0 7.0 6.9 6.2
KS 7.8 8.2 20.7 23.1 20.3 8.7 16.4 9.2 7.8 9.3 8.5 8.1
KS* 4.6 4.8 12.2 13.6 11.9 5.1 9.6 5.4 4.6 5.5 5.0 4.8
CO 5.9 5.7 11.7 9.9 9.0 6.7 9.8 5.6 4.8 5.6 6.3 6.5

Table 3: Computational Results on the Tabu-Search Algorithm (DT)

the move is specified in the neighbor instruction, it is not
executed. Only the best move is executed and this takes
place in method executeMove once the entire neighborhood
has been explored. The remaining of method exploreNB
handles the symmetric forward move.

The neighborhood exploration is particularly elegant (in
our opinion). Although a move evaluation and its execu-
tion take place at different execution times, the neighbor
construct makes it possible to specify them together, signif-
icantly enhancing clarity and programming ease. The move
evaluation and execution are textually adjacent and the logic
underlying the neighborhood is not made obscure by intro-
ducing intermediary classes and methods. Compositional-
ity is another fundamental advantage of the code organiza-
tion. As mentioned earlier, new moves can be added easily,
without affecting existing code. Equally or more important
perhaps, the approach separates the neighborhood defini-
tion (method exploreN) from its use (method executeMove
in the DT algorithm). This makes it possible to use the
neighborhood exploration in many different ways without
any modification to its code. For instance, a semi-greedy
strategy, which selects one of the k-best moves, only requires
to use a semi-greedy selector. Similarly, method exploreN
can be used to collect all neighbors which is useful in inten-
sification strategies based on elite solutions [36].

Table 3 presents some preliminary experimental results on
jobshop scheduling. It compares various implementations of
the tabu-search algorithm DT (the goal, of course, is not
to compare various scheduling algorithms). In particular, it
compares the original results [28], a C++ implementation
[40], and the COMET implementation. Table 3 presents the
results corresponding to Table 3 in [28]. Since DT is actu-
ally faster on the LA benchmarks (Table 4 in [28]), these
results are representative. In the table, DT is the original
implementation on a 33mhz PC, DT* is the scaled times
on a 745mhz PC, KS is the C4++ implementation on a 440
MHz Sun Ultra, KS* are the scaled times on a 745mhz PC,
and CO are the COMET times on a 745mhz PC. Scaling was
based on the clock frequency, which is favorable to slower
machines (especially for the Sun). The times corresponds
to the average over multiple runs (5 for DT, 20 for KS, and
50 for CO). Results for COMET are for the JIT compiler but
include garbage collection. The results clearly indicate that
COMET can be implemented to be competitive with special-
ized programs. Note also that the C++ implementation is
more than 4,000 lines long, while the COMET program has
about 400 lines.

4. COMET IN CONTEXT

It is worth summarizing the results presented in this pa-
per. The main message is that, although they support fun-
damentally different types of algorithms, constraint program-
ming and COMET share a common architecture which pro-
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motes modularity, compositionality, reuse, and separation of
concerns. The architecture combines declarative and search
components which express the problem constraints at a high
level of abstraction and allow for concise descriptions of ex-
ploration algorithms. As a result, programs in constraint
programming languages and COMET often exhibit a similar
organization and close modeling components. The search
components are quite distinct in general, because of the na-
ture of the underlying algorithms.

[ Issue | CP | NS |
Variables logical/domain incremental
Constraints numeric numeric

structural structural
Search tree search graph exploration
nondeterministic randomized
strategies meta-heuristics
Architecture layered layered
Constraints pruning differentiability
Search choice points closures
backtracking inverse functions

Table 4: Contrasting CP and NS

There are of course fundamental technical difference be-
tween constraint programming and COMET, some of which
are captured in Table 4. The top part of the table discusses
conceptual differences, while the bottom part addresses op-
erational concerns.

At the conceptual level, the key distinction lies in the na-
ture of the variables. Constraint programming languages for
combinatorial optimization are based on logical variables.
The values of these variables are unknown initially' and it
is the purpose of the computation to find these values that
satisfy all constraints. COMET, in contrast, relies on incre-
mental variables, i.e., variables which maintain both an old
and a new state to facilitate incremental computation. Once
these respective variables are in place, the constraints are es-
sentially similar. They capture properties of the solutions,
they may be numeric or structural, and they may be com-
posed naturally. As mentioned earlier, search is rather dif-
ferent in both frameworks. Constraint programming heavily
relies on a tree-search exploration model, and uses nonde-
terministic constructs to specify the search tree and search
strategies to describe how to explore it. COMET supports
graph exploration procedures which rely on randomization,
checkpointing, and meta-heuristics. Interestingly, COMET
supports the concept of invariants. Invariants provide an
intermediate layer between variables and constraints, sim-
plifying the implementation of constraints and other differ-
entiable objects. Such intermediate layers will become in-

!They generally take their values in a range and, for this
reason, are often called domain variables.



creasingly important as constraint programming matures.
In fact, invariants could already be useful for a variety of
purposes in constraint programming, although this has not
been explored to date.

At the operational level, the main commonality is the
overall architecture which relies on data-driven computa-
tions. But the differences are more stricking. Constraints in
constraint programming embody pruning algorithms, while
they encapsulate incremental algorithms in COMET. Search
in constraint programming relies on choice points, back-
tracking, and trailing,? while COMET uses closures and in-
verse functions derived from incremental algorithms.

In summary, recent research on COMET seems to indicate
that constraint programming and neighborhood search can
be supported by high-level languages and libraries with sim-
ilar abstraction levels, compositionality, and programming
style. Obviously, the actual abstractions and their opera-
tional semantics are quite distinct, which is to be expected
given the nature of the underlying paradigms. But, over the
course of the research, novel concepts, as well as novel uses
of old ones, have emerged to show remarkable similarities in
the way these two paradigms can be supported.

It is very satisfying to look at COMET now and to remem-
ber that it started thanks to the gentle encouragements of
Paris Kanellakis in the mid 1990s.
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