
SIAM J. COMPUT.
Vol. 25, No. 5, pp. 956--997, October 1996

1996 Society for Industrial and Applied Mathematics
003

ON-LINE PLANARITY TESTING*

GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA$

Abstract. The on-line planarity-testing problem consists of performing the following operations
on a planar graph G: (i) testing if a new edge can be added to G so that the resulting graph is itself
planar; (ii) adding vertices and edges such that planarity is preserved. An efficient technique for on-
line planarity testing of a graph is presented that uses O(n) space and supports tests and insertions
of vertices and edges in O(log n) time, where n is the current number of vertices of G. The bounds
for tests and vertex insertions are worst-case and the bound for edge insertions is amortized. We
also present other applications of this technique to dynamic algorithms for planar graphs.

Key words, planar graph, on-line algorithm, dynamic algorithm

AMS subject classifications. 68R10, 05C10, 68Q20, 68P05

1. Introduction. The problems of testing planarity and constructing planar em-
beddings of graphs have been extensively studied in the past years and find direct
application in a variety of areas including circuit layout, graphics, computer-aided
design, and automatic graph drawing.

In a static environment, where an n-vertex graph G is entirely known in advance,
we can test the planarity of G and compute a planar embedding in optimal O(n) time
[5, 8, 18, 20, 31, 381. In a dynamic environment, where a planar graph G is assembled
on-line by insertions of vertices and edges, we would like to determine quickly whether
an update causes G to become nonplanar. Namely, the on-line planarity-testing prob-
lem consists of performing the following operations on a planar graph G: (i) testing if
a new edge can be added to G so that the resulting graph is itself planar; (ii) adding
vertices and edges such that planarity is preserved.

While many research efforts have been focused on planar graphs and on dynamic
graph algorithms, the development of an efficient algorithm for on-line planarity test-
ing has been an elusive goal.

Recent results on planar graphs include algorithms for parallel planarity testing
[37, 46], embedding [4, 62], drawing [10, 13, 19, 51], reachability [36, ,54, 57], shortest
paths [22], and minimum spanning trees [15, 21]. Previous work on dynamic graph
algorithms is surveyed in 2. The technique of [53] is a first step toward on-line
planarity testing. Namely, it solves the restricted problem of maintaining a planar
embedding of a planar graph. It uses O(n) space and supports queries (testing whether
two vertices are on the same face of the embedding) and updates (adding vertices and
edges to the embedding) in O(log n) time.

Received by the editors November 2, 1994; accepted for publication (in revised form) January
24, 1995. This paper includes results presented at the 30th IEEE Symposium on Foundations of
Computer Science (1989) and the 17th International Colloquium on Automata, Languages, and
Programming (1990). This research was supported in part by the ESPRIT II Basic Research Actions
Program of the EC under contract 3075 (project ALCOM), National Science Foundation grants
CCR-9007851 and CCR-9423847, Office of Naval Research/Defense Advanced Research Projects
Agency contract N00014-91-J-4052, ARPA order 8225, the Progetto Finalizzato Sistemi Informatici
e Calcolo Parallelo of the Italian National Research Council, and U. S. Army Research Office grant
DAAL03-91-G-0035. This research performed in part while G. Di Battista was with the University
of Rome "La Sapienza" and with the Universit della Basiliata, while G. Di Battista was visiting
Brown University, and while R. Tamassia was visiting the University of Rome "La Sapienza."

Dipartimento di Discipline Scientifiche, Sezione Informatica, Terza Universit degli Studi di
Roma, 84 Via della Vasca Navale, Rome 001.46, Italy (dibattista@iasi.rm.cnr.it).

Department of Computer Science, Brown University, Providence, RI 02912-1910 (rt@cs.
brown.edu).

956

ON-LINE PLANARITY TESTING 957

In this paper, a technique for on-line planarity testing is presented that uses O(n)
space and supports tests and updates in O(log n) time, n being the current number of
vertices of the graph. The bounds for tests and vertex insertions are worst-case and
the bound for edge insertions is amortized.

The following repertoire of query and update operations is defined for a planar
graph G:

Test(vl, v2): Determine whether edge (vl, v2) can be added to G while preserving
planarity, i.e., test whether graph G admits a planar embedding F such that vl and
v2 are on the boundary of the same .face of F.

InscrtEdge(e, vl,v.): Add edge e between vertices v and v to graph G. The
operation is allowed only if the resulting graph is itself planar.

InscrtVertex(e, v,e, e): Split edge e into two edges el and e2 by inserting vet-

tex v.
Attach Vertex(e,v,u): Add vertex v and connect it to vertex u by means of

edge e.

Make Vertex(v): Add an isolated vertex v.
Our main result is expressed by the following theorem.
THEOREM 1.1. Let G be a planar graph that is dynamically updated by adding

vertices and edges, and let n be the current number of vertices of G. There exists a data
structure for the on-line planarity-testing p’oblem in G with the following performance:
the space requirement is O(n); operation Make Vcrtex takes worst-case time O(1);
operations Test, Attach Vertex, and InsertVertex take worst-case time O(logn); and
operation InsertEdge takes amortized time O(log n).

The techniques developed in our work provide new insights on the topological
properties of planar st-graphs and on the relationship between planarity and the
decomposition of a graph into its biconnected and triconnected components.

The rest of this paper is organized as follows, in 2, we survey previous results
on dynamic graph algorithms. Section 3 provides basic definitions. In 4, we present
a static data structure that supports only operation Test in biconnected graphs. Sec-
tions 5 and 6 describe the dynamic data structure for on-line planarity testing in
bicoImected graphs. The data structure is extended to general planar graphs in 7.
Finally, some applications of our technique to graph planarization, on-line transitive
closure, and on-line minimum spanning trees are given in 8.

2. Dynamic graph algorithms. The development of dynamic algorithms for
graph problems has acquired increasing theoretical interest, motivated by many im-
portant applications in network optimization, very large-scale integration (VLSI) lay-
out, computational geometry, and distributed computing. In this section, we survey
representative dynamic graph algorithms for reachability, shortest paths, minimum
spanning trees, and connectivity. Throughout this section, n and rn, respectively,
denote the number of vertices and edges of the graph being considered. A general
lower-bound technique for incremental algorithms, with applications to dynamic graph
algorithms, is discussed in [3].

A teachability query in a digraph asks whether there is a directed path between
two vertices. For general digraphs, there exist insertions-only semidynamic data struc-
tures with O(n) space, O(1) query time, and O(n) amortized update time [6, 32, 43].
The same performance is achieved for deletions only in acyclic digraphs [6, 33]. Fully
dynamic data structures with O(n) space and O(log n) query and update time exist for
some classes of planar digraphs [11, 34, 54, 56]. The related problem of maintaining
a topological ordering of an acyclic digraph is studied in [1].

958 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

A shortest-path query in a digraph asks for the length of a shortest path between
two vertices. Fully dynamic data structures for shortest-path queries are presented in

[16, 48]. They have O(n2) space, O(1) query time, O(n) time for edge insertion, and
O(rnn+n log n) time for edge deletion. The best-known semidynamic data structures
supporting insertions in digraphs with unit edge lengths use O(n) space and have
constant query time; the total time to process all edge insertions is O(na log n), which
amortizes to O(n log n) time per insertion for dense graphs [2, 39]. For series-parallel
digraphs with weighted edges, there exists a fully dynaxnic O(n)-space data structure
that supports queries and updates in O(logn) time [9]. This data structure also
maintains a maximum flow within the same time bounds.

The dynamic maintenance of minimum spanning trees has the interesting property
that, after an update operation consisting of a weight change or adding/deleting an

edge, at most one edge needs to be replaced in the minimum spanning tree. For general
graphs, the best result is O(x/-) update time and O(rn) space [21]. In the special
case of planar graphs, updates can be done in O(log n) time using an O(n)-space fully
dynamic data structure [11, 15].

Regarding connectivity problems, a classical result shows that the connected com-

ponents of a graph can be efficiently maintained in a semidynamic environment where
only edge-insertions are performed, by means of a union-find data structure [58]. A
sequence of k queries and edge insertions takes time O(kc(k, n)), where c(k, n) de-
notes the slowly growing inverse of Ackermann’s function. The same performance is
obtained for biconnected components [42, 60], triconnected components [11, 42], and
tbur-connected components [35]. Semidynamic techniques supporting deletions only
are studied in [17, 47]. In a fully dynamic environment, the connected components of
a general graph can be maintained in time O(v/) per update operation [21], while
the biconnected components of a planar graph can be maintained in O(n2/a) time
using O(n) space [25]. The related problems of maintaining the two- and three-edge-
connected components are studied in [23, 24, 60].

3. Preliminaries. We assume that the reader is familiar with graph terminology
and basic properties of planar graphs (see, e.g., [40]). Throughout this paper,
denotes the number of vertices of the planar graph G currently being considered.
Unless otherwise specified, we only consider graphs without self-loops and multiple
edges. Recall that a planar graph without self-loops and multiple edges has
edges.

First, we review some definitions on graph connectivity. A separating k-set of
a graph G is a set of k vertices whose removal increases the number of connected
components of (7. Separating l-sets and 2-sets are called cutvertices and separation
pairs, respectively. A connected graph is said to be biconnected if it has no cutver-
tices. The blocks of a connected graph (also called biconnected components) are its
maximal biconnected subgraphs. A graph is triconnected if it is biconnected and has
no separation pairs.

A planar drawing of a graph is such that no two edges intersect (except possibly
at the endpoints). A graph is planar if it admits a planar drawing. A planar drawing
partitions the plane into topologically connected regions, called faces. The unbounded
face is called the ezternal face. The boundary of a face is its delimiting circuit. All the
face boundaries of a biconnected graph are simple circuits. For brevity, we sometimes
use "face" to mean "face boundary."

The incidence list of a vertex v is the set of edges incident upon v. A planar
drawing determines a circular ordering on the incidence list of each vertex v according

ON-LINE PLANARITY TESTING 959

to the clockwise sequence of the incident edges around v.
Two planar drawings of the same connected graph G are equivalent if they de-

termine the same circular orderings of the incidence lists. Two equivalent planar
drawings have the same face boundaries. A planar embedding or simply embedding F
of G is an equivalence class of planar drawings and is described by circularly sorted
incidence lists for each vertex v. The face boundaries of any drawing of F are called
the faces of F. A triconnected planar graph has a unique embedding, up to reversing
all the incidence lists.

A planar st-graph G is a planar acyclic digraph with exactly one source (vertex
without incoming edges) s and exactly one sink (vertex without outgoing edges) t
which admits a planar embedding such that s and t are on the same face. Such graphs
were first introduced in [38]. Vertices s and t are called the poles of G. Henceforth,
we shall only consider embeddings of a planar st-graph such that s and t are on the
same face. Following the developments of [10, 13], we visualize a planar st-graph with
s and t on the external face and all the edges directed upward; see Fig. 1.

17

16

15

9 14

10

3 11

FiG. 1. Example of a planar st-graph.

The following properties are demonstrated in [55].
LEMMA 3.1. Let F be a planar embedding of a planar st-graph G.

1. The incoming edges of each vertex v of G appear consecutively in the inci-
dence list of v sorted according to F, and so do the outgoing edges.

2. Each face of F consists of the concatenation of two directed paths.
With reference to the second property, the origin and destination of the paths

forming a face f are called the extreme vertices of f. The other vertices of f are

960 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

called internal vertices of f. For example, the planar st-graph of Fig. 1 has a face
with extreme vertices 11 and 15 and with internal vertices 12, 18, 13, and 19.

A planar st-orientation of an undirected graph G is an orientation of the edges
of G such that the resulting directed graph is a planar st-graph. A graph G admits a
planar st-orientation if and only if it is planarly st-biconnectible [38], i.e., the graph
obtained from G by adding the edge (s, t) is planar and biconnected. A planar st-
orientation can be computed in O(n) time [18].

4. Tests. In this section, we consider the problem of performing operation Test
on a biconnected planar graph with n vertices. We assume that the graph has been
oriented into a planar st-graph such that s and t are adjacent.

4.1. Decomposition tree. Let G be a planar st-graph. A split pair of G is
either a separation pair or a pair of adjacent vertices. A split component of a split
pair {u, v} is either an edge (u, v) or a maximal subgraph C of G such that C is an
uv-graph and {u, v} is not a split pair of C. A maximal split pair {u, v} of G is such
that there is no other split pair {u’, v’} in G such that {u, v} is contained in a split
component of {u’, v’ }.

For example, in the planar st-graph G of Fig. 1, the pair {3, 7} is a split pair but
not a maximal split pair, while {0, 17} is the only maximal split pair of G. The split
components of the split pair {1, 17} are shown in Fig. 2.

17 17 17

8

9

1 1 1

15

19

13 14

11

FIG. 2. Split components of the split pair {1, 17} in the planar st-graph of Fig. 1.

The decomposition tree T of G describes a recursive decomposition of G with
respect to its split pairs and will be used to synthetically represent all the embeddings
of G with vertices s and t on the external face. Tree T is a rooted ordered tree
whose nodes are of four types: S, P, Q, and R. Each node # of T has an associated
planar st-graph (possibly with multiple edges), called the skeleton of # and denoted
by skeleton(#). Also, it is associated with an edge of the skeleton of the parent u of
#, called the virtual edge of # in skeleton(u). Tree T is recursively defined as follows.

ON-LINE PLANARITY TESTING 961

Trivial case. If G consists of a single edge from s to t, then T consists of a single
Q-node whose skeleton is G itself.

Series case. If G is not biconnected, let c1,..., ck-1 (k _> 2) be the cutvertices of
G. Since G is planarly st-biconnectible, each cutvertex ci is contained in exactly two
blocks Gi and G+I such that s is in G1 and t is in Gk. The root of T is an S-node

#. Graph skeleton(p) consists of the chain el,..., ek, where edge e goes from c-1 to
ci, co s, and c t, plus the edge (s,t). (See Fig. 3(a))

Parallel case. If s and t are a split pair for G with split components GI,..., G
(k >_ 2), the root of T is a P-node #. Graph skeleton(p) consists of k + 1 parallel
edges from s to t, denoted el,..., ek+l. (See Fig. 3(b))

Rigid case. If none of the above cases applies, let {sl,tl},...,{s,t} be the
maximal split pairs of G (k _> 1), and for 1,..., k, let Gi be the union of all the
split components of {s,t}. The root of T is an R-node #. Graph skeleton(p) is
obtained from G by replacing each subgraph Gi with the edge ei from si to ti and
by adding the edge (s, t). Notice that the skeleton of an R-node is triconnected. (See
Fig. 3(c))

4=t c4=t

c3 c3

e3
c2 c2

e2
el el

el

c0-8
(a)

(b)

e4

el

(c)

T1 T2 T3 T4

T1 T2 T

TI T T T T

FIef. 3. (a) Series decomposition. (b) Parallel decomposition. (c) Rigid decomposition.

In the last three cases (series, parallel, and rigid), # has children #1,... ,#k (in this
order), such that #,i is the root of the decomposition tree of graph G (i 1,..., k).
The virtual edge of node #i is edge ei of skeleton(p). Graph Gi is called the pertinent
9raph of node #i, and the expansion 9raph of ei. (Note that G is the pertinent graph
of the root.) We denote with s, and t, the poles of the skeleton of a node #. We find
it convenient (e.g., in Theorem 4.6 below) to define the expansion graph of a vertex

962 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

of skeleton(p) as the vertex itself.
Figure 4 illustrates the decomposition tree and the skeletons of the R-nodes for

the planar st-graph of Fig. 1. Our definition of decomposition tree is a variation of
the one given in [4] and is closely related to the decomposition of biconnected graphs
into triconnected components [30].

(0,17)

(1,2) (2,3) (7,8) (8,17) (1,9) (9,17) (1,11) (11,12) (12,15) a8 (15,16) (: (12,17) (16,17)

(3,4) (3,6) (4,7) (6,7) (1,10) (10,12)

(4,5) (5,6) (11,18)(18,13)(13,19) (19,15) (11,14) (14,15)

FIG. 4. Decomposition tree 7- for the planar st-graph of Fig. and skeletons of the R-nodes.

LEMMA 4.1. The decomposition tree 7- of G has O(n) nodes. Also, the total
number of edges of the skeletons stored at the nodes of 7" is O(n).

Proof. The leaves of 7- are Q-nodes in one-to-one correspondence with the edges
of G, and each internal node of 7- has at least two children. Hence 7- has O(n) nodes.
If a node # of 7- has k children, then skeleton(p) has at most k + 1 edges (one edge
for a Q-node, k edges for an S- or P-node, and k + 1 edges for an R-node). Hence the
total number of edges of the skeletons is at most the sum of the number of nodes and
edges of 7- and thus is O(n).

Now, we show how the decomposition tree can be used to represent all the planar
embeddings of a planar st-graph G with the edge (s, t). Let F be a planar embedding
of G.

Two basic primitives can be used to obtain a new planar embedding from F. A
reverse operation consists of flipping a split component around its poles. A swap
operation consists of exchanging the position of two split components of the same
split pair. For example, Fig. 5 shows the planar embedding obtained from that of
Fig. 1 by means of two swap operations and one flip operation.

LEMMA 4.2 (see [12]). Given a pair of embeddings F’ and F" of a planar st-graph
G with the edge (s, t), F" can be obtained from F’ by means of a sequence of O(n)
reverse and swap operations.

By Lemma 4.2, the decomposition tree 7" can be used to represent an embedding

ON-LINE PLANARITY TESTING 963

17

15

18

11

FIG. 5. Embedding obtained from the one of Fig. 1 by means of two swap operations around
the split pairs (1, 17) and (11, 15) and one flip operation around the split pair (1, 17).

of G by
1. selecting one of the two possible flips of the skeleton of each R-node around

its poles; and
2. selecting a permutation of the skeletons of the children of each P-node with

respect to their common poles.
Before presenting the algorithm for operation Test, we need to introduce addi-

tional concepts.
Let v be a vertex of G. The allocation nodes of v are the nodes of T whose

skeleton contains v. Note that v has at least one allocation node. For example, with
reference to the planar st-graph of Fig. 1 and its decomposition tree shown in Fig. 4,
we have that the allocation nodes of vertex 15 are the Q-nodes associated with its
incident edges plus nodes c5, cs, al0, and Oz11.

The following facts can be easily proved.
FACT 1. The pertinent graphs of the children of a node # can only share vertices

of skeleton(p).
FACT 2. If v is in skeleton(p), then v is also in the pertinent graph of all the

ancestors of #.
FACT 3. If v is a pole of skeleton(p), then v is also in the skeleton of the parent

ofp.
FACT 4. If v is in skeleton(p) but is not a pole of skeleton(#), then v is not in

the skeleton of any ancestor of #.

964 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

LEMMA 4.3. Let v be a vertex of G. The least common ancestor It of the allocation
nodes of v is itself an allocation node of v. Also, if v s, t, then # is the only allocation
node of v such that v is not a pole of skeleton(p).

Proof. For the first part of the lemma, it is sufficient to show that the least
common ancestor # of two allocation nodes #l and #. of v is itself an allocation node
of v. This is trivial if one of #1 and #2 is an ancestor of the other. Otherwise, by
Fact 2, vertex v is in the pertinent graphs of the children of # which are ancestors of

#1 and #2. Hence, by Fact 1, vertex v must be in skeleton(#). The second part of the
lemma follows from Facts 3 and 4. El

According to Lemma 4.3, the least common ancestor of the allocation nodes of
vertex v is called the proper allocation node of v. For example, in Figs. 1 and 4, the
proper allocation nodes of vertices 1, 6, and 15 are c1, a, and c5, respectively.

FACT 5. If V s, t, then the proper allocation node of v is either an R-node or
an S-node.

Let v be a vertex of the pertinent graph of a node # of T. The representative of v in

skeleton(#) is the vertex or edge x of skeleton(p) defined as follows: if # is an allocation
node of v, then x v; otherwise, x is the edge of skeleton(p) whose expansion
graph contains v. For example, in Figs. 1 and 4, edge (11, 15) of skeleton(c5) is the
representative of vertices 13, 14, 18, and 19, while vertex 7 in skeleton(a3) is the
representative of itself.

FACT 6. The nodes of 7- whose skeleton has a representative for vertex v are
the allocation nodes of v (the representative is a vertex) and their ancestors (the
representative is an edge).

LEMMA 4.4. Given any two distinct vertices vl and v2 of G, there exists a node

X of 7, such that vl and v2 have distinct representatives in skeleton(x). Also, let #1
and #2 be the proper allocation nodes of vl and v., respectively, and let # be the least
common ancestor of #1 and #2.

1. If #1 #2 It, then the common allocation nodes of vl and v2 are exactly
those with distinct representatives for Vl and

2. If It1 7 # and #. It then It is the only node with distinct representatives
for vl and

3. If It1 is an ancestor of It2, then the allocation nodes of Vl on the path from
It2 to It are exactly those with distinct representatives for vl and v2 (such nodes form
a path in T).

Proof. By Fact 6, cases 1, 2, and 3 characterize the set of nodes X of 7, such that
vl and v2 have distinct representatives in skeleton(x), r]

In the example of Figs. 1 and 4, the nodes with distinct representatives for ver-
tices 6 and 17 are aa and a. (case 3), while for vertices 6 and 13, node a2 is the only
node with distinct representatives (case 2).

A peripheral edge (vertex) of a planar st-graph G is such that it appears on the
same face of s and t for some embedding of G. A node It of 7" is said to be peripheral if
its virtual edge is peripheral in the skeleton of the parent of It. Note that the children
of S- and P-nodes are always peripheral.

In the example of Figs. 1 and 4, the peripheral edges of skeleton(a5) are (1, 12),
(12, 17), (1, 11), (11, 15), (15, 16), and (16, 17), while the only nonperipheral vertex of
the entire graph is 5. Also, all the R-, P-, and S-nodes except a9 are peripheral.

FACT 7. Let e be an edge of the skeleton skeleton(p) of node It. If vertex v is

peripheral in the expansion graph of e and e is peripheral in skeleton(It), then v is
peripheral in the pertinent graph G, of It.

ON-LINE PLANARITY TESTING 965

The following lemma gives a method for testing whether a vertex is peripheral in
the pertinent graph of some node of T.

LEMMA 4.5. Let be a node of T, and v be a vertex of the pertinent graph G
of . Let # be the proper allocation node of v.

1. If# , then v is peripheral in G if and only if v is peripheral in skeleton(it).
2. If it is an ancestor of , then v is always peripheral in G.
3. If it is a descendant of , then let be the child of whose subtree con-

rains it.
Then vertex v is peripheral in G if and only if v is peripheral in skeleton(it) and all
the nodes on the path from # to ; (inclusive) are peripheral.

Proof. Case 1 is proved by observing that substituting the virtual edges of
skeleton(it) with their expansion graphs or vice versa does not change the periph-
eral status of the vertices of skeleton(it). Case 2 follows from Lemma 4.3 since v is a
pole of G. Case 3 follows by inductively applying Fact 7. E]

4.2. Test algorithm. In this section, we show how to perform operation Test.
The algorithm is based on the following theorem, whose intuition is illustrated in
Fig. 6.

Xl x2

v2

skeleton(z)

FIG. 6. Schematic illustration of Theorem 4.6.

THEOREM 4.6. Let Vl and v2 be vertices of a planar st-graph G with the edge
(s, t). There exists an embedding F of G such that vl and v2 are on the same face of
F if and only if there exists a node X of the decomposition tree T of G such that:

1. vl and v have distinct representatives xl and x2 in X;
2. Xl and x2 are on the same face of some embedding of skeleton(x); and
3. v and v2 are peripheral vertices of the expansion graphs GI and G of x

and x respectively.
Proof: If. From condition 2, let E be a planar embedding of skeleton(x) with x

and x on the same face. Also, from condition 3, let F and F. be planar embeddings

966 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

of G1 and G2 with vertices vl and v2 on the same face as the poles of (1 and
G2, respectively. (See Fig. 6.) We replace Xl and x2 in E with F and F2 and
perform at most two reverse operations such that vl and v2 will be on the same
face. We replace the remaining edges of skeleton(x) with planar embeddings of the
corresponding pertinent graphs. This gives a planar embedding of the pertinent graph
of X such that vl and v2 are on the same face. Such an embedding can. be easily
extended to an embedding of G with the desired property.

Only if. We find node X using Lemma 4.4. Let #1 and #. be tile proper allocation
nodes of vl and v2, respectively, and let tt be the least conmon ancestor of #1 and
If one of #1 and #2 is the ancestor of the other, then we define X as tile lowest node
on the path between #1 and #2 such that the pertinent graph of X contains both
and v.. Otherwise, we define X #. Hence condition 1 is verified.

Consider a planar embedding F of G with vl and v2 on the same face. We
contract into single edges the pertinent graphs of the children of X while preserving
the embedding. We obtain an embedding of skeleton(x) with xl and x2 on the same
face (condition 2).

In order to prove condition 3, assume for contradiction that vl is not a peripheral
vertex of G1. We have #1 X and #1 is an R-node. Let sl and t- be the poles of
skeleton(#l). By condition 2, xl and x2 are on the same face of skeleton(x), so that
there exists a simple undirected path in skeleton(x) between sl and tl that contains

z2. We replace each edge z of such path with a path 7r between the poles of the
pertinent graph of node such that z is the virtual edge of , where, if 2 is an
edge, path 7c goes through vertex v2. This gives a simple undirected path 7c of G
between sl and tl. Hence graph G+ consisting of G1, edge (v, v2), and path r must
be planar. Consider a planar embedding of G1+. By removing edge (vl, v.) and path
r, we obtain a planar embedding of G1 such that Vl, sl, and tl are on the same
face. This contradicts the assumption that Vl is not a peripheral vertex of G1. A
similar argument can be used to show that v2 must be a peripheral vertex of G2. This
completes the proof of condition 3.

In the example of Figs. 1 and 4, vertices 6 and 13 verify the hypothesis of Theo-
rem 4.6, while vertices 5 and 18 do not.

We remark that either a skeleton graph admits a unique embedding (R-node) or
any two vertices/edges can be placed on the same face (P-, Q-, and S-nodes). Hence
Theorem 4.6 reduces the Test operation to a test on a fixed embedding. The algorithm
Ibr operation Test (Algorithm 1) is based on Theorem 4.6 and its proof.

We give two examples for the algorithm Test which refer to Figs. 1 and 4.
Consider operation Test(13,6); namely, Vl 13 and v2 6. We have that

#1 (110, 2 OZ6, and # a.. Thus we are in case (b) and X # c2, A
2 ca, and 2 a0. Since X is a P-node, there exists an embedding of
skeleton(x) with the representatives of vl and v2 on the same face. Also, both
and 2 are on tile path from X to the root (actually, they are the root). Therefore,
Test(13, 6) returns true.

Consider operation Test(17,5); namely, Vl 17 and v2 5. We have that
#t a0, #2 c9, and # #1 c0. Thus we are in case (c). Vertex v2 is peripheral
in skeleton(#.), 2 c9, and X a and is not an allocation node of Vl. Therefore,
Test(17, 5) returns false. In this example, vertex 5 is not "peripheral enough" with
respect to vertex 17.

The correctness of the algorithm follows from Theorem 4.6 and Lemmas 4.4
and 4.5. In case (a), condition 3 of Theorem 4.6 is always trivially verified. Re-

ON-LINE PLANARITY TESTING 967

ALGORITHM 1. Test(v1, v.)
1. Find the proper allocation nodes #1 of Vl and #2 of v2
2. Find the least common ancestor # of #1 and #2.
3. case of

() p ;
let X #;
if vl and v2 are on the same face of some embedding of skeleton(x)

then return true
else return false.

(b) #1 P and #2 #;
let X #;
for 1, 2 do

Find the representative x of v in skeleton(x) as follows: de-
termine the child A of X on the path from # to X, and let xi
be the virtual edge of A in skeleton(x).
Find the first nonperipheral node n on the path from # to
the root.

endfor
if (xl and x2 are on the same face of some embedding of
skeleton(x)) and (Vl and v2 are peripheral vertices of skeleton(#1)
and skeleton(#2), respectively) and (1 and 2 are either children of

or on the path from # to the root)
then return true
else return false.

(C) #1 # and #2 : #
if v2 is not a peripheral vertex of skeleton(#2)

then return false
Determine the first nonperipheral node n2 of the path from #2 to the
root.
if 2 is a child of # or 2 is on the path from #1 to the root

then set X #1
else set X equal to the parent of

if X is not an allocation node of Vl
then return false

Find the representative x2 of v2 in skeleton(x).
if vl and x2 are on the same face of the embedding of skeleton(x)

then return true
else return false.

(d) #2 # and #1 P
(This is analogous to the previous case and theretbre omitted.)

endcase

garding condition 2, if it is not verified at node #, then by Lemma 4.4, # is the only
node that verifies condition 1. In case (b), condition 1 of Theorem 4.6 is verified only
for node #, the least common ancestor of the proper allocation nodes of vl and v2. We
set X #, test condition 2 directly, and verify condition 3 by applying Lemma 4.5.

Case (c) is more complex since more than one node may satisfy condition 1 of
Theorem 4.6. By Lemma 4.4, such nodes are the allocation nodes of vl on the path
from tt2 to/zl.

968 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

In this case, the specific choice of node ; made in the proof of Theorem 4.6 (i.e.,
the lowest node on the path between #1 and #2 such that the pertinent graph of X
contains both vl and v.), which satisfies condition 1, appears difficult to compute.
Thus we use a slightly different approach, where node X satisfies condition 3. First,
we choose node ;g as the highest node where condition 3 is satisfied by applying
Lemma 4.5. If X is not an allocation node of Vl, then condition 1 is not verified at
X; moreover, since condition 1 can be satisfied only at ancestors of ; and condition 3
can be satisfied only at or below X, there is no node for which both conditions 1 and
3 can be satisfied. Otherwise (; is an allocation node of Vl), condition 1 is satisfied
and we check condition 2 directly. If condition 2 is not verified, then Vl is not an

endpoint of the representative edge x2 of v2 in skeleton(x). Hence vl is not a pole
of the expansion graph of x2, so that no descendant of X is an allocation node of vl.
This implies that condition i cannot be verified at any descendant of X.

4.3. Static data structure and time complexity. The following data struc-
ture can be used to efficiently perform the Test operation in a static environment.
We store with each vertex a pointer to its proper allocation node in T. Hence step 1
takes O(1) time. We equip tree T with a data structure which uses linear space and
supports least common ancestor queries in constant time [29, 50]. Hence step 2 takes
O(1) time.

Concerning step 3, we set up the following data structures. Each node of T has
a pointer to the corresponding virtual edge in the skeleton of its parent. We mark
all the peripheral nodes and the peripheral vertices and e@es of each skeleton. Also,
each node 4 has a pointer to the first nonperipheral node in the path from to the
root (the root node points to itself). Finally, we equip the skeleton of each R-node
with the data structure for planar embedding tests described in [53]. This allows us
to test whether two vertices/edges are on the same face of the planar embedding of
the skeleton in O(log n) time.

By Lemma 4.1, tree T uses O(n) space. All the remaining data structures use

O(n) space. The decomposition tree T can be constructed in O(n) time using a
variation of the algorithm of [30] for finding the triconnected components of a graph.
The planar embeddings of the skeletons of T and their peripheral vertices and edges
can be computed in O(n) time using the planarity-testing algorithm of [30]. We
conclude the following.

THEOREM 4.7. Let G be a biconnected planar graph with n vertices. There ezists
an O(n)-space data structure that supports operation Test(u, v) on G in time O(log
and can be constructed in O(n) preprocessing time.

Proof. Orient G into a planar st-graph, where s and t are adjacent vertices, and
then use algorithm Test with the data structure described above.

Note that the O(log n) bound on the query time depends only on the performance
of the data structure of [53] for testing whether two vertices/edges are on the same face
of a planar embedding. It can be shown that, applying perfect hashing [59], the query
time of [53] can be reduced to O(1) at the expense of using a complicated O(n)-space
data structure with O(n2) preprocessing time. We have the following corollary.

COPOLLAaY 4.8. Let G be a biconnected planar 9raph with n vertices. There
ezists an O(n)-space data strtcttre that supports operation Test(t, v) on G in time

O(1) and can be constructed in O(n2) preprocessing tine.

5. Updates. In this section, we show how to perforIn operations InsertEdge and
Insert Vertez on a biconnected planar graph G. As shown in the following theorem,
the above repertoire of update operations is complete for biconnected planar graphs.

ON-LINE PLANARITY TESTING 969

THEOREM 5.1. A biconnected planar graph G with n >_ 3 vertices and rn edges
can be assembled starting from the triangle graph (a cycle of three vertices) by means

of rn- 3 InsertEdge and Insert Vertez operations such that each intermediate graph
is planar and biconnected. Also, such a sequence of operations can be determined in

O(n) time.

Proof. We compute an open-ear decomposition D (P0, PI,..., P) of G, which
is a partition of the edges of G into an ordered collection of edge-disjoint simple paths
P0, PI,..., Pr, called ears, such that

P0 is a simple cycle;
the two endpoints of ear Pi, for _> 1, are distinct and contained in some

j < i; and
none of the internal vertices of Pi are contained in any Pj, j < i.

A graph G has an open-ear decomposition if and only if it is biconnected; moreover,
all intermediate graphs Di P0 + P1 +"" + Pi of an open-ear decomposition of
a biconnected graph are biconnected [61]. Further, if G is planar, then each Di is
planar since it is a subgraph of G. An ear decomposition can be computed in O(n)
time using the st-numbering technique [18]. We show how to use D to determine the
assembly sequence of G. Starting from the initial triangle graph, we construct cycle
P0 by means of a sequence of Insert Vertez operations. Next, we add the remaining
ears P,..., P, each by means of one InsertEdge operation followed by zero or more
Insert Vertez operations. Since we start with the triangle graph having three vertices
and since each operation adds one edge, the total number of operations is rn- 3. To
avoid forming intermediate graphs with multiple edges, we modify the ears as follows.
For each edge e (, v), let Pio be the ear containing e, with Pio PeP". If there
are ears Pi,..., Pi with endpoints and v and i0 < i < < i, we replace Pio
with PPiP and Pi with e. Note that each intermediate graph generated is planar
since it is homeomorphic to a subgraph of G. The above modification of the ears can
be computed in O(n) time by radix-sorting the edges and ears on their endpoints.

In our dynamic environment, we maintain a planar st-orientation of a biconnected
planar graph G such that s and t are adjacent vertices as follows.

In operation InsertVertez(e, v,e,e), if e goes from s to t, then we orient edge
e from s to v and edge e from t to v. Vertex v is the new sink of the orientation.
Otherwise, we orient el and e in the same way as e.

In operation InsertEdge(e, v, v), we orient e from v to v if v. is reachable from
v in the planar st-orientation and from v to v if v is reachable from v. If neither
vertex is reachable from the other, both orientations of e are possible. To test the
condition on reachability, we use the following theorem.

THEOREM 5.2. Let vl and v2 be vertices of a planar st-graph G with the edge
(s, t) and such that there ezists an embedding F of G such that v and v2 are on the
same face of F. Let X be a node of the decomposition tree T of G such that

1. v and v have distinct representatives z and z in X;
2. Zl and z. are on the same face f of some embedding of skeleton(x); and
3. vi and v are peripheral vertices of the expansion graphs G1 and G of X

and z2 respectively.
Then there ezists a directed path in G from vl to v2 if and only if there ezists a directed
path in the boundary of face f from X to x..

Proof. Note that the existence of node X is guaranteed by Theorem 4.6. By the
definition of a pertinent graph, there exists a directed path in G from Vl to v2 if and
only if there exists a directed path in skeleton(x) from Xl to z. By the teachability

970 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

properties of planar st-graphs given in [54], we have that there exists a directed path
in skeleton(x) from Xl to x2 if and only if there exists a directed path in the boundary
of face f from Xl to x2.

By property 2 of Lemma 3.1, face f consists of two directed paths with a common
origin and destination. Hence the time for testing reachability in f is dominated by
the complexity of determining if two objects of f (each a vertex or an edge) are on
the same path and, if so, which object precedes the other. In the rest of this section,
we assume that G is a planar st-graph that contains the edge (s, t).

The algorithm for operation Insert Vertex is as follows. Let p be the Q-node
storing edge e and let be the parent of p. If is a P-node or an R-node, we replace
p with a subtree consisting of an S-node and two child Q-nodes. If is an S-node, we
remove p and add two new child Q-nodes to

In the rest of this section, we present the algorithm for operation InsertEdge(e,
vl, v2). The algorithm makes use of several types of transformations that modify the
decomposition tree. If a transformation produces a node with exactly one child, such
node is absorbed into its parent. We assume that operation Test(vl,v2) has been
already performed and has returned true.

The algorithm InsertEdge and its subroutines are shown as Algorithm 2 and
Procedures 1-6.

ALGORITHM 2. InsertEdge(e, vl, v2)
Find the proper allocation nodes #1 of vl and #2 of v2 and their least common
ancestor #.
case of

1. #1=#2=#;
let X #;

{ Since G already contains the edge (s, t), by Fact 5, node X is
either an S-node or an R-node. }
FinalTransformationl

2. #=#and#2#;
let X #;
for 1, 2 do

PathCondensation (#
endfor
FinalTransformation2 (X,)1,

3. Pl # and #2 # #;
Determine the lowest node X on the path from P2 to # such that skeleton(p)
contains
if X #2
then FinalTransformationl (X)
else

PathCondensation (#2, 2
FinalTransformation3 (X, A2).

4. #2 # and
(This is analogous to the previous case and therefore omitted.)

endcase

ON-LINE PLANARITY TESTING 971

PROCEDUaE 1. FinaITransformationl
1. an R-node. We have two subcases.

Graph skeleton(x) does not contain an edge between V and v2.
Edge e is inserted in skeleton(x) and we add to the children of X a
new Q-node associated with e.
Graph skeleton(x) contains an edge between Vl and
The edge (vl, v2) of skeleton(x) is the virtual-edge of a child of X.
If is a P-node, we add to the children of a new Q-node associated
with e and we insert another edge from vl to v2 in skeleton(). Else,
we replace with a new P-node with children and. a Q-node storing
edge e.

X is an S-node. We perform at node X the transformation illustrated in
Fig. 7. The sequence of children of X is partitioned into subsequences, and G, where consists of the children of X associated with the edges of
skeleton(x) between vertices vl and v2. We remove the nodes of/ from the
children of X and replace them with a new P-node whose children are a Q-
node associated with edge e and an S-node whose children are the nodes of. Graph skeleton(x) is updated by replacing the chain between vl and v
with a single edge. The skeleton of the new P-node consists of two multiple
edges from v to v. The skeleton of the new S-node consists of a chain of
[1 edges from v to v2. Note that if I1 1, the new S-node is absorbed
into its parent, as mentioned above.

T1 T2 T3 T4 T5 T6

c6

c5

T3 T4

FIG. 7. The procedure FinalTransformationl when X is an S-node.

972 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

PROCEDURE 2. PathCondensation (#i, ;ki)

InitialTransformation (tt
Determine the child A of X on the path from # to X.
set p #;
while p - hi do

set r equal to the parent of p;
ElementaryTransformation (p, r; 7/);
set p

endwhile

PROCEDURE 3. InitialTransformation
If #i is an S-node, expand #i into a structure consisting of an R-
node and two S-nodes and ’, such that (see Fig. 8)

has children and " and has the same parent as #i;

graph skeleton() consists of edges (s.,vi), (vi,t.), and

graphs skeleton(’) and skeleton(/’) consist of the subchains
of skeleton (#i from s. to vi and from vi to t., respectively.

Rename #i u.

FIG. 8. Expansion of an S-node in InitialTransformation.

ON-LINE PLANARITY TESTING 973

PROCEDURE 4. ElementaryTransforrnation (p, r; 7r)
Let X be the type of node p and let r be the parent of p. Perform the RX-
transformation described below and shown in Fig. 9.

RR-transformation: Contract nodes p and r into a new node 7r. Graph
skeleton(7c’) is obtained from skeleton(zr) by replacing the virtual edge of p
with skeleton(p) minus the edge (so, to). (See Fig. 9(a))
RP-transformation: Rename p and r into r and p, respectively. Set the
parent of p equal to r. Set the parent of 7r equal to the former parent of
7c. Graph skeleton(p’) is equal to skeleton(zr) minus one of the edges (so, to)
(the former virtual edge of p). Graph skeleton(To’) is equal to skeleton(p)
plus a virtual edge (sp,,to,). (See Fig. 9(b))
RS-transformation: Split node r into nodes p and p" such that skeleton(p)
and skeleton(p") are the subchains of skeleton(zr) from s to so and from to
to t, respectively. Rename p into r. Set the parents of p and p" equal to
r. Set the parent of 7c equal to the former parent of r. Graph skeleton(7c)
consists of skeleton(p) minus edge (so, to) plus edges (s, so), (tp, t), and
(s,t). (See Fig. 9(c))

(a)

(b)

FI. 9. Elementary transformations: (a) RR; (b) RP; (c) RS.

974 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

PROCEDURE 5. FinalTransformation2 (X,/1,
Let X be the type of node X. Perform the X-transformation described below and
shown in Fig. 10. Note that A1 and A2 are R-nodes.

R-transformation: Contract nodes X, A1 and A2 into a new R-node XI.
Graph skeleton(x’) is obtained from skeleton(x) by replacing the virtual
edges of A1 and A2 with their skeletons (minus the edge between their
poles) and by adding the edge (vl, v2).
P-transformation: Contract nodes A and A2 into a new R-node A. Graph
skeleton(A) is obtained by the union of skeleton(A), skeleton(A2), and the
edge (v, v2).
S-transformation: Partition the sequence of children of X into subsequences
a, A1,/, A, and 7 in this order from left to right. We remove the nodes
of/ from the children of X and replace them with a new R-node ,. Also,
we create a new S-node A with parent - and whose children are the nodes
of/. Graph skeleton(,) is obtained from skeleton(A) and skeleton(A2) by
adding the edges (sl, t2), (tl, s.), and (Vl, v).

(a)

(b)

/
(c)

FIG. 10. The procedure FinalTransformation2: (a) R; (b) P; (c) S.

ON-LINE PLANARITY TESTING 975

PROCEDURE 6. FinalTransformation3 ()/,/2)

Let X be the type of node)t. Perform the X-transformation described below. Note
that 2 is an R-node.

R-transformation: Contract nodes X and/, into a new R-node)/. Graph
skeleton()t’) is obtained from skeleton(x) by replacing the virtual edge of

with skeleton() (minus the edge between the poles/and by adding the
edge
S-transformation: Partition the sequence of children of X into subsequences
a, /, 2, and / in this order from left to right, where vx is the common
pole of the pertinent graphs of the last node of a and the first node of
/. We remove the nodes of/ from the children of X and replace them
with a new R-node . Also, we create a new S-node with parent and
whose children are the nodes of/. Graph skeleton(r) is obtained from
skeleton(;2) by adding the edges (Vl, s2), (vl, t2), and (vl, v2).

(0,

(4,5) (5,6) / / (11,14) (14,15)

(11,18) (18,13) (13,19) (19,15)

FIG. 11. Initial S-transformation in operation InsertEdge(e, 13, 6).

With reference to Figs. 1 and 4, we show how InsertEdge(e, 13, 6) is performed.
We are in case 2. The initial transformation at #1 is shown in Fig. 11. Elementary
transformations RP, RR, and RS are shown in Figs. 12-14. The final decomposition
tree (after FinalTransformation2) is shown in Fig. 15.

We now argue about the correctness of the algorithm InsertEdge. We discuss
case 2 since it is the most general. Similar considerations hold for cases 1, 3, and 4.

First, we observe that after the insertion of edge (Vl, v.), the poles of X remain
a separation pair of G. Hence only the subtree of T rooted at X is affected by the
insertion. Namely, we show that the algorithm InsertEdge correctly computes the
decomposition tree of the pertinent graph of X plus the edge (Vl, v2).

976 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

(0,17)

(0,1)

(1,,17)
(3,4) (3,6) (4,7) (6,7)

/ \
(4,5) (5,6)

(1,9) (9,17) (12,15) (15,16) (: (12,17) (16,17)

(1,10) (10,12)

(11,18)(18,13)(13,19) (19,15)(11,14) (14,15)

FIG. 12. Elementary RP-transformation in operation InsertEdge(e, 13, 6).

(0,

(;,4) (3,6) (4,7) (6,7) (1,10) (1012)(11,18)(1,13)(13,19)(19,15) (11,14) (14,15)

/ \
(4,5) (5,6)

FIG. 13. Elementary RR-transformation in operation InsertEdge(e, 13, 6).

ON-LINE PLANARITY TESTING 977

(0,

t,4) (,b4,7)
[6,71

(1,9) (9,17) (1,11) (11,1212,15).5,16) 2,16)(12,1
(16, 7)

(1,2 2,3) (4,5) (5,6) (7,8) (8,17) (1,10) (10,12)(11,18)(18,13)(13,19)(19,15) (11,14) (14,15)

FIG. 14. Elementary RS-transformation in operation InsertEdge(e, 13, 6).

(o,

(1,9) (9,17)(3,4)(3,64,7)(6,7)1,11)(11,12, .5,16) 2,16)(12,1
(1,2 ,3) (4,5) (5,6) (7,8) (8,17) (1,10) (10,12)(11,18) (18,13)(13,19)(19,15) (11,14) (14,15)

FG. 15. Final P-transformation in operation InsertEdge(e, 13, 6).

978 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

U3(

U2

FI(. 16. Graph e used to show the correctness of the algorithm InsertEdge.

Let # be a node of 7" whose pertinent graph G contains vertex v,. We denote
by O the graph obtained from Gu by adding three new vertices ul, u., and u3 and
the edges (ul, s,), (ul, u2), (s,, u2), (u2, vi), (u2, t,), (u2, u3), and (t,, u3) aS shown
in Fig. 16. Intuitively, the "gadget" added to Gu forces vi to appear on the external
face. The formal proof consists of showing that

1. each transformation (initial or elementary) at a node 7c on the path from # to
A produces the decomposition tree of 0, 1, 2, except for the Q-nodes associated
with the extra edges added to Gu and their virtual edges in the skeletons;

2. the final transformation at node)/ produces the decomposition tree of the
pertinent graph of X plus the edge (v., v2).

The first property can be proved by induction. The base case is the initial trans-
formation at #. The inductive steps correspond to the elementary transformations.
The second property can be proved by a simple case analysis. Note that the graph
O is planar since by Theorem 4.6 vertex v is peripheral in the pertinent graph of r.
We omit the details of the correctness proof, which are tedious but straightforward.

6. Dynamic data structure. All the information needed to perform the Test
algorithm must be updated by the InsertEdge and Insert Vertex algorithms. We de-
scribe a data structure that represents the decomposition tree 7", the skeletons (with
their embeddings) of the nodes of 7", and the maximal paths of peripheral nodes in
7". The interface of the data structure consists of records for the vertices and edges
of the graph G.

6.1. Requirements. In this section, we discuss the primitive operations that
need to be supported by the dynamic data structure. The data structure for the de-
composition tree 7- should support finding the parent of a node and the least common
ancestor of two nodes. Also, it should support the initial, elementary, and final trans-
formations. Each such transformation is executed by means of a constant number of
link/cut and expand/contract operations.

Concerning skeletons and their embeddings, we need to support a repertoire of
access, query, and update operations. The access operations are as follows:

1. find the proper allocation node of a vertex;
2. find the poles of the skeleton of a node.
The query operations are as follows:

1. determine if a vertex is peripheral with respect to the skeleton of an R-node;

ON-LINE PLANARITY TESTING 979

2. determine if two objects (each a vertex or an edge) are on the same face of
the skeleton of an R-node.

3. determine if two objects on the same face f of a skeleton are also on the same
directed path forming the boundary of f and, if so, which object precedes the other.

The nontrivial update operations are as follows:
1. add vertices and edges to skeletons;
2. replace an edge of a skeleton with another skeleton;
3. split the skeleton of an S-node (by removing an edge).

Finally, we need to maintain the set of peripheral nodes of T so that we can

efficiently determine the first nonperipheral node on the path from a node # to the
root of T.

6.2. Maintaining planar embeddings. Our technique for maintaining the
planar embedding of the skeletons extends that of [53], where the latter two update
operations are not supported.

We recall from property 2 of Lemma 3.1 that the boundary of each face of the
embedding of a planar st-graph G consists of two directed paths with common origin
and destination. Also, by property 1 of Lemma 3.1, each vertex of G distinct from
the poles s and t is an internal node of exactly two faces.

FACT 8 (see [53]). Let F be a planar embedding of a planar st-graph G. Objects
X and x. of G, each a vertex or an edge, are on the same face f of F if and only if
one of the following conditions is verified:

1. each of xl and x2 is an edge or an internal vertex of f;
2. one of xl and x2 is an edge or an internal vertex and the other is an extreme

vertex of f;
3. both x and x2 are extreme vertices of f

An extreme pair is a pair of vertices that are the extreme vertices of some face f
of F. For example, (12, 17) and (11, 15) are extreme pairs of the graph of Fig. 1.

By Lemma 3.1, every object is internal in exactly two faces, and every face has
exactly two extreme objects (always vertices). Hence conditions 1 and 2 can be
tested in constant time after having determined the four faces where x and x. are
internal and these faces’ extreme vertices. Condition 3, on the other hand, is tested by
searching for (v, v.) in the set of extreme pairs. The data structure of [53] maintains
the set of extreme pairs in a dynamic dictionary and the set of internal vertices of
each face in two concatenable queues (associated with the two directed paths forming
its boundary).

We now show how to modify the data structure of [53] to support our extended
set of operations.

LEMMA 6.1. The set of extreme pairs is an invariant of a planar st-graph with
respect to all its planar embeddings.

Proof. By Lemma 4.2 we can construct any embedding by means of reverse and
swap operations on a given embedding. We show that the set of extreme pairs of an
embedding stays unchanged after a reverse or a swap. Consider a reverse operation
on a split component C with poles s and t (see Fig. 17). The boundaries of the faces
internal to C are modified by exchanging their left and right chains, so that their
extreme pairs remain the same. Let / and 7" be the left and right chains forming
the external boundary of C, where each such chain does not contain s or t. The
faces f and g on the left and right of C contain 3/ and as subchains of their right
and left chains, respectively. After the reverse operation, these faces are modified by
replacing / with 7" in the right chain of f and 3’" with 3/ in the left chain of g. Hence

980 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

the extreme pairs of f and g stay unchanged. Finally, the remaining faces of G are
not affected by the reverse operation. Similar considerations show that extreme pairs
stay unchanged after a swap operation. D

g

FG. 17. Example for the proof of Lemrna 6.1.

According to Lemma 6.1, we denote by g the set of extreme pairs of G.
LEMMA 6.2. After performing operation InsertEdge(e, vl, v2), the set $ is updated

by means of at most one deletion and two insertions. Also, after performing operation
InsertVertez(v, e, el, e2), the set $ stays unchanged.

Proof. By Lemma 6.1, the update of the set g is the same in any embedding.
Hence we consider adding the edge (vl, v) to an an embedding where v and v are
on the same face f. By Lemma 3.1, the boundary face f consists of two directed
paths. Let (/, h) be the extreme pair of f. If v and v are on the same directed path
of f, then we add to g the pair (Vl, v.), unless it is already in g (when v and
v2 h). Otherwise, we remove from g the pair (1, h) and add to g the pairs (vl, h) and
(,v).

The poles of each skeleton and, for R-nodes, the edge between them are directly
stored at each node, so that they can be determined in 0(1) time. Their update takes
0(1) time in each transformation.

The record of each face f of skeleton(#) (except the two faces containing the edge
(s,, t,)) has a bidirectional pointer to the element of g associated with the extreme
pair of f.

ON-LINE PLANARITY TESTING 981

6.3. Data structure. The data structure consists of a main component and of
an auziliary component. The main component is a tree T* that represents both the
decomposition tree T and the skeletons of the nodes of T. The auxiliary component
is a dictionary (e.g., a balanced search tree) that stores the set g, so that searches and
updates in g take O(log n) time. The updates to be performed in g are determined
in the final transformations.

The main component T* is an edge-ordered dynamic tree [151, a variation of the
dynamic tree of Sleator and Tarjan [52]. It is a rooted ordered tree with nodes of vat-

ious types that supports each of the following primitive tree operations in logarithmic
time:

Find the parent of a node.
Find the least common ancestor of two nodes.
Given two sibling nodes, determine which one precedes the other in the or-
dered sequence of the children of their parent.
Given a node , find the first node of a given type on the path from to the
root.
Link two trees by making the root of one tree a child of a node of the other
tree.
Cut a tree into two trees by removing a tree-edge.
Expand a node into two nodes Pl and 9. linked by a new tree-edge such
that the expansion preserves the ordering of the children. In other words, if
c/3 is the sequence of children of p, then cp.y is the sequence of children of
1 and/3 is the sequence of children of
Contract a tree-edge (, p2) and merge nodes p, and P2 into a new node
p such that the contraction preserves the ordering of the children. In other
words, if cp2"y is the sequence of children of and /3 is the sequence of
children of z2, then c/%/is the sequence of children of

The main component T* is obtained from the decomposition tree T by expanding
each node # of T into a tree rooted at #, called a skeleton tree, which describes the
embedding of skeleton(#), as follows (see Fig. 18):

1. First, we make children of # a set off-nodes representing the faces of skeleton(#)
(their order is irrelevant). The f-node associated with a face f is also said to
be a p-node ("peripheral" node) if f contains an edge (s,, t,), and otherwise
it is said to be a b-node ("blocking" node). Note that if # is a P-node or an

S-node, then all the children of # are p-nodes. Also, if # is an S-node or an
R-node, it has two child p-nodes.

2. Next, we attach to each f-node two subtrees, called boundary trees, that repre-
sent the two directed paths forming the boundary of the face (see Lemma 3.1),
excluding the extreme vertices. Each boundary tree is a two-level tree whose
leaves are an alternating sequence of e-nodes and v-nodes representing edges
and vertices of the path, respectively, and are ordered according to the direc-
tion of the path.

3. Finally, for each former child p of #, we make child of one of the two e-nodes
of the skeleton tree of # associated with the virtual edge of in skeleton(#).
If the closest f-node ancestor of one of such e-nodes is a p-node, then we make
a child of that e-node.

The data structure is completed by the following additional pointers. Each R-, P-,
and S-node stores pointers to the poles of its skeleton, so that they can be determined
in O(1) time. Their update takes O(1) time in each transformation. Each f-node has

982 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

7

3

6 6 4

(3,6) (6,7) (3,4) (4,7) ,a9

FIG. 1.8. Portion of tree T* representing the skeleton tree for node c6 of the decomposition tree
shown in Fig. 4.

a bidirectional pointer to the element of g storing the extreme pair of its associated
face. Finally, we establish a pointer from each edge to its Q-node and two pointers
from each vertex v to its two representative v-nodes in the boundary trees of the
skeleton tree of skeleton(#), where # is the proper allocation node of v. Note that
tree T can be obtained from tree T* by contracting each skeleton tree into its root.
We call the S-, P-, Q-, and R-nodes of T* primary nodes.

6.4. Complexity analysis. In this section, we analyze the performance of the
data structure described in 6.3.

LEMMA 6.3. The above data structure for on-line planarity testing uses O(n)
space.

Proof. The data structure uses space proportional to the total size of the skeletons
stored at the nodes of T*. Thus, by Lemma 4.1, the space requirement is O(n). E]

We now consider operation Test.
LEMMA 6.4. The above data structure supports operation Test in time O(log n).
Proof. To find the proper allocation node of a vertex v, we access one of the

two v-nodes r of v and find the closest primary node ancestor of . This takes time
O(]ogn).

To determine whether two objects x and x2 (each a vertex or an edge) are on
the same face of a skeleton, we use Fact 8. Conditions 1 and 2 of Fact 8 are checked
in O(log n) time by finding the closest f-node ancestors of the e-nodes of x and x2.
Namely, x. and x2 are both on face f if the f-node of f is the closest f-node ancestor
for both an e-node of x and an e-node of x2. Condition 3 is verified by searching for
the pair (x,x2) in g, again in O(logn) time.

ON-LINE PLANARITY TESTING 983

To determine whether a vertex v is peripheral in the skeleton of its proper allo-
cation node #, we find the closest f-node ancestors of the two v-nodes of v and test if
at least one of them is a p-node. This takes time O(log n).

To determine the first nonperipheral primary node on the path from a node
to the root of T*, we find the closest b-node ancestor of # and then the closest
primary node ancestor of . This takes time O(log n). [:1

Operation Insert Vertez is very simple to analyze. It takes worst-case time O(log n).
In the rest of this section, we discuss the time complexity of operation InsertEdge.

In operation InsertEdge, we need to restructure the tree 2r* and the dictionary. Each transformation (initial, elementary, or final) of the algorithm InsertEdge
can be performed in O(logn) time by means of O(i) link/cut and expand/contract
operations on tree 2r* and O(i) updates (insertions or deletions) of . Hence the
time complexity of operation InsertEdge is O((I + T)log n), where T is the number
of transformations performed.

THEOREM 6.5. The amortized time complezity of operation InsertEdge over a
sequence of update operations is O(log n).

Proof. Let R, S, and P denote the sets of R-, S-, and P-nodes of T, respectively,
and let deg(#) denote the number of children of node #. We define the following
potential function associated with the data structure:

+
ESUP

Define the amortized number of transformations performed by InsertEdge as A
T + A(I), where A(I) is the variation of potential. An RR-transformation decreases by
one the number of R-nodes and does not change the degrees of S- and P-nodes. An
RP-transformation does not change the number of R-nodes and decreases by one the
sum of the degrees of S- and P-nodes. An RP-transformation does not change the
number of R-nodes and decreases by one the sum of the degrees of $- and P-nodes.
The initial and final transformations in InsertEdge change the potential by a constant.
Hence, we conclude that A O(1). Since I1 O(n), the total time complexity
of a sequence of n update operations starting from a graph with O(1) vertices is
O(nlogn).

We conclude the following.
THEOREM 6.6. There exists a data structure for on-line planarity testing of a

biconnected planar graph G whose current number of vertices is n with the following
performance: the space requirement is O(n); operations Test and Insert Vertex take
worst-case time O(log n), and operation InsertEdge takes amortized time O(log n).

Proof. The space and time complexity bounds follow immediately from Lem-
mas 6.3 and 6.4 and Theorem 6.5.

7. Tests and updates in general graphs. In this section, we consider on-
line planarity testing for general (nonbiconnected) planar graphs. We first consider
connected graphs and then disconnected graphs.

7.1. Tests in connected graphs. We consider a connected planar graph
with n vertices. We use the data structure of the previous section for each block
(biconnected component) of G and represent the relationship between blocks by means
of the block-cutvertex tree.

The block-cutvertex tree of a connected graph G has a B-node for each block
(biconnected component) of G, a C-node for each cutvertex of (, and edges connecting

984 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

each B-node # to the C-nodes associated with the cutvertices in the block of # (see,
e.g., [28]). The block-cutvertex tree was previously used in [53, 60] for maintaining
biconnected components.

We construct an augmented block-cutvertex tree B for G as follows (see Fig. 19).
We root B at an arbitrary B-node. Next, we add n new leaf nodes, called V-nodes, to
B, each associated with a vertex of G. The parent of the V-node representing vertex
v it is the C-node associated with v if v is a cutvertex, and is the B-node associated
with the unique block containing v otherwise. The number of nodes of B is O(n). We
store at each B-node p a secondary structure consisting of the data structure of the
previous section for on-line planarity testing in the block B of tt.

30
23

24 30

24

29

25 29

(d)

I v I

FIG. 19. (a) A 1-connected graph G. (b) The augmented block-cutvertex tree B of G.
(c) to(Z). (d) to().

The following definitions are analogous to those given for the decomposition tree
in 4.

We define graph skeleton(#) for a node # of B as follows (see Fig. 19):
If # is a V-node representing vertex v, then skeleton(#) consists of a single
vertex v.
If # is a B-node, then skeleton(p) is the block corresponding to #. Each child
u of # is a V- or C-node and hence uniquely associated with a vertex v. The
virtual vertex of u in skeleton(p) is v.
If # is a C-node, let c be the cutvertex associated with # and k be the number
of children of # in B; skeleton(p) is a "star" tree with k + 2 vertices, where
the center vertex is c and the other vertices are the virtual vertices of the

ON-LINE PLANARITY TESTING 985

children of #, plus a vertex representing the parent of #.
Note that each child of # is uniquely associated with a vertex of skeleton(#). It is
easy to see that two vertices are in the same block if and only if the path in B between
their V-nodes has exactly one B-node.

The pertinent graph Gu of a node # is skeleton(#) if # is a V-node, and it is the
union of all the blocks of the B-nodes in the subtree of B rooted at # otherwise. The
pivot of a B-node # distinct from the root is the cutvertex whose C-node is the parent
of #. The pivot of the C-node of a cutvertex c is c itself. In the example of Fig. 19,
vertex 3 is the the pivot of nodes/2,/3,/4, and 5.

The expansion graph of a vertex v of skeleton(#) is the pertinent graph of the
child of # with virtual vertex v, or it is v itself if no such child exists. Observe that
if v is not a a cutvertex of G, then its expansion graph is v itself.

A vertex v is pivotal in the pertinent graph Gu of a node # if it appears in the
same face of the pivot of # in some embedding of G. We say that a node u is pivotal
if the pivot of u is pivotal in the pertinent graph of the parent of u. Note that a child
of a C-node is always pivotal. In the example of Fig. 19, the V-node of vertex 5 is
pivotal while the V-node of vertex 6 is not pivotal.

Let v be a vertex of the pertinent graph Gu of a node # of B. The representative
of v in the skeleton of # is the vertex x of skeleton(#) defined as follows: if v is in
skeleton(p), then x v; otherwise, x is the vertex of skeleton(p) whose expansion
graph contains v. In the example of Fig. 19, the representative of vertex 5 is vertex 3
in skeleton(/l) and is vertex v in skeleton(2).

We now show how to perform operation Test(vl, v2) for vertices in distinct blocks
(see Fig. 19).

THEOREM 7.1. Let v and v be vertices of a connected planar graph G. There
exists an embedding F of G such that v and v. are on the same face of F if and only
if there exists a node X of the block-cutvertex tree 13 of G such that

1. Vl and v have distinct representatives x and x. in
2. x and x. are on the same face of some embedding of skeleton(x); and
3. vl and v2 are pivotal vertices of the expansion graphs of x and x, respec-

tively.

Proof. The proof is essentially the same as that of Theorem 4.6, except for the
different meaning of the terminology.

We provide now examples of application of Theorem 7.1 referring to the graph of
Fig. 19. Regarding Test(l, 4), we have v 1, v 4, X , x vz3, and x. vz,
so that all the conditions of Theorem 7.1 are verified. Regarding Test(5, 20), we have
Vl 5, v2 20, X /, xl 3, and x 14, and again all the conditions of
the theorem are verified. Indeed, see in Fig. 20 how edge (5, 20) can be inserted.
Regarding Test(6,20), we have Vl 6, v 20, X =/, x 3, and x 14, and
condition 3 is not verified since vl is not pivotal in the expansion graph of x. Finally,
regarding Test(12,20), we have vl 12, v 20, X , x 10, and x2 14, and
condition 2 is not verified since X and x are not on the same face of some embedding
of skeleton(x).

The following lemma will be used to efficiently test condition 3.
LEMMA 7.2. Vertex v is pivotal in Gx if and only if the first nonpivotal node on

the path of 13 from the V-node of v to the root is either a child of X or a node of the
path from X to the root.

It is interesting to observe the analogy between the concepts of peripheral (defined
in 4) and pivotal. The proof of Lemma 7.2 is analogous to that of Lemma 4.5.

986 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

21

29

FIc. 20. Example of operation InsertEdge for vertices in distinct blocks: (a) graph of Fig. 19

after performing operation InsertEdge(e, 5, 20); (b) its augmented block-cutvertex tree.

THEOREM 7.3. Let G be a connected planar graph with n vertices. There exists
an O(n)-space data structure that supports operation Test(u, v) on G in time O(log n)
and can be constructed in O(n) preprocessing time.

Proof. Condition 1 of Theorem 7.1 is verified for at most two nodes of B: always
for the least common ancestor # of the V-nodes of vl and v2 and possibly for a child
of #. The latter case arises when Vl is a cutvertex and v. is in a block whose B-node
is a child of the C-node of vl. Condition 2 is equivalent to performing operation
Test(x, x) in skeleton(x), which is either a biconnected graph or consists of a single
vertex.

By Lemma 7.2, we can test condition 3 of Theorem 7.1 using for each vertex v
a pointer to the first node 7 in the path from the V-node of v to the root of B such
that v is not pivotal in Gv.

The time and space complexity bounds follow from Theorem 4.7 and from the
fact that tree B has O(n) nodes.

COROLLARY 7.4. Let G be a connected planar graph with n vertices. There exists
an O(n)-space data structure that supports operation Test(u,v) on C in time O(1)
and can be constructed in O(n) preprocessing time.

7.2. Updates in connected graphs. We consider a connected planar graph G
with n vertices. It is easy to see that operations InsertEdge and Attach Vertex form
complete repertoire of operations for connected planar graphs.

LEMMA 7.5. A connected planar graph G with n vertices and m edges can be
assembled starting from a single vertex by means of m InsertEdge and Attach Vertex

ON-LINE PLANARITY TESTING 987

operations, such that each intermediate graph is planar and connected. Also, such a

sequence of operations can be determined in O(n) time.

Proof. First, construct a spanning tree of G by means of n- 1 Attach Vertez
operations, and then add the remaining edges with rn- n + 1 InsertEdge opera-
tions.

Operation Attach Vertez(e, v, u) is performed as follows. First, if u is a cutvertex,
let fl’ be its C-node; otherwise, replace the V-node of u with a new C-node fl’ and a
child V-node. Second, create a new B-node fl" (associated with the block consisting
of the newly added edge e) with a child V-node (associated with the newly added
vertex v) and make fl" a child of fl’.

We now examine the structural changes of the block-cutvertex tree when operation
InsertEdge(e, vl,v2) is performed on G. If Vl and v2 are in the same block B of
G, then the primary structure of the block-cutvertex tree stays unchanged, and we
process the insertion in the secondary structure (decomposition tree) of the B-node of
B. Otherwise (see Fig. 20), let ttl and tz be the V-nodes of vl and v, respectively,
and let X the least common ancestor of #1 and #2. The effect of InsertEdge is to
merge the "old" blocks corresponding to the B-nodes of/ on the paths of/ from #,
to X and from #2 to X (inclusive) into a "new" block/3’.

The primary structure of/5 is updated by means of a sequence of primitive tree
operations (see 6.3). To update the secondary structure, we need to efficiently merge
the decomposition trees of the old blocks into the decomposition tree of the new
block]3’. We reorient all the old blocks, except the largest one, denoted B*. Avoiding
the reorientation of B* is the key to the efficient aInortized behavior of the InsertEdge
algorithm. Each old block distinct from B* is reoriented into a planar st-graph with
poles given by consecutive cutvertices in the chain from #1 to #2. By adding these
orientations to the orientation of B*, we obtain a planar st-orientation of the B’ whose
poles are the same as those of B*. See a schematic example in Fig. 21.

The decomposition tree of the new block B’ is obtained as follows. Let/31 and f12
be the nodes of/3 adjacent to the B-node of 23* in the path of/3 between the V-nodes
of Vl and v, with /3 on the side of v.i, 1,2. Let u be the vertex associated
with node/3, 1, 2. (Note that/3.i is either a C-node or a V-node.) We perform
InsertEdge(e, u,, u2) in B* and then replace the Q-node of e in the decomposition
tree of B* with an S-node whose subtrees are the newly built decomposition trees of
the other old blocks. Note that one of u and u is the former pivot c* of t3".

In our dynamic environment, we maintain the forest P, called pivotal forest,
obtained from/ by removing all the edges from nodes that are not pivotal to their
parents. Hence the first nonpivotal node on the path of/3 from the V-node of v
to the root (see Lemma 7.2) is the root of the tree of P containing the V-node of v.

To update the pivotal forest, we observe that the pivot c of the new block B’ is
the cutvertex parent of X and is in general (when B* is not the block of X) different
from the former pivot c* of B* (see Fig. 21). Let # be the proper allocation node of
c* in the decomposition tree of B’. The new pivot c is in the pertinent graph of an
edge of skeleton(#) incident upon c*. Such a pertinent graph is an orientation with
poles u and u of the union of edge e and the old blocks except B*. Hence we have
that nodes of/3 can go from pivotal to nonpivotal but not vice versa.

To efl%iently maintain the pivotal forest P, we use the following auxiliary data
structure. Consider a B-node of P associated to a block B, and let c be its pivot.
Let T(B) be a new copy of the decomposition tree of B associated with a planar
st-orientation of B with t c. We modify 7" into a forest P* (B) as follows:

988 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

(a)

(b)

FIG. 21. Schematic example of operation InsertEdge for vertices in distinct blocks: (a) aug-
mented block-cutvertex tree; (b) reorientation of the blocks, except the largest one, denoted B*.

1. Let 7)*(B) T(B).
2. Remove from 7)*(B) the Q-nodes.
3. For each (remaining) node # of T)*(B), if # is nonperipheral and the virtual

edge of # is not in the same face as c in skeleton(v), we remove the edges
from # to its parent v.

4. For ech vertex u # c, create a U-node #. Let v be the proper allocation
node of u and (s,, t,) be the edge between the poles of v. Make # a child of
, if one of the following cases applies: (i) c is in skeleton(,), and c and u are
on common fce of skeleton(,); or (ii) c is not in skeleton(,), and
and u re on a common face of skeleton(,).

5. For ech allocation node, of c, let e0 (c, u0),..., e_i (c, U-l) be the
edges incident on c in skeleton(v) in clockwise order around c; # be the child
of - whose virtual edge in skeleton(,) is e; f (i 0,..., k- 1) be the face
of skeleton(v) containing edges e and e(i+l)modk; nd E be the set of edges
of f excluding e and e(i+l)mod k.

(a) Expand node v into node v with k new children v0,..., V-l.
(b) For 0,..., k 1, make #,i and the U-node of u be children of v.
(c) Let the order of the children of v from left to right be #0, 0, v0,.

;k-1 /]k-1.

(d) For 0,..., k- 1, make each former child of whose virtual edge is
in Ei be a child of i

ON-LINE PLANARITY TESTING 989

(e) For 0,..., k- 1, make each U-node that is a former child of t, whose
associated vertex u is in face fi and is not adjacent to c a child of

(f) For 0,..., k- 1, order the children of t,i from left to right according
to the clockwise sequence of vertices and edges in face fi of skeleton(t,).

6. For each node t, that is not an allocation node of c, let f0 and fl be the faces
on the two sides of the edge between the poles of (s, t) in skeleton(z),
and let Ei (i 0, 1) be the set of edges of fi excluding (s, t).
(a) Expand node into a node t,’ with children 0 and
(b) For 0, 1, make each former child of whose virtual edge is in Ei be

a child of i
(c) For 0, 1, make each U-node that is a former child of whose associ-

ated vertex u is in face fi a child of
(d) For 0, 1, order the children of t,i from left to right according to the

clockwise sequence of vertices and edges in face fi of skeleton(z).
We replace the B-node of block B in B with forest 7)*(B) and identify each V-

and C-node that is a former child of the B-node with the U-node of 7)* (B) associated
with the same vertex. We denote by 7)* the resulting forest. The correspondence
between 7) and 7)* is given by the following lemma.

LEMMA 7.6. Let be the B-node of T) associated with a block B and # be the
child of associated with a vertex u of B. There is an edge in 7) between # and
(i.e., u is pivotal in B) if and only if there is a path in T)*(B) between the U-node of
u and the root of T)*(B).

Proof. The proof follows from Lemma 7.2 and the above construction.

By Theorem 7.1 and Lemmas 7.2 and 7.6, forest 7)* is equivalent to 7) regarding
Test operations. We represent forest 7)* with an edge-ordered dynamic tree [15].
Hence operation Test can be performed in O(log n) time.

Now we examine how to modify forest 7)* in consequence of update operations
on G. We consider operation InsertEdge first for vertices in the same block and then
for vertices in distinct blocks. We omit the discussion of operations Insert Vertex and
Attach Vertex.

When operation InsertEdge joins vertices in the same block B, the modifica-
tions of 7)* are in exact correspondence with the transformations performed on the
decomposition tree of B and take additional O(log n) time (amortized).

When operation InsertEdge joins vertices in distinct blocks, referring to the ter-
minology developed earlier in this section, we construct 7)*(B’) by rebuilding 7)* (B)
for each old block B except the largest block B* and by restructuring 7)*(B*) as
follows:

1. Restructure T)*(B*) in consequence of InsertEdge(e, u, u2). Without loss of
generality, assume that c* u,.

2. Let T be the tree of 7)* (B*) containing the U-node 2 of u2, and let p be the
root of T.

3. Reroot T at node n2.
4. Perform local updates along the path of T from p to 2.
5. Link T to the the rest of the newly reconstructed P*(B’).

Let be the length of the path between p and 2, and let Ap be the variation of
the number of edges of 7) in consequence of InsertEdge. We have the following result.

LEMMA 7.7. The restructuring of 7)* takes time O(logn- A +
Proof. The rerooting ot T and local updates are performed using a variation of op-

eration evert of edge-ordered dynamic trees. This takes O(log n) time plus

990 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

time to perform the local updates.
We conclude this section with the amortized analysis of the time complexity of

operation InsertEdge for vertices in distinct blocks. Let (9 be the set of old blocks.
Denote by nB the number of vertices of block B and by As the variation of the
number of nodes of/3 in consequence of InsertEdge. (Note that As >_ -2. 1(.91 + 1.)
Let t* be the time to perform InsertEdge(e, ul, u2) in B*.

From the above discussion, we have that, with an appropriate choice of the time
unit, the total time t for operation InsertEdge is

where

t t* + ts -+- to + tp + log n,

BO-{B*}

Namely, to is the time to reorient the old blocks and rebuild their secondary struc-
tures; t is the time to update the primary structure of B by means of primitive tree
operations; and tp is the time to update forest P*.

Let B B, where B is the set of allocation nodes of the cutvertex-c parent
of B in B, in the decomposition tree of B. Let P denote the total number of edges
of P. Let B be the potential of the data structure for block B, as given in the proof
of Theorem 6.5. We define the potential of the data structure as

B B

where the constant a > 0 denotes the maximum variation of potential of a block in
consequence of an InsertEdge operation. (Recall that the proof of Theorem 6.5 shows
that such variation is bounded by a positive constant.) Since Il + Il o(), we
have that

Denoting by AA the variation of cardinality of A, the variation A of potential
in consequence of insertE@e is given by

where

AGo + AOs + A(I)7,,

A nB’’lg
1 E ()nB log

1

tB BO

2). log n E ((I)B + a + 2). log n,
BEO

The following lemma is proved in [12]. Its proof is sketched here for the reader’s
convenience.

and let 1< x <LEMMA 7.8 (see [121). Consider the function f(x) xlog :,
<_ x. We have

f(xl +... + xk) (f(xl) +... + f(xk)) <_ -2(Xl +... + xk-1).

ON-LINE PLANARITY TESTING 991

Proof. This is a proof by induction on k. The base case (h 2) is easy to prove
by a simple analysis of the binary entropy function h(x) f(x) + f(1 z) for
0<x<l. [:1

By Lemma 7.8, to + A(I)o <_ 0. By Theorem 6.5, we have

t* -A(I)B. log n + log n

and

(I)B, _< Z (q) + a)+ AO..
BE(.9

Thus

t* _< --(I)B," log n + Z ((I)B + a). log n.
BEO

This implies that t* + tt + A(I) O(logn). Finally, we have that g < -At, and
therefore tT + A7 < 0. We conclude that t + A(I) O(log n), so that the amortized
time complexity of InsertEdge is O(log n).

7.3. Disconnected graphs. For graphs that are not connected, we complete
our repertoire with operation Make Vertex which can clearly be performed in O(1)
time. Let G be a general planar graph (possibly disconnected). We consider the block-
cutvertex forest of G, which is the forest of the block-cutvertex trees of the connected
components of G. When an InsertEdge operation joins two old connected components
C and C" into a new connected component C, we rebuild the block-cutvertex tree of
the smaller old component, so that it can be linked as a subtree of the block-cutvertex
tree of the larger component.

Again, we perform an amortized analysis. Let nc denote the size of the connected
component C. The time for InsertEdge is t log n + min(nc,, riG,,). The potential
of the data structure is defined as

E (b’nC’lgl)+c
all components C ?ZC

where b > 1 is a constant such that 17)1 + IN] _< b.n, and q)c is the potential of
connected component C as defined in 7.2. We can immediately verify that joining
C and C" affects the part of the potential associated with the size of 79 and ,4 so
that it increases by at most b. min(nc,,nc,,). By Lemma 7.8, we conclude that
t + A(I) O(log n).

The above analysis concludes the proof of Theorem 1.1 stated in 1.
8. Some applications.

8.1. Graph planarization. Let G be a graph with n vertices and rn edges.
Given a set of weights on the edges of G, a maximum-weight planar subgraph of G is
a planar subgraph of G with the maximum total edge weight. Finding a maximum-
weight planar subgraph is NP-hard even if all the edges have unit weights [26]. Given
an ordering e0,..., e,-i of the edges of G, each subgraph S of G is identified by
an integer k(S) (brn-l"’" b0)2 such that bit b 1 if and only if edge e is in
S. The lexicographically maximum planar subgraph of G with respect to the given

992 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

edge ordering is the planar subgraph S of G with maximum k(S). Several heuristics
have been developed for computing maximum-weight planar subgraphs; see, e.g.,
[14, 41]. There is experimental evidence that if the edges are sorted by decreasing
weight, a lexicographically maximum planar subgraph provides a good approximation
of a maximum-weight planar subgraph [14]. As a corollary of Theorem 1.1, we can
construct a lexicographically maximum planar subgraph in O(rnlogn) time. The
same result has been obtained in [7] with a different technique. A maximal planar
subgraph of G can instead be constructed in O(n + rn) time [49] using the technique
of

8.2. Transitive closure. In this section, we study the maintenance of reacha-
bility information in planar st-graphs, an important class of planar digraphs that find
several applications in computational geometry [27, 44, 45] and graph layout [10, 13].
Queries are of the following type: "Is there a directed path from vl to v27" This
problem was previously best solved using a data structure for general digraphs with
O(n2) space, O(1) query time, and O(n) amortized update time [32, 43].

However, this problem admits an efficient algorithm if we assume that the digraph
is embedded and restrict the InsertEdge operation to join vertices on the same face
of the embedding. That is, in the fixed-embedding problem, an edge that preserves
planarity cannot be added if this requires a change of the embedding. A data structure
for the fixed-embedding version of reachability in planar st-graphs is presented in [54].
The space requirement is O(n), and the query/update time is O(log n) (worst-case).
We show that the fixed-embedding restriction of the above technique can be removed
by using the decomposition tree (see 4) to maintain a hierarchical representation of
the embedding.

More formally, the on-line teachability problem for a planar st-graph G con-
sists of performing on G a sequence of update operations InsertEdge(e, v, v2) and
I’nsertVertez(v, v), intermixed with queries of the following type:

Reachable(v, v): Determine whether there exists a directed path from v to re.
It is shown in [54] that an embedded planar st-graph admits two total orderings of

its vertices, edges, and faces, called left-sequence and right-sequence, such that there
exists a path from Vl to v if and only if Vl precedes v2 in both the left- and right-
sequences. The update of the left- and right sequences after an InsertEdge operation
that preserves the embedding consists of a simple exchange of subsequences, so that
it can be efficiently supported by means of concatenable queues. See [54] for details.

The extension of the technique of [54] to InsertEdge operations that arbitrarily
modify the embedding is based on the following properties, whose proof is left to the
reader.

LEMMA 8.1. Let # be a node of the decomposition tree of a planar st-graph G.
The left-sequence (right-sequence) of the pertinent graph of # can be obtained from
the left-sequence (right-sequence) of skeleton(#) by replacing each edge e with the left-
sequence (right-sequence) of the ezpansion graph of e minus its poles.

LEMMA 8.2. Flipping the embedding of a planar st-graph around the poles ez-
changes the left-sequence with the right-sequence.

We consider an (arbitrary) embedding of graph G, and we maintain two copies
of the decomposition tree, denoted TL and T, which differ only in the order of the
children at each node. In tree Tc, the children of each node are ordered according
to the left-sequence of the corresponding virtual edges. Tree T is similarly defined
with respect to the right-sequence. There is a one-to-one correspondence between the
nodes of T. and T. By Lemma 8.1, the left-to-right order of the Q-nodes of

ON-LINE PLANARITY TESTING 993

yields the subsequence of edges of the left-sequence (right-sequence). Since vertices
are not explicitly described in our representation of the left- and right-sequences, we
perform the query Reachable(v1, v2) by considering any edge el incoming to vl and
any edge e. outgoing from v, and we test whether el precedes e. in both the left-
and right-sequence. If v has no incoming edges, then it must be the source of G,
and hence it reaches v. A similar argument applies if v has no outgoing edges. If
Reachable(v1, v2) true, a path from v to
visit of the decomposition tree, where k is the path length.

When adding an edge to G, we may have to modify the embedding. This is done
by means of the primitive topological operations reverse and swap; see Lemma 4.2.
A reverse operation flips the embedding of the pertinent graph of a node around its
poles. A swap operation restructures the embedding of the pertinent graph of a P-
node # by embedding the pertinent graph of a child of # in a different position. By
Lemma 8.2 the reverse operation corresponds to exchanging the subtrees of 2/’L and

7- rooted at the corresponding nodes. It is performed by two cuts followed by two
links. The swap operation is performed by means of two link and cut operations at
two corresponding P-nodes of 7"L and

After the embedding has been modified so that Vl and v are on the same

face, the exchange of subsequences in the left-sequence and right-sequence caused
by InsertEdge(c, v, v) is performed only at node X associated with v and v (see
InsertEdge in Algorithm 2), and can be done with O(1) primitive tree operations. We
represent 2FL and 2/’R as ordered dynamic trees [15].

THEOREM 8.3. Let G be a planar st-graph with n vertices. There exists an O(n)-
space data structure for the on-line teachability problem in G that supports operations
Reachable, InsertEdge, and Insert Vertex in O(logn) time, where the bound is amor-
tized for InsertEdge and worst-case for the other operations. Also, a directed path
between two vertices can be reported in time O(log n + k), where k is the path length.

8.3. Minimum spanning tree. In this section, we investigate the maintenance
of a minimum spanning tree of a planar graph under weight changes and insertions
of vertices and edges. Queries are of the following type: "Is edge e in the current
minimura spanning tree?" The previous best result for this problem is an O(m)-space
data structure for general graphs supporting queries in O(1) time and updates in

O(x/) time [21]. Also, this problem admits a more efficient algorithm if we assume
that the graph is embedded and restrict the InsertEdge operation to join vertices on
the same face of the embedding. Namely, O(n) space and O(log n) query/update time

(worst-case) can be achieved [15].
The on-line minimum-spanning-tree problem consists of maintaining the minimum

spanning tree of a graph. First, we consider the case of a biconnected planar graph
that is subject to a sequence of updates Insert Vertex and InsertEdge, intermixed with
the following operations:

InMst(e): Determine whether edge e belongs to the current minimum spanning
tree.

Reweight(e, w): Set the weight of edge e equal to w.
The fixed-embedding technique of [15] is based on the fact that the edges of G

not in the minimum spanning tree T dualize to a maximum spanning tree T* of the
dual graph G*. The cocycle (partition of the vertices) induced by the deletion of
edge e from T corresponds to the cycle induced by the insertion of e* into T*, and
vice versa. Hence the dynamization of the minimum spanning tree can be done by
representing both T and T* by ordered dynamic trees that support the usual tree

994 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

operations plus queries on the minimum-/maximum-weight edge on the tree path
between two vertices.

As previously described, the decomposition tree can be supplemented with embed-
ding information so that the modifications of the elnbedding required by an InsertEdge
operation are carried out in amortized time O(log n). Regarding the update of the
dual tree T*, we observe that the faces to the left and right of a pertinent graph are a

separation pair of G*. Hence T* is updated in a reverse or swap operation by means
of a sequence of O(1) expand, cut, link, and contract operations performed at the
nodes of T* representing the faces to the left and right of the pertinent graph being
flipped or moved. Figure 22 shows a schematic example of the update of T* in a
reverse operation.

FIG. 22. Schematic example of the update of the dual tree T* in a reverse operation. The
pertinent graph being reversed and the portion of T* in it are shown. Dual nodes are represented by
filled squares, and dual edges are represented by thick lines.

THEOREM 8.4. Let G be a planar biconnected graph with n vertices. There
exists a data structure for the on-line minimum-spanning-tree problem that supports
operation InMst in O(1) time and operations Insert Vertez, InsertEdge, and Reweight
in O(log n) time. The time bound is amortized for InsertEdge and worst-case for the
other operations.

The minimum spanning tree of a nonbiconnected graph is the union of the mini-
mum spanning trees of its blocks. Hence we have the following result.

THEOREM 8.5. Let G be a planar graph with n vertices. There exists a data struc-
ture for maintaining on-line a minimum spanning forest of G that supports opera-
tion InMst in O(1) time and operations InsertVertex, MakeVertex, InsertEdge, and

ON-LINE PLANARITY TESTING 995

Reweight in O(log n) time. The time bound is amortized for InsertEdge and worst-
case for the other operations.

REFERENCES

[1] B. ALPERN, R. HOOVER, B. ROSEN, P. SWEENEY, AND F. K. ZaDECK, Incremental evaluation of
computational circuits, in Proc. ACM-SIAM Symposium on Discrete Algorithms, Society
for Industrial and Applied Mathematics, Philadelphia, 1990, pp. 32-42.

[2] ll. AUSIELLO, ll. F. ITALIANO, A. MARCHETTI-SPACCAMELA, AND W. NANNI, Incremental algo-
rithms for minimal length paths, in Proc. ACM-SIAM Symposium on Discrete Algorithms,
Society for industrial and Applied Mathematics, Philadelphia, 1990, pp. 12-21.

[3] A. M. BERMAN, M. C. PAULL, AND B. G. RYDER, Proving relative lower bounds for incremental
algorithms, Acta Inform., 27 (1990), pp. 665-683.

[4] D. BIENSTOCK AND C. L. MONMA, On the complexity of of covering vertices by faces in a
planar graph, SIAM J. Comput., 17 (1988), pp. 53-76.

[5] K. BOOTIt AND G. LUEKER, Testing for the consecutive ones property property, interval graphs,
and graph planarity using PQ-tree algorithrns, J. Comput. System Sci., 13 (1976), pp. 335-
379.

[6] A. L. BUCHSBAUM, P. C. KaNELLAKIS, AND J. S. VITTER, A data structure for arc insertion
and regular path finding, in Proc. ACM-SIAM Symposium on Discrete Algorithms, Society
for Industrial and Applied Mathematics, Philadelphia, 1990, pp. 22-31.

[7] J. CA, X. HAN, AND R. E. TARJAN, An O(rnlogn)-time algorithm for the maximal subgraph
problem, SIAM J. Comput., 22 (1993), pp 1142-1162.

[8] N. CHIBA, T. NISHIZEKI, S. ABE, AND T. OZAWa, A linear algorithm for embedding planar
graphs using PQ-trees, J. Comput. System Sci., 30 (1985), pp. 54-76.

[9] R. F. COHEN AND R. TAMASSIA, Dynamic expression trees and their applications, in
Proc. ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied
Mathematics, Philadelphia, 1991, pp. 52-61.

[10] G. D BATTISTa AN[) R. TAMASSlA, A19oritms for plane representations of acyclic digraphs
Theoret. Comput. Sci., 61 (1988), pp. 175--198.

[11] , On-line graphs algorithms with SPQR-trees, in Automata, Languages, and Program-
ming (Proc. 17th International Colloquium on Automata, Languages, and Programming),
Lecture Notes in Comput. Sci. 442, Springer-Verlag, Berlin, New York, Heidelberg, 1990,
pp. 598-611.

[12] , On-line maintenance of triconnected components with SPQR-trees, Algorithmica, 15
(1996), pp. 302-318.

[13] G. DI BATTISTA, R. TAMASSIA, AND I. G. TOLLIS, Area requirement and symmetry display in
drawing graphs, in Proc. ACM Symposium on on Computational Geometry, Association
for Computing Machinery, New York, 1989, pp. 51-60.

[14] P. EADES, L. FOULDS, AND J. GIFFIN, An efficient heuristic for identifying a maximal weight
planar subgraph, in Combinatorial Mathematics IX, Lecture Notes in Math. 952, Springer-
Verlag, Berlin, New York, Heidelberg, 1990, pp. 239-251.

[15] D. EPPSTEIN, I. F. ITALIANO, R. TAMASSIA, R. E. TARJAN, J. WESTBROOK, AND M. YUNG,
Maintenance of a minimum spanning forest in a dynamic plane graph, J. Algorithms, 13
(1992), pp. aa-54.

[16] S. EVEN AND H. (]AZIT, Updating distances in dynamic graphs, Methods Oper. Res., 49 (1985),
pp. 371--387.

[17] S. EVEN AND Y. SHILOACtt, An on-line edge deletion problem, J. Assoc. Comput. Mach., 28
(1981), pp. 1-4.

[18] S. EVEN AND R. E. TARJAN, Computing an st-numbering, Theoret. Comput. Sci., 2 (1976),
pp. 339-344.

[19] H. DE FRAYSSEIX, J. PacH, AND R. POLlaCK, Small sets supporting Fary embeddings of pla-
nar graphs, in Proc. 20th ACM Symposium on Theory of Computing, Association for
Computing Machinery, New York, 1989, pp. 426-433.

[20] H. E FRaYSSEIX aN P. ROSENSTIEHL, A depth-first-search characterization of planarity,
Ann. Discrete Math., 13 (1982), pp. 75-80.

[21] G. N. FREDEaICKSON, Data structures for on-line updating of minimum spanning trees with
applications, SIAM J. Comput., 14 (1985), pp. 781-798.

[22] , Fast algoritms for shortest paths in planar graphs, with applications, SIAM J. Comput.,
(gs), pp. 004-0e.

[23] , Ambivalent data structures for dynamic 2-edge-connectivity and k smallest spanning

996 GIUSEPPE DI BATTISTA AND ROBERTO TAMASSIA

trees, in Proc. 32nd IEEE Symposium on Foundations of Computer Science, IEEE Com-
puter Society Press, Los Alamitos, CA, 1991, pp 632-641.

[24] Z. (ALIL AND G. F. ITALIANO, Fully dynamic algorithms for edge-connectivity problems, in
Proc. 23rd ACM Symposium on Theory of Computing, Association for Computing Ma-
chinery, New York, 1991, pp. 317-327.

[25] , Maintaining biconnected components of dynamic planar graphs, in Automata, Lan-
guages, and Programming (Proc. 18th International Colloquium on Automata, Languages,
and Programming), Lecture Notes in Comput. Sci. 510, Springer-Verlag, Berlin, New York,
Heidelberg, 1991, pp. 339-350.

[26] M. R. GAPEY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979.

[27] M. T. GOODRICH AND t. TAMASSIA, Dynamic trees and dynamic point location, in Proc. 23rd
ACM Symposium on Theory of Computing, Association for Computing Machinery, New
York, 1991, pp. 523-533.

[28] F. HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[29] D. HAPEL AND R. E. TARJAN, Fast algorithms for finding nearest common ancestors, SIAM

J. Comput., 13 (1984), pp. 338-355.
[30] J. HOPCROFT AND 12.. E. TARJAN, Dividing a graph into triconnected components, SIAM J. Com-

put., 2 (1973), pp. 135-158.
[31] , Efficient planarity testing, J. Assoc. Comput. Mach., 21 (1974), pp. 549-568.
[32] G. F. ITALIANO, Amortized efficiency of a path retrieval data structure, Theoret. Comput. Sci.,

48 (1986), pp. 273-281.
[33] , Finding paths and deleting edges in directed acyclic graphs, Inform. Process. Lett., 28

(1988), pp. 5--11.
[34] G. F. ITALANO, A. MARCHETTI-SPACCAMELA, AND U. NANNI, Dynamic data structures for

series-parallel graphs, in Algorithms and Data Structures (Proc. 1989 WADS), Lecture
Notes in Comput. Sci. 382, Springer-Verlag, Berlin, New York, Heidelberg, 1989, pp. 352-
372.

[35] A. KANEVSKY, l.. WAMASSIA, ,]. CttEN, AND C. DI BATTISTA, On-line maintenance of the

four-connected components of a graph, in Proc. 32nd IEEE Symposium on Foundations of
Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1991, pp. 793-801.

[36] M.-Y. KAO AND P. N. KLEIN, Towards overcoming the transitive-closure bottleneck: Efficient
parallel algorithms for planar digraphs, in Proc. 22nd ACM Symposium on Theory of
Computing, Association for Computing Machinery, New York, 1990, pp. 181-192.

[37] P. N. KLEIN AND J. H. IEIF, An efficient parallel algorithm for planarity, J. Comput. System
Sci., 37 (1988), pp. 190-246.

[38] A. LEMPEL, S. EVEN, AND I. CEDERBAUM, An algorithm for planarity testing of graphs, in The-
ory of Graphs, International Symposium, Gordon and Breach, New York, 1967, pp. 215-
232.

[39] C. C. LIN AND R. C. CIANG, On the dynamic shortest path problem, in Proc. International
Workshop on Discrete Algorithms and Complexity, 1989, pp. 203-212.

[40] T. NISHIZEKI AND N. CHIBA, Planar Graphs: Theory and Algorithms, Ann. Discrete Math. 32,
North-Holland, Amsterdam, 1988.

[41] T. OZAWA AND H. TAKAHASHI, A graph-planarization algorithm and its applications to random
graphs, in Graph Theory and Algorithms, Lecture Notes in Comput. Sci. 108, Springer-
Verlag, Berlin, New York, Heidelberg, 1981, pp. 95-107.

[42] J. A. LA POUTRI, Dynamic graph algorithms and data structures, Ph.D. thesis, Department
of Computer Science, University of Utrecht, Utrecht, The Netherlands, 1991.

[43] J. A. LA POUTRI AND ,J. VAN LEEUWEN, Maintenance of transitive closures and transitive
reductions of graphs, in Graph-Theoretic Concepts in Computer Science (Proc. 1987 WG),
Lecture Notes in Comput. Sci. 314, Springer-Verlag, Berlin, New York, Heidelberg, 1988,
pp. 106-120.

[44] F. P. PREPARATA AND I. TAMASSIA, Fully dynamic point location in a monotone subdivision,
SIAM J. Comput., 18 (1989), pp. 811-830.

[45] , Efficient point location in a convex spatial cell complex, SIAM J. Comput., 21 (1992),
pp. 267-280.

[46] V. RAMACHANDRAN AND J. H. REIF, An optimal parallel algorithm for graph planarity, in
Proc. 30th IEEE Symposium on Foundations of Computer Science, IEEE Computer Society
Press, Los Alamitos, CA, 1989, pp. 282-293.

[47] J. H. tEIF, A topological approach to dynamic graph connectivity, Inform. Process. Lett., 25
(1987), pp. 65-70.

[48] H. ROHNERT, A dynamization of the all-pairs least cost problem, in Proc. 1985 Symposium on

ON-LINE PLANARITY TESTING 997

Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci. 182, Springer-
Verlag, Berlin, New York, Heidelberg, 1985, pp. 279-286.

[49] P. ROSENSTIEHL, personal communication.
[50] B. SCH1EBER AND U. VISHKIN, On findin9 lowest common ancestors: Simplification and paral-

lelization, SIAM J. Comput., 17 (1988), pp. 1253-1262.
[51] W. SCttNYDER, Embedding planar graphs on the grid, in Proc. ACM-SIAM Symposium on

Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, 1990,
pp. 138-148.

[52] D. D. SLEATOR AND R. E. TAPJAN, A data structure for dynamic trees, J. Comput. System
Sci., 24 (1983), pp.

[53] R. TAMASSIA. A dynamic data structure for planar graph embedding, in Automata, Languages,
and Programming (Proc. 15th International Colloquium on Automata, Languages, and
Programming), Lecture Notes in Comput. Sci. 317, Springer-Verlag, Berlin, New York,
Heidelberg, 1988, pp. 576-590.

[54] R. TAMASSIA AND F. P. PREPARATA, Dynamic maintenance of planar digraphs, with applica-
tions, Algorithmica, 5 (1990), pp, 509-527.

[55] R. TAMASSIA AND I. G. TOLLIS, A unified approach to visibility representations of planar graphs,
Discrete Comput. Geom., (1986), pp. 321-341.

[56] , Dynamic teachability in planar digraphs with one source and one sink, Theoret. Com-
put. Sci., 119 (1993), pp. 331-343.

[57] I{. TAMASSIA AND J. S. VITTER, Parallel transitive closure and point location in planar struc-
tures, SIAM J. Comput., 20 (1991), pp. 708-725.

[58] R. E. TARJAN AND J. VAN LEEUWEN, Worst-case analysis of set-union algorithms, J. As-
soc. Comput. Mach., 31 (1984), pp. 245-281.

[59] R. E. TAPIAN AND A. C.-C. YAO, Storing a sparse table, Comm. Assoc. Comput. Mach., 22
(9z9), pp. 0--1.

[60] J. WESTBROOK AND R. E. TARJAN, Maintaining bridge-connected and biconnected components
on-line, Algorithmica, 7 (1992), pp. 433-464.

[61] H. WHITNEY, Non-separable and planar graphs, Trans. Amer. Math. Soc., 34 (1932), pp. 339-
362.

[62] M. YANNAKAI<IS, Four pages are necessary and sufficient for planar graphs, in Proc. 18th ACM
Symposium on Theory of Computing, Association for Computing Machinery, New York,
1986, pp. 104-108.

