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Abstract 
A f r a m e w o r k  f o r  m o d e l i n g  a n d  r e c o g n i t i o n  o f  t e m -  
p o r a l  a c t i v i t i e s  is proposed .  T h e  m o d e l i n g  o f  s e t s  
o f  e x e m p l a r  a c t i v i t i e s  is ach ieved  by  p a r a m e t e r i z -  
i n g  t h e i r  r e p r e s e n t a t i o n  in t h e  f o r m  o f  p r i n c i p a l  
c o m p o n e n t s .  R e c o g n i t i o n  o f  s p a t i o - t e m p o r a l  v a r i -  
a n t s  of  m o d e l e d  a c t i v i t i e s  is ach ieved  b y  p a r a m e -  
t e r i z i n g  t h e  ,search in t h e  space  o f  a d m i s s i b l e  t r a n s -  
f o r m a t i o n s  t h a t  t h e  a c t i v i t i e s  c a n  u n d e r g o .  E x p e r i -  
m e n t s  o n  r e c o g n i t i o n  o f  a r t i c u l a t e d  a n d  d e f o r m a b l e  
object  m o t i o n  f r o m  i m a g e  m o t i o n  p a r a m e t e r s  a r e  
p r e s e n t e d .  

1 Introduction 
Activity representation and recognition are central to 
the interpretation of human movement. There are sev- 
eral issues that affect the development of models of 
activities and matching of observations to these mod- 
els, 
0 Repeated pedormances of the same activity by the 

same human vary even when all other factors are 
kept unchanged. 

0 Similar activities are performed by different individ- 
uals in slightly different ways. 

0 Delineation of onset and ending of an activity can 
sometimes be challenging. 

0 Similar activities can be of different temporal dura- 
tions. 

e Different activities may have significantly different 
temporal durations. 
There are also imaging issues that affect the model- 

ing and recognition of activities 
0 ‘The projection of movement trajectories of body 

parts depend on the observation viewpoint. 
0 The distance between the camera and the human 

affect image-based measurements due to the projec- 
tion of the activity on a 2D plane. 
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Figure 1: Image sequence of “walking”, five part track- 
ing including self-occlusion and three sets of five signals 
(out of 40) recovered during the activity (torso (black), 
thigh (yellow), calf (red), foot (green) and arm (blue)) 

An observed activity can be viewed as a vector of 
measurements over the temporal axis. The objective 
of this paper is to develop a method for modeling and 
recognition of these temporal measurements while ac- 
counting for some of the above variances in activity 
execution. 

Consider as an example Figure 1, which shows both 
selected frames from an image sequence of a person 
walking in front of a camera and the model-based 
tracking of five body parts (i.e., arm, torso, thigh, calf 
and foot). 

In the remainder of this paper we show that a re- 
duced dimensionality model of activities such as “walk- 
ing” can be constructed using principal component 
analysis (PCA, or an eigenspace representation) of 
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Figure 2: The parameter zed modeling and recognition 
of signals I 
example signals ( "  "). Recognition of such 
activities is then atching between princi- 

of the observed activ- 
earned models that may 

Figure 2 shows the 

els (HMMs) [ll, 151). 
to  develop a separate 

on in these approaches 
each activity, match an 

fies the relationship be 

While the above appr 

an instance of an activity 

are able to  locally handle 

temporal variability in the data stream of an observed 
activity, they lack a global detailed model to  capture 
these variabilities. Consequently, it may be difficult 
with these approaches to  explicitly recover and recog- 
nize a class of parameterized temporal transformations 
of an observed activity in respect to a learned model. 

The approach we propose in this paper is continuous 
and global (on the time axis) and therefore is an ex- 
plicit representation of activities. This representation 
is amenable to matching by global transforms (such 
as the affine transformation we consider). Also, this 
global feature allows recognition based on partial or 
corrupted data (including missing beginning and end- 
ing). The most closely related work to the work re- 
ported here is that of Bobick and Davis [6] and Ju et 
al. 191, both proposed using principal component anal- 
ysis to model parameters computed from activities but 
did not demonstrate modeling and recognition of ac- 
tivities. Also, Li et al. [IO] proposed a PCA-based 
modeling and recognition approach of whole imdge se- 
quences of speech. 

3 Modeling Activities 
Activities will be represented using examples from var- 
ious activity classes (walking, running etc.). Each ex- 
ample consists of a set of signals. Initially we assume 
that all exemplars are less than or equal to a constant 
duration and all examples from a given class are tem- 
porally aligned 

The i-th exemplar from class j is a function from 
[0 ... T] on R", e j z ( t )  : [O..T] - R" where n is the num- 
ber of activity parameters (e.g., translation, rotation 
etc.) measured at frame t of the image sequence of 
length T. So, ej l ( t )  is a column vector of the n mea- 
surements associated with the j- th exemplar from ac- 
tivity class i at time t .  Let represent the n T  column 
vector obtained by simply concatenating the e J i ( t )  for 
t = 0, ..., T .  The set of all j and i of is used to  create 
the matrix A of dimensions n T  x k where k being the 
number of instances of activities k << n T .  

Matrix A can be decomposed using Singular Value 
Decomposition (SVD) as 

A = UCVT (1) 
where U is an orthogonal matrix of the same size as 
A representing the principal component directions in 
the training set. C is a diagonal matrix with singu- 
lar values 6 1 ,  6 2 ,  ..., bk sorted in decreasing order along 
the diagonal. The k x k matrix VT encodes the co- 
efficients to  be used in expanding each column of A in 
terms of principal component directions. It is possi- 
ble to  approximate an instance of activity E using the 
largest q singular values 0 1 ~ ~ 7 2 ,  ..., uq3 so that 
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e* = C l U l  (2) 
1=1 

where e* is the vector approximation, cl are scalar val- 
ues that can be computed by taking the dot product of 
e and the column Ut; that is, by projecting the vector 
onto the subspace spanned by the q basis vectors. The 
approximation can be viewed as a parameterzzatzon of 
the vector e in terms of the basis vectors U1 ( a  = l . . q ) ,  
to be called the actzvzty baszs, where the parameters 
are the cos. 

4 Activity Recognition 
Recognition of activities involves matching an obser- 
vation against the exemplars, where the observation 
may differ from any of the exemplars due to  variations 
in imaging conditions and performance of activities as 
discussed earlier. We model variations in performance 
of an activity by a class of transformation functions 7. 
Most simply, 7 might model uniform temporal scaling 
and time shifting to  align observations with exemplars. 

Let D(t) : [1..T] 4 R” be an observed activity and 
let [D] denote the n T  column vector obtained by first 
concatenating the n feature values measured a t  t ,  for 
each D(t) and then concatinating D(t) for all t .  Let 
also [DI3 denote the j- th ( j  = l . .nT) element of the 
vector [D]. By projecting this vector on the activity 
basis we recover a vector of coefficients, E ,  that approx- 
imates the activity as a linear combination of activity 
basis. 

Black and Jepson [3] recently pointed out that pro- 
jection gives a least squares fit which is not robust. 
Instead, they employed robust regression to  minimize 
the matching error in an eigenspace of intensity im- 
ages. Adopting robust regression to recovering the co- 
efficients leads to an error minimization of the form: 

n T  Q 

j=1 1=1 
E(4 = Cp( ( [Dl ,  - X C l U d l 4  (3) 

where p(z ,  U) is a robust error norm over 2 and (T is a 
scale parameter that controls the influence of outliers. 
This robustness is effective in coping with random or 
structured noise. Black and Jepson [3] also parame- 
terized the search to  allow an affine transformation of 
the observation to be used to improve the matching 
between images and principal images. In our context, 
a similar transformation allows an observation to be 
better matched to the exemplars. Let 7 ( E 1 t )  denote 
a transformation with parameter vector ?i that  can be 
applied to an observation D(t) as D(t + 7 ( a ,  t ) ) .  

Given an observed activity D(t), the error minimiza- 
tion of Equation (3) now becomes 

nT P 

3 = 1  2= 1 
E(F, 8) = C p ( [ D ( t  + 7 ( a ,  t ) ) ] j  - crui,,, g). (4) 

Equation (4) is solved using simultaneous minimization 
over the coefficient vector and the transformation pa- 
rameter vector a. It should be noticed that a more 
general transformation on D(t) is possible, specifically 
7(D(t))  instead of D(t + 7 ( U , t ) ) .  The latter trans- 
formation assumes “signal constancy’’ in terms of the 
range of values of D(t) and defines explicitly a “point 
motion” transformation that is controlled by the model 

The transformed D(t  +?-(a, t)) can be expanded us- 
ing a first order Taylor series 

D(t + 7 ( U ,  t ) )  M D(t) + Dt(t)l(ii,  t )  (5) 
where Dt is the temporal derivative. Equation (4) can 
be approximated as 

of 7 ( a , t ) .  

n T  

j =1  1=1 

Equation (6) can be minimized with respect to  U and 
t? using a gradient descent scheme with a continuation 
method that gradually lowers CT (see [a]). Initial pro- 
jection of the observation on the eigenspace provides 
a set of coefficients F that are used to determine an 
initial estimate of U that is used to  warp the obser- 
vation into the eigenspace. The algorithm alternately 
minimizes the errors of the eigenspace parameteriza- 
tion and the transformation parameterization. Due to  
the differential term in Equation (6) it is possible to  
carry out the minimization only over small values of 
the parameters. To deal with larger transformations 
a coarse-to-fine strategy can be used to compute the 
coefficients and transformation parameters at coarse 
resolution and project their values to finer resolutions 
similar to what is described in [3]. This coarse-to-fine 
strategy does not eliminate the need for approximate 
localization of the curves even at coarse levels. 

Upon recovery of the coefficient vector, E ,  the nor- 
malized distance between the coefficients, ci, and coef- 
ficients of exemplar activities coefficients, m,, is used 
to recognize the observed activity. The Euclidean dis- 
tance, d,  between the distance-normalized coefficients 
is given as 

(7) 

where 172 is vector of expansion coefficients of an exem- 
plar activity. The exemplar activity coefficients that 
score the smallest distance is considered the best match 
to  the observed activity. 

5 Experiments 
5.1 Modeling and Recognition of Walking 
We employ a recently proposed approach for track- 
ing human motion wing parameterized optical flow [9]. 
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This transformation captures the temporal translation, 

4 

I = 1  

n T  

L ,  t)+D(t))],-XcrU,,j c) 

scaling parameter a is: 
up of the activity and a 

learned activity requires 
Recognition of activiiy 

n T  

E(a ,  L,  S) = p([S * 
1 x 1  

This equation can eas 
in Equation (6), where 

I(&, L ,  t )  

Figure 3: Graphs of six cycles of “walking” (by differ- 
ent people) showing the horizontal translation param- 
eter of the flow (out of 8) of each of tile five patches. 

factor S. Since computing S is overconstrained ( 4  equa- 
tions with one variable), the mean of S is taken as the 
scaling factor. 

The value of S is greater than 1.0 if (a) the activity 
is viewed at a closer distance than in training (there- 
fore the perception of “larger quantities” is a result of 
the projection), or, (b) actual faster execution of the 
activity (which also leads to a temporal scaling for a ) .  

Figure 3 shows one temporal parameter (i.e.. the 
horizontal translation) of the five body parts of six dif- 
ferent walkers (out of 10 subjects viewed from the same 
viewpoint) after the signals have been coarsely regis- 
tered. The missing cycle parts were filled with “no- 
activity.” Figure 4 shows the first two principal compo- 
nents of one parameter of the walking cycle (however, 
the forty parameters are modeled in the principal com- 
ponents). Also, the figure shows the ratio of captured 
variation as a function of the number of principal com- 
ponents used in reconstruction (five components are 
needed to  capture 90% of the variation while the first 
component alone captures about 70% of the variation). 
This suggests that a single component (i.e., the mean) 
can capture walking well if viewed from a single view- 
points. 

Figure 5 (left) shows five temporal curves of one pa- 
rameter of a test sequence of a nel. ,ubject. In this 
experiment we show the recovery of transformation 7 

cr > 1.0 leads to  a linear speed 
< 1.0 leads to its slow down. 

D(t) as an instance of a 
minimizing the error: 

Y 

1qat + L)I3 - C I U / , j .  0) (8) 
I=l 

ly be rewritten and solved as 

= ( a  - l) t  + L (9) 

Figure 4: The cumulative variation captured as a-func- 
tion of the number of principal components (left) and 
the first and second principal components (center and 
right, respectively) for 10 different people walking from 
a single view. 
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Figure 5: A test sequence used in recognition and 
evaluation Translation and time scale recovery for the 
“walking” input curve starting at frame 1015 up till 
1065 (i.e.l translating) (right). 

Walking Direction Parallel Diag. Away Forward [ 
Parallel 11 2 
Diau-onnl 3 14 1 

of the “walking.” We artificially start the recognition 
at different frames during the “walking” test sequence 
(specifically from frame 1015) and recover the transla- 
tion L and speed cy. Notice that the tested activity be- 
gins about 35 frames into the “walking” model (Figure 
4). A translation of 35 frames will align the tested ac- 
tivity with the model. The gsaphs in Figure 5 show the 
recovered translation L and scaling ( a  - 1) parameters 
of the “walking” activity as a function of the starting 
frame. Notice that at frame 1015 a displacement of 
about 2 frames is needed to align the curve of Figure 5 
to the “walking” model described in Figure 4. This dis- 
placement is increased as the input curve is translated 
in time. The scaling parameter indicates that the test 
activity is about 6% faster than the mean “walking” 
activity. This experiment also shows the effectiveness 
of the robust norm since it facilitates recognition even 
when some of the data is inaccurate (e.g., all parame- 
ters between frames 1015 and 1045 are zero). 

5.2 Multiple-view Modeling and 
Recognition of Walking 

Figure 6 illustrates the experimental set-up for the 
multi-view walking experiments. The objective here is 
to demonstrate that a correct classification of the direc- 
tion of walking of the subjects can be achieved. Since 
the change in motion trajectories with the change of 
viewpoint is smooth (see [6]) we use four primary di- 
rections in the recognition tabulation. 

Figure 6 shows the cumulative captured variation of 
the principal components for a single person’s walking 
as viewed from ten different viewing directions. The 
angles include walking perpendicular to the camera 
(towards and away from it). In this case 6 principal 
components are needed to capture 90% of the varia- 
tions in the motion trajectory of multi-viewpoint ob- 
servation of walking. 

A set of 44 sequences of people walking in different 
directions were used for testing. The model of multi- 
view walking was constructed from the walking pat- 
tern of one individual while the testing involved eight 
subjects. The first six activity basis were used. The 
confusion matrix for the recognition of 44 instances of 

Figure 6: The walking directions set up (left). The cu- 
mulative captured variation as a function of the num- 
ber of principal components for one person observed 
walking from 10 different viewing directions (right). 

I( Perp. Forw. ( 1  ( 1  1 1  I 4  U 
fl Total I 15  I 1 7  I 7  I 5  I/ 

Table 1: Confusion matrix for recognition of walking 
direction 

walking-directions are shown in Table 1. Each column 
shows the best matches for each sequence. The walk- 
ers had different paces and stylistic variations some of 
which where recovered well by the affine transforma- 
tion. Also, time shifts were common since only coarse 
temporal registration was employed prior to recogni- 
tion. 

5.3 Recognition of Four Activities 
In this section we illustrate the modeling and recog- 
nition of a set of activities that we consider challeng- 
ing for recognition. We chose four activities that are 
overall quite close in performance: walkzng,  marchzng, 
l i n e - w a l k i n g 2 ,  and k i c k i n g  while wa lk ing .  Each cycle of 
these four activities lasts approximately 1.5 seconds. 

Figure 7 shows several frames from a performance of 
each activity (see Figure 1 for “walking”). Also shown 
are three parameters (for each body part) as measured 
at each time instant during one cycle. These three 
parameters are a subset of the eight parameters used 
in, modeling and recognition. 

We acquired tens of sequences of subjects perform- 
ing these four activities as observed from a single view- 
point. Temporal and stylistic variabilities in the per- 
formance of these activities are common. Clothing and 
lighting variations also affected the accuracy of the re- 
covery of motion measurements from these image se- 
quences. 

~~ 

’A form of walking in which the two feet step on a straight 
line and spatially touch when both are on the ground. 
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, U Activity I # p a i n i n g  Seq. I # Test Seq. 0 
n Walkine 1 7  I I 15 I1 

Activity Walk 
Walk 11 . 3 
Line-Walk 3 24 
Walk to Kick 

Line- Walkin 

Walking t o  Kick 

Lirle-Walk Walk. t o  Kick March 
3 
1 

12 
March 1 1  1 1 1  I 1 7  U 

n Total I 15  I 281 I 12 I 11 

Table 3: Confusion mbtrix for recognition results 

60% of the variation 
nent captures only 
ing recognition exp 
capture about 90% 

the fourth principal compo- 
he variation. In the follow- 
s we use 15 activity basis to 

model construction a as new performers. Varia- 

5.4 Modeling and Recognition of Speech 
In this section we 

quences. 

II I. 

// 

I 

-- ~ -. 1 )  L- ) I  L - I_ - _  
Horizontal trans. Vertical trans. Image Rotation 

III 
Horizontal trans. Vertic 

-- II 
Horizontal trans. Vertical trans. Image Rotation 

Figure 7: Image sequence of “marching,” “kicking” and 
“line walking.” five part tracking and three sets of five 
signals (out of 40) recovered during the activity (torso 
(black), thigh (yellow), calf (red), foot (green) and arm 
(blue)) 
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Fi$ure 8: A few frames from a speech sequence 

. , , , , < * , #  . , , , , , , , , , - -  ; i : , l , , , l , , ,  . . - . . e . . . . - -  

::,,;:: : ; ;:: 
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Figure 9: First eight basis flow fields computed by 
PCA. They account for 90% of the variance in the 3120 
training flow fields. 

rived a low-dimensional representation using principal 
component analysis (for a detailed description see [4]). 

Since the image motion of the mouth in our training 
sequence is constrained, much of the information in the 
training flow fields is redundant and hence the singular 
values drop off quickly. For the training data here, the 
first eight basis flow fields account for over 90% of the 
variance in the training set and are shown in Figure 9. 

Image motion is represented as a linear combination 
of the basis flow templates: ~ ~ = l m , M z ( ~ )  ( M t  is a 
flow template defined over a fixed rectangular region). 
Using this model, we estimate the motion coefficients 
m, as described in [4]. We then use the eight motion co- 
efficients computed between consecutive images to con- 
struct a joint temporal model for the letters. We con- 
sider each spoken letter to be an activity of 25 frames 
in duration where eight measurements are computed at 
each time instant. The 130 image sequences are used 
to construct a low-dimensional representation of the 13 
letters. These 130 sequences can be represented by a 
small number of activity-basis as shown in Figure 10 
(bottom right). Fifteen activity basis capture 90% of 
the temporal variation in these sequences. 

Figure 10 shows the eight recovered parameters (i.e., 
the motion-template expansion coefficients) for each 
letter throughout a single image sequence using a test 
sequence not in the training set. This figure illustrates 
the complexity of the modeling and recognition of this 
large data set. 

For the testing of recognition performance, we use 10 
new data sets of the same subject repeating the same 
13 utterances. A total of 130 sequences were processed. 
For each two consecutive frames in the test sequences 
we computed the linear combination of the motion- 

.$.J. ; ~ :, ; A - , !  ; " I; " A4 ; " ;*. I: : 
Letter D Letter E Letter F 

-- I- -- 

i 

Letter H Letter I 
I I 7  T' " 1- 
Letter 'G 

, ,  

Letter J Letter K Letter L 
-7 

Letter M Variation captured 

Figure 10: The eight coefficients of the motion- 
templates computed for each of 13 letters during a com- 
plete utterance. Cumulative variation captured by 130 
basis vectors of the 130 sequences (bottom left graph) 

templates that  best describes the intensity variation 
(see [4]) and use these parameters in recognition. 

The confusion matrix for the test sequences is shown 
in Table 4. The columns indicate the recognized letter 
relative to the correct one. Each column sums to 10, 
the number of each letter's utterances. The confusion 
matrix indicates that 58.5% correct classification was 
achieved. Wlhen the recognition allowed the correct let- 
ter to be ranked second in the matching the success rate 
increased to 69.3%. Recall that it is well established 
that visual information is ambiguous for discriminating 
between certain letters. In this set of experiments we 
observe some of these confusions. Nevertheless, this ex- 
periment shows the effectiveness of the representation 
we propose for modeling and recognition. 
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