
Lagrangian Cardinality Cuts and Variable Fixing
for Capacitated Network Design �

Meinolf Sellmann, Georg Kliewer, Achim Koberstein

University of Paderborn
Department of Mathematics and Computer Science

Fürstenallee 11, D-33102 Paderborn
{sello,geokl,akober}@upb.de

Abstract. We present a branch-and-bound approach for the Capacitated Net-
work Design Problem. We focus on tightening strategies such as variable fixing
and local cuts that can be applied in every search node. Different variable fix-
ing algorithms based on Lagrangian relaxations are evaluated solitarily and in
combined versions. Moreover, we develop cardinality cuts for the problem and
evaluate their usefulness empirically by numerous tests.

1 Introduction

When solving discrete optimization problems to optimality, really two tasks have to be
considered. First, an optimal solution must be constructed, and second, the algorithm
must prove its optimality. Optimal or at least near optimal solutions can often be found
quickly by heuristics or by approximation algorithms, both specially tailored for the
given problem. In contrast to the construction of a high quality solution, the algorithmic
optimality proof requires the investigation of the entire search space, which in general
is much harder than to partly explore the most promising regions only. By eliminating
parts of the search space that do not contain improving solutions, tightening strategies
can help with respect to both aspects of discrete optimization.

In this paper, we focus on local tightening strategies that can be applied in every
search node of a branch-and-bound tree and that may only be valid in the current sub-
tree. We review bound computation algorithms based on Lagrangian relaxation that
have been proposed for the CNDP and evaluate their performance in practice.

It is important to note that the algorithms used for bound computations within a
branch-and-bound algorithm should not only be measured in terms of quality and com-
putation time. In many successful approaches, they are also used for the selection of the
branching cut that should favorably be introduced in the next branching step, and some-
times they can also be used to tighten the problem formulation within a search node by
variable fixing. Or, more generally, by generating local cuts that may only be valid for
the subtree rooted by the current node. We embed our algorithms for the computation
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of the linear continuous relaxation bound of the CNDP in a branch-and-bound frame-
work. We investigate independent variable fixing algorithms and a coupling technique
for variable fixing algorithms based on Lagrangian relaxations to tighten the problem
formulation within a search node. Additionally, we derive local Lagrangian Cardinality
Cuts and evaluate their usefulness in practice.

The paper is structured as follows: In Section 2, we introduce the Capacitated Net-
work Design Problem (CNDP). To solve the problem, we use bounds, variable fixing
algorithms and local cardinality cuts based on Lagrangian relaxation as described in
Section 3. The entire branch-and-bound-approach is described in Section 4. Finally, in
Section 5, we give numerical results. Generally, because of space restrictions we omit
all proofs. A full version of the paper can be found in [15].

2 The Capacitated Network Design Problem

The Capacitated Network Design Problem consists of finding an optimal subset of edges
in a network� � ����� such that we can transport a given demand of goods (so called
commodities) at optimal total cost. The latter consists of two components: the flow
costs and the design costs. The flow cost is the sum of costs for the routing of each
commodity, whereby for each arc ��� �� and commodity � a scalar � ��� determines the
cost of routing one unit of commodity � via ��� ��. The design costs are determined by
the costs of installing the chosen arcs, whereby for each arc ��� �� we are given a fixed
edge installation cost 	�� . Additionally, there is a capacity 
�� on each arc that limits the
total amount of flow that can be routed via ��� ��.

For all edges ��� �� � � and commodities � � � � �, let ��� � ��������� 
���.

Using variables � � ����
� for the flows and � � ��� ����� for the design decisions, the

mixed-integer linear optimization problem for the capacitated network design is defined
as follows:

Minimize ����	 �
�
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For ease of notation, we refer to the above LP with ����	 , which is also used to
denote the optimal objective value. The network flow constraints (also called mass bal-
ance constraints) (1) are defined by the node-arc-incidence matrix � � �� ���������
and a demand vector �� � ���� for all commodities �, whereby ��� � � iff � � ��� ��,
��� � 	� iff � � ��� ��, and ��� � � otherwise, and ��� � � iff node � � � is a
demand node and ��� � � iff node � is a supply node for commodity �. Without loss of
generality, we may assume that there is exactly one demand node and one supply node
for each commodity [11].

The total flow on an arc ��� �� is constrained by the capacity 
 �� (so called capacity
or bundle constraints (2)). The set of upper bound constraints (3) is redundant to the
problem formulation and provides a tighter LP relaxation of the MIP.



2.1 State of the Art

In several research papers, Crainic, Frangioni, and Gendron develop lower bounding
procedures for the CNDP [4]. The main insights are the following: Tight approxima-
tions of the so called strong LP-relaxation (see ����	 including the redundant con-
straints (3)) can be found much faster by Lagrangian relaxation than by optimizing
the LP using standard LP-solvers. The authors investigate so called shortest path and
knapsack relaxations (see Section 3). When solving the Lagrangian dual, bundle meth-
ods converge faster than ordinary subgradient methods and are more robust. Motivated
by this successful work, we evaluate several Lagrangian relaxations in the context of
branch-and-bound.

In [11], Holmberg and Yuan present a method to compute exact or heuristic solu-
tions for the CNDP. They use the Lagrangian knapsack relaxation in each node of the
branch-and-bound tree to efficiently compute lower bounds. Special penalty tests were
developed which correspond to variable fixing strategies presented in the paper at hand.
An evaluation of the following components is given: subgradient search procedure for
solving the Lagrangian dual, primal heuristic for finding feasible solutions, interplay
between branch-and-bound and the subgradient search. On top of that work, a heuristic
is developed that is embedded in the tree search procedure. That heuristic is able to
provide near-optimal solutions on CNDP instances which are far beyond the range of
exact methods like Lagrangian relaxation based branch-and-bound or branch-and-cut
(represented e.g. by the Cplex implementation).

In [2], Bienstock et al. describe two cutting-plane algorithms for a variant of the
CNDP with multi-edges (i.e., an edge can be inserted multiple times). One of them is
based on the multicommodity formulation of CNDP and uses cutset and three-partition
inequalities. The other one adds the following cutting planes: total capacity, partition
and rounded metric inequalities. In a branch-and-cut framework, both variants pro-
vide sound results on a benchmark of realistic data. A substantial improvement to this
procedure is proposed by Bienstock in [3]. The branch-and-cut algorithm based on �-
approximations of linear programs performs better on the same benchmark data.

3 Lagrangian Relaxation Bounds

The CNDP can be viewed as a mixture of a continuous and a discrete optimization
problem. The latter is obviously constituted by the design variables, whereas the first
is a min cost multi-commodity flow problem (MMCF) that evolves when the design
variables are fixed. For the MMCF, besides linear programming solvers, especially cost
decomposition approaches based on Lagrangian relaxation have been applied success-
fully [6]. The bounds we will use for the CNDP will be based on those cost decompo-
sition approaches for the MMCF.

Used for more than 30 years now, Lagrangian relaxation can well be referred to as a
standard technique for the bound computation of combinatorial optimization problems.
The pioneering work was done by Held and Karp [9, 10] who introduced the new idea
when tackling the traveling salesman problem. By omitting some hard constraints and
incorporating them in the objective function via a penalty term, upper bounds on the
performance (that is, for the CNDP, lower bounds on the costs) can be computed.



Regarding the MMCF and also for the CNDP, we are left with two promising
choices of which hard constraints should be softened:

– the bundle constraints (“shortest path relaxation”), or
– the mass balance constraints (“knapsack relaxation”).

In the following, we discuss the knapsack relaxation in more detail. For an in depth
presentation of the shortest path relaxation, we refer to [15].

3.1 Knapsack Relaxation

For the mass balance constraints to be relaxed, we introduce Lagrangian multipliers � ��
for all � � � � � and � � � . We get the following linear program:
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�
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Whereas the shortest path relaxation decomposes the Lagrangian subproblem by the
different commodities, here we achieve an edge-wise decomposition. To solve the above
LP, for each ��� �� � � we consider the following linear program, that is similar to the
linear continuous relaxation of a knapsack problem:
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where ���� � ���� 	 ��� 	 �
�
� . For each ��� �� � �, we set ���� � ���� for all � � � � �,

and ��� � �, iff 	�� 	 �
����
�	 ��� � �. Otherwise, we set ���� � � for all � � � � �, and

��� � �. Obviously, this setting provides us with an optimal solution for� ����
�	 ���. Thus,

the main effort is to solve the problems �����
�	 ���. But this is an easy task (compare

with [12, 13]): first, we can eliminate all variables with positive cost coefficients, i.e.,
we set ���� � � for all � � � � � with ���� � �. Next, we sort the ���� according to

increasing cost coefficients ���� , that is, from now on we may assume that � ��� � ����
�� � �

for all � � � � � � �, where � is the number of negative objective coefficients. Let
� � �� denote the critical item with � � ����� � � �

�
��� 

�
�� � 
��� 
 ��	 ��. We

obtain �����
�	 ��� by setting ���� � ��� for all � � �, ���� � � for all � � ������ �� , and,

in case of � � � 	 �, ���� � 
�� 	
�

��� 
�
�� . Thus, the knapsack subproblem can be

solved in time ������� ������.

Note, that both relaxations have the integrality property. Thus, the bound we achieve
in both settings equals the linear continuous relaxation bound of the CNDP [4].



3.2 Lagrangian Cardinality Cuts

In the presence of a near optimal solution to the CNDP with associated objective value
�, in each Lagrangian subproblem we can infer restrictions on the number of edges that
need to be installed in any improving solution.

Before we state the idea idea more formally, to ease the notation we introduce some
identifiers. For the knapsack relaxation we set �	�� � 	�� 	 �

����
�	 ��� for all ��� �� � �

and �� � � 	 �
 � for Lagrangian multipliers �. Further, denote with �� the current
Lagrangian subproblem ��	 ���.

Theorem 1. Denote with ��� � � � � ���� an ordering of the edges in � such that � � �

implies �	�� �
�	�� . It holds, if �� � �, then

a) there exist values

� � ��������������
�

���

�	�� �
��� ��� (1)

 � ��������������
�

���

�	�� �
���� (2)

b) And, in any improving solution ��� ��, it holds that � �
�

������

��� �  .

Theorem 1 allows us to add cardinality cuts on the number of edges to be used
without loosing improving solutions. We will evaluate the effect of local cardinality
cuts on the solution process in Section 5.

3.3 Variable Fixing

A big advantage of Lagrangian relaxation based bound computations is that they can be
used for variable fixing in a very efficient way. In the presence of an optimal or at least
high quality upper bound � � �� for the CNDP, it is an easy task to check whether a
variable ��� can still be set to either of its bounds without worsening the lower bound
too much. More formally, given the Lagrangian multipliers � in the current knapsack
subproblem, a value � � ��� �� and any edge ��� �� � �, we can set

��� � � if �
�	 ���	�� 	 �
����
�	 ���� � � 	 ��	 ��� (3)

A similar statement holds for the shortest path relaxation. Using these implications,
we can derive two variable fixing algorithms for the two different Lagrangian subprob-
lems. Of course, we could just choose one of the two alternatives (for example the one
for which the Lagrangian dual can be solved more quickly) and apply the correspond-
ing variable fixing algorithm. But when using a coupling method for variable fixing
algorithms that was published in [14], we can do even more: with the help of dual val-
ues gained in the solution process of the Lagrangian subproblem, in every Lagrange
iteration we can apply both variable fixing algorithms.

When using the knapsack relaxation, the idea of the coupling method consists in
using dual values as Lagrangian multipliers for the shortest path subproblem next. Thus,



we need to provide dual values for the bundle as well as the upper bound constraints.
Given the current Lagrangian multipliers �, we solve ��� knapsack subproblems as
described in Section 3.1. Again, when given any edge ��� �� � �, we assume that
� � �� denotes the number of negative cost coefficients in � ����

�	 ���, that the remaining
variables ���� are ordered with respect to increasing cost coefficients, and that � � �	�
is the critical item.

In case of � � �	�, we set !�� � ���� , "
�
�� � ���� 	 �

�
�� for all � � � and " ��� � � for

all � � �. And for � � �	�, we set !�� � �, "��� � ���� for all � � � and " ��� � � for all
� � �.

Theorem 2. The vectors ! and " define optimal dual values for ��	 ���.

Now, if we choose to use the knapsack relaxation, in every Lagrangian subproblem
we solve ��� linear continuous knapsack problems and achieve a lower bound for the
CNDP. If that bound is worse than�, we can prune the current choice point. Otherwise,
we fix variables according to Equation 3. Next, we set up the Lagrangian shortest path
subproblems that evolves when using the optimal dual values of the knapsack subprob-
lem in Theorem 2 as Lagrangian multipliers. Then, we fix variables with respect to this
substructure.

As our experiments show, it is favorable to use the knapsack relaxation to solve
the Lagrangian dual quickly. As one would expect, solving � shortest path problems
in every Lagrangian subproblem in addition to the ��� knapsack subproblems is rather
costly and slows down the solution process considerably. The following Theorem helps
to cope with this situation more efficiently.

Theorem 3. Given Lagrangian multipliers � in the knapsack relaxation, denote with
! � � and " � � optimal dual values for ��	 ���. Then,

��	 �!� "� � ��	 ���� (4)

where ��	 �!� "� denotes the value of the next shortest path subproblem.

This Theorem allows to fix variables with respect to the shortest path relaxation
without having to solve the corresponding shortest path subproblems, which improves
on the running time of our variable fixing algorithm, but makes it also less effective.
Unfortunately, as we shall see in Section 5, even in its strong version the shortest path
variable fixing algorithm is already almost ineffective, and therefore this idea cannot be
used to improve on the running time of our CNDP solver.

4 A branch-and-bound Algorithm

After having described the bound computation and possible tightening strategies based
on Lagrangian relaxation, now we sketch the decisions taken in the tree search.
Dominance Cut-Off Rule Apart from the lower bound exceeding the upper bound, the
search in the current node can be pruned if the min-cost routing of all commodities
only uses edges that have already been decided to be installed. Thus, in every choice
point we use a column generation approach to solve the min-cost multicommodity flow



problem on the subset of edges with associated � �� that have a current upper bound of �.
And if that routing only uses edges ��� �� with ��� with lower bound �, we can prune the
search and backtrack.
Branching Variable Selection The previous discussion also induces a rule for the selec-
tion of the branching variable: it is clearly favorable to choose a variable for branching
that is being used by the current optimal min-cost multicommodity flow. Of course,
there may be more than just one such variable. Then, we can choose the one with
minimal or maximal reduced costs � �	�� � in the Lagrangian subproblem with the best
associated multipliers. The different choices will be evaluated in Section 5.
Tree Traversal A simple depth first search procedure is used to choose the next search
node. This allows to find feasible solutions quickly and eases the reuse of Lagrangian
multipliers.
Primal Heuristic To find reasonably good and near optimal solutions quickly, in ev-
ery search node we apply a Lagrangian heuristic that was suggested by Holmberg and
Yuan. It works by computing multicommodity flow solutions on a subset of the edges
and de-assigning all arcs that carry no flow. For further details, we refer to [11].
Variable Fixing Heuristic Because the Network Design Problem is very hard to be
solved exactly, we may decide to search for relatively good solutions quickly. The ex-
act approach can be transformed in a heuristic for the problem by fixing variables more
optimistically. Holmberg and Yuan [11] developed the so called #-heuristic for this pur-
pose: While solving the Lagrangian dual, we protocol how often a variable is set to one
or to zero. And if one of the values is dominant with respect to a given parameter, the
variable is simply set to this value.

5 Numerical Results

We report on our computational experience with the algorithms developed in this paper.
The section is structured as follows: first, we introduce the benchmark data used in the
experiments. Then, we define the possible parameter settings that activate and deactivate
different algorithmic components. And finally, we compare the variants when solving
the CNDP from scratch, in the optimality proof, and when using the approach as a
heuristic.

All tests were carried out on systems with AMD Athlon, 600MHz processors, and
256 MByte main memory. The code was compiled with the GNU g++ 2.95 compiler
using optimization level O3.

5.1 Benchmark Data

Surprisingly, in spite of the theoretical interest the CNDP has drawn and the large num-
ber of research groups that have dealt with the problem, apparently there has been no
benchmark set established on which researchers can compare algorithms that solve the
CNDP exactly. Much work has been done with respect to the computation of lower
bounds and the heuristic solution of the problem. Benchmarks used for this purpose (to
be found in [4, 11], for example) are still too large to allow the computation of optimal
solutions. For variations of the problem (such as the multi-edge CNDP, Network Load-
ing, etc.) benchmark data exists, but it is not straight forward to see how it could be
converted into meaningful instances for the pure CNDP as we consider it here.



Thus, we decided to base our comparison on a benchmark of 48 instances generated
by a CNDP generator developed by Crainic et al. and described in [4]. It appears as a
generator that is used by different research groups, and it was enhanced with a stable
random number generator by A. Frangioni. We generated graphs with 12, 18, and 24
nodes with 50 to 440 arcs and 50 to 160 commodities. For the heuristic comparison we
use the benchmark set from [4, 5]. The exact details about the benchmark sets we use
is given in [15]. There, the exact data regarding our experiments can be found as well,
that is left out in the paper because of space restrictions.

5.2 Algorithm Variants Considered in the Experiments

The optimization system developed consists of several parts. The ones compared and
evaluated in the experiments are: different Lagrangian relaxation algorithms based on
the shortest path (SP) or the knapsack relaxation (KP), respectively; a branch-and-
bound algorithm using bounds based on those relaxations, where the branching vari-
able is chosen according to minimal (BR0) or maximal (BR1) absolute reduced cost
values �	�� ; two different variable fixing algorithms based on the shortest path relaxation
(SF) and the knapsack relaxation (KF); and finally, the cardinality interval tightening
algorithm that adds Lagrangian cardinality cuts to the problem (CIT).

5.3 Evaluation

BR0 � BR0-CIT BR1 � BR1-CIT
time 93.7% 25.3%
min 4.72% 0.28%
max 353% 131.5%
variance 62.1% 11.5%
nodes 38.6% 10.1%
min 0.73% 0.02%
max 120.7% 78.4%
variance 14.5% 2.9%

Table 1. Impact of cardinality interval tightening us-
ing knapsack relaxation with fixation based on knap-
sack relaxation for solving CNDP. Mean, minimum,
maximum values and variance of running time and
nodes in the branch-and-bound tree are given.

With the first experiments we
performed we wanted to find out
which type of Lagrangian re-
laxation was preferable. In ac-
cordance to the results reported
in [11], we found that the knap-
sack relaxation is clearly supe-
rior both with respect to the
number of subgradient iterations
needed to solve the Lagrangian
dual as well as the time needed
to solve the Lagrangian sub-
problems. Because of the space
restrictions, we omit a detailed
comparison here, and start right
away with an evaluation of the impact of Lagrangian cardinality cuts when solving the
CNDP using the knapsack relaxation. Table 1 shows a comparison of lower bound rou-
tines using the Lagrangian knapsack relaxation with and without cardinality cuts. And
Table 2 shows a comparison of two different strategies for the selection of the branching
variable. Comparing two variants, the tables give the average percentage of the second
variant when compared to the first (that is always set to 100%) with respect to running
times and the number of search nodes visited in the branch-and-bound trees. Moreover,
we specify minima, maxima, and the variance of those percentages.

Clearly, choosing a branching variable with minimal reduced costs is favorable, no
matter if cardinality cuts are introduced or not. This result contradicts the recommen-
dation given in [11]. Actually, this result is not very surprising. Intuitively, the variable



with the minimal absolute reduced costs is least likely to be set to either of its bounds
by variable fixing. It is the variable we have the least knowledge about, and therefore it
is a good choice to base a case distinction on it. In contrast, the variable with the largest
absolute reduced costs is most likely to be set by variable fixing, and therefore it is no
good idea to double the effort by using this variable for branching.

BR0 � BR1 BR0-CIT � BR1-CIT
time 1817.7% 235.1%
min 68.03% 30.91%
max 7445.5% 1221.7%
variance 37944.6% 604.7%
nodes 2750.4% 311.1%
min 89.832% 15.636%
max 19415.3% 1427%
variance 172454% 1163.3%

Table 2. Impact of branching variable selection us-
ing knapsack relaxation with fixation based on knap-
sack relaxation for solving CNDP.

Regarding the introduction
of Lagrangian cardinality cuts,
Table 1 shows that they have a
great impact on the number of
search nodes that have to be in-
vestigated. Cardinality cuts are
also favorable with respect to the
total running time, but the gains
are not as large as with respect to
the size of the search tree. The
trade off is caused by the addi-
tional effort that is necessary to
sort the edges with respect to the
current reduced costs �	�� .

When looking at the data more precisely, we find that the primal heuristic works
much better in the presence of cardinality cuts. The result of this positive effect is clear:
high quality upper bounds are found much earlier in the search, pruning and variable
fixing work much better, and the number of search nodes is greatly reduced, which
explains the numbers in Table 1.

We conjecture that the primal heuristic works so well in the presence of cardinality
cuts because they provide a good estimate on the number of edges that need to be
installed in order to improve the current solution. Thus, the right amount of edges is
opened for the heuristic, and it is able to compute near optimal solutions at a higher
rate.

SOLVE: KF � KF-SF OPT: KF � KF-SF
time 148.6% 144.1%
min 96.59% 51.87%
max 466% 271.3%
variance 46.1% 13.5%
nodes 133.8% 94.9%
min 71.42% 20%
max 677.1% 180.3%
variance 166.3% 7.5%

Table 3. Impact of additional shortest path fixing using
knapsack relaxation with fixation based on knapsack re-
laxation. Branching strategy BR0 and cardinality interval
tightening are used.

Next, we evaluate the
use of the coupling me-
thod for variable fixing
algorithms for the CNDP.
Table 3 shows a com-
parison of runs when us-
ing shortest path variable
fixing in addition to the
knapsack variable fixing
algorithm. The results are
very disappointing: not
only is the coupled ap-
proach inferior with re-
spect to the total running
time. On top of that, the
reduction of choice points is negligible, and therefore the additional effort taken is al-
most worthless.



Note, that the number of search nodes when using the coupling method sometimes
even exceeds the value when using knapsack variable fixing only. This is caused by
differences when building up the search tree: the Lagrangian dual usually stops with
different Lagrangian multipliers that have a severe impact on the variable selection.
Moreover, the generation of primal solutions differs, which makes the comparison par-
ticularly difficult, because variable fixing is highly sensitive to the quality of upper
bounds. Thus, to eliminate the last perturbation, we repeated the experiment on the al-
gorithmic optimality proof. That is, in the experiments we present in the following, we
provide the algorithm with an optimal solution and let it prove its optimality only.

Table 3 shows the results, that still reveal the poor performance of the additional
application of shortest path variable fixing. The reason for this is, that the shortest path
variable fixing algorithm is much less effective than the one based on the knapsack
relaxation. We tried to improve on the effectiveness of the algorithm by adding node-
capacity constraints. If a node is a source for some commodities, its out-capacity must
be large enough to push the corresponding supply into the network. Similarly, if a node
is a sink node for some commodities, its in-capacity must be large enough to let the
required demand in. In contrast to the knapsack relaxation, where the �- and �-variables
are not independent, the shortest path relaxation allows to incorporate those constraints
very easily. However, even this strengthening did not result in a filtering algorithm that
was effective enough to be worth applying.

Next, in Table 4 we compare the performance of the algorithm we developed and
the standard MIP-solver Cplex 7.5 when solving the CNDP and when proving the op-
timality of a given solution. Clearly, using LP-bounds improved by several kinds of
cuts that Cplex adds to the problem results in a huge reduction of search nodes. How-
ever, Lagrangian relaxation allows to compute lower bounds much faster, so that the
approach presented here is still competitive when solving the CNDP. And it achieves an
improvement on the running time in the optimality proof.

Regarding the fact that we set up our system for the evaluation of variable fixing
algorithms and local Lagrangian cardinality cuts, and taking into account that no so-
phisticated methods (like, e.g., Bundle methods) for the optimization of the Lagrangian
dual are used, and, most importantly, that no global cuts are introduced yet to strengthen
the lower bounds computed, we consider these results as very encouraging.

OPT: CPLEX� KP-BR0-KF-CIT SOLVE: CPLEX� KP-BR0-KF-CIT
time 73.5% 229.2%
min 9.63% 22.48%
max 259% 753.5%
variance 36.5% 356.5%
nodes 1148.1% 3014.6%
min 196.666% 100%
max 5250% 10279.5%
variance 10762.4% 73762.5%

Table 4. Comparison of CPLEX branch-and-cut algorithm against knapsack relaxation with fix-
ation based on knapsack relaxation and cardinality interval tightening.



Finally, we compare the non-exact version of our approach (using the #-fixing
heuristic) with other heuristic approaches that have been developed for the CNDP
(see [5, 7, 8]). In Figure 1, we give the percentage of instances in a benchmark set (set C
in [4, 5], containing 31 instances) that have been solved within a given solution quality
(in percent, compared with the best known solution). Not only are the #-fixing with and
without cardinality cuts clearly superior with respect to the achieved solution quality.
On top of that, the heuristic variable fixing approach was stopped after at most 300
seconds cpu time. On this benchmark set, heuristic variable fixing is on average about
6 times faster than TABU-PATH and 23 times faster than PATH-RELINKING (using
SPECint values to make different architectures comparable).
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Fig. 1. Comparison of different heuristic solvers for the CNDP.

6 Conclusions and Future Work

We have presented an approach for the solution of the Capacitated Network Design
Problem. It is based on a tree search where lower bounds based on Lagrangian relax-
ation are used for pruning. Two kinds of relaxation are considered, the shortest path and
the knapsack relaxation. The latter is clearly favorable with respect to the convergence
of the subgradient algorithm that optimizes the Lagrangian dual.

Two different variable fixing algorithms have been proposed in the literature that
belong to the kind of relaxation that is chosen. When using the knapsack relaxation, we
have shown how variables can also be fixed with respect to shortest path considerations
by using dual values in the Lagrangian knapsack subproblem. However, even in combi-
nation with node-capacity constraints the shortest path variable fixing algorithm is too
ineffective to justify the additional effort that is necessary for its application.

To tighten the problem formulation in a search node, we introduced the idea of local
Lagrangian Cardinality Cuts. Experimental results show that their application improves



on the overall running time, even though the time per search node increases consider-
ably when they are applied.

Finally, we compared the heuristic variable fixing approach with other heuristic
approaches developed for the CNDP. The results show, that the tree search approach
we implemented clearly outperforms other heuristics both with respect to the cpu time
needed and the quality achieved.

As a subject of further research, methods for the strengthening of the shortest path
variable fixing that incorporate the routing costs may improve on the effectivity. More-
over, other tightening strategies such as global cuts can be incorporated to improve on
the relaxation gap, which may improve on the overall performance of a Lagrangian
relaxation based CNDP solver.
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