SIAM J. COMPUT. (© 1996 Society for Industrial and Applied Mathematics
Vol. 25, No. 4, pp. 797-827, August 1996 005

EFFICIENT PARALLEL ALGORITHMS FOR CHORDAL GRAPHS*
PHILIP N. KLEINT

Abstract. We give the first efficient parallel algorithms for recognizing chordal graphs, finding a maximum
clique and a maximum independent set in a chordal graph, finding an optimal coloring of a chordal graph, finding a
breadth-first search tree and a depth-first search tree of a chordal graph, recognizing interval graphs, and testing interval

graphs for isomorphism. The key to our results is an efficient parallel algorithm for finding a perfect elimination
ordering.
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1. Introduction. Chordal graphs are graphs in which every cycle of length > 3 has a
chord, an edge between nonconsecutive nodes of the cycle. Chordal graphs have application
in Gaussian elimination [39] and databases [4] and have been the object of much algorithmic
study since the work of Fulkerson and Gross in 1965 [17].

Chordal graphs are an important subclass of the class of perfect graphs [5], [23], which
are graphs in which the maximum clique size equals the chromatic number for every induced
subgraph. No polynomial-time algorithm for recognizing perfect graphs is known. In contrast,
chordal graphs can be recognized in linear time.

1.1. Our results. In this paper, we give the first efficient parallel algorithms for a host of
chordal-graph problems. Our deterministic algorithms take O (log” n) time and use only 7 4m
processors of a concurrent-read concurrent-write parallel random-access machine (CRCW
PRAM) for n-node, m-edge graphs. Moreover, using randomized techniques [19], [33], [38],
we can achieve the same time bound with only (n +m)/ log n processors. Thus our algorithms
are nearly optimal in their use of parallelism, in contrast to the previous parallel algorithms
that required about n> processors to achieve the same time bound. The chordal graph problems
we solve are as follows:

1. recognizing chordal graphs,

2. finding all maximal cliques in a chordal graph (and, in particular, finding a maximum-
weight clique),

3. finding a maximum independent set (and a minimum clique cover) in a chordal graph,

4. finding an optimal coloring of a chordal graph,

5. finding a depth-first search tree of a chordal graph,

6. finding a breadth-first search tree of a chordal graph.

Chordal graphs include as a subclass interval graphs, the intersection graphs of intervals
of the real line. Thus our algorithms for problems 2-6 above may be applied to interval
graphs. But we can also solve two additional interval-graph problems. Namely, in O(log?n)
time using n + m processors, we can

e recognize interval graphs and find interval representations and

e test isomorphism between interval graphs.
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The isomorphism algorithm requires the CRCW PRAM to be of type “priority” (higher-
numbered processors win in case of write conflicts). It makes use of an efficient parallel
algorithm for tree isomorphism.

1.2. Other parallel algorithms. In a previous work, Naor, Naor, and Schiffer [34] gave
parallel algorithms for chordal-graph problems 1-4. Their algorithm for problem 1 used
O (n*m) processors. They also gave an algorithm for problem 2 that required O (n°*€) pro-
cessors to achieve O(log2 n) time and O(n*) processors to achieve 0(10g3 n) time. They
showed how, subsequent to the solution of problem 2, problems 3 and 4 could be solved in
0(log2 n) additional time using O (n?) processors. Thus they identified problem 2 as a bottle-
neck in analyzing chordal graphs. Subsequent research (independent of and concurrent with
our work) by Dahlhaus and Karpinski [12], [13] and Ho and Lee [24] reduced the processor
bound for problem 2 to O(n*) and O(n?), respectively; because of the algorithms of [34],
these processor bounds then apply also to problems 3 and 4. The algorithm of Ho and Lee
required only O (logn) time.

A parallel algorithm for finding a depth-first search tree in an arbitrary graph was given
by Aggarwal and Anderson [2]. Their algorithm is randomized and uses O (nM (n)) proces-
sors.! A parallel algorithm for breadth-first search in an arbitrary graph that uses M (n)
processors was given by Gazit and Miller [20] that uses M (n) processors. Depth-first and
breadth-first algorithms specifically for chordal graphs have not previously appeared in the
literature.

To our knowledge, no previous NC algorithm was known for interval-graph isomorphism.
Recognition of interval graphs was previously shown to be in NC by Kozen, Vazirani, and
Vazirani [30], but no specific time or processor bound was given. Novick [37] has given
an O (logn)-time, n3-processor CRCW algorithm for recognizing interval graphs. He has
also claimed [36] an algorithm with the same bounds for constructing a PQ-tree representing
a given interval graph. He observed [35] that this latter task is the first step in Lueker and
Booth’s interval-graph isomorphism algorithm and suggested that the remaining steps might be
parallelizable. Savage and Wloka [41] have given an efficient parallel algorithm for optimum
coloring of interval graphs. Their algorithm takes O (logn) time using n processors of an
exclusive-read exclusive-write (EREW) PRAM, assuming that the interval representation of
the graph has been provided.

1.3. Background. The key to our algorithmic results is our use of the perfect elimination
ordering (PEO) of a graph, a node ordering that exists if and only if the graph is chordal.
Fulkerson and Gross [17] discovered the PEO and used it to find all the maximal cliques of a
chordal graph. Rose [39] has related the PEO to the process of Gaussian elimination in a sparse
symmetric positive definite linear system. Rose, Tarjan, and Lueker [40] gave a linear-time
algorithm for finding a PEO in a chordal graph using the notion of lexicographic breadth-first
search. This yields a linear-time sequential algorithm for recognizing chordal graphs (problem
1). Once a PEO for a graph is known, algorithms due to Gavril [18] for problems 2—4 can
be implemented in linear time. Thus the PEO has emerged as the key technique in sequential
algorithms for chordal graphs, and its study has yielded important algorithmic ideas in the
sequential realm.

Researchers in parallel algorithms, however, have largely abandoned use of the PEO—
largely because finding a PEO in parallel seemed so difficult. The existence of an NC algorithm
for finding a PEO algorithm was left open by Edenbrandt [15], [16] and by Chandrasekharan

Here M (n) denotes the time required to multiply two n x n matrices. The best bound known, due to Coppersmith
and Winograd [11], is O (n2376).
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and Iyengar [7] and resolved by Naor, Naor, and Schiffer [34] and independently by Dahlhaus
and Karpinski [12], [13]. However, the PEO algorithms of [34] and [12] required at least n*
processors (subsequently improved to n? by Ho and Lee [24], [25]). In fact, it is suggested
in [34] that for parallel algorithms the PEO may be less useful than the representation of a
chordal graph as the intersection graph of subtrees of a tree. The results of this paper suggest
otherwise.

We describe a new parallel algorithm for finding a PEO. Our algorithm takes O (log? n)
time and uses only a linear number of processors of a CRCW PRAM. In fact, we can achieve
the same time bound using only O ((n + m) logn) processors of a randomized PRAM. Thus
our PEO algorithm is nearly optimal. The algorithm relies on a new understanding of the
combinatorial nature of PEOs. The algorithm in turn forms the basis for our other efficient
parallel algorithms for chordal and interval graphs.

Our algorithm for finding a PEO actually solves the following problem: given a labeling
of the nodes of a graph with numbers (a numbering), the algorithm finds a PEO consistent with
the partial order defined by the numbering or determines that no such consistent PEO exists. It
accomplishes this by iteratively refining the numbering until each number is assigned to only
one node. Our methods ensure that only O (logn) refinements suffice. Once the numbering
is one to one, it is easy to check whether it defines a PEO, as we observe in §4.2.

Most of our algorithms for solving optimization problems on a chordal graph rely on
a tree derived from the PEO, the elimination tree. We show that breaking up the tree by
removing a vertex corresponds to breaking up the graph by removing a clique. We use
this observation to give a divide-and-conquer algorithm for optimum coloring. In order
to find a maximum independent set and a minimum clique cover of the graph, we apply
terminal-branch elimination, a technique of Naor, Naor, and Schiffer [34], to the elimination
tree. We believe the elimination tree may also prove useful in other parallel chordal-graph
algorithms.

The interval-graph algorithms rely on a parallel algorithm, MREDUCE, for manipulating
the PQ-data structure of Booth and Lueker [6]. This algorithm is described in §3.

1.4. Graph notation. Let G be an undirected graph. We use V (G) to denote the set of
nodes of G. Let H be a subgraph of G or a set of nodes of G. We use G[H] to denote the
subgraph of G induced by the nodes of H. We use G — H to denote the subgraph obtained
from G by deleting the nodes of H. We use | H| to denote the number of nodes in H. Unless
otherwise stated, n and m denote the number of nodes and number of edges, respectively, in
the graph G.

2. The PEO algorithm. The most algorithmically useful characterization of chordal
graphs, the PEO, was discovered by Fulkerson and Gross [17] in 1965. Dirac had proved in
[14] that every chordal graph has a simplicial node, a node whose neighbors form a clique.
Fulkerson and Gross observed that since every induced subgraph of a chordal graph is also
chordal, deletion of a vertex and its incident edges results in a chordal graph. They proposed an
“elimination” process: repeatedly find a simplicial node and delete it until all nodes have been
deleted or no remaining node is simplicial. It follows from Dirac’s theorem that the process
deletes every node of a chordal graph; in fact, Fulkerson and Gross showed conversely that a
graph is chordal if the process deletes every node. Thus the elimination process constitutes

an algorithm for recognition of chordal graphs. The order in which nodes are deleted is called
a PEO.

2.1. An overview of the PEO algorithm. We define a PEO of a graph G to be a one-
to-one numbering vy, ..., v, of the nodes of G such that for eachi (i = 1,...,n), the



800 PHILIP N. KLEIN

higher-numbered neighbors of v; form a clique. We also represent a PEO as a sequence of
nodes o = vy ...V,

THEOREM 2.1 (Fulkerson and Gross). A graph G has a PEO if and only if G is
chordal.

In order to give a parallel algorithm for finding a PEO of a chordal graph G, we generalize
the notion to numberings that are not one to one. Let $ be a numbering of the nodes of G
(a function mapping nodes to numbers). We use G to denote the graph G with each node v
labeled by its number $(v). We shall use the metaphor of wealth in connection with numberings
$; for example, if $(v) > $(w), we shall say v is “richer” than w. The classes of Gg are the
subgraphs induced on sets of equal-numbered nodes. The class-components of Gg are the
connected components of the classes of Gyg.

Let $ and £ be two numberings of the nodes of G. We say $ is consistent with £ (and £
is a refinement of $) if $(v) < $(w) implies £(v) < £(w) for all nodes v and w. We say £ is
arefinement of Gg if we wish to emphasize the graph for which £ is a numbering. Note that
each class-component of G is a subgraph of some class-component of Gg.

We call ¢ a partial numbering if ¢ assigns numbers to some of the nodes of G, and is
undefined for others; a numbering is trivially a partial numbering. For the numbering $ and
the partial numbering ¢, the refinement of $ by ¢ is defined to be the numbering $¢ in which ¢
is used to break ties in $. That is, $¢ (v) < $¢(w) if either

e $(v) < $(w) or

o $(v) = $(w), ¢(v) and ¢ (w) are defined, and ¢(v) < ¢(w).

Typically, ¢ will be a numbering of some class-component C of G and hence only a partial
pumbering of Gs. In this case, we speak of obtaining $¢ from $ as stratifying the class-
component C of Gg, or as well-stratifying C if, in addition, each class-component of Gg,
contains at most ‘5—‘|C | nodes of C.

We want to know when a numbering $ is consistent with some PEQO. To this end, we
introduce the notion of a backward path in Gg: namely, a simple path whose endpoints
are strictly richer than all its internal nodes.> We say a numbering $ of G is valid if every
backward path in G has adjacent endpoints. The following lemmas are immediate from the
definitions.

LEMMA 2.2. For a graph G, if a valid numbering $ of G is also one to one, then $ is a
PEO of G.

LEMMA 2.3. Let $ be a valid numbering of a graph G. For any class-component C of
G, the richer neighbors of C form a clique.

We assume for the remainder of this section that G is a connected chordal graph. Our
algorithm for finding a PEO in G, which appears in Figure 1, consists of a sequence of
O(logn) stages. In each stage, the algorithm modifies the numbering $ by well-stratifying
every nonsingleton class-component C while preserving the validity of $, using a proce-
dure STRATIFY(GS$, C). In each stage, the size of the largest class-component goes down
by a factor of %. Hence after at most logs, n stages, the current numbering is one to
one and the algorithm terminates, outputting the current numbering, which is a PEO by
Lemma 2.2.

We shall show in §2.2 that the procedure STRATIFY(Gyg, C) can be implemented to run
in O(logk) time using k processors, where k is the number of edges that have at least one
endpoint in C. Consequently, executing step R4 of ITERATED REFINEMENT for all class-
components in parallel requires O (logm) time using O (m) processors. Since the number of
stages is O (logn), the total time required by ITERATED REFINEMENT is O (log? n). Using the

2The notion is a generalization of one appearing in Lemma 4 of [40].
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ITERATED REFINEMENT
R1 To initialize, let $ be the trivial numbering assigning 0 to every node of G.
R2 While $ is not one to one,
R3 For each nonsingleton class-component C of Gy in parallel:
R4 call STRATIFY(Gs, C).

FiG. 1. The ITERATED REFINEMENT algorithm for finding a PEO.

— P ——1
|

-

$1 $5 $10
nodes nodes nodes

FiG. 2. To obtain a uniform path, delete the nodes of backward subpaths.

randomized connectivity algorithm of Gazit [19], we can reduce the processor bound by a
factor of log n without increasing the time bound.

As an aside, we note that the initial numbering can be any valid numbering $ of G, e.g.,
the trivial numbering assigning the same number to all nodes; the algorithm’s output will then
be a PEO consistent with $. This observation leads to the following theorem, which is not
needed for our algorithm, but which justifies our initial definition of validity.

BACKWARD-PATH THEOREM. For a chordal graph G, a numbering $ of G is valid if and
only if it is consistent with some PEO of G.

Proof. The “only if” direction will follow from the correctness of the algorithm. To prove
the other direction, suppose o is a PEO of G consistent with $. We need to show that every
backward path in Gg has adjacent endpoints. For the two endpoints x and y of any backward
path, let P be the shortest backward path with these two endpoints. If P consists of the single
edge {x, y}, we are done, so assume that P has internal nodes. Let u be the internal node with
the minimum o-number. Then the neighbors of # in P have higher o-number, so they are
adjacent by definition of a perfect ordering. Thus there is a shorter backward path connecting
x and y, a contradiction. d

We return to the algorithm. The key to the efficiency of the procedure STRATIFY(Gg, C)
is that it need only consider the graph induced by C and its richer neighbors in G, as we shall
show presently.

We say that a path in Gg is weakly backward if its endpoints are at least as rich as its
internal nodes. When we wish to emphasize that a path P is backward, as opposed to only
weakly backward, we shall say P is strictly backward. If £ is a refinement of $, a path P that
is weakly backward in G is also weakly backward in Gg. If P is strictly backward in G but
not strictly backward in Gy, then at least one of the endpoints of P has the same $-number as
one of the internal nodes of P. We say a path in G is uniform (with respect to a numbering $)
if every internal node has the same $-number as the poorer of the two endpoints.

LEMMA 2.4. Suppose $ is a valid numbering of the graph G. For each weakly backward
path P in Gg, there is a uniform weakly backward path P’ in Gg with the same endpoints such
that V(P') C V(P).

Proof. The proof is illustrated in Figure 2. Let v;...v; be the nodes of a weakly
backward path P, and let ¢ be the $-number of its poorer endpoint. Suppose v; ... v; is a
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maximal subpath consisting of nodes poorer than ¢. Then v;_; ... v;41 is a backward path in
Gs, so its endpoints v;_; and v;; are adjacent by the validity of $. We can therefore replace
the subpath v;_; ... v;4 with the edge {v;_1, vj41}, obtaining a backward path P; with the
same endpoints as P but with fewer nodes poorer than ¢. Note that every node in P, is a node
of P. Continuing this process yields a path with the same endpoints and with no nodes poorer
than ¢ and consisting of a subset of the nodes of P. o

The following lemma shows that STRATIFY(Gs, C) need only consider C and the higher-
numbered neighbors of C. Fix the graph Gg. For a class-component C, let C denote the
subgraph of G induced by C and its higher-numbered neighbors in Gg.

REFINEMENT LEMMA. Suppose $ is a valid numbering of a graph G. Let ¢ be a numbering
of a class-component C of Gs. Then the refinement of Gs by ¢ is valid if and only if the
refinement of Cg by ¢ is valid. _

Proof. Let $¢ be the refinement of Gg by ¢, and let A be the refinement of Cs by ¢.
Assume that $ is a valid numbering of G. If $¢ is also a valid numbering of G, then A is a
valid numbering of C because C; is a node-induced subgraph of Gs,. Conversely, suppose
that A is a valid numbering of C. For each backward path P in Gg,, we must show that P’s
endpoints x and y are adjacent. Since P is weakly backward in G§, there exists a uniform path
P’ in G¢ with endpoints x and y, where V(P’) C V(P). Since V(P’) C V(P), the path P’ is
still backward with respect to $¢. If P’ has no internal nodes, x and y are adjacent. Suppose
P’ has internal nodes; they all have the same $-number as the lower-numbered endpoint x
by definition of uniformity. Since P’ is strictly backward with respect to $¢, it follows that
the internal nodes have a lower ¢-number than x. Hence the internal nodes and x must all lie
in C because ¢ is defined only on C. Then the other endpoint y is a neighbor of a node of
C and hence is either in C itself or is a higher-numbered neighbor of C. In the first case, y
has a higher ¢-number than the internal nodes because P’ is strictly backward. In the second
case, y has a higher j-number than the internal nodes. In either case, we conclude that P’ is
a backward path in C,. By the validity of A, x and y are adjacent. |

The Refinement Lemma implies that to validly stratify a class-component C in Gs, we
need only validly stratify it in Cs. In fact, we observe next that all the class-components of
G may be thus stratified simultaneously and independently. To see this, let Cl,...,Ckbe
the class-components of Gg, ordered in some arbitrary way consistent with $. We show that
stratifying the class-components in order is equivalent to stratifying them all at once, as far as
validity is concerned. R

Fori =1,...,k,let ¢; be a numbering of C' such that the refinement of Cig by ¢; yields
a valid numbering of Ci. Let $ = $, and, fori =1, ..., k, let $; be the refinement of $; | by
¢;. The numbering that $;_; induces on C' is isomorphic to that induced by $ (the same order
relations hold), so refining C’s, | by ¢; is valid. It then follows via the Refinement Lemma
that $; is valid. We conclude that $; is a valid refinement of $. We can obtain $; directly by
using ¢; to stratify C' for all class-components C? in parallel. This is how steps R3 and R4 of
ITERATED REFINEMENT are carried out. The algorithm STRATIFY(Gs, C') for stratifying C is
given in §2.2.

2.2. Valid well-stratification. Before we give the algorithm for valid well-stratification,
we give some results used in proving the correctness of the algorithm. We start with a lemma
of Dirac [14].

LEMMA 2.5 (Dirac). If S is a minimal set of nodes whose removal separates a connected
chordal graph into exactly two connected components, then S is a clique.

COROLLARY 2.6. In a chordal graph, the common neighbors of two nonadjacent nodes
form a (possibly empty) clique.
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Proof. In the induced subgraph consisting of the two nonadjacent nodes x and y and their
common neighbors, the common neighbors form a minimal separator between x and y. u

COROLLARY 2.7. Let H be a connected subgraph of a chordal graph G. Then the
numbering § is valid, where § assigns 1 to H and neighbors of H and 0 to all other nodes.

Proof. Let P be a backward path in G, and let C be the component of the O-numbered
nodes that contains the internal nodes of P. Let D be the set of 1-numbered neighbors of
nodes in C. In the subgraph induced on C U D U H, the nodes of D form a minimal separator
between C and H, so D is a clique. The endpoints of P are in D, so they are adjacent. |

LEMMA 2.8. Let K be a clique in a chordal graph G. Then the numbering § is valid,
where § assigns 1 to K and those nodes adjacent to all of K and 0 to all other nodes.

Proof. This is a proof by induction on |K|. The base case, in which |K| = 1, follows
from Corollary 2.7. Suppose |K| > 1, and let v be a node of K. Let A consist of the nodes of
K — {v} and the nodes adjacent to all of K — {v}. Let o be the numbering assigning 1 to A
and O to other nodes. By the inductive hypothesis, « is valid. Because K is a clique, visin A.
Let 8 be the numbering of A that assigns 2 to v and its neighbors and 1 to other nodes of A.
By Corollary 2.7, 8 is a valid numbering of A. Let y be the refinement of o by 8. The nodes
of A have no richer neighbors in G, so by the Refinement Lemma, y is a valid numbering
of G. But y is a refinement of the numbering § defined in the statement of the lemma, so § is
also valid. This completes the inductive step. |

LEMMA 2.9. Let o be any valid numbering of a graph G, and let K be a clique contained in
the highest-numbered class of G. Suppose the numbering y is obtained from « by increasing
the numbers of nodes of K. Then y is valid.

Proof. The only backward paths introduced have endpoints in the clique K. 0

LEMMA 2.10. Let $ be a valid numbering of a graph G. Suppose C is a class-component
of G, and all nodes in C have the same richer neighbors in Gg. Let ¢ be a valid numbering
of C. Then the refinement of Gg by ¢ is valid. R

Proof. By the Refinement Lemma, we need only show that the refinement A of Cs by ¢
preserves validity. Assume §$ is valid, so the nodes of C not in C form a clique by Lemma
2.3. Let P be a backward path in C, with endpoints x and y. We must show that x and y are
adjacent. If both endpoints are in C, they are already adjacent by the validity of ¢. If neither
is in C, they belong to a clique and hence are adjacent. Suppose therefore that x isin C and y
is not. Since P is a backward path and an endpoint lies in C, all the internal nodes of P must
also lie in C. Hence y is a richer neighbor of C in Cs. Since all nodes in C have the same
richer neighbors, it follows that y is a neighbor of x. |

The procedure STRATIFY (Gg, C) appears in Figure 3. If C is a nonsingleton class-
component of Gg, the procedure increases the numbers of some of the nodes of C, resulting
in a valid refinement of G in which C has been well-stratified. The procedure takes O (log k)
time using O (k) processors, where k is the number of edges of G with at least one endpoint in
C. To achieve this processor bound, the procedure first identifies these edges by inspecting the
adjacency lists of nodes in C and subsequently never examines any other edges of G. While
inspecting the adjacency lists, the procedure also identifies the set B of richer neighbors of C
in Gg. The procedure uses the fact that if $ is a valid numbering of G, then the set of nodes B
form a clique by Lemma 2.3. The procedure assumes the existence of edges between nodes in
B without ever checking for their presence. Specifically, in computing connected components
of a graph involving nodes of B, the procedure uses the algorithm of Shiloach and Vishkin
[43], suitably modified to take into account the fact that any two nodes of B are adjacent.

Depending on the nodes in B, the procedure STRATIFY(Gyg, C) calls one of three subpro-
cedures, in which most of the work is done. In each procedure, we make use of parallel prefix



804 PHILIP N. KLEIN

Procedure STRATIFY(Gs, C).

S1 For each node v in C, identify those edges connecting v to another node in C, and those
edges connecting v to a richer node.

S2 Let B be the set of richer neighbors of C.

S3 If B is empty, call NONE(Gg, C, 1), and end.

S4 Let € be 1/2|C| times the difference between $(C) and the number assigned to the next
higher class.

S5 If every node in B has at least %lC | neighbors in C, call HIGHDEGREE(Gs, C, B, €), and
end.

S6 If there are nodes in B with fewer than % |C| neighborsin C, call LOWDEGREE(Gs, C, B, €).

FIG. 3. The main procedure for finding a valid well-stratification.

computation, due to Ladner and Fischer [31]. In particular, the subprocedures increase the
numbers assigned to some of the nodes of C. We must make certain that these numbers are
not increased too much. The new numbers to be assigned to nodes of C must all be less than
numbers currently assigned to nodes richer than C; otherwise, the resulting numbering would
not be a refinement of the old numbering. Therefore, in each procedure, we let € denote a
number small enough that the numbers of nodes of G richer than C exceed the numbers of
nodes of C by at least |C|e. This choice of ¢ allows us to increase the numbers of C by up to
|C e and still end up with a refinement of the old numbering. We find this convention useful
in presenting the algorithms; however, see Implementation Note 1.

We now show that STRATIFY(Gyg, C) succeeds in finding a valid refinement that well-
stratifies C. We shall refer to the nodes of C as crimson nodes and the nodes of B as blue
nodes. We consider three cases, corresponding to the three procedures.

Case 1. There are no blue nodes. In this case, procedure NONE(Gg, C, €) shown in
Figure 4 is called. The procedure first identifies the set D of high-degree nodes: D = {v €
C : vhas > %lCl neighbors in C}. The procedure then branches according to the following
subcases.

Subcase (1). Some component H of C — D has size > %‘ICI. In this case, the procedure
uses the spanning tree T of H to choose a connected subgraph H’ of H such that the set A
consisting of H’ and its neighbors includes between n/5 and 4n/5 nodes. Then the numbers
assigned to nodes of A are increased, resulting in a well-stratification of C. The validity of
the numbering follows from Lemma 2.7.

Subcase (2). Each component of C — D has size at most %[CI, and D is a clique. In
this case, we increase the numbers assigned to nodes of D, placing each node of D in its own
class. The components of the remaining nodes of C are small, so we have well-stratified C.
The validity of the numbering follows from Lemma 2.9.

Subcase (3). D is not a clique. In this case, we choose two nonadjacent nodes x and y in
D. At most %IC | nodes of C are not neighbors of x, and so at least %lCI neighbors of y are
also neighbors of x. We increase the numbers of these common neighbors of x and y, putting
each in its own class. The numbering is valid by Lemmas 2.6 and 2.9.

Case 1. Each blue node is adjacent to at least %IC | crimson nodes. In this case, the
procedure HIGHDEGREE(Gg, C, B, €) of Figure 5 is called. The procedure arbitrarily orders
the blue nodes: B = {vy,...,v}. For 1 < j < k, let F; be the set of nodes v such that
v is adjacent to all the nodes vy, ..., v;. Then j is chosen to be the maximum j such that
F; contains at least |C|/5 crimson nodes. The numbers of nodes in F; are then increased by
€. The validity of the resulting numbering follows from Lemmas 2.8 and 2.9. At most ‘5—‘|C|
nodes of C do not have their numbers increased. However, the set F; may be quite large. We
consider two subcases.
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Procedure NONE(Gg, C, €).

N1 Let D={v e C : vhas> %|C| neighbors in C}.

N2 Find a spanning forest of C — D.

N3 If some component H of C — D has at least ‘51|C|

nodes,

N4 Let T be the spanning tree of H.

N5 Arrange the nodes of H in some order consistent with their distance in 7 from the root:
Vi evwy Uk

N6 For 1 < j <k, let A; denote the set consisting of vy, ..., v; and neighbors of these
nodes in C.

N7 Using parallel prefix computation,
choose j = max{j : |4;| < ‘51|C|}.

N8 Increase the numbers of nodes in A; by e.

N9 Otherwise,

N10 If D is a clique,

N11 Let vy, ..., v; be the nodes of D.

N12 For 1 <i <k, add €i to v;’s number.

N13 Otherwise,

N14 Let x and y be two nonadjacent nodes of D.

N15 Let vy, ..., v be their common neighbors.

N16 For 1 <i <k, add €i to v;’s number.

FIG. 4. The subprocedure used to well-stratify C if C has no richer neighbors.

Procedure HIGHDEGREE(Gg, C, B, €).

(Each node of B has at least %lCl neighbors in C.)

H1 Arbitrarily order the nodes of B: vy, ..., .

H2 for 1 < j <k, let F; denote the set of nodes of C
adjacent to all of the nodes vy, ..., v;.

H3 Using parallel prefix computation,
choose j = max{j : |Fj| > %lCl}.

H4 Increase the numbers of nodes in F; by €.

H5 Let C’ be the largest component of G[Fj].

H6 If j = k, then call NONE(Gyg, C', €).

FIG. 5. The procedure HIGHDEGREE used to stratify C in case every richer neighbor of C has high degree in C.

Subcase (1). j < k. In this case, by choice of j, the set of crimson nodes adjacent to
all the nodes vy, ..., vj4q is less than [C|/5. Since there are at most %lC | crimson nodes not
adjacent to v;.1, it follows that the number of nodes adjacent to all the nodes vy, .. ., vj is less
than %lC | + %ICI = %ICI. Thus C has been well-stratified in this case.

Subcase (2). j = k. In this case, every node in Fj is adjacent to every blue node. The
procedure finds the largest component C’ of G[F;] and calls NONE(Gs, C’, €), yhich stratifies
C’ as if C' had no richer neighbors. The validity of the resulting numbering of C follows from
Lemma 2.10 and the Refinement Lemma. Since C’ is well-stratified and |C — C’| < %IC [, C
is well-stratified.

Case III. Neither Case I nor Case II holds. In this case, the procedure LOWDEG-
REE(Gs, C, B, €) in Figure 6 is called. The procedure defines D to be the set of nodes in
C U B having more than %IC | crimson neighbors. The procedure then finds a spanning tree
T of the (unique) component H of G[(C U B) — D] containing blue nodes and roots 7" at a
blue node. The nodes of T are arranged in some order consistent with their distance from the
root: vy, ..., v. For1 < j <k, let A; be the set consisting of vy, ..., v; and neighbors of
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Procedure LOWDEGREE(Gyg, C, B, €).
(There exists a node in B having fewer than %IC | neighbors in C.)
L1 Let D = {v € CUB :vhas > £|C| neighbors in C}.
L2 Let H be the connected component of G[C U B — D]
containing nodes of B.
L3 Find a spanning tree T of H, rooted at a node
of B.
L4 Arrange the nodes of T in some order consistent with their distance in T from the root:
Uiy ovny Uk
L5 For 1 < j <k, let A; denote the set consisting of
Vi, ..., v; and neighbors of these nodes in C.
L6 Using parallel prefix computation,
choose j = max{j : |4; NC| < %ICI}.
L7 Increase the numbers of nodes in A; N C by e.
L8 Let C’ be the largest component of C — A;.
L9 If|C'| > §|C|, then call STRATIFY(Gs, C').

FIG. 6. The procedure LOWDEGREE used to stratify C in case some richer neighbor of C has low degree in C.

these nodes in C. Then J is chosen to be the maximum j such that A; includes at most %ICI
crimson nodes.

Next, the numbers of nodes in A; are increased in step L7. To see that the resulting
numbering is valid, first consider the 1ntermed1ate numbering in which all nodes in A; have the
same number, a number higher than that assigned to the nodes in C— Aj. Since H[{v1, ..., v;}]
is connected, the intermediate numbering is valid by Lemma 2.7. To obtain the numbering
produced in step L7 from the intermediate numbering, we need only increase the numbers
of some blue nodes. The blue nodes form a clique lying in Aj, so the validity of the final
numbering follows from Lemma 2.9.

The set A; N C of nodes whose numbers have increased has size at most %IC |. However,
the set C — A; of nodes whose numbers have not increased may be quite large. The procedure
finds the largest component C’ of C — A ; and proceeds according to the following two subcases.

Subcase (1). |C']| < %lC |. In this case, we are done; C has been well-stratified.

Subcase (2). |C'| > ‘g‘lCI. First, we observe that in this case, J = k. To see this, suppose
J < k. Then the number of crimson nodes among {vy, ..., vj;+1} and neighbors is more than
%lCl. Since vj4; is adjacent to at most %lCl crimson nodes, it follows that the number of
nodes whose numbers have increased is more than %lC] - %lC] = %ICl, which contradicts
the fact that |C'| > 2|C].

Since J = k, every crimson node in T and every crimson neighbor of 7" has had its number
increased. Therefore, C’ contains no nodes of T and no neighbors of 7. Every node in D has
more than %IC | crimson neighbors, and all but at most % |C| of the crimson nodes are in C’, so
every node in D has more than % |C| crimson neighbors in C’. Thus every richer neighbor of C'
is adjacent to at least %lC | nodes of C’. This shows that the recursive call to STRATIFY in step
L9 results in a call to HIGHDEGREE and not in a call to LOWDEGREE. Thus no further recursive
calls occur. The recursive call well-stratifies C’ and hence C as well, since [C — C'| < élC [
The validity of the resulting numbering follows from the Refinement Lemma.

Implementation Note 1. We have described the procedures ITERATED REFINEMENT and
STRATIFY as if real numbers were used to number the nodes. In implementing the algorithm,
however, it is desirable to use integers to number the nodes. The simple approach is to multiply
all numbers by n at the beginning of each stage and then renumber by sorting at the end of
each stage. A more efficient approach is to intially allocate 4 logs , n bits for each node label,
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four bits per stage of ITERATED REFINEMENT. For the ith stage, we use the 4(i — 1) + 1st
through the 4ith most significant bits. In Case I, Subcases (1) and (2), the procedure needs
more bits; the procedure must assign a different number to each node of a clique. For each
of these nodes, however, we can afford to use all the remaining bits because each such node
ends up in its own class and hence needs no further labeling in subsequent stages.

Implementation Note 2. In step N7 of procedure NONE, we ordered the nodes vy, ..., vk
of a spanning tree T and chose j maximum such that {vy, ..., v;} and neighbors comprise at
most gﬁ |C| nodes. Here we provide more details for implementing that step; the techniques are
also applicable to step H3 of procedure HIGHDEGREE and to step L6 of procedure LOWDEGREE.
For each node v # v; in C, let earliest-nbr(v) be the minimum 7 such that v is adjacent to
v; or undefined if v has no neighbors among vy, ..., vg. Let earli/e\st-nbr (vy) = 1. For each
node v; in T, earliest-nbr~!(v;) is the set of neighbors of v; in C that are not neighbors of
any lower-numbered node. Let f(v;) = |earliest-nbr~'(v;)|, and let g(£) = Zle f(v;) for
£ = 1, ..., k. Then g(£) is the number of nodes comprised by vy, . .., v, and their neighbors
in C. The function g(-) can be computed from f(-) by a parallel prefix computation, after
which J is chosen as large as possible such that g(j) < %lCI.

Implementation Note 3. In step L2 of procedure LOWDEGREE, we computed the con-
nected components of an induced subgraph of G containing nodes of C and nodes of B. We
want to implement this step in such a way that the actual edges between nodes of B are not
involved. To carry out the connected-components computation (and to find spanning trees
of the components), we use the connectivity algorithm of [43], suitably modified to take into
account our assumption that every two blue nodes are adjacent: we start by constructing a tree
containing all the blue nodes in H — D and another tree containing all the blue nodes in D.
We then execute the algorithm of [43], using these artificial edges of these trees as surrogates
for the set of edges between nodes in B. Thus the number of processors required is no more
than the sum of |C U B|, the number of edges in C, and an additional term of |B| — 1 for the
artificial edges.

This completes the description of the algorithm STRATIFY for valid well-stratification of
a class-component. At most one recursive call is made, as we have shown. The time for
the algorithm is dominated by the time to compute connected components and find spanning
trees, which is O (log |C U B}) using the algorithm of [43]; as shown in Implementation Note
3, we need only |C U B| + |E(C)| + |B| — 1 processors, a number of processors bounded by
at most twice the number of edges with at least one endpoint in C. We thus obtain the follow-
ing theorem.

THEOREM 2.11. Suppose $ is a valid numbering of a chordal graph G and C is a class-
component of Gs. Valid well-stratification of C can be done in O(logk) time using O (k)
processors of a CRCW PRAM, where k is the number of edges with at least one endpoint in C.
Hence, a PEO of the chordal graph G can be found in O (log? n) time using O (m) processors.

Using our algorithm for valid well-stratification in the procedure ITERATED REFINEMENT,
we can therefore find a PEO of a graph G in O (log2 n) time using O (n 4 m) processors.

3. PQ-trees. Inthissection, we review the PQ-tree data structure developed by Booth and
Lueker [6]. This data structure is useful in recognition and isomorphism-testing of interval
graphs, problems we address in §4. In §3.1, we introduce a parallel PQ-tree-processing
algorithm that arises in parallel algorithms for interval graph recognition and isomorphism-
testing (§4).

A PQ-tree is a data structure developed by Booth and Lueker [6] for representing large
sets of orderings of a ground set S. A PQ-tree T over the ground set S is a rooted tree whose
leaves are the elements of S; every internal node is designated either a P-node or a Q-node and
has at least two children. Hence T has at most 2n — 1 nodes. The children of each internal
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node are ordered from left to right. These orderings induce a left-to-right ordering on the
leaves of the tree; the sequence of leaves is called the frontier of the tree T and is denoted
fr(T).
Let us say an automorphism of a PQ-tree T is legal if for every internal node v,
e if v is a Q-node then the automorphism either reverses the order of v’s children or
leaves the order unchanged, and

e if v is a P-node then the automorphism arbitrarily permutes the order of v’s children.

The set of orderings of the ground set represented by a PQ-tree T is defined as

L(T) = {fr(T’) : T’ is obtained from T by a legal automorphism}.

Consider, for example, a PQ-tree tree consisting of a P-node root whose children are all the
leaves. This PQ-tree represents the set of all orderings of the ground set S and is therefore
called the universal PQ-tree for S. Note that for any PQ-tree T, the automorphism that reverses
the order of children of every node is legal, so if X is in L(T') then the reverse of A is also in
L(T).

A special null PQ-tree is defined to represent the empty set of orderings.

Let A be a subset of S. An ordering A of the elements of S is said to satisfy A if the
elements of A form a consecutive subsequence of A. For the PQ-tree 7', let W (T, A) = {A €
L(T) : A satisfies A}.

Booth and Lueker give an algorithm REDUCE(T, A) that transforms T into a PQ-tree 7’
such that L(T") = W(T, A). We call this reducing T with respect to the set A. In this context,
we call A a reduction set. Note that reduction can yield the null tree. The algorithm of Booth
and Lueker takes O(]A|) time. Each PQ-tree for a ground set S can be obtained from the
universl PQ-tree by a series of reductions. Moreover, given any nonnull PQ-tree, it is easy
to read off one of the orderings represented, namely the frontier of the tree. Klein and Reif
[29] gave an algorithm MDREDUCE(T, {Ay, ..., A;}) that reduces T with respect to all the
nonempty sets A; simultaneously in the case where the sets A; are all pairwise disjoint. The
algorithm MDREDUCE runs in O (logn) time using n processors, where 7 is the size of the
ground set of T. The case where the reduction sets are not disjoint was handled in [29], but
the algorithm required O (kn) processors and O (log k log? n) time

In §3.1, we give a parallel reduction algorithm that handles nondisjoint reduction sets
and requires only a linear number of processors. More specifically, the algorithm MREDUCE
reduces a PQ-tree T with respect to nonempty subsets Ay, ..., A in time O(logn - (logn +
logm)) time using n + m processors, where m = ), A;. A preliminary version of this
algorithm was given in [27].

3.1. PQ-tree nondisjoint reduction. The reduction algorithm uses a divide-and-conquer
strategy in which recursive calls are made to different parts of the tree in parallel. Ateach level
of recursion, a constant number of calls are made to a subroutine for reduction with respect to
disjoint sets. These calls serve two purposes. The purpose of one call is to separate out parts
of the tree from each other so that the algorithm can recur on them in parallel. Some of the the
reduction sets A; are relevant to two parts of the tree and thus to two recursive calls; such a set
gives rise to two subsets, one for each call. Dividing A; into two subsets and reducing the parts
of the tree with respect to these subsets, however, does not completely solve the problem. One
must introduce some additional constraints, effectively “gluing” the subsets together insofar
as they constrain the PQ-tree. Thus the purpose of two other calls to the subroutine for disjoint
reduction is to reduce the tree with respect to two special “gluing” sets that are derived from
the original reduction sets A;.
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We first give Lemmas 3.1 and 3.2, which describe some simple properties of orderings.
We next give a procedure GLUE which derives two sets from reduction sets A;. The key
property of these gluing sets is described in Lemma 3.3. Next, in Lemma 3.4, we show that
reducing with respect to the sets A; is equivalent to reducing with respect to subsets of these
sets that lie in different parts of the tree (and also reducing with respect to the gluing sets). A
key subroutine, SUBREDUCE, is then presented that is based on Lemma 3.4. The main algorithm
of this section, MREDUCE, is mutually recursive with SUBREDUCE.

LEMMA 3.1. Suppose ) satisfies A and B. Then

intersection property: A satisfies AN B;
union property: if AN B # ), then A satisfies AU B;
difference property: if A 2 B, then A satisfies A — B.

LEMMA 3.2. Suppose A satisfies sets B and C, and the leftmost symbol of B in A coincides
with the leftmost symbol of C in A. Then either B C C or C C B.

Proof. Write . = ... €€, ..., where ¢ is the leftmost symbol of B in X and the leftmost
symbol of C in A. Then the subsequence of elements of B in A is €; ... €p| and the subse-
quence of elements of C is €; ...¢€|c|. Thusif [B| < |C|then B € C and if |C| < |B| then
C CB. O

We say two sets A and B have a nontrivial intersection if the sets AN B, A — B, and
B — A are all nonempty.

The procedure to construct the gluing sets is as follows.

GLUE(E,{Ay, ..., A}).
o Let A be the collection of sets in {Ay, ..., A;} that have a nontrivial intersection
with E.
o If A is empty, return the pair (9, ¥).
e Let A, be a set in A that minimizes |A, N E|.
e Let A, be a set in A that minimizes |A, — E|. subject to the constraint A, N E 2
A,NE.
Let D=A,NA,.
Let A’ be the collection of sets A; in A suchthat A; N E 2 A,NE.
If A’ is empty then return (D, @).
Let A, be a set in A’ that minimizes |A, N E|.
Let A; be asetin. A’ that minimizes | A; — E | subject to the constraint A;,NE 2 A,NE.
Let F = A, N A;.
Return (D, F).

The sets are represented by a bipartite graph. Each ground-set element and each set A;
is a vertex. There is an edge between the ground-set element x and the set A; if x € A;. To
determine which sets A; have a nontrivial intersection with E, we first mark the ground-set
elements that belong to E. Then we determine, for each set A;, how many marked elements
A; is adjacent to in the bipartite graph. If the number is bigger than zero but smaller than
|A;| and smaller than |E|, then A; has a nontrivial intersection with E. The other steps of the
algorithm GLUE can be implemented in a similar way, using a constant number of marking
and counting operations and finding the minimum among k numbers.

Let n denote the size of the ground set and let m = Zle |A;]. Then the size of the
bipartite graph is O(n + m), and each such operation can be done in O(log(n + m)) time
using (n + m)/log(n + m) processors. Thus GLUE(E, {Ay, ..., Ax}) takes O(log(n + m))
time using (n + m)/log(n + m) processors.

The proof of the following lemma is somewhat technical and can be skipped on a first
reading.
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LEMMA 3.3. Suppose there exists some ordering satisfying E, Ay, ..., Ay. Let (D, F) =
GLUE(E, {A1, ..., At}). Fori = 1,...,k, if A; has a nontrivial intersection with E, then
either D C A; or F C A;.

Proof. Let o be the ordering satisfying E, Ay, ..., A;. Let us write

O =...001€1...€600p ...,

where «; is the last symbol before the elements of E, «y is the first symbol after the elements
of E, and €; and ¢, are, respectively, the first and last symbols of E in o.

Suppose A is nonempty. In this case, D = A, N A,. Since A, contains at least one
element of E and at least one symbol not in E, it contains two adjacent symbols, one in E and
one not in E. Thus either a1, €; € A, or ay, €, € A,. Assume without loss of generality that
ay, €] € A, (else replace o with the reverse of o). Since A, NE 2 A,NE,wehavee; € A,.
Since A, also contains at least one symbol not in E, either oy € A, or ap € A,. Since A is
satisfied by o, if a; were in A, then all of E would also be in A, contradicting the fact that
A, has a nontrivial intersection with E. Thus oy € A,. We conclude that if D is defined then
oy, €1 € D.

Furthermore, since «; is the rightmost symbol in o of both A, — E and A, — E, by applying
Lemma 3.2 to the reverse of o, we infer that either A, —E C A, — EorA,—E C A, —E.
The second inclusion would imply |A, — E| < |A,; — E|, which would contradict the choice
of A;. Thus we have A; — E € A, — E. By choice of A;, wehave A,NE C A, NE. We
conclude that (A; — E) U (A, N E) = A; N A,, whichin turnis D.

Suppose A’ is also nonempty, so F = A, N A;. An analogous argument shows that either
o1, € € F oray, e, € F. Assume for a contradiction that the former holds. Then ¢; is the
leftmost symbolin o of A, N E and of A, N E. Hence by Lemma 3.2, either A,NE C A, NE
or A,NE C A,NE. The first inclusion would violate the choice of A,. The second inclusion
would imply |A, N E| < |A, N E|, which would violate the choice of A,,. This proves that if
F is defined then o, €, € F.

To complete the proof, suppose A; has a nontrivial intersection with E. We must show
that either D C A; or F C A;.

Since A is nonempty (it certainly contains A;), D = A, N A,. Since o satisfies A;, which
contains some symbols in E and some not in E, either o, €; € A; or ay, €; € A;.

Casel. aj, € € A;. Then ¢ is the first symbol in o of both A; N E and A, N E. By
Lemma 3.2, therefore, either A,NE C A;NE or A; C A,NE. The second inclusion
would imply |A; N E| < |A, N E|, contradicting the choice of A,. Hence we have
A, NE C A;NE. Also, «; is the last symbol in o of both A; — E and A, — E.
By applying Lemma 3.2 to the reverse of o, we infer that either A;, — E C A; — E
or A; — E C A; — E. The second inclusion would imply |A; — E| < |A; — E]|,
contradicting the choice of A;. Hence we have A, — E C A; — E. We infer
(A —EYU(A,NE)CS (A; —E)U(A;NE). Thus D C A;.

CaseIl. ap, €, € A;. Since €; ¢ A; N E, wehave A; N E 2 A, N E. Therefore, A’ is
nonempty, so F = A, N A. By essentially the same argument as in Case I, F C A;.
Thus the claim is proved.

The following lemma is the basis for our reduction algorithm.

LEMMA 3.4. Let E, Ay, ..., A be subsets of the ground set of T. Suppose there exists
some ordering satisfying all these sets. Let (D, F) = GLUE(E, {Ay, ..., At}). Then an
ordering A satisfies these sets if and only if the following conditions hold:

1. A satisfies E;
2. A satisfies E N A; for all i;
3. A satisfies A; for all i, where
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FiG. 7. A PQ-tree is depicted. The P-nodes are indicated by circles, and the Q-nodes by rectangles. The ground
setis{a,b,c,d,e, f}, and the frontierisbafdce.

~ A; — E if A; and E have a nontrivial intersection,
T A; otherwise;

4. A satisfies D and F.

Proof. First, we prove the “only if” direction. Suppose A satisfies Ay, ..., Ak, E. Then
condition 1 follows trivially. Furthermore, condition 2 follows from the intersection property
of Lemma 3.1 and condition 3 follows from the difference property. If D is nonempty, it is the
intersection of two sets A, and A, that are satisfied by A; hence by the intersection property,
D is itself satisfied by A. Similarly, F' is satisfied by A. Thus condition 4 holds.

Now we prove the “if” direction. Suppose conditions 1-4 hold of A. Clearly, X satisfies
E. We show that X satisfies A; (i = 1, ..., k). N

By condition 2, A satisfies A; NE. By condition 3, we have that A satisfies A;. If A; has
a trivial intersection with E then A; = A;, so we are done. Assume therefore that A; and E
have a nontrivial intersection. In this case, A; is A; — E. By condition 4, D and F are satisfied
by A. By Lemma 3.3 either D € A; or F € A;. In the first case, since A; — F and A; N E
both intersect D, it follows from the intersection property of Lemma 3.1 that X satisfies the
union (A; — E) U D U (A; N E), which is just A;. In the case where F' C A;, the proof is
analogous. a

DEFINITION 3.5. For a node v of a PQ-tree T, leavesy(v) denotes the set of pendant
leaves of v, i.e., leaves of T having v as ancestor. Let lcar(A) denote the least common
ancestor in T of the leaves belonging to A. Suppose that v = lcar(A) has children v, ... vg
in order. We say A is contiguous in T if

e v is a Q-node, and for some consecutive subsequence v, ... v, of the children of v,
A= Upsiﬁq leaves(v;), or
e v is a P-node or a leaf, and A = leaves(v).

For example, in Figure 7, the set {a, f, d} is contiguous. Also, the set {a, f,d, c} is
contiguous, as is the set {c, e}. The set { f, d, c} is not contiguous, nor is {b, c}.

The significance of contiguity is as follows. Lueker and Booth (see [32]; see also Lemma
2.1 of [29]) prove that if every ordering in L(T) satisfies some set E then E is contiguous in
T.

Suppose that E is indeed contiguous in T'. The E-pertinent subtree of T with respect to
E is the subtree consisting of Icar (E) and those children of Icar (E) whose descendents are
in E. Note that the E-pertinent subtree is a PQ-tree over the ground set E. We denote this
tree by T |E.

For a set A, define

ANE ifA;NE+#E,

AE =
| {@ if A;,NE=E.
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Remark 3.6. Suppose we modify the tree T by reducing its E-pertinent subtree with
respect to a subset of E. It follows directly from the PQ-tree definitions that the result is the
same as if we had reduced the whole tree T with respect to this subset. (If the reduction of
the E-pertinent subtree yields the null tree, then we replace T with the null tree.)

The above observation suggest that our algorithm might profitably operate in parallel on
smaller disjoint subtrees of a PQ-tree 7. It is also useful to operate on a tree obtained by
deleting a subtree from 7T'.

Let xg denote Icar(E). Let T/E denote the subtree of T obtained by omitting all the
proper descendants of v that are ancestors of elements of E. Then 7Tj is a PQ-tree whose
ground setis S — E U {xg}. For a set A, define

Ai —EU {*E} lfA, 2 E,
A,‘ / E = .
{ A —FE otherwise.

Remark 3.7. Suppose that either A © E or AN E = . It follows from Lemma 2.18
of [29] that if we reduce T/E with respect to A/E, the effect on T is the same as if we had
reduced T with respect to A. (Again, if the reduction of T/E yields the null tree, then we
replace T with the null tree.)

Based on the above observations, we give a subroutine SUBREDUCE used in our algo-
rithm MREDUCE for nondisjoint reduction. The subroutine SUBREDUCE and the main routine
MREDUCE are mutually recursive. SUBREDUCE is designed in accordance with Lemma 3.4.

SUBREDUCE(T, E, {A4, ..., ArD.
1. Reduce T with respect to E using MDREDUCE.

Let (D, F) := GLUE(E, {Ay1, ..., Ar)).
If D is well defined, reduce T with respect to D using MDREDUCE.
If F is well defined, reduce T with respect to F using MDREDUCE.
. In parallel, make the following recursive calls to MREDUCE:

(a) Modify T by calling MREDUCE(T |E, {A|E, ..., A¢|E}).

(b) Modify T by calling MREDUCE(T / E, {A1/E , Ax/E}).
6. Check that in the frontier of the resulting tree T, each reduction set A; is consecutive.

If so, return T'. If not, return the null tree.

LA W

Each step of SUBREDUCE except for the recursive calls takes O (log(n + m)) time using
n + m processors.

We now prove that the effect of SUBREDUCE(T, E, {Ay, ..., A}) is to reduce T with
respect to E, Ay, ..., A;. Step 1 reduces T with respect to E and Ap,. Steps 3 and 4 reduce
T with respect to the sets D and F. Let us assume inductively that the calls to MREDUCE
correctly reduce the PQ-trees T'|E and T'/ E with respect to the given reduction sets.

In step 5(a), T| E is reduced with respect to the sets A;|E. Since these sets are subsets of
E, as discussed in Remark 3.6, this has the effect of reducing T with respect to the same sets.
If A;NE # E, then A;|E = A; N E. Thus in this case, the effect is to reduce T with respect
to A;NE. If A; N E = E, then A;|E = {J, so the reduction has no effect but reducing T
with respect to E has no effect either, since 7 was already reduced with respect to E in step 1.
Thus in either case, the effect is that of reducing T with respect to A; N E.

In step 5(b), T/E is reduced with respect to the sets A;/E defined immediately before
Remark 3.7. If A; has a nontrivial intersection with E, then certainly A; 2 E, so A;/E =
A; — E. If A, has a trivial intersection with E, then one of the following three cases must
hold: A; € E, A; 2 E,and A; N E = (. In the first case, A;/E = @, so reducing T/E
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with respect to A;/E has no effect. In the second and third cases, by Remark 3.6, the effect
of reducing T/E by A;/E is to reduce T with respect to A;. R

Thus, in general, the effect is to reduce T with respect to the set A; defined in condition 3
of Lemma 3.4. It follows by that lemma that if there exists an ordering L(T) satisfying
E, Ay, ..., Ay, then the effect of the entire call is to reduce T with respect to these reduction
sets. Thus if there exists such an ordering, the resulting PQ-tree represents all such orderings.
Moreover, in this case, the frontier of that PQ-tree is one such ordering, so the resulting PQ-tree
is returned. Conversely, if no such ordering exists, the frontier of the PQ-tree will certainly
not be such an ordering. This shows the correctness of the procedure SUBREDUCE.

The algorithm MREDUCE uses the subroutine SUBREDUCE in conjuction with a technique
for choosing E, the second argument to SUBREDUCE, so that it consists of roughly half the
elements of the ground set of 7. This choice ensures that the recursion depth of MREDUCE is
logarithmic.

Before giving the algorithm, we discuss the notion of the intersection graph of a collection
of sets. Let F be a family of subsets Ay, ..., Ag of S. The intersection graph of F is a graph
whose nodes are the sets A; and where two sets are considered adjacent if they intersect. In
the present context, the significance of the intersection graph is given by the following easy
corollary to the union property of of Lemma 3.1.

COROLLARY 3.8. Suppose an ordering A of S satisfies the sets Ay, ..., A, and the
intersection graph of these sets is connected. Then A satisfies their union U; A;.

Implementation Note 4. Note that the intersection graph of F may have a number of
edges greatly exceeding the sum of the cardinalities of the sets in F. Therefore, to efficiently
compute the connected components of the intersection graph, we construct an auxiliary bi-
partite graph as described in connection with the procedure GLUE. The auxiliary graph has
node-set F U S, and there is an edge between a set in F and an element of S if the element
belongs to the set. Two sets in F are in the same connected component of the intersection
graph if they are in the same component of the auxiliary graph. Moreover, a spanning for-
est of F can easily be obtained from a spanning forest of the auxiliary graph. Note that
the number of edges in the auxiliary graph is just the sum of the cardinalities of the sets in
F. Thus, by using a standard connectivity algorithm [19, 43] on the auxiliary graph, we
can obtain the connected components and spanning forest of the intersection graph of F in
time O(log|F U S|) using |F U S| processors (or |F U S|/log|F U S| processors using
randomization).

We finally give the algorithm for multiple nondisjoint reduction.

MREDUCE(T, {Ay, ..., A}).

1. Purge the collection of input sets A; of empty sets. If no sets remain, return.

2. Let n be the size of the ground set of T. If n < 4, carry out the reductions one by
one.

3. Otherwise, let A be the family of (nonempty) sets A;. Let S consist of the sets A;
such that |A;| < n/2. We call such sets “small.” Let £ be the remaining, “large,” sets
in A. Find the connected components of the intersection graph of A, find a spanning
forest of the intersection graph of S, and find the intersection (] £ of the large sets.

4. Proceed according to the following four cases:

Case 1. The intersection graph of A is disconnected. In this case, let Cy, ..., C, be the
connected components of A. Fori = 1,...,r, let E; be the union of sets in
the connected component C;. Call MDREDUCE to reduce T with respect to the
disjoint sets Ej, ..., E,. Next, foreachi = 1, ..., r in parallel, recursively call
MREDUCE(T |E;, C;).
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Case I1. The union of sets in some connected component of S has cardinality at least n/4.
In this case, from the small sets making up this large connected component, select
a subset whose union has cardinality between n/4 and 3n /4. (See Implementation

Note 5.) Let E be this union, and call SUBREDUCE(T, E, {Aq, ..., Ax}).
Case III. The cardinality of the intersection of the large sets is at most 3n /4. In this case, from
the large sets choose a subset of the large sets whose intersection has cardinality
between n/4 and 3n/4. (See Implementation Note 6.) Let E be this intersection,

and call SUBREDUCE(T, E, {Aq, ..., Ar}).
Case IV. The other cases do not hold. In this case, let E be the intersection of the large sets,
and call SUBREDUCE(T, E, {Ay, ..., Ar}).

Implementation Note 5. In this note, we address the problem arising in Case II, selecting
some of the sets making up a component of size at least n /4. Each of these sets has size at most
n/2, and our goal is that the union of the sets chosen has cardinality between n/4 and 3n/4. A
spanning tree of the component has been computed in step 3. For each of the sets comprising
the component, compute the distance in the spanning tree from the root. These distances can
be obtained using the Euler-tour technique [44]. Sort the sets according to distance, and let
By, ..., Bs be the sorted sequence. Observe that any initial subsequence By, ..., B; of this
sequence is connected. Let i be the minimum i such that the union U;.=1 B; has cardinality
> n/4. Since each set is small, it follows that the cardinality of the union is no more than
3n/4.

Implementation Note 6. In this note, we address the problem arising in Case III, selecting
a subset of the large sets. Our goal is that the intersection of the selected subset of sets has
cardinality between n/4 and 3n/4. Order the large sets arbitrarily, and let i be the maximum
i such that the intersection of the first i sets has cardinality at least n/4. Since each set has
size at least n/2, the intersection of the first 7 has at most n/2 elements not appearing in the
intersection of the first £ + 1 sets. The latter intersection has cardinality less than n/4, so the
intersection of the first i sets has cardinality less than 3n/4.

First, we address the correctness of the procedure MREDUCE.

LEMMA 3.9. The PQ-tree T’ returned by MREDUCE(T, {Ay, ..., Ay} satisfies

L(T" = {)» € L(T) : A satisfies Ay, ..., Ag).

Proof. Let us assume inductively that the calls to SUBREDUCE in cases 1I, III, and IV
correctly carry out the reductions of T withrespectto E, Ay, ..., A;. To verify the correctness
of the call to MREDUCE in Cases II-1V, therefore, we must only check that in fact reducing 7'
with respect to these sets is equivalent to reducing T with respect to the sets Ay, ..., Ax. That
is, we must prove the assertion that any ordering satisfying Ay, ..., Ay also satisfies E.

In Case 11, since E is the union of a connected subcollection of the collection of reduction
sets A;, the truth of the assertion follows from the union property of Lemma 3.1. In Cases III
and IV, since E is the intersection of some of the A;’s, the truth of the assertion follows from
the intersection property of Lemma 3.1.

Next we address the correctness in Case I. For each component C; of the intersection
graph of A4, we let E; be the union of sets in C;. By the union property of Lemma 3.1, any
ordering satisfying Ay, ..., Ay also satisfies the sets Ey, ..., E,. Hence reducing T with
respect to Ay, ..., Ay is equivalent to first reducing T with respect to Ey, ..., E, and then
reducing with respect to Ay, ..., A;. Furthermore, by Remark 3.6, reducing with respect to
Ay, ..., Ay is equivalent to the reductions carried out in Case I, namely reducing each subtree
T |E; with respect to the family C; of sets whose union is E;. We assume inductively that the
these reductions are correctly carried out by the recursive calls to MREDUCE. This argument
proves the correctness of MREDUCE in Case 1. a
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Now we analyze the time and processor requirements of MREDUCE.

THEOREM 3.10. Consider an invocation MREDUCE(T, {A1, ..., Ax}). Let n be the size of
T’s ground set, and let m =, | A;|. The number of levels of recursion is O (logn). At each
level, the sum of sizes of all ground elements in all PQ-trees is O(n) and the sum of sizes of
all reduction sets is O(m).

We analyze the algorithm by considering the tree R of recursive calls to MREDUCE. The
root of R is the initial invocation of the procedure, and the other vertices of R are all the
subsequent recursive invocations. The children of an invocation v are the invocations called
by v or by an invocation of SUBREDUCE called by v. Let T'(v) denote the PQ-tree to which the
invocation v is applied. Let n(v) denote the size of the ground set of T'(v). Let p(v) denote
the parent of v in R.

The proof of Theorem 3.10 consists of three parts. In Lemma 3.11, we bound the recursion
depth. In Lemma 3.12, we show that, at any level of recursion, the sum of sizes of all ground
sets is O(n). In Lemma 3.13, we show that at every level of recursion the sum of sizes of all
reduction sets is O (m).

LEMMA 3.11 (bounding the recursion depth). The depth of recursion is O (logn), where
n is the size of the ground set of the initial input PQ-tree.

Proof. Say a vertex v is smaller than a vertex w if n(v) < 3n(w)/4 + 1. Consider a
vertex w. If w is a Case II or Case III invocation, the choice of E in these cases is such that
n(w)/4 < |E| < 3n(w)/4. The children of w in these cases involve the PQ-trees T|E and
T/E. The ground set of T|E is E, so it has size at most 3n(w)/4. The ground set of T/E
is the ground set of 7 minus the set E, together with the element g, so it has size at most
3n(w)/4 + 1.

Suppose w is a Case IV invocation. The children of w involve the PQ-trees T|E and
T/E. In this case, E is the intersection of the large sets. Since Case III does not hold, the
cardinality of E is larger than 3n(w) /4. Hence the ground set of 7'/ E has size at most n(w) /4.
Thus the corresponding child is smaller than w. Consider the other child u. Its ground set
is E, and its reduction sets are the sets A; N E that are strictly contained in E. Since E is
the intersection of the large sets, only small sets A; have the property that A; N E is strictly
contained within E. It follows that the connected components of the reduction sets of u are
contained within the connected components of the small sets of w. Since Case II does not
hold, each of these connected components has size at most n(w)/2. Thus u is either a Case 1
invocation, in which case all its children are smaller than w, or the reduction sets of u form a
single connected component, in which case u is a Case II invocation.

Summarizing, if w is Case II or I, then its children are all smaller than it, and if w is
Case IV, then its grandchildren are all smaller than it. Finally, if w is a Case I invocation,
none of its children is a Case I invocation, so its great-grandchildren are all smaller than it.
We infer that the number of levels of recursion is O (logn). O

LEMMA 3.12 (bounding the sum of sizes of ground sets). For any level of recursion, the
sum of sizes of ground sets of all PQ-trees being recursed on is O(n), where n is the size of
the ground set of the initial input PQ-tree.

Proof. We show that the ground sets of all PQ-trees at a given level of recursion are
disjoint and that all but n of the elements are in the ground set of the initial input PQ-tree.

For any vertex w that is Case I, the ground sets of the children of w are disjoint subsets
of the ground-set of w. Hence no new ground-set elements are introduced by a Case I vertex.
Each vertex w that is Case II, III, or IV has two children, one working on 7T (w)|E and one
working on T (w)/E. The ground set of the first child is E, a subset of the ground set of T (w),
and that of the second is the ground set of 7" minus the set E, together with a new element xg.
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We see that every vertex’s children have disjoint ground sets. It follows by induction on
Jj that the ground sets of all PQ-trees at level j of the recursion tree R are disjoint.

We have also seen that each vertex introduces at most one new ground set element and
that only vertices with two children introduce such new elements. Furthermore, each vertex
has a nonempty ground set. Let R’ denote the recursion tree R truncated at some level j. Let
s be the number of ground-set elements at that level that do not belong to the ground set of
the initial input PQ-tree. Then the total number of ground set elements is # 4 s. Since each
PQ-tree has a nonempty ground set and the ground sets of the leaves of R’ are all disjoint, the
number of leaves of R’ is at most n + s. Hence the number of internal vertices having two
or more children is at most (n + s)/2. The number of new ground elements is at most the
number of internal vertices having two or more children, so s < (n + s)/2. It follows that
s <n. O

LEMMA 3.13 (bounding the sum of sizes of all reduction sets). At any level of recursion,
the sum of sizes of all reduction sets is O(m), where m is the sum of sizes of reduction sets in
the initial invocation of MREDUCE.

Proof. We analyze the way reduction sets for one level of recursion are transformed by
SUBREDUCE into reduction sets at the next level of recursion. There is a forest that represents
this process. The vertices of the forest are pairs (invocation, reduction set). Consider one
invocation # = MREDUCE(T, {Ay, ..., A;}). Depending on which case arises during this
invocation, each reduction set A; gives rise to one or two reduction sets in child invocations.
In Case I, each reduction set A; gives rise to one reduction set, namely A;, in some child
invocation v. In this case, the only child of (u, A;) is (v, A;). In Cases II-IV, each reduction
set A; gives rise to two, A;|E and A;/E. In these cases, the children of (u, A;) are the pairs
(v, A;|E) and (w, A;/E), where v and w are the appropriate children of the invocation u.
Note that the reduction set A; gives rise to disjoint reduction sets. Moreover, in Cases II-1V,
a new element (xg) may be included in A;/E. Thus each vertex introduces at most one new
element, and only vertices with two children introduce such new elements.

The remainder of the proof is similar to that of Lemma 3.12. Let Q' be the forest Q
truncated at some recursion level j. We focus on the reduction sets in the leaves of Q’. Let
s be the number of occurences in the leaf reduction sets of elements not belonging to the
reduction sets of the original invocation. Then the sum of sizes of all the leaf reduction sets
is m + s. Since empty reduction sets are discarded, we may assume that every leaf of Q' has
a nonempty reduction set. Thus the number of leaves is at most m + s. Hence the number of
internal vertices with two children is at most (m + s)/2. As in the proof of Lemma 3.12, it
follows that s < m. g

This completes the proof of Theorem 3.10. Since each level of MREDUCE takes O (log(n+
m)) time and the recursion depth is O (logn), the total time required is O (log n log(n + m))
using O (n + m) processors.

4. Applications. In this section, we show how having a PEO for a chordal graph enables
one to solve many problems efficiently in parallel. The key to our efficient algorithms is
our use of the elimination tree. The elimination tree is a structure introduced by [42] in the
context of sparse Gaussian elimination but implicit in the work of others, including [40]. In
84.1, we show that the elimination tree determined by a PEO of a chordal graph has useful
separation properties. Most of the chordal-graph algorithms described in this chapter rely on
the elimination tree.

4.1. The elimination tree determined by a PEO. Let $ be a one-to-one numbering of
the nodes of the connected graph G. As in §2, we shall say v is richer than u and u is poorer
than v if the number assigned to v is higher than that assigned to u. We define the elimination
tree T(Gs) of Gy as follows. For every node v except the highest numbered, v’s parent p(v)
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FIG. 8. The existence of a cross-edge e connecting u and v implies the existence of a cross-edge €' connecting
w and v.

T, (Gy)

\Q---------- - - -

FiG. 9. When the node v and its richer neighbors are removed, the subtrees rooted at children of v become
separated from each other and from the remainder of the graph.

is defined to be the poorest neighbor of v that is richer than v. The tree T (Gg) can easily be
constructed from Gg in O (log n) time using (n + m)/ log n processors.

Since parents are richer than their children, there are no directed cycles in 7'(Gyg). Since
each vertex (except the richest) has exactly one parent, T (Gs) is in fact a tree. Recall that a
PEO of a chordal graph is a numbering of the nodes of the graph such that for each node v, the
richer neighbors of v form a clique. Define a cross-edge to be an edge of G such that neither
endpoint is an ancestor of the other in 7 (Gg). If there are no cross-edges, we call T (Gs) a
depth-first search tree. If $ is a PEO, the existence of a cross-edge between the node u and
a poorer node v implies the existence of a cross-edge between u and the parent of v; using
induction on the distance in the tree between endpoints of an edge, we can prove the following
lemma.

LEMMA 4.1. Let G be a chordal graph. If $isa PEO of G, then T (G$) has no cross-edges.

Proof. Let u and v be two nodes; we show that there is no cross-edge between u and v
by induction on the length of the path in 7(Gg) connecting u and v. If this length is 1, v is
the parent of u or vice versa, so an edge between them is not a cross-edge. Therefore, assume
the length is greater than 1.

Suppose e is an edge between u and v. Assume without loss of generality that v is richer
than u. Let w be the parent of u; by choice of parent, w is richer than u but poorer than v. See
Figure 8. Using e, we can form a backward path through u with one endpoint w and the other
v, proving via the Backward-Path Theorem the existence of an edge ¢’ between w and v. By
the inductive hypothesis, e’ is not a cross-edge, so v must be an ancestor of w in T'(Gg). This
shows that e is not a cross-edge. a

We next show T'(G) has desirable separation properties. For a node v, let T,,(Gg) denote
the subtree of T'(Gg) rooted at v. As illustrated in Figure 9, removing v and its richer neighbors
separates the subtrees rooted at children of v from the remainder of the graph.
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LEMMA 4.2. Let $ be a PEO of G. Let v be a node of G with children vy, ..., v in
T(Gs). Let K be the clique of G consisting of v and its richer neighbors. Then G[T,,(Gs)]
is a connected component of G — K, fori =1, ... k.

Proof. To see that G[T,, (Gg)] is connected in G, note that edges in T, (Gg) are edges in
G, and hence T,,(Gy) is a spanning tree of G[T,(Gs)]. None of the nodes in T, (Gs) are in
K, so G[T,,(Gg)] remains connected when K is removed from G.

Suppose there is an edge between a node v’ in T, (Gs) and a node w notin K U T, (Gyg).
The edge cannot be a cross-edge in T'(Gs), so w must be an ancestor of v’; since w is not in
T, (Gg), it must be an ancestor of v as well. Using the edge, we can construct a backward
path from w through v’ and up the tree T (Gs) to v. By the Backward-Path Theorem, w must
be adjacent to v, so w belongs to K, a contradiction. 0

Asacorollary to Lemma 4.2, we can show that a chordal graph has a clique whose removal
breaks the graph into pieces of at most half the size. (This fact was first shown in [21].) Let
the node v of Lemma 4.2 be the lowest node in the elimination tree having more than n/2
descendents. Then every component G[T,(Gg)] has at most n/2 nodes, but together these
components comprise at least n/2 nodes. Hence the clique consisting of v together with its
richer neighbors forms a separating clique. We use this idea below in our algorithm for finding
an optimal coloring.

4.2. Recognition. A recognition algorithm for chordal graphs follows easily from the
PEO algorithm. When the PEO algorithm produces a total ordering $ of G, the correctness of
the algorithm implies that if G is chordal then $ is a PEO; of course, if $ is a PEO, then G is
chordal. It therefore suffices to check whether $ is a PEO. We can parallelize a technique used
in [40]. Each node v sends to its parent p(v) in T'(Gg) a list of v’s richer neighbors (excluding
p(v)). Then each node w sorts the elements of all the lists it received, together with w’s own
adjacency list, and verifies that it is a neighbor of every node on every list it received.

CLAIM. The numbering $ is a PEO if and only if no verification step fails.

Proof. Suppose $ is a PEO. Then for every node v, the richer neighbors of v form a
clique. In particular, the parent of v is adjacent to all v’s other richer neighbors. Thus every
verification step succeeds.

Suppose no verification step fails. We claim that for each node v, the richer neighbors of
v form a clique. The proof is reverse induction on the depth d of v in the tree T'(Gg). The
claim is trivial for d = 0, because the root has no richer neighbors. Suppose the claim holds
for d, and let v be a node at depth d + 1. By the inductive hypothesis, p(v) and its richer
neighbors form a clique K. By the success of p(v)’s verification step, every richer neighbor
of v is a neighbor of p(v) and hence lies in K. This proves the induction step. 0

The claim shows that we can determine whether a given ordering is a PEO of G. The time
for carrying out verification is O (log n) using n + m processors. For subsequent applications,
assume that the numbering $ is a PEO of the chordal graph G.

4.3. Maximum-weight clique. Fulkerson and Gross observed that every maximal clique
S of G is of the form

{v} U {richer neighbors of v}.

To see this, we need only let v be the poorest node of S. It follows that the maximal cliques of
G can be determined from $. Suppose each node is assigned a nonnegative weight. As Gavril
observed, any maximum-weight clique is maximal, so a maximum-weight cliques may easily
be determined from $.

4.4. Depth-first and breadth-first search trees. We showed in §4.1 that the elimination
tree determined by a PEO $ is a depth-first search tree. To obtain a breadth-first search tree
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of G, we construct a tree similar to the elimination tree by choosing the parent of each node
v (except the richest node) to be the richest neighbor of v. Let T be the resulting tree, rooted
at the richest node, which we shall denote by r. Our proof that T is a breadth-first search tree
relies on two claims.

CLAIM 4.3. For each node v, the shortest path from v tor in G is monotonically increasing
in wealth.

Proof. Any subpath whose internal nodes are poorer than its endpoints can be replaced
by a direct edge between the endpoints, by the validity of $. 0

For the second claim, let d(v) denote the length of the shortest path in G from v to r.

CLAM 4.4. If w is a descendent of v in the elimination tree, then d(w) > d(v).

Proof. The proof is by reverse induction on the wealth of w. The basis, in which
w = r, is trivial. Otherwise, let w’ be the second node on a shortest path in G from w to
r, 0 d(w) = 1 4+ d(w’). By Claim 4.3, w’ is richer than w and hence an ancestor of w in
the elimination tree by Lemma 4.1. If w’ is a descendent of v in the elimination tree, then
d(w’) > d(v) by the inductive hypothesis. If w’ is an ancestor of v, then there is a backward
path from v back along tree edges to w and then forward to w’, proving by validity of $ that
v is adjacent to w’ in G and hence that d(v) < 1 + d(w’). O

For each node v # r, let p(v) be the richest neighbor of v in G. Any other neighbor w of
v is a descendent of p(v), so d(w) > d(p(v)) by Claim 4.4. It follows that p(v) is the second
node in a shortest path in G from v to the richest node of G. Thus the tree defined by p(:) is
a breadth-first search tree.

4.5. Maximum independent set. Gavril showed that a maximum independent set Z
of the chordal graph G is obtained by the greedy maximal-independent-set algorithm when
applied to nodes in order of the PEO $ = v; ... v,. His algorithm proceeds as follows. First,
put v; into Z, and delete v, and its neighbors. Next, put the poorest remaining node in Z, and
so forth. Once 7 has been found, the family of cliques of the form {x } U {richer neighbors of x}
for x € 7 is a clique cover (a set of cliques whose union contains all the nodes). Because any
independent set has size at most that of any clique cover, it follows that the above procedure
has identified a maximum independent set and a minimum clique cover.

We want to simulate Gavril’s sequential greedy algorithm in parallel. First, suppose that
the elimination tree T (Gyg) is a path with leaf x. In this case, we give a simple algorithm PMIS
for simulating Gavril’s algorithm. For each node v, let b[v] be the lowest ancestor of v in
T (Gy) that is not adjacent to v in G (or v if no such ancestor exists).

CLAM 4.5. The greedy independent set consists of x, b[x], b[b[x]], and so on.

This set can be determined quickly in parallel using standard pointer-jumping techniques.
The implementation shown in Figure 10 requires O (log n) time, m processors, and O (m log n)
space; the use of more sophisticated techniques (e.g., [3], [10]) achieves the same time bound
using only m/ log n processors and O (m) space.

Proof. Suppose we put x into 7 and delete the neighbors of x. The node b[x] is by
definition the poorest undeleted node. Moreover, we assert that for each undeleted node v,
b[v]is undeleted. If b[v] were a neighbor of x, then there would be a backward path from b[v]
back to x and then up the tree to v; thus v would be adjacent to b[v] by the Backward-Path
Theorem, contradicting the definition of b[v]. This argument proves the assertion. The claim
follows by induction on the length of the elimination path. 0

To generalize this procedure to the case in which T'(Gy) is a tree, we use an idea of Naor,
Naor, and Schiffer: eliminating terminal branches. A terminal branch of a tree is a maximal
path of degree-two nodes ending in a leaf. Naor, Naor, and Schiffer observe that deletion of
all terminal branches of a tree yields a new tree with half as many leaves. Therefore, O (logn)
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PMIS
P1 For each node v, let bp[v] denote the lowest ancestor of v that is not adjacent to v (or else
v).
P2 For stages k =0, ..., [logn] — 1, for each node v, let by [v] := bi[be[v]].
P3 Mark the leaf x as being in the independent set.
P4 For stages k = [logn] — 1, [logn] — 2, ..., 0, for each marked node v, mark by [v].

FiG. 10. A simple implementation of the algorithm PMIS for finding a maximum independent set when the

elimination tree is a path.
O ane

FiG. 11. To splice a node out of a tree, remove the node and reattach the node’s children to its parent.

iterations of terminal branch elimination suffice to eliminate the entire tree. They apply this
ideato the clique tree of a chordal graph, a tree representing the structure of intersections among
maximal cliques, in order to obtain a parallel algorithm for finding a maximal independent set.
However, even assuming the clique tree is given, they prove only that the number of processors
required is O (n?). By applying the idea to the elimination tree, we obtain a simpler algorithm
requiring only m/ log n processors.

Before giving the algorithm, we introduce a bit of tree surgery, called splicing. To splice
a node v out of a tree T is to remove the node and reattach any children of v to v’s parent
in T, as illustrated in Figure 11. If a set of nodes are to be spliced from a tree, the resulting
tree does not depend on the order in which the nodes are spliced out. In fact, they can all be
spliced out at once; for each node v to be spliced out, the children of v are reattached to the
lowest ancestor of v that is not spliced out.

We now describe the algorithm MIS, shown in Figure 12, for constructing a maximum
independent set in a chordal graph G. The algorithm maintains a set Z, the independent set
under construction, and a tree 7', obtained from the elimination tree 7 (Gg) by splicing out
nodes. We prove by induction that the following invariant holds before and after each iteration
of the algorithm.

Invariant.
(1) Z is an independent set.
(2) Every neighbor of a node of 7 is in fact a richer neighbor of some node of Z.
(3) T is obtained from T (Gs) by splicing out the nodes of Z and their neighbors.

The algorithm terminates when 7' is empty, at which point 7 is an independent set such that
every node of G is either in Z or a richer neighbor of some node in Z. Thus, as in Gavril’s
algorithm, the family of cliques of the form {x} U {richer neighbors of x} for x € T is a
minimum clique cover, and Z is a maximum independent set.

Initially, 7 = @ and T = T (Gy), so the invariant holds trivially. Suppose the invariant
holds through the first k iterations of the algorithm, and consider the k 4- 1st iteration. For each
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MIS
M1 To initialize, let Z = J and let T = T (Gy).
M2 While T is not empty,

M3 Use the algorithm PMIS to find the greedy maximum independent set Z3 of the subgraph
induced on each terminal branch B of T'.

M4 Add the nodes | Jz Z5 to Z.

M5 Splice out of T the nodes

U (@B U {neighbors of Zj}).

FiG. 12. The algorithm MIS to construct a maximum independent set I in the chordal graph G.

terminal branch B, the algorithm finds a maximum independent set Zz of the subgraph induced
on B, using PMIS as a subroutine. If two nodes of T lie in different terminal branches, neither
is an ancestor of the other in 7'(Gg), and hence the two nodes are not adjacent, by Lemma 4.1.
Thus |z Zp is an independent set in G, where the union is over all terminal branches of T
Moreover, T contains no neighbors of Z (by part (3) of the invariant), so Z U (g Zp) is an
independent set of G. Thus when the nodes | 5 Zp are added to Z in step M4, part (1) of the
invariant remains true.

To show that part (2) remains true, we must prove that every node w that is newly a
neighbor of a node in 7 is in fact a richer neighbor of a node in Z. Our simulation PMIS of
Gavril’s algorithm on terminal branches 3 guarantees this property when w lies on a terminal
branch. Suppose, therefore, that w does not lie on a terminal branch, and let v € 7 be a
neighbor of w. By Lemma 4.1, v is either a descendent or an ancestor of w in 7'(Gg). The
set Z consists only of nodes in terminal branches of 7' and descendents of such nodes. Hence
v must be a descendent of w and also a poorer neighbor.

In the last step of an iteration of the algorithm, we splice out of T all nodes newly added
to Z and their neighbors. This step ensures that part (3) holds at the end of the iteration.

Having proved that the invariant continues to hold, we now consider the implementation
of the algorithm MIS. In step M3, the algorithm must identify the nodes lying in terminal
branches of 7. An application of the Euler-tree technique [44] suffices to determine, for each
node v of T, the number of leaf descendents of v. The nodes for which this number is 1
are the nodes in terminal branches. Next, the algorithm must find a maximum independent
set in each terminal branch. For each node v in T, bg[v] is assigned the lowest ancestor
w of v in T that is not a neighbor of v, if w lies in a terminal branch. Otherwise, by[v]
is assigned v. As in PMIS, a pointer-jumping technique is then used to mark the nodes
x, bo[x], bo[bo[x]], and so on, for all leaves x of T. The marked nodes are added to Z in
step M4.

To implement the splicing in step M5, we again use a pointer-jumping technique; for each
node v, we compute the lowest ancestor of v in T that is not to be spliced out. Each step can
be implemented in O (logn) time using m/ logn processors and O (m) space. Each iteration
removes all nodes in terminal branches and hence reduces the number of leaves in T by a
factor of two; consequently, [logn] + 1 iterations suffice, for a total of O (log® n) time.

4.6. Optimal coloring. Gavril showed that applying the greedy coloring algorithm to the
nodes of G in reverse order of $ yields an optimal coloring. Our basic approach to coloring
the graph in parallel is as follows: choose a clique K such that the components Hj, ..., H; of
G[G — K] are all “small,” recursively color each subgraph G[H; U K], repair the colorings
by making them consistent on the nodes of K, and merge the repaired colorings.

Naor, Naor, and Schiffer use essentially this approach in their coloring algorithm. Their
algorithm, however, uses n3 processors even if all maximal cliques are provided. One apparent
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COLOR(G, Kjy).
Input: Connected graph G containing a clique K, such that every node of K, has a neighbor in
G — K.
Output: Optimal coloring of G.
C1 If G — K, consists of a single node v, then G is a clique; assign the first |V (G)| colors to
its nodes, and end.
Cc2 Break G — K| into subgraphs Hy, ..., H; such that
e cach subgraph has size at most half that of G — Kj;
e Hi, ..., H; are distinct components of G — Ky — Hp; and
e for 1 <i <, the neighborhood of H; in G — H; is a clique K;.
C3 Fori =0,.. S in parallel, R R
call COLOR(H;, K;), where H; = G[H; U K;], to get an optimal coloring ¢; of H;.
C4 Fori =1,...,s in parallel, modify the coloring ¢; to be consistent with ¢y on the nodes
V(K;) they have in common.
Cs Merge the colorings to obtain a coloring of G.

Fic. 13. The recursive algorithm COLOR for finding an optimal coloring of a chordal graph G.

difficulty is that the subgraphs on which the algorithm recurs are not disjoint—they share the
nodes in K—so we cannot hope to make do with only one processor per edge.

In coping with this difficulty, we use the same idea that made our PEO algorithm efficient.
Given the knowledge that K is a clique, we need not inspect the edges between nodes of K
during the recursive calls. We recursively solve the following problem: given a chordal graph
G and a clique K, contained in G, find an optimal coloring of G. We solve this problem in
O(logtlog |G — Kpl|) time using ¢ processors, where ¢ is the number of edges with at least
one endpoint in G — K, or using ¢/ log t processors of a randomized PRAM. The algorithm,
COLOR(G, Ky), is shown in Figure 13. There are 1 + log |G — K| levels of recursion. We
shall show that each level can be implemented in O(log?) time. To find a coloring in the
original graph G, we call COLOR(G, ).

Step C4, in which we modify the colorings to be consistent, can be implemented using
a parallel prefix computation. We shall give more details later. The idea in implementing
step C2, in which we divide up the graph, is as follows. We inductively assume we have
an elimination tree T'(Gs) in which the nodes of K, are the richest nodes. Using the Euler-
tour technique [44], choose the lowest node v in T (Gys) that has more than p/2 descendents,
where p = |G — Kp|. Let vy, ..., vs; be the children of ¥ in T(Gs); then each subtree
T,;(Gs) has at most p/2 nodes. We let K be the clique {#} U {richer neighbors of 0} and
let H; = GI[T,,(Gs)]. By Lemma 4.2, the subgraphs Hi, ..., H; are connected components
of G — K. The neighborhood of each H; in G — H; is contained in the clique K and is
therefore itself a clique K;. Let Hy = G — Ky — U;s'=1 H;. By choice of 9, Hy has at most
p/2 nodes.

We shall inductively ensure that fori =0, ...s,

(D) ¢; is an optimal coloring of G[H; U K;];
(II) the maximum color used by ¢; equals the number of colors used; and

(IIT) the coloring c; assigns the first | K;| colors to the nodes of K;.

These conditions are easy to establish at the base of the recursion, step C1. Condition (III)
is automatically preserved in going from one level of recursion to the next higher level: the
colors assigned by ¢ to the nodes of K are exactly those assigned by ¢g. Assume (I), (II), and
(I1) hold for ¢y, . . ., ¢;. We must ensure that (I) and (II) hold for the coloring ¢ of G that we
construct. Namely, we must color G with colors 1 through x, where x is the minimum number
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of colors needed to color G. We shall, in fact, construct a coloring ¢ of G with maximum
color equal to

€] max{number of colorsused by ¢; : i =0,...,s}.

Since ¢; is an optimal coloring of the subgraph G[H; U K;] of G, the value given by (1) is
clearly a lower bound on x. Thus by achieving this lower bound, we ensure that our coloring
c of G is optimal.

The colors ¢ assigns to nodes of Hy U K are exactly the colors ¢ assigns to these nodes.
Therefore, for any node v € Hy U K, the color assigned to v is no more than the value of (1).
It remains to determine the colors ¢ assigns to nodes of H;, fori =1,...,s.

Let x; be the number of colors used by ¢;. The colors 1 through |K;| are assigned by
¢i to the nodes of K;. The nodes of H; are asigned colors | K;| + 1 through x;. For each ¢,
|Ki|+1=<q =<x;,let

Ailg] = l{co(v) < g : v € V(K)}.

(The values A;[-] can be computed using a parallel prefix computation.) For eachnode v € H;,
define

c(v) :=c;(v) — |K;| + Ailc; (V)]

Thus the colors of nodes of H; are remapped to colors starting at 1, with gaps only for colors
already assigned to nodes of K;. This assignment ensures that, for any node v € H;, colors 1
through c(v) all appear in the coloring c¢; induced by ¢ on H;. Since c¢] can be obtained from
¢; by merely permuting colors, it follows that ¢(v) is no more than the value of (1). We have
completed the proof of correctness of the algorithm.

The only nontrivial computation in implementing step C4 is computing the A;[g] values.
Foreach 1 <i < s, we identify the colors ¢ assigns to nodes of K; and then perform a parallel
prefix computation of length x; < |H;|. The total work is proportional to )", |K;| + | H;].

Let ¢; be the number of edges that either lie in H; or connect H; to K;. Since H; is
connected, the number of nodes in H; is at most one more than the number of edges in H;.
Since every node in K; is a neighbor of some node in H;, the number of nodes in K; is at
most the number of edges connecting H; to K;. Thus |H; U K;| < t; + 1, so the total work
is proportional to Zi t;, which is just the number ¢ of edges that either lie within G — K or
connect G — Ky to G.

Assume inductively that O (log #; log | H;|) time and O (¢; / log t;) processors are sufficient
to recursively color G[H; U K;]. Then O(t/logt) processors are sufficient to recursively
color all the subgraphs G[H; U K;] in O(logt(log(|G — Kp|) — 1)) time and to combine the
colorings in O (log?) time, for a total of O (log?log |G — Kjy|) time.

4.7. PQ-tree intersection. We can also test two leaf-labelled PQ-trees for isomorphism.
The idea is to use Edmonds’ tree-isomorphism algorithm (see [1]), which proceeds in stages
from the leaves to the roots, level by level. In general, the number of levels may be large,
so we instead apply Edmonds’ algorithm to decomposition trees for the original PQ-trees.
The decomposition tree of a tree T is formed by breaking T into subtrees of half the size by
removing the edges from a node v to its children, recursively finding decomposition trees of
the subtrees, and hanging the recursive decomposition trees from a common root. By labeling
the decomposition tree during its construction, one can ensure that it uniquely represents T
up to isomorphism. The decomposition trees for n-leaf PQ-trees have O(logn) levels, so
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O (logn) stages of Edmonds’ algorithm suffice. Each stage involves sorting strings, which
can be done in O (logn) time on a “priority” type CRCW PRAM using Cole’s algorithm [9],
for a total time bound of O (log? n). To achieve this time bound, (n + ¢)/ log n processors are
sufficient, where ¢ is the sum of the lengths of the leaf labels.

4.8. Interval graphs. The algorithm of Booth and Lueker for recognition of interval
graphs is as follows: Find a PEO of the input graph G; if there is none, the graph is certainly
not an interval graph. Otherwise, we can obtain all the maximal cliques (there are at most
n; see §4.3). For each node v, let A, be the set of maximal cliques containing v. It can be
shown [17] that )~ |A,| = O(m + n). Let T be the universal PQ-tree whose ground set is
the set of maximal cliques. Reduce T with respect to the sets A,. If the resulting PQ-tree T
is the null tree, then it follows from a theorem of Gilmore and Hoffman [22] that G is not an
interval graph. Otherwise, an ordering represented by T yields a representation of G as an
intersection of intervals.

Since we have given efficient parallel algorithms for finding a PEO and for PQ-tree mul-
tiple (nondisjoint) reduction, the above algorithm is parallelizable; each step takes O (log* n)
time using O (n + m) processors.

Booth and Lueker showed (see [32]; also see [8]) that if the PQ-tree T derived from G is
augmented with some labels depending on the graph, isomorphic interval graphs correspond
to isomorphic labeled PQ-trees. Booth and Lueker then showed that such labeled PQ-trees
could be tested for isomorphism in linear time, proving that interval-graph isomorphism testing
could be done in linear time. We show that this approach can be parallelized.

Let T be the PQ-tree for an interval graph G. We augment T with labels as follows:
Each leaf x of T corresponds to a maximal clique C,; we create a label for x by sorting the
degrees of the nodes in C,. The sum of the lengths of the strings labeling T is just the sum of
the sizes of the maximal cliques, which is O (n +m). The labels can be found in O (log ) time
using O (n + m) processors by means of small-integer sorting. It follows from Theorem 1 of
[32] and the proof of Lemma 3.1 of [8] that the resulting labeled PQ-tree uniquely represents
the interval graph G up to isomorphism.

The number of nodes in the augmented PQ-tree is O (m + n), and the augmentation can
easily be carried out in parallel. It remains to show how such augmented PQ-trees may be
tested for isomorphism in O (log? n) time using m + n processors. To achieve this time bound,
we require a powerful model of parallel computation, the “priority” CRCW PRAM. Multiple
processors are permitted to write to the same location in the same time step; the value stored
in the location is the value written by the lowest-numbered processor.

The standard (sequential) approach to tree isomorphism (see [1], [26]) and the approach
used in [32] is to process the two trees from the leaves up, essentially canonicalizing subtrees
at each successive level by sorting. The problem with a direct parallelization of this approach
is that there may be too many levels. Therefore, our approach is to test isomorphisms not
of the original trees but of their decomposition trees, which are guaranteed to have only a
logarithmic number of levels.

In constructing a decomposition tree for an augmented PQ-tree, we must for the recursion
construct decomposition trees for slightly more general trees: trees that are obtained from
augmented PQ-trees by deleting some subtrees and assigning numbers to some (resulting)
leaves. Let T be such a modified PQ-tree. Note that, for example, 7 may contain P-nodes and
Q-nodes that have no children. The leaves of the decomposition tree for 7 will correspond to
the nodes of T'.
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We form T’s decomposition tree D;(T') as follows: if T consists of a single node x, then
D;(T) also consists of a single vertex v. The vertex v is labeled with P, Q, L, or D, depending
on whether x is a P-node, a Q-node, a leaf, or a degree node in the original augmented PQ-tree.
Moreover, if x was numbered, then v is labeled with the same number.

Suppose T contains at least two nodes. There is a unique node X in T that is the lowest
node of T that has more than n/2 descendents (including itself). The choice of X is invariant
under automorphisms of 7. Moreover, X is not a leaf. Removal of the edges joining X to its
children disconnects T into subtrees each having at most n/2 nodes. Let these subtrees be
To, - . ., Ty, where T is the subtree containing X, and T4, . .., T; are ordered just as their roots
are ordered as children of x in 7. Modify Ty by assigning the number of nodes of T to the
leaf x. Then D(T') is defined to be the tree obtained from D(Ty), ..., D(T;) by introducing
a new vertex v to be the parent of the roots vy, ..., v; of these k + 1 decomposition trees, in
this order. The vertex v is labelled with P, Q, L, or D as before.

The assignment of integers to leaves of the modified PQ-trees and to leaves of the decom-
position trees makes it possible to uniquely reconstruct a PQ-tree T from its decomposition
tree D(T'), while at the same time establishing the correspondence between the nodes of T
and the leaves of D(T"). Let v be the root of D(T). Recursively reconstruct the modified
PQ-trees whose decomposition trees are rooted at the children of v in D(T'). Let Ty, ..., Ty
be the resulting PQ-trees in order. There is a unique leaf x in Ty labeled with the integer
Y= 0%|T;|. To construct T, let the roots of T7, ..., T be the children of % in order, and
remove the label from X. It follows that two decomposition trees are isomorphic if and only
if their decomposition trees are isomorphic.

It remains to describe how to test decomposition trees for isomorphism. The approach
used is essentially the standard approach, but we must take care to respect the P, Q, L, D
labels, the integer labels assigned during augmentation, the integer labels assigned during
decomposition, and the order of children of Q-nodes. It follows from the construction of the
decomposition trees that only leaves have integer labels.

The isomorphism algorithm proceeds top to bottom, from the leaves of the decomposition
trees to their roots. The height of a vertex in a tree is defined to be the maximum distance
down the tree to a leaf. We initialize by assigning a string to each leaf (height-O vertex) of
each tree. The string combines all the labels of the leaf.

For the general step of the algorithm, we are given an assignment of strings to the height-A
vertices of the trees. We sort these strings, eliminate duplicates, and assign to each string the
ordinal number of the string in the set of strings. If the multiset of strings associated with
height-A vertices of one tree does not match the corresponding multiset of the other tree, we
terminate the algorithm because the trees are not isomorphic. We also terminate the algorithm
if one tree has height-(h + 1) vertices and the other does not.

Otherwise, if neither tree has height-(2 + 1) vertices, we conclude that the trees are
isomorphic, and if both do, we next assign strings to these vertices as follows: let v be a
height-(h + 1) vertex. It follows from the construction of the decomposition tree that v
corresponds to an internal node of the original augmented PQ-tree and is therefore labeled
with P, Q, or L. If v is labeled with P or L, we form its string as follows: the first element of
the string is either P or L, whichever is appropriate. The second element of the string is the
integer assigned to v first child. The remaining elements are obtained by sorting the collection
of integers assigned to its remaining children. If v is labeled with Q, we proceed somewhat
differently. As before, the first element of v’s string is the label Q, and the second element is
the integer assigned to v’s first child. To determine the remainder of the string, we consider
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two sequences, one consisting of the integers assigned to the remaining children of v in order,
the second being the reverse of the first. The remainder of v’s string is whichever of these two
sequences is lexicographically less.

It is a simple induction to see that two height-A vertices receive the same string or same
integer if and only if the subtrees rooted at these vertices are isomorphic. This shows that the
isomorphism algorithm is correct.

There are < 1 4 log? levels in the decomposition trees for z-node trees. Therefore,
the above algorithm has O(logt) stages, where t = O(n + m). In each stage, the most
difficult step is sorting strings. The sum of the lengths of the strings is O(¢) in each stage.
Therefore, we can assign a processor to each symbol of each string. To compare two strings,
processors associated with corresponding symbols communicate to compare their symbols.
Using the powerful concurrent-write capability, the processors associated with the two strings
can determine in constant time the minimum index at which the strings differ, and hence
which string comes first in lexicographic order. Using a logarithmic-time comparison sort
[9], the strings can then be sorted in O (log¢) time using O (t) processors. Hence ¢-node tree
isomorphism can be tested in O (log? t) time using ¢ processors.
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