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Abstract

A framework for modeling and recognition of tem-
poral activities is proposed. The modeling of sets
of exemplar activities is achieved by parameteriz-
ing their representation in the form of principal
components. Recognition of spatio-temporal vari-
ants of modeled activities is achieved by parame-
terizing the search in the space of admassible trans-
formations that the activities can undergo. Ezperi-
ments on recognition of articulated and deformable
object motion from image motion parameters are
presented.

1

Activity representation and recognition are central to
the interpretation of human movement. There are sev-
cral issues that affect the development of models of
activities and matching of observations to these mod-
els,

Introduction

e Repeated performances of the same activity by the
same human vary even when all other factors are

kept unchanged.

Similar activities are performed by different individ-
uals in slightly different ways.

Delineation of onset and ending of an activity can
sometimes be challenging.

Similar activities can be of different temporal dura-
tions.

Different activities may have significantly different
temporal durations.

There are also imaging issues that affect the model-
ing and recognition of activities
e The projection of movement trajectories of body

parts depend on the observation viewpoint.

The distance between the camera and the human
affect image-based measurements due to the projec-
tion of the activity on a 2D plane.

*The support of the Defense Advanced Research Projects
Agency (ARPA Order No. C635), the Office of Naval Research
(grant N000149510521) is gratefully acknowledged.
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Figure 1: Image sequence of “walking”, five part track-
ing including self-occlusion and three sets of five signals
(out of 40) recovered during the activity (torso (black),
thigh (yellow), calf (red), foot (green) and arm (blue))

An observed activity can be viewed as a vector of
measurements over the temporal axis. The objective
of this paper is to develop a method for modeling and
recognition of these temporal measurements while ac-
counting for some of the above variances in activity
execution.

Consider as an example Figure 1, which shows both
selected frames from an image sequence of a person
walking in front of a camera and the model-based
tracking of five body parts (i.e., arm, torso, thigh, calf
and foot).

In the remainder of this paper we show that a re-
duced dimensionality model of activities such as “walk-~
ing” can be constructed using principal component
analysis' (PCA, or an eigenspace representation) of
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Figure 2: The parameterized modeling and recognition

of signals

example signals (“exemplars”). Recognition of such

activities 1s then posed
pal component represent

as matching between princi-
ation of the observed activ-

ity (“observation”) to these learned models that may
be subjected to “activity-preserving” transformations

(e.g., change of executig
viewpoint, change of per

Figure 2 shows the {
recognition of activities.

n duration, small change in
former, etc.).

ramework for modeling and
The right side of the figure

shows exemplar activities (i:e., instances 1..N of activ-
ities) where each instance of an activity has a set of
six vectors of temporal measurements, These activi-
ties can be modeled using a PCA-based representation
as a set of “activity bases” (see lower right part of the
figure). The left side of|the figure shows an observed
activity that is a translated and scaled version of an
instance of one of the modeled activities.

2 Previous Work

Approaches that have been recently employed for mod-
eling and recognizing activities can be divided into
data-fitting (e.g., neural networks {14}, Dynamic Time
Warping (DTW) [7, 8], and regression [12]) feature
localization (e.g., scale-space curve analysis [1, 13])
and statistical approaches (e.g., Hidden Markov Mod-
els (HMMs) [11, 15]). It is common in these approaches
to develop a separate model for each activity, match an
observed activity to all models and choose the model
that explains it best.

Recognition of activities subject to “admissible”

transformations (e.g., ti
formance of a recogniti

me scaling) enhances the per-
on algorithm since it quanti-

fies the relationship between an instance of an activity
and previously encountered instances of that activity.

While the above approa

ches are able to locally handle
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temporal variability in the data stream of an observed -
activity, they lack a global detailed model to capture
these variabilities. Consequently, it may be difficult
with these approaches to explicitly recover and recog-
nize a class of parameterized temporal transformations
of an observed activity in respect to a learned model.

The approach we propose in this paper is continuous
and global (on the time axis) and therefore is an ex-
plicit representation of activities. This representation
is amenable to matching by global transforms (such
as the affine transformation we consider). Also, this
global feature allows recognition based on partial or
corrupted data (including missing beginning and end-
ing). The most closely related work to the work re-
ported here is that of Bobick and Davis [6} and Ju et
al. {9], both proposed using principal component anal-
ysis to model parameters computed from activities but
did not demonstrate modeling and recognition of ac-
tivities. Also, Li et al. [10] proposed a PCA-based
modeling and recognition approach of whole image se-
quences of speech.

3 Modeling Activities

Activities will be represented using examples from var-
ious activity classes (walking, running etc.). Each ex-
ample consists of a set of signals. Initially we assume
that all exemplars are less than or equal to a constant
duration and all examples from a given class are tem-
porally aligned

The i—th exemplar from class j is a function from
[0..T] on R™, e/;(t) : [0..T] — R™ where n is the num-
ber of activity parameters (e.g., translation, rotation
etc.) measured at frame t of the image sequence of
length T. So, ¢/;(t) is a column vector of the n mea-
surements associated with the j—th exemplar from ac-
tivity class ¢ at time t. Let & represent the n'T column
vector obtained by simply concatenating the e’;(t) for
t=0,...,T. Theset ofall j and ¢ of & is used to create
the matrix A of dimensions nT x k where k being the
number of instances of activities k << nT.

Matrix A can be decomposed using Singular Value
Decomposition (SVD) as

A=UzvT (1)

where U is an orthogonal matrix of the same size as
A representing the principal component directions in
the training set. ¥ is a diagonal matrix with singu-
lar values o1, 09, ..., 0k sorted in decreasing order along
the diagonal. The k x k matrix V7 encodes the co-
efficients to be used in expanding each column of 4 in
terms of principal component directions. It is possi-
ble to approximate an instance of activity € using the
largest ¢ singular values o4, 0, ..., 04, so that



q
e = ZC}U( (2)

where &* is the vector approximation, ¢; are scalar val-
ues that can be computed by taking the dot product of
¢ and the column U;; that is, by projecting the vector &
onto the subspace spanned by the ¢ basis vectors. The
approximation can be viewed as a parameterization of
the vector € in terms of the basis vectors U; (I = 1..q),
to be called the activity basis, where the parameters
are the ¢’s.

4 Activity Recognition
Recognition of activities involves matching an obser-
vation against the exemplars, where the observation
may differ from any of the exemplars due to variations
in imaging conditions and performance of activities as
discussed earlier.We model variations in performance
of an activity by a class of transformation functions 7.
Most simply, 7 might model uniform temporal scaling
and time shifting to align observations with exemplars.

Let D(t) : [1..T] — R™ be an observed activity and
let [D] denote the nT column vector obtained by first
concatenating the n feature values measured at t, for
each D(t) and then concatinating D(t) for all ¢. Let
also [D]; denote the j-th (j = 1.nT) element of the
vector [D]. By projecting this vector on the activity
basis we recover a vector of coefficients, ¢, that approx-
imates the activity as a linear combination of activity
basis.

Black and Jepson [3] recently pointed out that pro-
Jection gives a least squares fit which is not robust.
Instead, they employed robust regression to minimize
the matching error in an eigenspace of intensity im-
ages. Adopting robust regression to recovering the co-
efficients leads to an error minimization of the form:

ZP ZCIUW) 7) (3)

where p(z,0) is a robust error norm over  and o is a
scale parameter that controls the influence of outliers.
This robustness is effective in coping with random or
structured noise. Black and Jepson [3] also parame-
terized the search to allow an affine transformation of
the observation to be used to improve the matching
between images and principal images. In our context,
a similar transformation allows an observation to be
better matched to the exemplars. Let 7(&,t) denote
a transformation with parameter vector a that can be
applied to an observation D(t) as D(¢ + 7 (&, 1)).

Given an observed activity D(t), the error minimiza-
tion of Equation (3) now becomes

nT
B(e,a)= Y o(D

E(e) =

(t+7T(a,1))]

ZCIUIJ y (f (4)
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Equation (4) is solved using simultaneous minimization
over the coefficient vector ¢ and thetransformation pa-
rameter vector . It should be noticed that a more
general transformation on D(?) is possible, specifically
7(D(t)) instead of D(t 4+ 7(a,t)). The latter trans-
formation assumes “signal constancy” in terms of the
range of values of D(t) and defines explicitly a “point
motion” transformation that is controlled by the model
of T(a,t).

The transformed D(¢+ 7 (a,t)) can be expanded us-
ing a first order Taylor series

D(i + 7(a,t)) = D({) + D:(t)7 (a, t) (%)

where Dy is the temporal derivative. Equation (4) can
be approximated as

Ep( [D(t)7 (a,t) + D(t))]; — ZCIUI;:U)
i=1 =1
(6)

Equation (6) can be minimized with respect to @ and
¢ using a gradient descent scheme with a continuation
method that gradually lowers o (see [2]). Initial pro-
jection of the observation on the eigenspace provides
a set of coefficients ¢ that are used to determine an
initial estimate of @ that is used to warp the obser-
vation into the eigenspace. The algorithm alternately
minimizes the errors of the eigenspace parameteriza-
tion and the transformation parameterization. Due to
the differential term in Equation (6) it is possible to
carry out the minimization only over small values of
the parameters. To deal with larger transformations
a coarse-to-fine strategy can be used to compute the
coefficients and transformation parameters at coarse
resolution and project their values to finer resolutions
similar to what is described in [3]. This coarse-to-fine
strategy does not eliminate the need for approximate
localization of the curves even at coarse levels.

Upon recovery of the coefficient vector, &, the nor-
malized distance between the coefficients, ¢;, and coef-

Ql

ficlents of exemplar activities coéfficients, m;, is used

to recognize the observed activity. The Fuclidean dis-
tance, d, between the distance-normalized coefficients
is given as

q
d® = (ci/llal] — ma/lln]])? )
1

where 7 is vector of expansion coefficients of an exem-
plar activity. The exemplar activity coefficients that
score the smallest distance is considered the best match
to the observed activity.

5 Experiments
5.1 Modeling and Recognition of Walking

We employ a recently proposed approach for track- -
ing human motion using parameterized optical flow [9].



This approach assumes that an initial segmentation of
the body into parts is given and tracks the motion of
each part using a chain-like model that exploits the at-
tachments between parts to achieve tracking of body
parts in the presence of nan-rigid deformations of cloth-
ing that cover the parts| The work reported empha-
sized the low-level tracking component and suggested
a possible recognition strategy of the temporal param-
eters subject to changes of viewpoint and imaging pa-
rameters. In this subsection we employ our proposed
approach to demonstrate the recognition of activities
under varying viewpoints| and imaging parameters. We
assume that a viewer-centered representation is used
for modeling and recognition of several activities. Let
D(t) be the n dimensional signals of an observed activ-

ity. A total of five body

parts (arm, torso, thigh, calf

and foot) were tracked using 8 motion parameters for
each part (i.e., n=40). In [9] the observation that the

following transformation
D(t) was made,

S % D(

does not change the activity

vt + L)

This transformation captures the temporal translation,

L, of the curve and the s
the signal in addition tq
m@gnitude scaling, S, o
ferent distances between
(while the viewing angle
thropometric variation a
scaling parameter o is: d
up of the activity and «

Recognition of activi
learned activity requires

caling, S, in the magnitude of
the speedup factor a. The
f the signal accounts for dif-
the human and the camera
is kept constant) and the an-
cross humans. The temporal
¥ > 1.0 leads to a linear speed
< 1.0 leads to its slow down.
y D(t) as an instance of a
minimizing the error:

q

nT
E(a,L,8) = > p([S*D(at+L)]; - > ali;.a) (8)

i=1
This equation can eas
in Equation (6), where

T(a, L,t)

nT
E(e,a)=Y _p([SH(D:(t)T

j=1

i=1
ly be rewritten and solved as

=(a—1)t+L (9)

q9
(@, L,)+D (), _ali;, o)
=1 (10)

Since the error minimization involves a non-linear term

we simplify the compu
multiplication by a cons
dividing the coefficients
tuality the recovered cg
scaling factor (i.e., recoy
coefficients is done as in

tation by observing that the

tant S can be substituted by
¢; by S, and therefore in ac-
efficients are correct up to a
ering ¢;/S). The matching of

Equation(7). Upon finding the

best match the coefficients ¢;/S are compared with the
matching exemplar coefficients to compute the scaling

Figure 3: Graphs of six cycles of “walking” (by differ-
ent people) showing the horizontal translation param-
eter of the flow (out of 8) of each of the five patches.

factor S. Since computing S is overconstrained (g equa-
tions with one variable), the mean of S is taken as the
scaling factor.

The value of S is greater than 1.0 if (a) the activity
is viewed at a closer distance than in training (there-
fore the perception of “larger quantities” is a result of
the projection), or, (b) actual faster execution of the
activity (which also leads to a temporal scaling for «).

Figure 3 shows one temporal parameter (i.e., the
horizontal translation) of the five body parts of six dif-
ferent walkers (out of 10 subjects viewed from the same
viewpoint) after the signals have been coarsely regis-
tered. The missing cycle parts were filled with “no-
activity.” Figure 4 shows the first two principal compo-
nents of one parameter of the walking cycle (however,
the forty parameters are modeled in the principal com-
ponents). Also, the figure shows the ratio of captured
variation as a function of the number of principal com-
ponents used in reconstruction (five components are
needed to capture 90% of the variation while the first
component alone captures about 70% of the variation).
This suggests that a single component (i.e., the mean)
can capture walking well if viewed from a single view-
points.

Figure 5 (left) shows five temporal curves of one pa-
rameter of a test sequence of a nev. subject. In this
experiment we show the recovery of transformation 7
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Figure 4: The cumulative variation captured as afunc-
tion of the number of principal components (left) and
the first and second principal components (center and
right, respectively) for 10 different people walking from
a single view. ’
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Figure 5: A test sequence used in recognition and
evaluation Translation and time scale recovery for the
“walking” input curve starting at frame 1015 up till
1065 (i.e., translating) (right).

of the “walking.” We artificially start the recognition
at different frames during the “walking” test sequence
(specifically from frame 1015) and recover the transla-
tion L and speed a. Notice that the tested activity be-
gins about 35 frames into the “walking” model (Figure
4). A translation of 35 frames will align the tested ac-
tivity with the model. The graphs in Figure 5 show the
recovered translation L and scaling (@ — 1) parameters
of the “walking” activity as a function of the starting
frame. Notice that at frame 1015 a displacement of
about 2 frames is needed to align the curve of Figure 5
to the “walking” model described in Figure 4. This dis-
placement is increased as the input curve is translated
in time. The scaling parameter indicates that the test
activity is about 6% faster than the mean “walking”
activity. This experiment also shows the effectiveness
of the robust norm since it facilitates recognition even
when some of the data is inaccurate (e.g., all parame-
ters between frames 1015 and 1045 are zero).

5.2 Multiple-view Modeling and
Recognition of Walking

Figure 6 illustrates the experimental set-up for the
multi-view walking experiments. The objective here is
to demonstrate that a correct classification of the direc-
tion of walking of the subjects can be achieved. Since
the change in motion trajectories with the change of
viewpoint is smooth (see [{6]) we use four primary di-
rections in the recognition tabulation.

Figure 6 shows the cumulative captured variation of
the principal components for a single person’s walking
as viewed from ten different viewing directions. The
angles include walking perpendicular to the camera
(towards and away from it). In this case 6 principal
components are needed to capture 90% of the varia-
tions in the motion trajectory of multi-viewpoint ob-
servation of walking.

A set of 44 sequences of people walking in different
directions were used for testing. The model of multi-
view walking was constructed from the walking pat-
tern of one individual while the testing involved eight
subjects. The first six activity basis were used. The
confusion matrix for the recognition of 44 instances of
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Figure 6: The walking directions set up (left). The cu-
mulative captured variation as a function of the num-
ber of principal components for one person observed
walking from 10 different viewing directions (right).

[[ Walking Direction | Parallel | Diag. | Away | Forward ||
2

Parallel 11
Diagonal 3 14 1
Perp. Away 6
Perp. Forw. 1 1 1 4
[[ Total [ 15 [ 17 7 5 il

Table 1: Confusion matrix for recognition of walking
direction

walking-directions are shown in Table 1. Each column
shows the best matches for each sequence. The walk-
ers had different paces and stylistic variations some of
which where recovered well by the affine transforma-
tion. Also, time shifts were common since only coarse
temporal registration was employed prior to recogni-
tion.

5.3 Recognition of Four Activities

In this section we illustrate the modeling and recog-
nition of a set of activities that we consider challeng-
ing for recognition. We chose four activities that are
overall quite close in performance: walking, marching,
line-walking?, and kicking while walking. Bach cycle of
these four activities lasts approximately 1.5 seconds.

Figure 7 shows several frames from a performance of
each activity (see Figure 1 for “walking”). Also shown
are three parameters (for each body part) as measured
at each time instant during one cycle. These three
parameters are a subset of the eight parameters used
in modeling and recognition.

We acquired tens of sequences of subjects perform-
ing these four activities as observed from a single view-
point. Temporal and stylistic variabilities in the per-
formance of these activities are common. Clothing and
lighting variations also affected the accuracy of the re-
covery of motion measurements from these image se-
quences.

2A form of walking in which the two feet step on a straight
line and spatially touch when both are on the ground.



[ Activity | # Training Seq. | # Test Seq. ||
Walking 7 15
Line-Walking 7 28
Marching 7 11
Walking to Kick | 7 12
Table 2: List of activities and the number of occurrence
of each in training and recognition
[ Activity | Walk [ Line-Walk | Walk. to Kick | March ||
Walk 11 |3 3
Line-Walk 3 24 1
Walk to Kick ] 12
March 1 1 7
([ Total [15 |28 [12 [T

Table 3: Confusion mlatrix for recognition results

Table 2 shows the totg
both modeling and recog
of activities were used {
for the four activities.

| number of activities used for
nition. The training instances
o construct. the activity basis
This activity basis is used in

the testing-stage on new instances of these activities
in which new performers and performances were em-

ployed.
The cumulative vari

ility captured by the princi-

pal components for 28 instances of four activities shows

that the first three princ
60% of the variation wh
nent captures only 4% ¢

pal components capture about
le the fourth principal compo-
f the variation. In the follow-

ing recognition experiments we use 15 activity basis to
capture about 90% of the variations.

Table 3 shows the co
of a set of 66 test activi

nfusion matrix for recognition

ies. These activities were per-

formed by some of the same people who were used for
model construction as well as new performers. Varia-

tions in performance we
transformation. Up to
well as up to 15 fram

re accounted for by the affine
0% speed-up or slow-down as

es of temporal shift were ac-

counted for by the affine transformation used in the

matching.

5.4 Modeling and

In this section we demon:
nition of speech from
cal flow measurements
quences.

The training set for

Recognition of Speech

strate the modeling and recog-

visual information using opti-
computed over long image se-

his experiment consists of 130

image sequences containing a single speaker who utters

thirteen letters ten tim
each utterance is 25 fra
motion for each sequen

es (Figure 8). The duration of
mes. We computed the image
ce in the training set using a

robust optical flow algorithm [2]. The robust method
is essential as it allows violations of the brightness

constancy assumption
ance/disappearance of

that occur due to the appear-
the teeth, tongue, and mouth

cavity. We then randomly chose a subset of 793 flow

fields from the training

set of 3120 flow fields and de-

1
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Figure 7: Image sequence of “marching,” “kicking” and
“line walking.” five part tracking and three sets of five
signals (out of 40) recovered during the activity (torso
(black), thigh (yellow), calf (red), foot (green) and arm
(blue))
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Figure 9: First eight basis flow ﬁelds‘ computed by
PCA.. They account for 90% of the variance in the 3120
training flow fields.

rived a low-dimensional representation using principal
component analysis (for a detailed description see [4]).

Since the image motion of the mouth in our training
sequence is constrained, much of the information in the
training flow fields is redundant and hence the singular
values drop off quickly. For the training data here, the
first eight basis flow fields account for over 90% of the
variance in the training set and are shown in Figure 9.

Image motion is represented as a linear combination
of the basis flow templates: 3, m;Mi(x) (M; is a
flow template defined over a fixed rectangular region).
Using this model, we estimate the motion coefficients
m; as described in [4]. We then use the eight motion co-
efficients computed between consecutive images to con-
struct a joint temporal model for the letters. We con-
sider each spoken letter to be an activity of 25 frames
in duration where eight measurements are computed at
each time instant. The 130 image sequences are used
to construct a low-dimensional representation of the 13
letters. These 130 sequences can be represented by a
small number of activity-basis as shown in Figure 10
(bottom right). Fifteen activity basis capture 90% of
the temporal variation in these sequences.

Figure 10 shows the eight recovered parameters (i.e.,
the motion-template expansion coefficients) for each
letter throughout a single image sequence using a test
sequence not in the training set. This figure illustrates
the complexity of the modeling and recognition of this
large data set.

For the testing of recognition performance, we use 10
new data sets of the same subject repeating the same
13 utterances. A total of 130 sequences were processed.
For each two consecutive frames in the test sequences
we computed the linear combination of the motion-
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Figure 10: The eight coefficients of the motion-

templates computed for each of 13 letters during a com-

‘plete utterance. Cumulative variation captured by 130

basis vectors of the 130 sequences (bottom left graph)

templates that best describes the intensity variation
(see [4]) and use these parameters in recognition.

The confusion matrix for the test sequences is shown
in Table 4. The columns indicate the recognized letter
relative to the correct one. Each column sums to 10,
the number of each letter’s utterances. The confusion
matrix indicates that 58.5% correct classification was
achieved. When the recognition allowed the correct let-
ter to be ranked second in the matching the success rate
increased to 69.3%. Recall that it is well established
that visual information is ambiguous for discriminating
between certain letters. In this set of experiments we
observe some of these confusions. Nevertheless, this ex-
periment shows the effectiveness of the representation
we propose for modeling and recognition.
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A5 1 T2 31111
B 5 1 i
C 6 1 1
D1 1125 1
E 7
F |2 p) 5 1 1 1
G 3 ]2 [ 1 7 1
H T 8
T |1 T 1 T 131
J 1 6
K 1 217 |11

1 1 3
M 7 3|6

Table 4: Confusion mati
quences of 13 letters. Ita

ix for recognition of 130 se-
ic denotes input characters

6 Conclusions

In this paper we propose

1 and tested parametric mod-

els for activity modeling and recognition when a large

number of temporal par
image sequence.

eters are recovered from an

Principal component analysis and

affine transformations were employed to economically

represent these activities

and effectively recover and

recognize instances of learned activities. This approach

was demonstrated on lar

recognition of both arti

tions.

ve sets of image sequences for
culated and deformable mo-

The modeling and recognition algorithm proposed is
simple to implement. The principal component analy-

sis determines the prope
data. Robustness to seve
formance of activities is

be challenging to achieve.

r representation based on the
ral sources of variation in per-
an important issue that can
The employment of affine

transformations in the recognition allowed us to recog-
nize activities even when time scaling and shift were

encountered.
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