Type Analysis of Prolog Using Type Graphs*

P. Van Hentenryck
Brown University
Box 1910
Providence RI 02912 (USA)
pvh@cs.brown.edu

Mstract

Type analyis of Prolog is of primary importance for
high-performance compilers, since type information may
lead to better indexing and to sophisticated specializa-
tions of unification and built-in predicates to name a
few. However, these optimizations often require a so-
phisticated type inference system capable of inferring
disjunctive and recursive types and hence expensive in
computation time.

The purpose of this paper is to describe a type anal-
ysis system for Prolog based on abstract interpretation
and type graphs (i.e. disjunctive rational trees) with
this functionality. The system (about 15,000 lines of
C) consists of the combination of a generic fixpoint al-
gorithm, a generic pattern domain, and a type graph
domain. The main contribution of the paper is to show
that this approach can be engineered to be practical
for medinm-sized programs without sacrificing accuracy.
The main technical contributions to achieve this result
are (1) a novel widening operator for type graphs which
appears to be accurate and effective in keeping the sizes
of the graphs, and hence the computation time, reason-
ably small; (2) the use of the generic pattern domain to
obtain a compact representation of equality constraints
between subterms and to factor out sure structural in-
formation.

1 Introduction

Although Prolog is an untyped language, type analy-
sis of the language is important since it enables to im-
prove indexing, to specialize unification, and to produce
more efficient code for built-in predicates to name a few.
However, to provide compilers with sufficiently precise

*This research was partly supported by the Office of Naval Re-
search under grant N00014-91-J-4052 ARPA order 8225 and the
National Science Foundation under grant numbers CCR-9357704
and a National Young Investigator Award.

Permission to copy without fee all or part of this material is
granted provid

A. Cortesi
University of Venezia
Via Torino 155
1-30170 Mestre-VE (Italy)
cortesi@moo.dsi.unive.it

that the copies are not made or distributed for

direct commercial advantags, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copyingTis by permission of the Association of Computing

Machinery.
and/or specific permission.

SIGPLAN 94-8/94 Oriando, Florida USA
© 1994 ACM 0-89791-662-x/94/0006..$3.50

0 copy otherwise, or to republish, requires a fee

337

B. Le Charlier
University of Namur
21 rue Grandgagnage

B-5000 Namur (Belgium)
ble@info.fundp.ac.be

information, type analyses must be rather sophisticated
and contain disjunctive and recursive types. Consider
for instance the simple program to insert an element in
a binary tree:

insert(E,void,tree(void,E,void)).

insert (E,tree(L,V,R),tree(ln,V,R)) :- E LV,
insert(E,L,Ln).

insert(E,tree(L,V,R),tree(L,V,Rn)) :- E > V,
insert (E,R,Rn).

If compilers are given the information that the first ar-
gument is not a variable and that the type T of the
second argument is described the grammar

T ::= void | tree(T,Any,T)

then at most two tests are necessary to select the appro-
priate clause to execute. Note that a recursive type is
needed because of the recursive call. Information about
the functor of the second argument would only enable
to specialize the first call to insert.

Extensive research has been devoted to type infer-
ence in logic programming, although few systems have
actually been developed. A popular line of research,
called the cartesian closure approach in [?], was initiated
by [?] and further developed in many authors (See [?]
for a complete account). The key idea is to approximate
the traditional T, operator by replacing substitutions
by sets of substitutions and using a cartesian closure
operator to ignore inter-variable and inter-argument de-
pendencies. This approach originated in type checking
applications but can be used for type analysis as well.
The type inference problem in this approach was shown
to be decidable by Heintze and Jaffar [?] using a re-
duction to set constraints. By reducing the problem to
the inference of (a subclass of) monadic logic programs,
Fruehwirth et al. [?] gave an exponential lower bound
for type checking and an exponential algorithm for type
inference. The appealing feature of this approach is that
the problem is amenable to precise characterization and
hence its properties can be studied more easily. Its limi-
tation for type analyis is that the relationships between
predicate arguments are ignored which may entail a loss
of precision and makes it difficult to integrate the sys-
tem with other analyses such as modes and sharing. A

type inference system based on this approach was de-
veloped by Heintze {?] and the experimental results (on
programs up to 32 clauses) indicate that there is hope
to make this approach practical.

Another line of research is the approach of Bruynooghe
and Janssens (e.g. [?, ?]) which is based on a traditional
abstract interpretation approach [?]. The key idea is to
approximate a collecting semantics of the language by
an abstract semantics where sets of substitutions are
described by type graphs, i.e. disjunctive rational trees.
A fixpoint algorithm is then used to compute the least
fixpoint or a postfixpoint of the abstract semantics. The
problem of inferring the set of principal functors for an
argument in a program is undecidable and the result of
the analysis is thus an approximation as is traditional in
abstract interpretation. The appealing features of this
approach is the possibility of exploiting variable depen-
dencies and the ease with which type analysis can be
combined with other analyses as required by applica-
tions such as compile-time garbage collection [?]. The
drawback is that the result of the analysis is more dif-
ficult to characterize formally as the design of the ab-
stract domain is an experimental endeavour. This ap-
proach has been implemented in a prototype system [?]
but experimental results have only been reported on
very small programs and were not very encouraging.
Hence the practicability of this approach remains open.
Note also that the two approaches, which use fundamen-
tally different algorithms, are not directly comparable
in accuracy, since the accuracy of the abstract interpre-
tation approach depends upon the choices made in the
abstract domain.

The purpose of this paper is to describe the de-
sign and implementation of a type system based on
the second approach. The system is best described as
GAIA(Pat (Type)), where GAIAis a generic top-down fix-
point algorithm for Prolog [?, 7]}, Pat is a generic pat-
tern domain for structural information [?], and Type is
a type graph domain. The main contribution of the sys-
tem (about 15,000 lines of C} is to show that type analy-
sis based on abstract interpretation and type graphs can
be engineered to be practical, at least for medium-sized
programs (up to 450 lines of Prolog). It also shows that
type graphs can be practical and this is of importance
for many applications such as compile-time garbage col-
lection (e.g. [?]) and automatic termination analysis
(e.g. [?]). The technical contributions to obtain this
result are (1) a novel widening operator for type graphs
which appears to be accurate and effective in keeping
the sizes of the graphs, and hence the computation time,
reasonably small; (2) the use of the pattern domain to
obtain a compact representation of equality constraints
between subterms and to factoring sure structural in-
formation. This should be contrasted with Bruynooghe
and Janssens’s approach which restricts attention to a
finite domain to guarantee the finiteness of the analysis
and represents all information in the type graph domain.
Note also that the use of widening operators for type in-
ference has been recently investigated in the context of

1GAIA is available by anonymous ftp from Brown University.

338

functional programming but the technical details of this
work are fundamentally different [?].

The rest of this paper is organized as follows. Section
2 illustrates the functionality of the system on a variety
of small but representative examples. Section 3 gives an
overview of the paper. Sections 4 and 5 briefly review
our abstract interpretation framework and the generic
pattern domain. Section 6 describes our design of the
type graph domain. Section 7 reports the experimen-
tal results. Section 8 concludes the paper. Appendices
A and B show the relations between type graphs and
context-free grammars. Appendix C contains the for-
malization of the widening operation and the proofs of
the main results.

2 An lllustration of the Type System

The purpose of this section is to illustrate the behaviour
of the type analysis system on a number of examples. It
should give the reader an intuitive idea of the accuracy
and efficiency of the type analysis system. The examples
are small for clarity but they represent abstractions of
existing procedures and illustrate many aspects of Pro-
log programming. Results on medium-sized programs
are given in Section 7.

Our type analysis system receives as input a Prolog
program and an input pattern, i.e. a predicate sym-
bol and some type information on each of the argu-
ments. The input pattern gives information on how
the program is used, i.e. it specifies the top-level goal
and the type properties satisfied by the arguments. In
this section, for simplicity, all input patterns are of the
form p(Any....,Any), where Any represents the set of
all terms. The output of the system is an output pat-
tern, i.e. a predicate symbol and some type information
on each of the arguments. The output pattern repre-
sents type information of the arguments on success of
the predicate. The system also returns a set of tuples
(Bun, Py Bout) which represent the input and output pat-
terns for a predicate symbol p needed to compute the
result. Note that the system performs a polyvariant
analysis, i.e. there may be multiple tuples associated
with the same predicate symbol. In the following, we
mainly show the top-level result for simplicity. The re-
sults are presented as context free grammars, since there
is a close analogy between grammars and type graphs
(see Appendix A). Consider first the traditional naive
reverse program

nreverse([1,[1).

nreverse ([F|T],Res) :-
nreverse(T,Trev),
append(Trev, [F],Res).

append ([]1,X,X).
append([FIT],S,[FIR]) :~ append(T,S,R).

For an input pattern nreverse(Any,Any), the system
produces the output pattern nreverse(T,T) where T is
defined as follows:

T :i= [1 | cons(Any,T).

In other words, both arguments should be lists after exe-
cution of nreverse. The analysis also concludes that the
first argument to append is always a list. Note that the
system has no predefined notion of list: [1 and cons/2
are uninterpreted functors. The analysis time for this
example is about 0.01 seconds. Consider now the fol-
lowing program which is an abstraction of a procedure
used in the parser of Prolog.

process(X,Y) :- process(X,0,Y).

process([1,X,X).

process([c(X1) Y], Acc,X) :-
process(Y,c(X1,Acc) ,X).

process ([d(X1) |Y],Acc,X) :-
process(Y,d(X1,Acc),X).

The program is interesting because it contains a sophis-
ticated form of accumulator, a traditional Prolog pro-
gramming technique. For the input process (Any, Any),
the analysis returns the output pattern process(T,S)
such that

T = [0 | cons(T:,T).
T = c(Any) | d(any).
S =0 | c(Any,S) | d(Any,S).

The first argument is inferred to be a list with two types
of elements while the second argument captures per-
fectly the structure of the accumulator. The analysis
time is about 0.34 seconds. Consider now a slight varia-
tion of the program to introduce two mutually recursive
procedures:

process(X,Y) :- process(X,0,Y).
process([],X,X).
process([c(X1)|Y],Acc,X) :-
other_process(Y,c(X1,Acc),X).
other_process([d(X1)[Y],Acc,X) :-
process(Y,d(X1,4Acc) X).

For the input pattern process(Any,Any), the analysis
returns the output pattern process(T,S) such that

T [1 | cons(c(Any),cons(d(Any),T)).
S 0 | d(Any,c(Any,S)).

Once again the types of the accumulator and of the list
are inferred perfectly and the analysis time is about 0.08
seconds. Consider now the following program:

11ist([1).
11ist([FIT])

= list(F), 11list(T).

list([1).

list ([F{T]) :~ p(F), list(T).
p(a). p(d).

reverse(X,Y) :~ reverse(X,[],Y).

reverse([]1,X,X).

reverse ([F|IT],Acc,Res) :- reverse(T,[FiAcc]l,Res).

got(Res) :- 1list(X), reverse(X,Res).

339

which contains imbricated lists and an accumulator. Given

the input pattern get (Any), the analysis system returns
the output pattern get (T) where

T := [1 | cons(T1,T).
T: := [1 | cons(T2,T1).
T2 = a | b.

The analysis time is about 0.09 seconds. The example
lllustrates well how the imbricated list structure is in-
ferred by the system and preserved when used inside the
accumulator of reverse. Consider the following pro-
gram which collects information in arithmetic expres-
sions.

add(o’ []) .

add(X + Y,Res) :-
add(X,Resl),
mult(Y,Res2),
append (Res1,Res2,Res).

mult (1,[1).

mult (X * Y,Res) :-
mult (X,Resl),
basic(Y,Res2),
append(Res1,Res2,Res).

basic(var(X),[X]).
basic(cst(C),[1).
basic(par(X),Res) :- add(X,Res).

For the input pattern add(Any,Any), the analysis pro-
duces the output pattern add(T,S) where

T =T+ T | o.

T =T; * T, | 1.

T2 = cst(Any) | par(T) | var(Any).
S = [1 | cons(Any,S).

The interesting point in this example is that the rule for
T2 contains an occurrence of T showing that our analysis
can generate grammars with mutually recursive rules.
The analysis time is about 0.11 seconds. Consider now
the even more sophisticated program on arithmetic ex-
pressions:

add(X,Res) :- mult(X,Res).
add(X + Y,Res) :~
add(X,R1),
mult(Y,R2),
append(R1,R2,Res).

mult (X,Res) :- basic(X,Res).

mult (X * Y,Res) :-
mult(X,R1),
basic(Y,R2),
append(R1,R2,Res) .

basic(var(X),[X]).
basic(cst(X),[]1).

basic(par(X),Res) :- add(X,Res).

For the input pattern add(Any,Any), the analysis pro-
duces the optimal output pattern add(T,S) where

T =T | T+ Ts:.

T = To] Ty * Tz,

Tz = cst(Any) | var(Any) | par(T).
S = [1 | cons(Any,S).

The analysis time is about 0.56 seconds. The difficulty
in this example is to avoid mixing the definition of T, Ti
and T2. Finally, we would like to mention the analysis
of the tokenizer of Prolog which produces the result

T = [1 | cons(T:,T).

T, =7() I 7)) | ’,? I)[) |)]) | 7{7
[717 | ’} | atom(Any) | string(T2)
| integer(Any) | var(Any,Any)

T2 = [1 | cons(Any,T2).

The analysis time is about 0.42 seconds and the inter-
esting point was the ability of the widening to preserve
the string type.

3 Querview of the Type Analysis System

Our type analysis system can be described as the com-
bination GAIA(Pat(Type)) where

1. GAIA(R) is a generic fixpoint algorithm for Pro-
log which, given an abstract domain R, computes
the least fixpoint (finite domains) or a postfixpoint
(infinite domains} of an abstract semantics based
on R;

. Pat(R) is a generic pattern domain which en-
hances any domain R with structural information
and equality constraints between subterms;

. Type is the type graph domain to represent type
information.

The next three sections are devoted to each of the sub-
systems with a special emphasis on Type since the other
two systems have been presented elsewhere.

4 The Abstract Interpretation Framework

In this section, we briefly review our abstract interpre-
tation framework. The framework is presented in de-
tails in {?] and is close to the work of Marriott and
Sondergaard [?] and Winsborough [?]. It follows the
traditional approach to abstract interpretation [?].

Concrete Semantics Asis traditional in abstract inter-
pretation, the starting point of the analysis is a collect-
ing semantics for the programming language. Our con-
crete semantics is a collecting fixpoint semantics which
captures the top-down execution of logic programs using
a left-to-right computation rule and ignores the clause
selection rule. The semantics manipulates sets of sub-
stitutions which are of the form {z1 — t1,...,5n — tn}
for some 7 > 0. Two main operations are performed on
substitutions: unification and projection. The seman-
tics associates to each of the predicate symbol p in the
program a set of tuples of the form (©.n, p, Oout) which
can be interpreted as follows:

340

“the execution of p(z1,...,%n)d with § €
©,,, produces a sequence 81,...,0,,... of sub-
stitutions, all of which belongs to @gus.”

Abstract Semantics The second step of the methodol-
ogy is the abstraction of the concrete semantics. Our
abstract semantics consists in abstracting a set of sub-
stitutions by a single abstract substitutions, i.e. an ab-
stract substitution represents a set of substitutions. As
a consequence, the abstract semantics associates with
each predicate symbol p a set of tuples of the form
(Bin, P, Bout) Which can be read informally as follows:

“the execution of p(z1, ...,z)0 with 0 satis-
fying the property described by 8.» produces
a sequence 81,...,8,,... of substitutions, all
of which satisfying the property described by
,Bout~”

The abstract semantics assumes a number of operations
on abstract substitutions, in particular unification, pro-
jection, and upper bound. The first two operations are
simply consistent approximations of the corresponding
concrete operations. The upper bound operation is a
consistent abstraction of the union of sets of substitu-
tions.

The Fizpoint Algorithm The last step of the method-
ology consists in computing the least fixpoint or a post-
fixpoint of the abstract semantics. The fixpoint algo-
rithm GAIA [?] is a top-down fixpoint algorithm com-
puting a small, but sufficient, subset of least fixpoint
{or of a postfixpoint) necessary to answer a user query.
The algorithm uses memoization, a dependency graph
to avoid redundant computation, the abstract opera-
tions of the abstract semantics, and the ordering rela-
tion on the abstract domain. It has many similarities
with PLAI [?] and can be seen either as an implemen-
tation of Bruynooghe’s framework [?] or as an instance
of a general fixpoint algorithm [?]. In the experimental
results, we use the prefix version of the algorithm [7].

5 The Generic Pattern Domain

In this section, we briefly recall the basic notions be-
hind the generic abstract domain Pat(R). The main
significance of Pat(R) for type analysis is the reduc-
tion in the size of the type graphs by factoring out sure
structural information and, more importantly, by pro-
viding a compact representation of equalities between
subterms. This allows the domain Type to be kept as
simple as possible and should be contrasted with the
approach of [?] where both information are handled in
the same domain.

The key intuition behind Pat(R) is to represent in-
formation on some subterms occurring in a substitu-
tion instead of information on terms bound to variables
only. More precisely, Pat (R) may associate the follow-
ing information with each considered subterm: (1) its
pattern which specifies the main functor of the subterm
(if any) and the subterms which are its arguments; (2)

its properties which are left unspecified and are given
in the domain R. A subterm is said to be a leaf iff its
pattern is unspecified. In addition to the above infor-
mation, each variable in the domain of the substitutions
is associated with one of the subterms. Note that the
domain can express that two arguments have the same
value (and hence that two variables are bound together)
by associating both arguments with the same subterm.
This feature produces additional accuracy by avoiding
decoupling terms that are equal but it also contributes
in complicating the design and implementation of the
domain. It should be emphasized that the pattern in-
formation is optional. In theory, information on all sub-
terms could be kept but the requirement for a finite
analysis makes this impossible for almost all applica-
tions. As a consequence, the domain shares some fea~
tures with the depth-k abstraction [?], although Pat (R)
does not impose a fixed depth but adjusts it dynamically
through upper bound and widening operations.

Pat (R) is thus composed of three components: a
pattern component, a same value component, and a R-
component. The first two components provide the skele-
ton which contains structural and same-value informa-
tion but leaves unspecified which information is main-
tained on the subterms. The R-domain is the generic
part which specifies this information by describing prop-
erties of a set of tuples < #1,...,%, > where t1,...,%;
are terms. As a consequence, defining the R-domain
amounts essentially to defining a traditional domain on
substitutions. In particular, it should contain opera-
tions for unification, projection, upper bound, and or-
dering. The only difference is that the R-domain is
an abstraction of a concrete domain whose elements
are sets of tuples (of terms) instead of sets of substi-
tutions. This difference is conceptual and does not fun-
damentally affect the nature or complexity of the R-
operations.

The implementation of the abstract operations of
Pat (R) is expressed in terms of the R-domain oper-
ations. In general, the implementations are guided by
the structural information and call the R-domain oper-
ations for basic cases. Pat(R) can be designed in two
different ways, depending upon the fact that we main-
tain information on all terms or only on the leaves. For
Pat (Type), we only maintain type information on the
leaves. Since Pat(R) and Type are both infinite do-
mains, a widening operation is needed as well. This op-
eration is simply the upper-bound operation on Pat(R)
with the upper bound operation on the subdomain re-
placed by a widening operation. The widening opera-
tion on Type is the critical design decision in Type and
is discussed in Section 6.3.

6 The Type Graph Domain

In this section, we present the design of the domain
Type. We start with type graphs and then define the
domain, its operations, and the widening operator.

341

Cc({((V,E),r)) = 1fp(D) (x).

D: (V— SST) — (V — SST)
D(®) = {(v,T) | v €V & T =Denot(v,) }.

Denot(v,®) =
if type(v) = Any then ST
else if type(v) = or then
1starity(v)¢I>(succ(v, i))
else
{£(t1,. .., tarityan) | £ = functor(v)&
t, € ®(succ(v,i))}.

Figure 1: The Denotation of Type Graphs

6.1 Type Graphs

Our type graphs are essentially what Bruynooghe and
Janssens call rigid types and readers are referred to {7}
for a complete coverage of type graphs. Our presenta-
tion uses more algorithmic concepts to simplify the rest
of the presentation.

Definition and Denotation A type graph g is a rooted
graph {(G, r), where G = (V,E) is a directed graph
such that, for any vertex v in G, the successors of v are
ordered and ris a distinguished vertex called the root of
g and denoted by root(g). In the following, type graphs
are denoted by the letter g and vertices by the letter v,
both possibly subscripted or superscripted. A vertex
v in a type graph g is associated with the following
information:

type(v): an element of {Any, functor, or};
functor (v): a string if type(v) = functor;
arity(v): a natural number if type(v) # Any

If type(v) = or, arity(v) > 1. The successors of a
vertex v are denoted by succ(v) and the ith succes-
sor of v by succ(v,i) for 1 < i < arity(v). More
types (e.g. Integer, Real, Ground) can be added eas-
ily without affecting the results described here.

The denotation of a type graph g, denoted by Cc(g),
is depicted in Figure 1. In the figure, ST denotes the set
of all terms, SST the powerset of ST, and 1fp is the
least fixpoint operator. @ is a function from vertices
to sets of terms which is described by its table in the
result of the transformation D. Note also that, in the
following, we also talk about the denotation of a vertex
v in a graph g, i.e. 1fp(D)(v), and we use Ccy(v)
to denote it. Finally, observe that type graphs have a
natural correspondence with context-free grammars and
monadic logic programs. This correspondence is given
in Appendices A and B.

Additional Definitions The following definitions will
be useful subsequently. We assume for simplicity an
underlying type graph g. The depth of a vertex v, de-
noted by depth(v), is the shortest path from root(g)

to v. An ancestor of a vertex v is any vertex v’ # v
on the shortest path from root(v) to v. The set of
ancestors of v is denoted by ancestor(v). It is some-
times convenient to identify a vertex by a path, i.e. a
sequence of integers. Given a type graph g and a path
p, the vertex is obtained by follow(root(g),p) where

follow(v,[1) = v;
follow(v,[i;,...,1i,]1) =
follow(succ(v,iy), [iz,...,in]).

The size of a graph g, denoted by size(g),is simply the
number of vertices and edges in the graph. The vertices
(resp. the edges) of g are denoted by vertices(g) (resp.
edges(g)). We also use the function removeUnconnected
to remove the vertices which are not connected to the
root. It is defined as

removeUnconnected({(V,E) ,xr)) = ((V’,E’),r) where
vi={v]|veEeV&r € ancestor(v) }
E’ ={ (v,v?) | (v,v’) €E&v,v’ €V }.

Pragmatic Restrictions Our system enforces a number
of pragmatic restrictions on type graphs for efficiency
and convenience reasons:

1. the successors of an or-vertex are functor-vertices;

2. if v1 and v, are successors of an or-vertex v,

functor(vy) # functor(vy);

. if v’ is a successor of a functor-vertex v, v’ is an
or-vertex or depth(v’) > depth(v);

. for any vertex v, ancestor(v) N predecessor(v)
= {v’} and there is a single edge (v,v’).

Restrictions 1,2, and 4 are adaptations of similar restric-
tions in [?]. The second restriction actually reduces the
expressive power of type graphs and is called the prin-
cipal functor restriction in [?] (pf-restriction for short).
Restriction 3 requires cycles to start at functor-vertices
and to end at or-vertices while restriction 4 prevents
subgraphs from sharing. When these restrictions are
adopted, 1t makes sense to refer to the pf-set of an or-
vertex as the set of all functors of its successors. The
pf-set of an or-vertex v is denoted pf(v). The pf-set
of a functor-vertex is simply the singleton set contain-
ing its functor. We will also assume in the following
that the successors of or-vertices with the same pf-set
are ordered in such a way that successors with the same
functor are at the same position.

The Domain The abstract domain Type simply ab-

stracts a set of term tuples of the form (t1,...,tn) by an
abstract tuple (gi1,..., gn). The concretization function
is simply given by

CC(<81) sy g")) =

{{t1,.. . tn) | £ €Cc(g) 1 < i <)}

342

6.2 Operations on Type Graphs

The abstract operations of Type can be obtained imme-
diately from three operations on type graphs:

1. g1 < g2 returss true iff Cc(g1) C Cclgz);

2. g1 N g2: returns gz such that Cc(ga) C Cel(g)

N Cclge);

g1 U go: returns gz such that Ce(gi) U Cc(ga)
C Cclgs).

The first two operations are described in [?]. Note that
intersection is used for unification since our type graphs
are downward-closed. The third operation is not de-
scribed in [?] which uses an indirect approach: first, an
or-vertex is created with the two inputs as successors;
then a compaction algorithm is applied to satisfy the
restrictions. Our system uses a direct implementation
which does not raise any difficulty. It is only necessary
to take care of the pf-restriction in the cases functor/or
and or/or by applying the algorithm recursively. Of
course, memoization is used to guarantee termination.
Note also that, in the following, we often use operation
< on vertices to denote inclusion of their denotation.
The algorithm is the same as for type graphs.

6.3 The Widening Operator

The main difficulty in the type graph domain comes
from the fact that the domain is infinite and does not
satisfy the ascending chain property. In fact, it is not
even a cpo. To overcome this difficulty, Bruynooghe
and Janssens [?] use a finite subdomain by restricting
the number of occurrences of a functional symbol on the
paths of the graphs. We adopted a different, less syntac-
tic, solution based on a widening operator as proposed
in [?]. The design of widening operators is experimental
in nature and it affects both the performance and ac-
curacy of the analysis. The examples given previously
in the paper shows that our widening operator leads to
accurate results and is effective in keeping the graph
sizes small. The purpose of this section is to describe
the widening operator informally. Appendix C contains
the formal results in detail.

In abstract interpretation of Prolog, widening needs
to be applied in two different situations: (1) when the
result of a procedure is updated; (2) when a procedure
is about to be called. In the first case, widening avoids
the result of a procedure to be refined infinitely often
while, in the second case, widening avoids an infinite
sequence of procedure calls. Hence, the widening op-
erator is always applied to an old graph goa (e.g. the
previous result of a procedure) and a new graph gnew
(e.g. the union of the new clause results) to produce a
new graph gres (e.g. the new result of the procedure).

The main idea behind our widening operator is to
consider two graphs, go = gotd and gn = gold Y Znew,
and to exploit the topology of the graphs to guess where
g~ is growing compared to go. The key notion is the
concept of topological clash which occurs in situations
where

To =0 | 0+ Ty.

T =1 | T; % Ta.

T; ::= cste(Any) | par(0) | var(Any).
Tn =0 | Tz + Ts

Ts =0 I 0+ Ty

Ts =1 | Ty * Ts.

Ts ::= cste(Any) | par(0) | var(Any).
Te =1 | Te * Tr.

T; ::= cste(Any) | par(Ts) | var(Any).

Figure 2: Widening for the First Arithmetic Program

¢ a functor-vertex in g, corresponds to an or-vertex
in gn;

¢ an or-vertex v, in g, corresponds to an or-vertex
Vn in gn where pf(v,) # pf(vy);

¢ an or-vertex v, in g, corresponds to an or-vertex
Vn in gn where depth(vy) < depth(vy).

In these three cases, the widening operator tries to pre-
vent the graph from growing by introducing a cycle in
gn. Given a clash (vo,vy), the widening searches for
an ancestor v, to v, such that pf(v,) C pf(vy.). If
such an ancestor is found and if vo > vn, a cycle can be
introduced.

Consider for instance append/3. The second itera-
tion has produced the following type graph for the first
argument

=[]

The union of the clause results for the third iteration
gives the following type graph for the first argument

0

Taking the union of T, and Tpe. produces the type
graph described by

To | cons(Any,[1).

Thew: =

| cons(Any,cons(Any,[1)).

Tn = [J | cons(Any,T).
T =[] | cons(Any,[1).
There is a topological clash between T, and T, for the

path [2,2] which corresponds to [] and T respectively.
The widening selects T, as an ancestor and introduces
a cycle producing the final result

::=[]

Note also that an ancestor at any depth can be se-
lected. For the first arithmetic program shown previ-
ously, the widening applies to the the type graphs T, and
T, depicted in Figure 2. Consider the clash occurring
for the path [2,2,2,2,2,1] for T, and Tn. An appropriate
ancestor for Ts is T, which is not a direct ancestor. This
results in the optimal result T,

T, | cons(Any,T,).

T, ::=0] 0+ T.
Ty =1 | Ty * Tz,
To := cste(Any) | par(T,) | var(Any).

343

When no ancestor with a suitable pf-set can be found,
the widening operator simply allows the graph to grow.
Termination will be guaranteed because this growth nec-
essarily adds along the branch a pf-set which is not a
subset of any existing pf-set in the branch. This case
of course happens frequently in early iterations of the
fixpoint. Returning the arithmetic program, the second
iteration for the predicate basic/2 requires a widening
for the first argument with the following two graphs:

T
Tn

cste(Any) | var(Any).
cste(Any) | par(0) | var(Any).

A topological clash of type 2 is encountered but there
is no suitable ancestor. The result will simply be T, in
this case.

The last case to consider appears when there is an
ancestor v, with a suitable pf-set but unfortunately vq
> v, is false. In this case, introducing a cycle would
produce a graph T, whose denotation may not include
the denotation of T, and hence our widening operator
cannot perform cycle introduction. Instead the widen-
ing operation replaces v by a new or-vertex which is
an upper bound to v, and v, but decreases the overall
size of the type graph. The widening operator is then
applied again on the resulting graph.

In summary, our widening operator is best viewed jas
a sequence of transformations on T, which are of two
types: (1) cycle introduction; (2) vertex replacement,
until no more topological clashes can be resolved. These
notions are formalized in Appendix C.

1 Ezperimental Evaluation

We now describe the experimental result of our type
system. We first describe the benchmarks and discuss
the efficiency and accuracy of the analysis.

The Benchmarks The benchmark programs? are hope-
fully representative of ”pure” logic programs. KA is an
alpha-beta program to play the game of kalah {?]. PR
is a symbolic equation-solver [?]. €S is a program to
generate a number of configurations representing vari-
ous ways of cutting a wood board into small shelves [?].
DS is the generate and test equivalent of a disjunctive
scheduling problem [?]. RE is the Prolog tokeniser and
reader of R.O’keefe and D.H.D.Warren. PGis a program
written by W. Older to solve a specific mathematical
problem. BR is a program taken from Gabriel bench-
mark. PL is a planning program from [?]. QU solves the
n-queens problem. Finally, PE is a the peephole opti-
mizer of SB-Prolog, written by Debray. We will also
prefix some programs by L to indicate that the input
query assigns lists to some arguments. Finally, we will
also use the arithmetic programs discussed previously
and denote them by AR and AR1. Table 1 gives some in-
dication on the size of these programs while Table 2 re-
ports the number of non-recursive, tail recursive, locally

2The benchmarks are available by anonymous ftp from Brown
University

recursive (more than one recursive call or a nontermi-
nal recursive call), and mutually recursive procedures in
each of the benchmarks. Four programs have only tail
recursive procedures or non-recursive procedures. Many
programs have mutually recursive procedures and some
have many of them. In general, the majority of proce-
dures are non-recursive and in many programs, most of
the recursive procedures are tail recursive. Program PR
contains locally recursive procedures due to their divide
& conquer approach.

Computation Times In this section, we analyse the ef-
ficiency of our type system experimentally. Table 3 de-
scribes the CPU time (on a Sun Sparc-10), the number
of procedure iterations and the number of clause itera-
tions. We also give the CPU time when the number of
successors to or-vertices is restricted to 5 and 2 respec-
tively. As can be seen, the analysis is very fast (below 3
seconds) for all programs except RE which takes about
153, 20, and 10 seconds depending on the various re-
strictions. Note that PR is heavily mutually recursive,
that CS manipulates heavily imbricated lists, and that
PE has large disjunctions, yet the running time of these
programs is excellent. Program RE is time-consuming,
since it manipulates large graphs (the result of the to-
keniser shown previously is only the first step), is heavily
mutually recursive, and contains an accumulator-based
procedure (very much like the process predicate shown
previously) in the middle of the recursion. This proce-
dure is actually where the time goes since it is expensive
in itself, 1s applied on the largest graphes occurring in
the program, and is recomputed each time a new ap-
proximation for the main predicate is obtained. Pro-
gram RE is a worst case scenario for our analyser, al-
though the time remains acceptable. If more efficiency
is desirable, there are various ways of speeding up the
computation, including the use of a monovariant anal-
ysis (instead of the polyvariant analysis used here) or
the imposition of restrictions on the size of the graphs
or vertices as shown in the table. Overall, the results
are very encouraging and seems to indicate that type
graphs can be engineered to be practical. The tradeoff
between efficiency and accuracy remains obviously an
important topic for further research.

Accuracy To give an idea of the accuracy of the system,
we measure tag information that can be extracted from
the analysis under following assumptions. First, no mul-
tiple specializations take place, i.e. a procedure is as-
sociated with a single version. Second, we consider the
following tag information: NI (empty list), CO (cons),
LI (list), ST (structure), DI (atom), and HY (structure
or atom). For each program, we extract the tag of each
procedure argument. These tags will allow us to gener-
ate more efficient code by avoiding tests and specializing
indexing. Hence the analysis should infer as many tags
as possible. In addition, we compare the information so
obtained with the information produced by an analysis
preserving only principal functors, i.e. the pattern do-
main of [7]. The type analysis described here is always
more precise than the pattern domain and the gain can

344

come from disjunctive and recursive types. Note also
that when the pattern domain infers a single functor
for an argument, so does our type analysis. The results
are described in Tables 4 and 5 for the output and in-
put tags respectively. A column is associated with each
tag and contains the number of arguments whose tag
corresponds to the column. We also give in parenthesis
the number of arguments inferred by a principal functor
analysis when this number is non-zero. Columns A, AI
and AR represent the number of arguments, the num-
bers of arguments for which the type analysis improves
over the functor analysis (i.e. infer more tag informa-
tion) and the ratio between the last two figures. The
last three figures collect the same information at the
clause level with the understanding that a clause is im-
proved if any of its arguments is inferred more precisely.
The results indicate that type analysis significantly im-
proves a principal functor analysis. In the average, the
type analysis produces an improvement on about 50%
of the output tags and about 21% of the input tags.
The tag information is improved in 67% of the clauses
(output) and 38% of the clauses (input). Most of the
improvement is divided into the tags LI, DI, ST, and HY
with a majority of the tags being lists. The results also
show that the combination of type and freeness analysis
should produce significant improvement in code gener-
ation, since the two analyses are complementary.

8 Conclusion

In this paper, we have described a sophisticated type
analysis system for Prolog. The system is based on ab-
stract interpretation and uses three main components:
a fixpoint algorithm, a generic pattern domain, and the
type graph domain of Bruynooghe and Janssens. The
main contribution of our work is to show that type anal-
ysis of Prolog based on type graphs can be engineered
to be practical without sacrificing efficiency. This has
implications beyond type analysis since type graphs are
used for a variety of other analysis such as termination
and compile-time garbage collection. The key technical
contribution of this work is a novel widening operator
which appears to be rather accurate and effective in
keeping the sizes of the graphs, and hence the compu-
tation time, reasonably small.

There are many ways to extend this work. A natu-
ral extension is to consider integrated type graphs which
allow variable-vertices and should enable difference-list
programs to be handled precisely. Another extension
consists of providing a database of types that the widen-
ing can use whenever necessary. Finally, on the theo-
retical level, it would be interesting to characterize for
which classes of programs our widening is optimal in
accuracy.

9 Acknowledgments

Stimulating discussions with David MacAllester are grate-
fully acknowledged.

KA QU | PR|[PE] CS| DS|PG| RE| BR | PL
Number of Procedures 44 5 52 19 32 28 10 42 20 13
Number of Clauses 82 9| 158 | 168 55 52 18 | 163 45 26
Number of Program Points | 475 38 | 742 | 808 | 336 [296 | 93 | 820 | 207 | 94
Number of Goals 84 8 1130 90 57 60 17 | 168 37 29
Static Call Tree Size 73 5 75 80 46 47 11§ 144 21 25
Table 1: Sizes of the Programs
KA[QU|PR|PE|CS|[DS|PG|RE|BR|PL
Tail recursive 12 4 12 6 9 14 6 6 11 4
Locally recursive 0 0 5 0 1 o] 0 0 1 0
Mutually recursive 7 0 8 4 2 0 0} 16 0 0
Non-recursive 25 1 27 9| 20| 14 4 20 8 9
Table 2: Syntactic Form of the Programs
KA QU PR PE CS DS PG RE BR PL
CPU Time 166] 001264] 282114 0.77(039 | 152.38 | 0.43 | 0.31
Procedure Iterations 142 18 236 100 96 78 51 1075 70 45
Clause Iterations 276 35 740 548 182 142 107 3369 161 88
CPU Time (5) 140 001 | 250 | 232114 | 0.797 | 0.39 26.28 | 043 | 0.31
CPU Time (2) 1361 0.01 | 248 | 1.74 | 1.14 | 0.77 | 0.39 10.25 | 0.43 | 0.31
Table 3: Computation Results
Type Graphs (Principal Functors) Comparison
Programs NI COTL ST DI T HY AT Al CJ]CIT CR
AR) 0 6 1 Q 3 10 10 § 1.00 5 5 | 1.00
AR1 0 4] 6 4 0 o] 10 10 { 100 5 51100
CS 0| 31(30) | 23 0 0 0 93 24 1 026] 33 12 { 037
DS 0 5(4) | 29 0 1(1) ofl s9{ 30| o051]20]| 18] 045
BR 0 8(8) | 13 2(2) | 10 (10) off 59| 13| 02220 11055
KA 0] 11(11) | 20 27 13 (1) 2 124 | 34 | 027 | 45 | 22 | 049
LDS [¢] 5(4) | 39 0 1(1) 0 61 | 40 | 0.66 | 31 | 23 | 0.56
LPE 0 6(6) | 25 8 (3) 6 4| 63| 40| 066 | 19| 19| 1.00
LPL 0 9(9) 1 10 7(3) 0 1 33 15 | 0.45 | 14 8 | 0.57
PE 0 6(6) | 23 8 (3) 6 4| 63| 38| 060 19| 19| 1.00
PG 0 6(6) 14 0 0 0 31 14 | 0.45 | 10 71 0.70
PL 0 9(9) 5 7 (3) 0 1 33 10 | 0.30 | 14 8 | 0.57
PR 0| 19(19) | 24 | 24(20) | 10¢(6) 0| 144 | 32 | 022 | 53| 22 | 0.41
QU 0 1(1) 6 0 0 0 11 6 | 0.55 5 4 | 0.80
RE 22 | 6(s) 28| 1()] 8| 3| 123] 37| 030|48]| 27 [063
Mean 0.50 0.67
Table 4: Accuracy Results: Output Tags
Type Graphs Comparison
Programs || NI CO | LI ST DI HY ATATT AR CTCT CR
AR1 0) 2 0 0 0 10 2] 0.20 5 1] 0.20
AR o 0 2 0 0 0 10 21 0.20 5 1 0.20
Cs 0j9(8)| 14 0 0 0 93| 154 0.16 | 33 | 10 | 0.30
DS o020y 15 ol 1q@)| of s9{16f027 {29 121041
BR 0 of s 1(1) | 10 (10) of s9] 5]o008]20] 5025
KA o2 |138[188)| 7@)| 2| 124 21| 017 45{ 18] 0.40
LDS 0j2(1)] 23 0 1(1) 0 61 24 1 0.39 | 31 13 | 0.42
LPE] 0| 18 5 (3) 0 0 63 201032 19 14 | 0.74
LPL 0| 3| 12 4 (3) 0 1] 83| 14{042{14] 10 071
PE o 0 8 5 (3) 0 0 63 10§ 016 | 19 6 | 0.32
PG 0 5(5) 7 0 0 0 31 71022 10 5 | 0.50
PL 013(3) 1 4 (3) 0 1 33 3| 009 | 14 3] 0.21
PR 0]9() |18 9 (7) 5 (3) ol 144 | 22 {015 { 53| 19 | 0.36
QU 0 o} 2 o 0 0 11 2 0.18 5 2 0 40
RE 112()] 10 1(1) 5 (2) 3| 123 16| 013|438 | 14| 033
Mean 021 0.38

Table 5: Accuracy Results: Input Teigs

3

45

References

(1]

(2]

[9]

[10]

[11]

M. Bruynooghe. A Practical Framework for the
Abstract Interpretation of Logic Programs. Jour-
nal of Logic Programming, 10(2):91-124, February
1991.

M Bruynooghe and G Janssens. An Instance of Ab-
stract Interpretation: Integrating Type and Mode
Inferencing. In Proc. Fifth International Confer-
ence on Logic Programming, pages 669-683, Seat-
tle, WA, August 1988. MIT Press, Cambridge.

A. Cortesi, B. Le Charlier, and P. Van Henten-
ryck. Combinations of Abstract Domains for Logic
Programming. In 21st Annual ACM SIGPLAN-
SIGACT Symposium on Principles Of Program-
ming Languages, Portland, OR, January 1994.

P Cousot and R. Cousot. Abstract Interpretation:
A Unified Lattice Model for Static Analysis of Pro-
grams by Construction or Approximation of Fix-
points. In New York ACM Press, editor, Conf.
Record of Fourth ACM Symposium on Program-
ming Languages (POPL’77), pages 238-252, Los
Angeles, CA, January 1977.

M. Dincbas, H. Simonis, and P. Van Hentenryck.
Solving Large Combinatorial Problems in Logic
Programming. Journal of Logic Programming, 8(1-
2):75-93, January/March 1990.

V. Englebert, B. Le Charlier, D. Roland, and
P. Van Hentenryck. Generic Abstract Interpre-
tation Algorithms for Prolog: Two Optimization
Techniques and Their Experimental Evaluation.
Software Practice and Ezperience, 23(4), April
1993.

T. Fruehwirth, E. Shapiro, M. Vardi, and
E. Yardeni. Logic Programs as Types for Logic Pro-
grams. In IEEFE 6th Annual Symposium on Logic
in Computer Science, pages 300-309, 1991.

N. Heintze. Practical Aspects of Set-based Anal-
ysis. In Proceedings of the International Joint

Conference and Symposium on Logic Programming
(JICSLP-92), Washington, DC, November 1992.

N. Heintze and J. Jaffar. A Finite Presentation
Theorem for Approximating Logic Programs. In
Proc. 17th ACM Symp. on Principles of Program-
ming Languages, pages 197-209, 1990.

G. Janssens and M. Bruynooghe. Deriving De-
scription of Possible Values of Program Variables
by Means of Abstract Interpretation. Journal of
Logic Programming, 13(2-3):205-258, 1992.

T. Kanamori and T. Kawamura. Analysing Success
Patterns of Logic Programs by Abstract Hybrid In-
terpretation. Technical report, ICOT, 1987.

346

(12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

(20]

23]

B. Le Charlier and P. Van Hentenryck. Experi-
mental Evaluation of a Generic Abstract Interpre-
tation Algorithm for Prolog. ACM Transactions
on Programming Languages and Systems. To ap-
pear. An extended abstract appeared in the Pro-
ceedings of Fourth IEEE International Conference
on Computer Languages (ICCL’92), San Francisco,
CA, April 1992.

B. Le Charlier and P. Van Hentenryck. A Universal
Top-Down Fixpoint Algorithm. Technical Report
CS-92-25, CS Department, Brown University, 1992.

K. Marriott and H. Sondergaard. Notes for a Tuto-
rial on Abstract Interpretation of Logic Programs.
North American Conference on Logic Program-
ming, Cleveland, Ohio, October 1989.

P. Mishra. Towards a Theory of Types in Prolog. In
International Symposwum on Logic Programming,
pages 289-298, 1984.

B. Monsuez. Polymorphic Types and Widen-
ing Operators. In International Workshop on
Static Analysis (WSA-93), Padova, Italy, Septem-
ber 1993.

A. Mulkers, W. Winsborough, and M. Bruynooghe.
Analysis of Shared Data Structures for Compile-
Time Garbage Collection in Logic Programs. In
Seventh International Conference on Logic Pro-
gramming (ICLP-90), pages T47-764, Jerusalem,
Israel, June 1990. MIT Press, Cambridge.

K. Muthukumar and M. Hermenegildo. Compile-
Time Derivation of Variable Dependency Using Ab-

stract Interpretation. Journal of Logic Program-
ming, 13(2-3):315-347, August 1992.

L. Sterling and E. Shapiro. The Art of Prolog: Ad-
vanced Programming Techniques. MIT Press, Cam-
bridge, Ma, 1986.

P. Van Hentenryck. Constraint Satisfaction in
Logic Programming. Logic Programming Series,
The MIT Press, Cambridge, MA, 1989.

P. Van Hentenryck, A. Cortesi, and B. Le Charlier.
Type Analysis of Prolog Using Type Graphs. Tech-
nical Report CS-93-52, CS Department, Brown
University, November 1993.

K. Verschaetse and D. De Schreye. Deriving Termi-
nation Proofs for Logic Programs Using Abstract
Procedures. In FEighth International Conference
on Logic Programming (ICLP-91), Paris (France),
June 1991.

W. Winsborough. Multiple Specialization using
Minimal-Function Graph Semantics. Journal of
Logic Programming, 13(4), July 1992.

A Relation to Context-Free Grammars

Type graphs can easily be related to context-free gram-
mars and we exploited this correspondence in the infor-
mal introduction to display the results. A simple idea is
to associate a non-terminal symbol Ty with each vertex
v. The rule associated with an or-vertex v with succes-
SOTS V1,...,Vy is simply

Tu = Tv1 l [Tvn.

The rule associated with a functor-vertex having f as
functor and vi,...,v, as successors is simply

To ::= £(Tv,,...,Tv,).
The rule associated with an any-vertex is simply
Ty ::= Any.

In the presentation of the results, we generally apply
some partial evaluation of the grammar to improve its
readability.

B Relation to Monadic Logic Programs

Type graphs can also be related to monadic logic pro-
grams of [?]. The logic program associated with a type
graph succeeds for all well-typed terms. A simple way
is to associate a procedure py with each vertex v. The
procedure for an any-vertex is simply

any (X).

The procedure for a functor-vertex having £ as functor
and vi,...,v, as successors is simply

pv(f(xl,...,xn)) Ha pvl(xl), e pvn(xn).

The procedure associated with an or-vertex with suc-
CESSOIS V1,...,Vn is simply

pr(X) = pv, (X).

pv(X) i py, (X).

Note that this rewriting shows that inferring even the
principal functors of an argument is undecidable, since
the halting problem for a program prog(Input,Output)
can be expressed as the type inference problem:

p(a,Input) :- prog(Input,Output).
p(b,Input).

C The Widening and its Formal Properties

To simplify presentation, we assume, without loss of
generality, that type graphs are such that their roots are
or-vertices and that the successors of or-vertices (resp.
functor-vertices) are functor-vertices (resp. or-vertices).
This assumption requires replacing some functor-vertices
(resp. any-vertices) by or-vertices with a single suc-
cessor which is the original functor-vertex (resp. any-
vertex). This convention is purely a matter of presen-
tation, all our algorithms being defined on the original
graphs. The following abbreviations will also be useful
in this section.

OR(vy) = type(v1) = or.
e-depth(vi,vy) = depth(vy) = depth(vy).
e-pf(vy,v2) = pf(v1) = pf(va).

We also use (ni1,...,7m:,...,%p) | ¢ to denote element
n,. This notation is generalized to sets of tuples by
defining S |1 = {s]i| s €S}

Topological Clashes As mentioned previously, the key
idea behind our widening operator is to exploit the topol-
ogy of the graphs to guess where the sequence is grow-
ing. We can establish a correspondence between the
vertices of two graphs as follows.

Definition 1 The correspondence set between two type
graphs g: and gz, denoted by €(gi,g2), is the smallest
relation R closed by the following two rules:

¢ (root(gi),root(gz)) €R

o (vi,vz) € R & e-depth(vy,v2) & e-pf(vi,v2) =
(succ(vy,i),succvy,i)) € R
(1 €1i < arity(vy)).

The set of topological clashes can now be defined in a
simple way.

Definition 2 Let g1,g2 be two type graphs such that
g1 < g2. The set of topological clashes between g; and
g2, denoted TC(g1,82), is defined as follows:

TC(g1,82) =
{ v,v) | (v,v’) € C(g1,82) &
= (e~depth(gi,g2) &
e-pf(g1,g2)) }.

The following proposition is an immediate consequence
of the definitions.

Proposition 3 Let g1, g2 be two type graphs such
that g1 < g2. If (v,v’) € TC(g1,g2), then OR(V) &
OR(v’). Moreover, there exists a unique tuple (vq,v4r)
€ €(g1,82), denoted by ca(v,v’), such that

v € succ(vy) and v’ € succ(vy).

Our widening operation focuses on a subset of topolog-
ical clashes which lead to a growth in the graph.

Definition 4 Let gi,g2 be two type graphs such that
g1 < g2. The set of widening clashes between g; and
g2, denoted WTC(g1,g2), is defined as follows

347

replaceEdge(g,e,e’) = removeUncomnected(g’)
where
vertices(g’) = vertices(g)
edges(g’) = edges(g) \ {e} U {e’}
root(g’) root(g).

replaceVertex(g,v,v’) removeUnconnected(g’)
where
vertices(g’) = vertices(g) U {vi,...,v,}
edges(g’) = edges(g) \ E1 U Ez U Es
root(g’) = root(g)
vertice(g) N {vi,...,vo} # @
E1 = { (va,vs) | (va,vs) € edges(g) & v
Ey = { (va,v1) | (va,vs) € edges(g) & vp
(va,vs) € E3 = vo € {vi,...,7n} &
vy € vertices(g’)}

e

vi 2 v, v’
size(removeUnconnected(g’)) < size(g).

Figure 3: replaceEdge and replaceVertex

TWC(g1,82) =
{ (v,v’) | (v,v’) € TC(g1,g2) &
pt(v’) # {Any} &
(pf(v) # pf(v?) Vv
depth(v) < depth(v’)) }

Transformation Rules The widening operator essen-
tially conmsists in applying two transformation rules to
eliminate (a subset of) topological clashes. The trans-
formation rules nondeterministically produce a new type
graph g, from two type graphs g, and gn with g < gn.
They are defined in terms of two functions: replaceEdge
and replaceVertex. Informally speaking,

replaceEdge(g,e,e’)
replaces edge e by edge e’ in the graph while
replaceVertex(g,v,v')

replaces vertex v by a new vertex greater or equal than
v and v’ and decreases the size of the graph. The formal
definitions of the functions are given in Figure 3.

The first operation is straightforward. The second op-
eration can be implemented easily by making v an any-
vertex. It is however possible to obtain much more pre-
cision by using a variant of the union operation which
avoids creating or-vertices which would lead to a growth
in size. Note also that the case where v’ > v can be
handled in a straightforward manner. We are now ready
to specify the transformation rules. The cycle introduc-
tion rule introduces a cycle in the graph by replacing
edges to a vertex by edges to one of its ancestors.

Definition 5 [Cycle Introduction Rule] Let g, and g,
be two type graphs and let

CI(éo{éﬁ)"ﬁ),(","a))] (Vo,Vn> (S WTc(goygn) &

348

v, € ancestor(v,) &

Vg 2 ¥y &

depth(v,) > depth(v,) &
v = ca(vo,vn)|2}.

The cycle introduction rule can be specified as follows:

TR, (go,gn) = 8r

Precondition:

Postcondition:
gr = replaceEdge(gn,e,e’)
for some (e,e’) € CI(go,gn)-

CI(go,gn) # f.

The replacement rule applies when a cycle cannot be
introduced because the denotation of the ancestor is not
greater than the vertices in the clash. It replaces the
ancestor by an upper bound of the vertices.

Definition 6 [Replacement Rule] Let g, and g, be two
type graphs and let

CR(goygn) =
{ (vn,va) | (vo,vn) € WIC(go,gn) &
v, € ancestor(v,) &
_‘(Va, Z Vn) &
pf(Vn) g Pf(Va) &
depth(v,) > depth(va) }.

The replacement rule can be specified as follows:

TRr(go,gn) = 8gr

Precondition:

Postcondition:
gr = replaceVertex(gn,va,vn)
for some (vn,va) € CR(go,gn) .

CR(go,gn) 75 0.

Note that this rule only applies when pf (v,,) C pf(v,)
and hence it leaves room for the expansion of type graphs
before the widening applies.

The Widening Operation We are now in position to
present the widening operation. The widening essen-
tially applies the transformation rules until the sets CI
and CR are empty.

Definition 7 [Widening Operator] The widening oper-
ator go VV gn is defined as follows:

8o V gn =
if gn < go then g, else widen(g,,go U gn).

widen(go.gn) =
if CI(g,,g») # # then
widen(go,TR.(go,gn))
else if CR(go,gn) # @ then
widen(go, TR, (go,8n))
else
gn-
We now state two important results on operation /.
The proofs can be found in [7]. The first proof is sim-
ple while the second proof requires a sophisticated well-
founded ordering since our domain is infinite.

Proposition 8 [Termination] Operation ¥/ terminates.

Theorem 9 Operator 7 is a widening operator.

