
Type Analysis of Prolog Using Type Graphs*

P. Van Hentenryck A. Cortesi B. Le Charlier

Brown University University of Venezia University of Namur

Box 1910 Via Torino 155 21 rue Grandgagnage

Providence RI 02912 (USA) 1-30170 Mestre-VE (Italy) B-5000 Namur (Belgium)

pvh@cs brown. edu cortesi@moo. dsi .uni-ve. it bletlinfo .fundp. ac .be

I&trzzt

Type analyis of Prolog is of primary importance for

high-performance compilers, since type information may

lead to better indexing and to sophisticated specializa-

tions of unification and built-in predicates to name a

few. However, these optimizations often require a so-

phisticated type inference system capable of inferring

disjunctive and recursive types and hence expensive in

computation time.

The purpose of this paper is to describe a type anal-

ysis system for Prolog based on abstract interpretation

and type graphs (i.e. disjunctive rational trees) with

this functionality. The system (about 15,000 lines of

C) consists of the combination of a generic fixpoint al-

gorithm, a generic pattern domain, and a type graph

domain. The main contribution of thepaperis to show

that this approach can be engineered to be practical

for medium-sized programs without sacrificing accuracy.

The main technical contributions to achieve this result

are (1) a novel widening operator for type graphs which

appears to be accurate and effective in keeping the sizes

of the graphs, and hence the computation time, reason-

ably small; (2) the use of the generic pattern domain to

obtain a compact representation of equality constraints

between subterms and to factor out sure structural in-

formation.

1 Introduction

Although Prolog is an untyped language, type analy-
sis of the language is important since it enables to im-

prove indexing, to specialize unification, and to produce
more efficient code for built-in predicates to name a few.

However, to provide compilers with sufficiently precise

*This research was partly supported by the Office of Naval Re-
search under grant NOO014-91-J-4052 ARPA order 8225 and the
National Science Foundation under grant numbers CCR-9357704
and a National Young Investigator Award.

Permission to co without fee all or part of this matedal is
grxdcdpmvidecl% t at the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copyin is by permission of the Association of Computing

+Machinety. o copy otherwise, or to republish, requires a fee
andlor specific permission.

information, type analyses must be rather sophisticated

and contain disjunctive and recursive types. Consider

for instance the simple program to insert an element in

a binary tree:

insert (E, void, tree (void, E,void)) .

insert (E, tree(L, V, R), tree(Ln, V, R)) :- E < V,

insert (E, L,Ln) .

insert (E, tree(L, V, R), tree(L, V,Rn)) :- E > V,

insert (E, R,Rn) .

If compilers are given the information that the first ar-

gument is not a variable and that the type T of the

second argument is described the grammar

T ::= void I tree(T, Any, T)

then at most two tests are necessary to select the appro-

priate clause to execute. Note that a recurgive type is

needed because of the recursive call. Information about

the functor of the second armment would onlv enable

to specialize the first canto insert.

Extensive research has been devoted to type infer-

ence in logic programming, although few systems have

actually been developed. A popular line of research,

called the Cartesian closw-eapproach in [?], was initiated

by [?] and further developed in many authors (See [?]

foracomplete account). Thekeyidea is to approximate

the traditional TP operator by replacing substitutions

by sets of substitutions and using a cartesian closure

operator toignore inter-variable and inter-argument de-

pendencies. This approach originated in type checking

applications but can be used for type analysis as well.
Thetype inference problem in this approach was shown

to be decidable by Heintze and Jaffar [?] using a re-

duction to set constraints. By reducing the problem to

the inference of (a subclass of) monadic logic programs,

Fruehwirth et aL ~?l gave an exponential lower bound

for type checking ;n~ ;n exponential algorithm for type

inference. Theappealing feature of this approach is that

the problem is amenable to precise characterization and

hence itsproperties can restudied more easily. Itslimi-
tation for type analyis is that the relationships between

predicate arguments are ignored which may entail a loss

of precision and makes it difficult to integrate the sys-

tem with other analyses such as modes and sharing. A

SIGPLAN 84-6/94 Orlando, Florida USA
Q 1984 ACM 0-89791 -662-x18410006..~.5O

337

type inference system based on this approach was de-

veloped by Heintze [?] and the experiments results (on

programs up to 32 clauses) indicate that there is hope

to make this approach practical.

Another line of research is the approach of Bruynooghe

and Janssens (e.g. [?, ?]) which is based on a traditional

abstract interpretation approach [?]. The key idea is to

approximate a co~ecting semantics of the language by

an abstract semantics where sets of substitutions are

described by type graphs, i.e. disjunctive rational trees.

A fixpoint algorithm is then used to compute the least

fixpoint or a postfixpoint of the abstract semantics. The

problem of inferring the set of principal functors for an

argument in a program is undecidable and the result of

the analvsis is thus an auDroximation as is traditional in. . .
abstract interpretation. The appealing features of this

approach is the possibility of exploiting variable depen-

dencies and the ease with which type analysis can be

combined with other analyses as required by applica-

tions such as compile-time garbage collection [?]. The

drawback is that the result of the analysis is more dif-

ficult to characterize formally as the design of the ab-

stract domain is an experimental endeavour. This ap-

proach has been implemented in a prototype system [?]

but experimental results have only been reported on

very small programs and were not very encouraging.

Hence the practicability of this approach remains open.

Note also that the two approaches, which use fundamen-

tally different algorithms, are not directly comparable

in accuracv. since the accuracv of the abstract interDre-., .
tation approach depends upon the choices made in the

abstract domain.

The purpose of this paper is to describe the de-

sign and implementation of a type system based on

the second approach. The system is best described as

GAIA (Pat (Type)), where GAIA is a generic top-down fix-

point algorithm for Prolog [?, ?]l, pat is a generic pat-

tern domain for structural information [?], and Type is

a type graph domain. The main contribution of the sys-

tem (about 15,000 lines of C) is to show that type analy-

sis based on abstract interpretation and type graphs can

be engineered to be practical, at least for medium-sized

programs (up to 45o lines of Prolog). It also shows that

type graphs can be practical and this is of importance

for many applications such as compile-time garbage col-

lection (e.g. [?]) and automatic termination analysis

(e.g. [?]). The technical contributions to obtain this
result are (1) a novel widening operator for type graphs

which appears to be accurate and effective in keeping
the sizes of the graphs, and hence the computation time,

reasonably small; (2) the use of the pattern domain to

obtain a compact representation of equality constraints

between subterms and to factoring sure structural in-

formation. This should be contrasted with Bruynooghe

and Janssens’s approach which restricts attention to a

finite domain to guarantee the finiteness of the analysis

and represents all information in the type graph domain.

Note also that the use of widening operators for type in-

ference has been recently investigated in the context of

1GAIA is available by anonymous ftp from Brown University.

functional programming but the technical details of this

work are fundamentally different [?].

The rest of this paper is organized as follows. Section

2 illustrates the functionality of the system on a variety

of small but representative examples. Section 3 gives an

overview of the paper. Sections 4 and 5 briefly review

our abstract interpret ation framework and the generic

pattern domain. Section 6 describes our design of the

type graph domain. Section 7 reports the experimen-

tal results. Section 8 concludes the paper. Appendices

A and B show the relations between type graphs and

context-free grammars. Appendix C cent ains the for-

malization of the widening operation and the proofs of

the main results.

2 An 171ustration of the Type System

The purpose of this section is to illustrate the behaviour

of the type analysis system on a number of examples. It

should give the reader an intuitive idea of the accuracy

and efficiency of the type analysis system. The examples

are small for clarity but they represent abstractions of

existing procedures and illustrate many aspects of Pro-

log programming. Results on medium-sized programs

are given in Section 7.

Our type analysis system receives as input a Prolog

program and an input pattern, i.e. a predicate sym-

bol and some type information on each of the argu-

ments. The input pattern gives information on how

the program is used, i.e. it specifies the top-level goal

and the type properties satisfied by the arguments. In

this section, for simplicity, all input patterns are of the

form p (Any Any), where Any represents the set of

all terms. The output of the system is an output pat-

tern, i.e. a predicate symbol and some type information

on each of the arguments. The output pattern repre-

sents type information of the arguments on success of

the predicate. The system also returns a set of tuples

(~t~, P, Pw) which represent the input and output pat-
terns for a predicate symbol p needed to compute the

result. Note that the system performs a polyvariant
analysis, i.e. there may be multiple tuples associated
with the same predicate symbol. In the following, we

mainly show the top-level result for simplicity. The re-

sults are present ed as context free grammars, since there

is a close analogy between grammars and type graphs

(see Appendix A). Consider first the traditional naive

reverse program

nreverse ([1 , [1) .
nreverse ([F IT] ,Res) :-

nreverse (T, Trev) ,

append (Trev, [F], Res).

append([1 ,X,X) .

append ([FIT], S, [FIR]) :- append (T, S, R).

For an input pattern nreverse (Any, Any), the system

produces the output pattern nreverse (T, T) where T is

defined as follows:

T : := [1 I cons(Any, T).

338

In other words, both arguments should be lists after exe-

cutionofnreverse. The analysis also concludes tha,t the

first argument toappend isalways a list. Note that the

system has no predefine notion of list: [] and cons/2

are uninterpreted functors. The analysis time for this

example is about 0.01 seconds. Consider now the fol-

lowing program which is an abstraction of a procedure

used in the parser of Prolog.

process (X, Y) :- process(X,O,Y).

process([],X,X).

process([c(Xl) lY],Acc,X) :-

process(Y,c(Xl ,Acc),X).

process([d(Xi) lY],Acc,X) :-

process(Y,d(Xl,Acc) ,X).

The program is int cresting because it cent ains a sophis-

ticated form of accumulator, a traditional Prolog pro-

gramming technique. For the input process(Any,Any),

the analysis returns the output pattern process (T, S)

such that

T ::= [1 I cons(Tl,T).
T] ::= c(Any) I d(any).
s ::= O I c(Any,S) I d(Any,S).

The first argument is inferred to be a list with two types

of elements while the second argument captures per-

fectly the structure of the accumulator. The analysis

time is about 0.34 seconds. Consider now a slight varia-

tionof the program tointroduce twomutua.lly recursive

procedures:

process(X,Y) :- process(X,O,Y).

process([l ,X,X) .

process([c(Xl) lY],Acc,X) :-

other-process(Y,c(Xl ,Acc),X).

other.process([d(Xl)lY],Acc,X) :-

process(Y,d(Xl ,Acc) ,X).

For the input pattern process(Any,Any), the analysis

returns the output pattern process (T, S) such that

T ::= [1 I cone.(c(Any),cons(d(Any),T)).
s ::= O I d(Any,c(Any,S)).

Once again the types of the accumulator and of the list

are inferred perfectly and the analysis time is about 0.08
seconds. Consider now the following program:

llist([l).
llist([FIT]) :- lLvt(F), ll&t(T).

list([l).
list([FIT]) :- p(F), list(T).

p(a). p(b).

reverse(X,Y) :- reverse(X,[l,Y).

reverse([l ,X,X).
reverse([FIT] ,Acc,Res) :- reverse(T, [FIAcc],Res) .

which contains imbricated lists and an accumulator. Given

the input pattern get(Any), theanrdysis system returns

the output pattern get(T) where

T ::= [1 I cons(Tl,T).

T] ::= [1 I cons(Tz,Tl).
T2 ::= alb.

The analysis time is about 0.09 seconds. The example
illustrates well how the imbricated list structure is in-

ferred by the system and preserved when used inside the

accumulator of reverse. Consider the following pro-
gram which collects information in arithmetic expres-
sions.

add(O, []).
add(X + Y,Res) :-

add(X,Resl),

mult(Y,Res2) ,

aPPend(Resl ,Res2,ReS).

mult(l, [l)o

mult(X * Y,Res) :-
mult(X,Resl) ,

basic(Y,Res2),

aPPend(Resl ,Res2,Res).

basic(var(X), [X]).
basic(cst(C), []) .

basic(par(X),Res) :- add(X,Res).

For the input pattern add(Any,Any), the analysis pro-
duces the output pattern add(T, S) where

T ::=T+TI IO.

T1 ::=TI*T2 I 1.

Tz ::= cst(Any) I par(T) I var(Any).

s ::= [1 I cons(Any,S).

The interesting point in this example is that the rule for

Tz contains an occurrence of T showing that our analysis
can generate grammars with mutually recursive rules.
The analysis timeis about 0.11 seconds. Consider now
the even more sophisticated program on arithmetic ex-

pressions:

add(X,Res) :- mult(X,Res).

add(X + Y,Res) :-

add(X,Rl),

mult(Y,R2),

append(Rl,R2 ,Res).

mult(X,Res) :- basic(X,Res).
mult(X * Y,Res) :-

mult(X,Rl),
basic(Y,R2),
append(Rl,R2 ,Res).

basic(var(X), [Xl).
basic(cst(X), []).
basic(par(X),Res) :- add(X,Res).

For the input pattern add(Any,Any), the analysis pro-

gat(Res) :- llist(X), reverse(X,Res). duces the optimal output pattern add (T,S) where

339

T ::=T1 I ‘1’+TI.

TI ::=T2 I TI*T2.

T2 : := cst(Any) [var(Any) I par(T) .

s ::= [1 I cons(Any, S).

The analysis time is about 0.56 seconds. The difficulty

in this example is to avoid mixing the definition of T, T1

and TZ. Finally, we would like to mention the analysis

of the tokenizer of Prolog which produces the result

T : := [1 \ cons(Tl, T).

TI ::= ’(’] ‘)’ I ‘,’ 1 ‘[’ I ‘1’ I ‘{’

\ ‘ I ‘ [‘}’ I atom(Any) I string(T2)

I integer (Any) I var(Any ,Any)

T2 : := [1 I cons(Any, Tz) .

The analysis time is about 0.42 seconds and the inter-

esting point was the ability of the widening to preserve

the string type.

3 Overview of the Type Analysw System

Our type analysis system can be described as the com-

bination GAIA (Pat (Type)) where

1. GAIA (’R) is a generic fixpoint algorithm for Pro-

log which, given an abstract domain ~, computes

the least fixpoint (finite domains) or a postfixpoint

(infinite domains) of an abstract semantics based

on 7?-;

2. Pat (7?) is a generic pattern domain which en-

hances any domain %?.with structural information

and equalhy constraints between subterms;

3. Type is the type graph domain to represent type

information.

The next three sections are devoted to each of the sub-

systems with a special emphasis on Type since the other

two systems have been presented elsewhere.

4 The Abstract Interpretation Framework

In this section, we briefly review our abstract interpre-

tation framework. The framework is presented in de-

tails in [?] and is close to the work of Marriott and

Sondergaard [?] and Winsborough [?]. It follows the

traditional approach to abstract interpretation [?].

Concrete Semantzcs As is traditional in abstract inter-

pretation, the starting point of the analysis is a collect-

ing semantics for the programming language. Our con-

crete semantics is a collecting fixpoint semantics which

captures the top-down execution of logic programs using

a left-to-right computation rule and ignores the clause

selection rule. The semantics manipulates sets of sub-

stitutions which are of the form {Z I _ tl,....zn + &}
for some n z O. Two main operations are performed on

substitutions: unification and pro j ection. The seman-

tics associates to each of the predicate symbol p in the

program a set of tuples of the form (~t~, p, ~~~t) which

can be interpreted as follows:

“the execution of P(z1, z~)~ with .9 G

~,~ produces a sequence 01, On, . . . of sub-

stitutions, all of which belongs to @oUt.”

Abstract Semantzcs The second step of the methodol-

ogy 1S the abstraction of the concrete semantics. Our
abstract semantics consists in abstracting a set of sub-

stit utions by a single abstract substitutions, i.e. an ab-

stract substitution represents a set of substitutions. As

a consequence, the abstract semantics associates with

each predicate symbol p a set of tuples of the form

(~,~, P, p~tit) which can be read informally as follows:

“the execution of P(Z1, . . ., z~)o with 6’ satis-

fying the property described by p,~ produces

a sequence 01, On, . . . of substitutions, all

of which satisfying the property described by

,i30ut.”

The abstract semantics assumes a number of operations

on abstract substitutions, in particular unification, pro-

jection, and upper bound. The first two operations are

simply consistent approximations of the corresponding

concrete operations. The upper bound operation is a

consistent abstraction of the union of sets of substitu-

tions.

The I%zpoint Algorithm The last step of the method-

ology consists in computing the least fixpoint or a post-

fixpoint of the abstract semantics. The fixpoint algo-

rithm GAIA [?] is a top-down fixpoint algorithm com-

puting a small, but sufficient, subset of least fixpoint

(or of a postfixpoint) necessary to answer a user query.

The algorithm uses memorization, a dependency graph

to avoid redundant computation, the abstract opera-

tions of the abstract semantics, and the ordering rela-

tion on the abstract domain. It has many similarities

with P LA I [?] and can be seen either as an implemen-

tation of Bruynooghe’s framework [?] or as an instance

of a general fixpoint algorithm [?]. In the experimental

results, we use the prefix version of the algorithm [?].

5 The Generic Pattern Domain

In this section, we briefly recall the basic notions be-

hind the generic abstract domain Pat (’72.). The main

significance of Pat (%Z) for type analysis is the reduc-

tion in the size of the type graphs by factoring out sure

structural information and, more importantly, by pro-

viding a compact representation of equalities between

subterms. This allows the domain Type to be kept as

simple as possible and should be contrasted with the

approach of [?] where both information are handled in

the same domain.

The key intuition behind Pat (’R) is to represent in-

formation on some subterms occurring in a substitu-

tion instead of information on terms bound to variables

only. More precisely, Pat (Z) may associate the follow-

ing information with each considered subterm: (I) its

pattern which specifies the main functor of the subterm

(if any) and the subterms which are its arguments; (’2)

340

its properties which are left unspecified and are given

in the domain X?. A subterm is said to be a leaf iff its

pattern is unspecified. In addition to the above infor-

mation, each variable in the domain of the substitutions

is associated with one of the subterms. Note that the

domain can express that two arguments have the same

value (and hence that two variables are bound together)

by associating both arguments with the same subterm.

This feature produces additional accuracy by avoiding

decoupling terms that are equal but it also contributes

in complicating the design and implementation of the

domain. It should be emphasized that the pattern in-

formation is optional. In theory, information on all sub-

terms could be kept but the requirement for a finite

analysis makes this impossible for almost all applica-

tions. As a consequence, the domain shares some fea-

tures with the depth-k abstraction [?], although Pat (%?)

does not impose a fixed depth but adjusts it dynamically

through upper bound and widening operations.

Pat (Z) is thus composed of three components: a

pattern component, a same value component, and a 7?,-

component. The first two components provide the skele-

ton which contains structural and same-value informa-

tion but leaves unspecified which information is main-

tained on the subterms. The Z-domain is the generic

part which specifies this information by describing prop-

erties of a set of tuples < tl,....tp> where t],....tp
are terms. As a consequence, defining the %dornain

amounts essentially to defining a traditional domain on

substitutions. In particular, it should cent ain opera-

tions for unification, projection, upper bound, and or-

dering. The only difference is that the X-domain is

an abstraction of a concrete domain whose elements

are sets of tuples (of terms) instead of sets of substi-

tutions. This difference is conceptual and does not fun-

damentally affect the nature or complexity of the %1-

operations.

The implementation of the abstract operations of

Pat (1?) is expressed in terms of the %L-domain oper-

ations. In general, the implementations are guided by

the structural information and call the Zdomain oper-

ations for basic cases. Pat (7?) can be designed in two

different ways, depending upon the fact that we main-

tain information on all terms or only on the leaves. For

Pat (Type), we only maintain type information on the

leaves. Since Pat (Z) and Type are both infinite do-

mains, a widening operation is needed as well. This op-

eration is simply the upper-bound operation on Pat (7Z)

with the upper bound operation on the subdomain re-

placed by a widening operation. The widening opera-

tion on Type is the critical design decision in Type and

is discussed in Section 6.3.

6 The Type Graph Domain

In this section, we present the design of the domain

Type. We start with type graphs and then define the

domain, its operations, and the widening operator.

Cc(((V, E),r)) = lfp(~) (r).

D: (V + SST) + (V -+ SST)

~(@) = {(v, T) I vCV&T=Denot(v, Q)}.

Denot (v, 0) =

if type (v) = Any then ST

else if type (v) = or then

Ul<3<arity@)@(succ(v i))
else

{f(t,,..., ‘arity(v)) I f = f~ctor(v) &
t, C @(succ(v, i))}

Figure 1: The Denotation of Type Graphs

6.1 Type Graphs

Our type graphs are essentially what Bruynooghe and

Janssens call rigid types and readers are referred to [?]

for a complete coverage of type graphs. Our presenta-

tion uses more algorithmic concepts to simplify the rest

of the presentation.

Definition and Denotation A type graph g is a rooted

graph (G, r), where G = (V, E) is a directed graph

such that, for any vertex v in G, the successors of v are

ordered and r is a distinguished vertex called the root of

g and denoted by root (g). In the following, type graphs

are denoted by the letter g and vertices by the letter v,

both possibly subscripted or superscripted. A vertex

v in a type graph g is associated with the following

information:

type(v): an element of {Any, functor, or};

functor(v): a string if type(v) = functor;

arity(v): a natural number if type(v) # Any

If type(v) = or, arity(v) > 1. The successors of a

vertex v are denoted by succ (v) and the ith succes-

sor of v by SUCC(V, i) for 1 < i ~ arity(v). More

types (e.g. Integer, Real, Ground) can be added eas-

ily without affecting the results described here.

The denotation of a type graph g, denoted by Cc (g),

is depicted in Figure 1. In the figure, ST denotes the set

of all terms, SST the powerset of ST, and lfp is the

least fixpoint operator. @ is a function from vertices

to sets of terms which is described by its table in the

result of the transformation D. Note also that, in the

following, we also talk about the denotation of a vertex

v in a graph g, i.e. lfp(~) (v), and we use CC9(V)

to denote it. Finally, observe that type graphs have a

natural correspondence with context-free grammars and

monadic logic programs. This correspondence is given

in Appendices A and B.

Additional Definitions The following definitions will

be useful subsequently. We assume for simplicity an

underlying type graph g. The depth of a vertex v, de-

noted by depth(v), is the shortest path from root (g)

341

to v. An ancestor of a vertex v is any vertex v‘ # v

on the shortest path from root (v) to v. The set of

ancestors of v is denoted by ancestor(v). It is some-

times convenient to identify a vertex by a path, i.e. a

sequence of integers. Given a type graph g and a path

p, the vertex is obtained by follow (root (g), p) where

follow (v, [l) = v;

follow (v, [ii,. ... inl) =

follow(succ(v,il) ,[i2,. ..,inl) .

The size ofa graph g, denoted bysize (g),is simply the

number of vertices and edges in the graph. The vertices

(resp. the edges) of g are denoted by vertices (g) (resp.

edges(g)). Wealsouse the function removeUncormected

to remove the vertices which are not connected to the

root. It is defined as

removeUnconnected(((V, E), r)) = ((V’, E’), r) where

V’={ v\v EVkr Cencestor(v) }
E, = { (~,v>) I (V,V’) ~ E % v,v’ C ‘J’ }“

Pragmatic Restrictions Oursystem enforces a number

of pragmatic restrictions on type graphs for efficiency

and convenience reasons:

1.

2.

3.

4.

thesuccessms of anor-vertex are functor-vertices;

if VI and V2 are successors of an or-vertex v,

functor(vl) # functor(vz);

if v’ is a successor of a functor-vertex v, v’ is an

or-vertex or depth(v’) > depth(v);

for anvvertex v. ancestor(v) fl medecessor(v)

= {v~}and there isasingle edge’(v,v’).

Restrictions 1,2, and4are adaptations ofsimilarrestric-

tionsin [?]. The second restriction actually reduces the

expressive power of type graphs and is called the prin-

cipal functor restriction in [?] (pf-restriction for short).

Restriction 3 requires cycles to start at functor-vertices

and to end at or-vertices while restriction 4 prevents

subgraphs from sharing. When these restrictions are

adopted, it makes sense to refer to the pf-set of an or-

vertex as the set of all functors of its successors. The

pf-set of an or-vertex v is denoted pf(v). The pf-set

of a functor-vertex is simply the singleton set contain-

ing its functor. We will also assume in the following

that the successors of or-vertices with the same pf-set

are ordered in such a way that successors with the same

functor are at the same position.

The Domain The abstract domain Type simply ab-

stracts asetofterm tuplesofthe form (tl,t~) by an

abstract tuple (gl, . . . ,g~). Theconcretization function

is simply given by

Cc((gl,gn)) =

{(to,..., tn) I t, C Cc(g,) (1 ~ i ~ n)}.

6.2 Operations on Type Graphs

The abstract operations of Type can beobtainedimme-

diately from three operations on type graphs:

1. gl ~ g2: returns true iff Cc(gl) ~Cc(g2);

2. gl n gz: returns gs such that Cc(g3) ~ Cc(gl)

n cc(g2);

3. gl u gz: returns gs such that Cc(gl) U Cc(g2)

g cc(g3).

The first twooperations are describedin [?]. Note that

intersection is used for unification since our type graphs

are downward-closed. The third operation is not de-

scribed in [?] which uses an indirect approach: first, an

or-vertex is created with the two inputs as successors;

then a compaction algorithm is applied to satisfy the

restrictions. Our system uses a direct implementation

which does not raise any difficulty. It is only necessary

to take care of thepf-restriction inthecases functor/or

and or/or by applying the algorithm recursively. Of

course, memoization is used to guarantee termination.

Note also that, in the following, we often use operation

s on vertices to denote inclusion of their denotation.

The algorithm is the same as for type graphs.

6.3 The Widening Operator

The main difficulty in the type graph domain comes

from the fact that the domain is infinite and does not

satisfy the ascending chain property. In fact, it is not

even a cpo. To overcome this difficulty, Bruynooghe

and Janssens [?] use a finite subdomain by restricting

the number of occurrences of a functional symbol on the

paths of the graphs. Readopted a different, less syntac-

tic, solution based on a widening operator as proposed

in [?]. The design of widening operators is experimental

in nature and it affects both the performance and ac-

curacy of the analysis. The examples given previously

in the paper shows that our widening operator leads to

accurate results and is effective in keeping the graph

sizes small. The purpose of this section is to describe

the widening operator informally. Appendix Ccontains

the formal results in detail.

In abstract interpretation of Prolog, widening needs

to be applied in two different situations: (1) when the

result of a procedure is updated; (2) when a procedure

is about to be called. In the first case, widening avoids

the result of a procedure to be refined infinitely often

while, in the second case, widening avoids an infinite

sequence of procedure calls. Hence, the widening op-

erator is always applied to an old graph gold (e.g. the

previous result of a procedure) and a new graph gn.W

(e.g. theunion of thenew clause results) to producea

new graph gre, (e.g. the new result of the procedure).

The main idea behind our widening operator is to

consider two graphs, go = gold and gn = gO[d U gneW,

and to exploit the topology of the graphs to guess where

g~ is growing compared to go. The key notion is the

concept of topological clash which occurs in situations

where

T. ::= OIO+T1.

T1 ::=1 [T1 *T-J.

T2 ::= cste(Any) [par(0) I var(Any).

T. ::=0 [T3+Tlj.

T3 ::= OIO+T4.

T4 ::= 1[T4*T5.

T5 ::= cste(Any) I par(0) I var(Any).

T6 ::=1 I T6*T7.

T7 ::= cste(Any) [par(T3) [var(Any).

Figure 2: Widening for the First Arithmetic Program

● afunctor-vertexin go corresponds to an or-vertex

in gn;

● an or-vertex v. in gO corresponds to an or-vertex

v~ in g~ where pf(v~) # pf(v~);

c an or-vertex v. in go corresponds to an or-vertex

V. in gm where depth(vo) < depth (vn).

Inthese three cases, the widening operator tries topre-

vent the graph from growing by introducing a cycle in

g~. Given a clash (vo,v~), the widening searches for

an ancestor VG to v~ such that pf(v~) G pf(va). If

such an ancestor is found and if vo z v~, a cycle can be

introduced.

Consider for instance append/3. The second itera-

tion has produced the following type graph for the first

argument

To ::= [1 I cons(Any, [l).

The union of the clause results for the third iteration

gives the following type graph for the first argument

T new::= [1 I cons(Any, cons(Any, H)).

Taking the union of To and TneW produces the type

graph described by

T. ::= [1 I cons(Any,T).
T ::= [1 I cons(hy,[l).

There is a topological clash between To and T~ for the

path [2,2] which corresponds to [1 and T respectively.

The widening selects T. as an ancestor and introduces

a cycle producing the final result

T, ::= [1 I cons(Any,T,).

Note also that an ancestor at any depth can be se-

lected. For the first arithmetic program shown previ-

ously, the widening applies tothethe type graphs T~and

Tn depicted in Figure 2. Consider the clash occurring

for the path [2,2,2,2,2,1]for T0 and Tn. An appropriate

ancestor for Ts is T~ which is not a direct ancestor. This

results in the optimal result T,

T, ::=OIO+T].

T] ::=1 I T1*T2.

TZ ::= cste(Any) I par(T,) \ var(Any)

Whenno ancestor with asuitablepf-set canbefound,

the widening operator simply allows the graph to grow.

Termination will be guaranteed because this growth nec-

essarily adds along the branch a pf-set which is not a

subset of any existing pf-set in the branch. This case

of course happens frequently in early iterations of the

fixpoint. Returning thearithmetic program, the second

iteration for the predicate basic/2 requires a widening

for the first argument with the following two graphs:

T. ::= cste(Any) I var(Any).

T. ::= cste(Any) I par(0) I var(Any).

A topological clash of type 2 is encountered but there

is no suitable ancestor. The result will simply be T~ in

this case.

The last case to consider appears when there is an

ancestor v~ with a suitable pf-set but unfortunately v~

> Vn is false. In this case, introducing a cycle would

produce a graph T, whose denotation may not include

the denotation of T. and hence our widening operator

cannot perform cycle introduction. Instead the widen-

ing operation replaces VG by a new or-vertex which is

an upper bound to V. and V. but decreases the overall

size of the type graph. The widening operator is then

applied again on the resulting graph,
In summary, our widening operator is best viewed i as

a sequence of transformations on T~, which are of two

types: (1) cycle introduction; (2) vertex replacement,

until no more topological clashes can be resolved. These

notions are formalized in Appendix C.

7 Experimental Evaluation

We now describe the experimental result of our type

system. We first describe the benchmarks and discuss

the efficiency and accuracy of the analysis.

‘I’he Benchmarks The benchmark programs2 are hope-

fully representative of “pure” logic programs. KAis an

alpha-beta program to play the game of kalah [?]. PR

is a symbolic equation-solver [?]. CS is a program to

generate a number of configurations representing vari-

ous ways of cutting awoodboard into small shelves [?].

DS is the generate and test equivalent of a disjunctive

scheduling problem [?]. RE is the Prolog tokeniser and

reader of R. O’keefe and D. H. D. Warren. PGis a program

written by W. Older to solve a specific mathematical

problem. BR is a program taken from Gabriel bench-

mark. PLis a planning program from [?]. QU solves the

n-queens problem. Finally, PEis a the peephole opti-

mizer of SB-Prolog, written by Debray. We will also

prefix some programs by L to indicate that the input

query assigns lists to some arguments. Finally, we will

also use the arithmetic programs discussed previously

and denote them by AR and ARI. Table 1 gives some in-

dication on the size of these programs while Table 2 re-

ports the number of non-recursive, tail recursive, locally

2l’he ben&~arks are available by anonymous ftP frOm BrOWn

Univers]t y

343

recursive (more than one recursive call or a nontermi-

nal recursive call), and mutually recursive procedures in

each of the benchmarks. Four programs have only tail

recursive procedures or non-recursive procedures. Many

programs have mutually recursive procedures and some

have many of them. In general, the majority of proce-

dures are non-recursive and in many programs, most of

the recursive procedures are tail recursive. Program PR

cent ains locally recursive procedures due to their divide

&conquer approach.

Computation Times In this section, weanalyse thee f-

ficiency of our type system experimentally. Table 3 de-

scribes the CPU time (on a Sun Spare-l O), the number

of procedure iterations and the number of clause itera-

tions. We also give the CPU time when the number of.
successors to or-vertices is restricted to 5 and 2 respec-

tively. As can be seen, the analysis is very fast (below 3

seconds) for all programs except RE which takes about

153, 20, and 10 seconds depending on the various re-

strictions. Note that PR is heavily mutually recursive,

that CS manipulates heavily imbricated lists, and that

PE has large disjunctions, yet the running time of these

programs is excellent. Program RE is time-consuming,

since it manipulates large graphs (the result of the to-

keniser shown previously is only the first step), is heavily

mutually recursive, and cent ains an accumulator-based

procedure (very much like the process predicate shown

previously) in the middle of the recursion. This proce-

dure is actually where the time goes since it is expensive

in itself, is applied on the largest graphes occurring in

the program, and is recomputed each time a new ap-

proximation for the main predicate is obtained. Pro-

gram RE is a worst case scenario for our analyser, al-

though the time remains acceptable. If more efficiency

is desirable, there are various ways of speeding up the

computation, including the use of a monovariant anal-

ysis (instead of the polyvariant analysis used here) or

the imposition of restrictions on the size of the graphs

or vertices as shown in the table. Overall, the results

are very encouraging and seems to indicate that type

graphs can be engineered to be practical. The tradeoff

between efficiency and accuracy remains obviously an

important topic for further research.

Accuracy To give an idea of the accuracy of the system,

we measure tag information that can be extracted from

the analysis under following assumptions. First, no mul-

tiple specializations take place, i.e. a procedure is as-

sociat ed wit h a single version. Second, we consider the

following tag information: NI (empty list), CO (cons),

LI (list), ST (structure), DI (atom), and HY (structure

or atom). For each program, we extract the tag of each

procedure argument. These tags will allow us to gener-

ate more efficient code by avoiding tests and specializing

indexing. Hence the analysis should infer as many tags

as possible. In addition, we compare the information so

obtained with the information produced by an analysis

preserving only principal functors, i.e. the pattern do-

main of [?]. The type analysis described here is always

more precise than the pattern domain and the gain can

come from disjunctive and recursive types. Note also

that when the pattern domain infers a single functor

for an argument, so does our type analysis. The results

are described in Tables 4 and 5 for the output and in-

put tags respectively. A column is associated with each

tag and contains the number of arguments whose tag

corresponds to the column. We also give in parenthesis

the number of arguments inferred by a principfl functor

analysis when this number is non-zero. Columns A, AI

and AR represent the number of arguments, the num-

bers of arguments for which the type analysis improves

over the functor analysis (i.e. infer more tag informa-

tion) and the ratio between the last two figures. The

last three figures collect the same information at the

clause level wit h the understanding that a clause is im-

proved if any of its arguments is inferred more precisely.

The results indicate that type analysis significantly im-

proves a principal functor analysis. In the average, the

type analysis produces an improvement on about 50%

of the output tags and about 2170 of the input tags.

The tag information is improved in 67% of the clauses

(output) and 38% of the clauses (input). Most of the

improvement is divided into the tags LI, DI, ST, and HY

with a majority of the tags being lists. The results also

show that the combination of type and freeness analysis

should produce significant improvement in code gener-

ation, since the two analyses are complementary.

8 Conclusion

In this paper, we have described a sophisticated type

analysis system for Prolog. The system is based on ab-

stract interpretation and uses three main components:

a fixpoint algorithm, a generic pattern domain, and the

type graph domain of Bruynooghe and Janssens. The

main contribution of our work is to show that type anal-

ysis of Prolog based on type graphs can be engineered

to be practical without sacrificing efficiency. This has

implications beyond type analysis since type graphs are

used for a variety of other analysis such as termination

and compile-time garbage collection. The key technical

contribution of this work is a novel widening operator

which appears to be rather accurate and effective in

keeping the sizes of the graphs, and hence the compu-

tation time, reasonably small.

There are many ways to extend this work. A natu-

ral extension is to consider integrated type graphs which

allow variable-vertices and should enable difference-list

programs to be handled precisely. Another extension

consists of providing a database of types that the widen-

ing can use whenever necessary. Finally, on the theo-

retical level, it would be interesting to characterize for

which classes of programs our widening is optimal in

accuracy.

9 Acknowledgments

Stimulating discussions with David MacAllester are grate-

fully acknowledged.

344

KA QU PR PE Cs DS PG RE BR PL
Number of Procedures 44 5 52 19 32 28 10 42 20 13
Number of Clauses 82 9 158 168 55 52 18 163 45 26
Number of Program Points 475 38 742 808 336 296 93 820 207 94
Number of Goals 84 8 130 90 57 60 17 168 37 29
Static Call Tree Size 73 5 75 80 46 47 11 144 21 25

Table 1: Sizes of the Programs

KA QU PR PE Cs DS PG RE BR PL

Tail recursive 12 4 12 6 9 14 6 6 11 4
Locally recursive o 0 5 0 1 0 0 0 1 0
Mutually recursive 7 0 8 4 2 0 0 16 0 0

Non-recumive 25 1 27 9 20 14 4 20 8 9

Table 2: Syntactic Form of the Programs

KA QU PR PE Cs DS PG RE BR PL
CPU Time 1.66 0.01 2.64 2.82 1.14 0.77 0.39 152.38 0.43 0.31
Procedure Iterations 142 18 236 100 96 78 51 1075 70 45
Clause Iterations 276 35 740 548 182 142 107 3369
CPU Time (5)

161 88
1.40 001 2.50 2.32 1.14 0.77 0.39 26.28 0.43 0.31

CPU Time (2) 1,36 0.01 2.48 1.74 1.14 0.77 0.39 10.25 0.43 0.31

Table 3: Computation Results

Type Graphs (Principal lhnctors) Comparison
Programs NI co LI ST DI JiY A AI AR c CI CR
AR o 0 6 1 0 3 10 10
AR1 o

1.00 5 5 1.00
4 0 0 10 10 100 5 5

Cs o 31 (30; 2:
100

0 0 93 24 026 33 12 037
DS o 5 (4) 29 1 (1; o 59 30 0.51 29 13
BR

0.45
0 8 (8) 13 2 (2;

KA
10 (lo) o 59 13 0.22 20 11 055

0 11 (11) 20 27 13 (1) 2 124 34 0.27 45 22 049
LD S o 5 (4) 39 1 (1) o 61 40 0.66 31
LPE

23 0.56
0 6 (6) 25 8 (3; 6 4 63 40 0.66 19 19 1.00

LPL o 9 (9) 10 7 (3) o 1 33 15
PE

0.45 14 8
0

0.57
6 (6) 23 8 (3) 6 4 63 38

PG
0.60 19 19

0
1.00

6 (6) 14 0 0 31 14 0.45 10
PL

7 0.70
0 9 (9) 5 7 (3; 1 33 10 0.30 14 8

PR
0.57

0 19 (19) 24 24 (20) 10 (6; o 144 32 0.22 53 22 0.41
QU o 1 (1) 6 0 0 0 11 6 0.55 5 4 0.80
RE 2 (2) 6 (6) 28 1 (1) 8 (2) 3 123 37 0.30 43 27 0.63
Mean 0.50 0.67

Table 4: Accuracy Results: Output Tags

1
KA o 2 (2)
LD S o 2 (1)
LPE o
LPL o 3 (3;
PE o
PG o 5 (5;
PL o 3 (3)
PR o 9 (9)
QU o
RE 1 2 (2;
Mean

Type Graph
I I ST
2 0
2 0

L
14 0
15 0

1: 181($]
23
18 5 (3;
12 4 (3)

8 5 (3)
7
1 4 (3;

18 9 (7)
2

10 1 (1;

DI HY A
o 0 10
0 0 10

0 93
1 (1; o 59

10 (10) o 59
7 (1) 2 124
1 (1) o 61

0 0 63
0 1 33
0 0 63
0 0 31

1 33
5 (3; o 144

0 11
5 (2; 3 123

?ir
-5-

2
15
16

5
21
24
20
14
10

7
3

22
2

16

Table 5: Accuracy Results: Input Tags

_
.omp
-?i’lT
m
0.20
0.16
027
008
0.17
0.39
032
0.42
016
022
0.09
015
0.18
013
021

lson

T
-r

5
33
29
20
45
31
19
14
19
10
14
53

5
43

m
-r

1
10
12

5
18
13
14
10

6
5
3

19
2

14.

TT&-
0.20
0.20
0.30
0.41
0.25
0.40
0.42
0.74
0.71
0.32
0.50
0.21
0.36
040
0.33
0.38
=

345

l+fmmEs

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

M. Bruynooghe. A Practical Framework for the

Abstract Interpretation of Logic Programs. Jow--

nal of Logic Programming, 10(2):91-124, February

1991.

MBruynooghe and GJanssens. An Instance of Ab-

stract Interpretation: Integrating Type and Mode

Inferencing. In Proc. Fifth International Confer-

ence on Logic Programming, pages 669–683, Seat-

tle, WA, August 1988. MIT Press, Cambridge.

A. Cortesi, B. Le Charlier, and P. Van Henten-

ryck. Combinations of Abstract Domains for Logic

Programming. In .21st Annual ACM SIGPLAN-

SIGA CT Symposium on Principles Of Program-

ming Languages, Portland, OR, January 1994.

P Cousot and R. Cousot. Abstract Interpretation:

A Unified Lattice Model for Static Analysis of Pro-

grams by Construction or Approximation of Fix-

points. In New York ACM Press, editor, Conf.

Record of Fourth ACM Symposium on Program-

ming Languages (POPL ‘77), pages 238–252, Los

Angeles, CA, January 1977.

M. Dincbas, H. Simonis, and P. Van Hentenryck.

Solving Large Combinatorial Problems in Logic

Programming. Journal of Logic Programming, 8(1-

2):75-93, January/March 1990.

V. Englebert, B. Le Charlier, D. Roland, and

P. Van Hentenryck. Generic Abstract Int erpre-
t ation Algorithms for Prolog: Two Optimization
Techniques and Their Experiment al Evaluation.
Soflware Practice and Experience, 23(4), April

1993.

T. Fruehwirth, E. Shapiro, M. Vardi, and

E. Yardeni. Logic Programs as Types for Logic Pro-

grams. In IEEE 6th Annual Symposium on Logic

in Computer Science, pages 300–309, 1991.

N. Heintze. Practical Aspects of Set-based Anal-

ysis. In Proceedings of the International Jotnt

Conference and Symposium on Logic Programming

(JICSLP-92), Washington, DC, November 1992.

N. Heintze and J. Jaffar. A Finite Presentation

Theorem for Approximating Logic Programs. In

Proc. 17th ACM Symp. on Principles of Program-

ming Languages, pages 197–209, 1990.

G. Janssens and M. Bruynooghe. Deriving De-

scription of Possible Values of Program Variables

by Means of Abstract Interpretation. Journal of

Logic Programming, 13(2-3):205-258, 1992.

T. Kanamori and T. Kawamura. Analysing Success

Patterns of Logic Programs by Abstract Hybrid In-

terpretation. Technical report, ICOT, 1987.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

B. Le Charlier and P. Van Hentenryck. Experi-

mental Evaluation of a Generic Abstract Interpre-

tation Algorithm for Prolog. ACM Transactions

on Programming Languages and Systems. To ap-

pear. An extended abstract appeared in the Pro-

ceedings of Fourth IEEE International Conference

on Computer Languages (ICCL’92), San Francisco,

CA, April 1992.

B. Le Charlier and P. Van Hentenryck. A Universal

Top-Down Fixpoint Algorithm. Technical Report

CS-92-25, CS Department, Brown University, 1992.

K. Marriott and H. Sondergaard. Notes for a Tuto-

rial on Abstract Interpretation of Logic Programs.

North American Conference on Logic Program-

ming, Cleveland, Ohio, October 1989.

P. Mishra. Towards a Theory of Types in Prolog. In

International Symposaum on Logic Programming,

pages 289-298, 1984.

B. Monsuez. Polymorphic Types and Widen-

ing Operators. In International Workshop on

Static Analysis (WSA-9.9), Padova, Italy, Septem-

ber 1993.

A. Mulkers, W. Winsborough, and M. Bruynooghe.

Analysis of Shared Data Structures for Compile-

Time Garbage Collection in Logic Programs. In

Seventh International Conference on Logac Pro-

gramming (ICLP-90), pages 747–764, JerusaJem,

Israel, June 1990. MIT Press, Cambridge.

K. Muthukumar and M. Hermenegildo. Compile-

Time Derivation of Variable Dependency Using Ab-

stract Interpretation. Journal of Logic Program-

ming, 13(2-3):315–347, August 1992.

L. Sterling and E. Shapiro. The Art of Prolog: Ad-

vanced Programming Techniques. MIT Press, Cam-

bridge, Ma, 1986.

P. Van Hentenryck. Constraint Satisfaction in

Logic Programming. Logic Programming Series,

The MIT Press, Cambridge, MA, 1989.

P. Van Hentenryck, A. Cortesi, and B. Le Charlier.

Type Analysis of Prolog Using Type Graphs. Tech-

nical Report CS-93-52, CS Department, Brown

University, November 1993.

K. Verschaetse and D. De Schreye. Deriving Termi-

nation Proofs for Logic Programs Using Abstract

Procedures. In Eighth International Conference

on Logic Programming (ICLP-91), Paris (France),

June 1991.

W. Winsborough. Multiple Specialization using

Minimal-Function Graph Semantics. Journal of

Logic Programming, 13(4), July 1992.

346

A Relation to Context-Free Grammars

Type graphs can easily be related to context-free gramm-

ars and we exploited this correspondence in the infor-

mal introduction to display the results. A simple idea is

to associate a non-terminal symbol TV with each vertex

v. The rule aasociat ed with an or-vertex v with succes-

sors VI ,. ... Vn is simply

T, ::= TV, I . . . I TVn.

The rule associated with afunctor-vertex having f as

functor and Vi,..., vn assuccessors is simply

To ::= f(Tvl,.. ., Tvn).

Theruleaasociated with anany-vertex is simply

To ::= Any.

In the presentation of the results, we generallY applY

some partial

readability.

B Relation

Type graphs

grams of [?].

--
evaluation of the grammar to improve its

to Monadic Logic Programs

can also be related to monadic logic pro-

The logic program associated with a type

graph succeeds for all well-typed terms. A simple way

is to associate a procedure pV with each vertex v. The

procedure for an any-vertex is simply

any(x) .

The procedure for a functor-vertex having f as functor

andvl, ..., Vn as successors is simply

pv(f(xl,. ... xn)) :- Pv, (xl), pvm(xn).

The procedure associated with an or-vertex with suc-

cessors VI ,. ... Vn is simply

W(x) :- pv, (x).
. .

pv(x) :- pvn(x).

Note that this rewriting shows that inferring even the

principal functors of an argument is undecidable, since

the halting problem for aprogramprog (Input,Output)

can be expressed as the type inference problem:

p(a,Input) :- prog(Input,Output),

p(b,Input).

C The Widening and its Formal Properties

To simplify presentation, we assume, without loss of

generality, that type graphs aresuch that their roots are

or-vertices and that the successors of or-vertices (resp.

functor-vertices) are functor-vertices (resp. or-vertices).

This assumption requires replacing some functor-vertices

(resp. any-vertices) by or-vertices with a single suc-

cessor which is the original functor-vertex (resp. any-

vertex). This convention is purely a matter of presen-

tation, all our algorithms being defined on the original

graphs. The following abbreviations will also be useful

in this section.

OR(V1) - type(vl) = or.

e-depth(vl,vz) = depth(vl) = depth(vz).

e-pf(vl,v2) = pf(vl) =pf(v2).

We also use (nl,n., nP), nP) J i to denote element

n,. This notation is generalized to sets of tuples by

defining SJi={s Jils GS}.

Topological Clashes As mentioned previously, the key

idea behind ourwidening operator is to exploit thetopol-

ogy of the graphs to guess where the sequence is grow-

ing. We can establish a correspondence between the

vertices of two graphs as follows.

Definition The correspondencesetbetween twotype

graphsgl and gz, denoted by C(gl, gz), is the smallest

relation R closed by the following two rules:

● (root (gl),root(gz)) CR

● (v1,v2) E R k e-depth(vl,vz) k e-pf(vl,vz) ~

(succ(vl,i),succ(vz,i)) G R

(1 S i S amity).

The set of topological clashes can now be defined in a

simple way.

Deflnition2 Let gl,gz be two type graphs such that

gl < g2. The set of topological clashes between gl and

g2, denoted TC(gl,g2), is defined as follows:

Tc(gl,gz) =

{ (V>v’) I (V,v’) c c(gl,g2) k

7 (e-depth(gl,gz) t

e-pf(gl,gz)) }.

The following proposition is an immediate consequence

of the definitions.

Proposition 3 Let gl, gz be two type graphs such

that gl ~ gz, If (v, v’) E TC(gl, g2), then OR(v) k

OR(V’). Moreover, there exists a unique tuple (va,val)

c C(gl,g2), denoted byca(v,v’), such that

v ~ succ(va) and v’ c Succ(val).

Our widening operation focuses on a subset of topolog-

ical clashes which lead to a growth in the graph.

Definition Let gl,gz be two type graphs such that

gl < g2. The set of widening clashes between gl and

g2, denoted WTC(gl,g2), is defined aa follows

347

replaceEdge(g,e,e ’) = removeUmonnected(g’)

where

vertices(g)) = vertices(g)

edges(g’) = edges(g) \ {e} U {e’}

root(g’) = root(g).

replaceVertex(g,v,v ’) = removeUnconnected(g’)

where

vertices(g~) = vertices(g) U {vi,...,vn }
edges(g)) = edges(g) \ EI U E2 U E3
root(g’) = root(g)

vertice(g) n {Vi,...,Vn} # 0
EI = { (Va,vb)] (V.,vb) c edges(g) & Vb = v }

E2 = { (Va,V~) \ (Va,vb) ● edges(g) % vb = v]

(Va,vb) eE3+vac {v,,...,v~}&

vb E vertices(g))}
v? > v, v)

size(relnoveUnconnected(g’)) < size(g).

Figure 3:

TWC(gl,g2) =

{ (V, v’) I

replaceEdge and replaceVertex

(V,V’) ~ Tc(g,,gz) k

pf(v’) # {Any} k

(pf(v) #pf(v’) v

depth(v) < depth(v))) }

Transformation Rules The widening operator essen-

tially consists in applying two transformation rules to

eliminate (a subset of) topological clashes. The trans-

formation rules nondeterministically produce anew type

graphg, from two type graphs go and gn withgo ~ gn.

They are defined intermsoftwo functions: replaceEdge

and replaceVertex. Informally speaking,

replaceEdge(g, e,e’)

replaces edge e by edge e’ in the graph while

replaceVertex(g,v, v’)

replaces vertex v by a new vertex greater or equal than

vandv’ and decreases thesizeofthe graph. The formal

definitions of the functions are given in Figure 3.

The first operation is straightforward. The second op-

eration can be implemented easily by makingvl an any-

vertex. It is however possible to obtain much more pre-

cision by using a variant of the union operation which

avoids creating or-vertices which would lead to a growth

in size. Note also that the case where v~ > v can be

handled inastraightforward manner. Wear~now ready

to specify the transformation rules. Thecycleintroduc-

tion rule introduces a cycle in the graph by replacing

edges to a vertex by edges to one of its ancestors.

Definition 5 [Cycle Introduction Rule] Let go and g.

be two type graphs and let

C1(~o{fj$$)VE), (V,Va)} \ (VO,Vn) C WTC(ge,gn) %

v. ● ancestor &
v. ~ Vn &

depth(vo) ~ depth(v.) &

v= ca(v0,vn)~2}.

The cycle introduction rule can be specified as follows:

‘fR,(g.,gm) = g,
Precondition: CI(go,gn) # 0.
Postcondition:

g. = replaceEdge(gn,e,e ’)

for some (e,e’) c CI(g~,g~).

The replacement rule applies when a cycle cannot be

introduced because the denotation of the ancestors not

greater than the vertices in the clash. It replaces the

ancestor by an upper bound of the vertices.

Definition [Replacement Rule] Let go and gnbetwo

type graphs and let

GR(go,gm) =

{ (Vn,va) [(V.,vn) ~ WTC(go,gm) %

va C Sncestor(v.) k

1(V. > v.) &

pf(vn) g pf(v.) &

depth(vo) ~ depth(va) }.

The replacement rule can be specified as follows:

TRr(go>gn) = g,

Precondition: GR(go,gn) # 0.

Postcondition:

g, = replaceVertex(gm,v.,vn)

for some (v~,v~) G CR(g~,g~).

Note that this rule only applies when pf(v~) ~ pf(va)

andhenceitleaves room fortheexpansion oftypegraphs

before the widening applies.

The Widening Operation We are now in position to

present the widening operation. The widening essen-

tially applies the transformation rules until the sets CI

and CR are empty.

Definition [Widening Operator] The widening oper-

ator go ~ g. is defined as follows:

govgn=

if gn < go then go else widen(g~,g~ U g.).

widen(go,g~) =

if CI(gO,gm) # @ then

widen(go,TR, (g~,g~))

else if CR(go,gn) # @ then

widen(g~,TR~(g~,g~))

else

gn.

We now state two important results on operation V.

The proofs can be found in [?]. The first proof is sim-

ple while thesecond proof requires a sophisticated well-

founded ordering since our domain is infinite.

Proposition 8 [Termination] Operation Vterminates.

Theorem 9 Operator Vis awidening operator.

348

