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Abstract

Software developers have long emphasized the need for clear
textual descriptions of programs, through documentation
and comments. Similarly, curricula often expect students
to write purpose statements that articulate in prose what
program components are expected to do. Unfortunately, it
is difficult to motivate students to do this and to evaluate
student work at scale.

We leverage the use of a large language model for this pur-
pose. Specifically, we describe a tool, PORPOISE, that presents
students with problem descriptions, passes their textual de-
scriptions to a large language model to generate code, eval-
uates the result against tests, and gives students feedback.
Essentially, it gives students practice writing quality purpose
statements, and simultaneously also getting familiar with
zero-shot prompting in a controlled manner.

We present the tool’s design as well as the experience of
deploying it at two universities. This includes asking stu-
dents to reflect on trade-offs between programming and
zero-shot prompting, and seeing what difference it makes
to give students different formats of problem descriptions.
We also examine affective and load aspects of using the tool.
Our findings are somewhat positive but mixed.

CCS Concepts: « Social and professional topics — Com-
puting education.

Keywords: purpose statements, docstrings, large language
models, introductory programming, zero-shot prompting
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1 Introduction

Developers have long emphasized the need for clear prose
to accompany code: in API documentation, as docstrings,
in commit logs, design trackers, engineering blogs, etc. [29,
31, 32]. In other words, programmers craft prose as much as
code, and must do it well.

Mirroring this, many curricula also expect students to
articulate key parts of their programs. For instance, How
to Design Programs [12] (HTDP) asks students to write a
purpose statement (PS) for every function. The PS gives a
high-level behavioral description of the function. (In this
paper we use PS instead of “docstring” both to refer to the
intent rather than construct, and because that is the term the
classes used.)

Unfortunately, grading a PS manually is slow and expen-
sive. Worse, PSs are hard to motivate. Unlike types, tests, and
code, they have no executable consequences. In our signifi-
cant experience teaching this material, students tend to be
lackadaisical about them, thus missing an opportunity to
practice a long-term skill. Large language models (LLMs)
offer the opportunity to change this.

It might be tempting to use an LLM as a textual engine, ask-
ing it to compare the student’s PS against an idealized one or
to reformulate it [7]. However, this can be fragile, especially
if the LLM does not understand technical or problem-specific
vocabulary, and so on. It would also be dangerous if the LLM
provided misleading feedback.

Instead, we use the LLM only to generate code. This has
multiple benefits:

e Ultimately, code is what most students are motivated
to produce, so this aligns well with their own desires.

e Code can be unambiguously evaluated using tests and
other mechanisms.

o The ability to produce correct, working programs just
from text introduces students to some of the power of
LLMs.

e LLMs show how we can “mechanize” PSs, putting them
on a much more elevated footing than before.

e This is a form of zero-shot prompting—using an LLM
without problem-specific training—which is a useful
new skill.

The rest of this paper works through the details of this idea.
The broader research agenda is effectively:
e What is a good way to use LLMs to mechanize PSs?
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e What different forms of problem description can we
use?
e What affective and load effects does this engender?
We address very specific research questions in §7.

This work focuses at the introductory level, where friendly
tool support especially matters. Those who are nervous about
the subject often find unstructured exploration intimidating
and may drop out. Thus, they most need scaffolding of the
kind we provide.

2 Mechanics of PORPOISE

Concretely, we describe PORPOISE, our tool! that implements
the ideas in this paper. Along the way, we highlight various
design decisions embedded in the tool. These are denoted
<« in this manner ».

2.1 Problem Description

After log-in, students chose a problem from a drop-down:

Choose problem: |Problem0:a ~| | Go!

The author of the problem has complete latitude in how they
choose to name the problem. In the example above, the au-
thor has chosen to give the function the extremely generic
name a, thereby completely obscuring its purpose. The au-
thor could instead have given a very helpful mnemonic name.
<« The choice of name matters »; see §3.

Upon choosing a problem, the student is given a descrip-
tion of the problem for which they have to write a PS.

This should immediately give the reader pause: how do we
describe the problem? If the problem description is given as
prose, then it can already be used as a PS! Indeed, if doing
so does not produce correct code, arguably the description
is to blame.

We therefore need a different “vocab-

o Inputs | Output
ulary” for describing a problem. We are 5T 3 5
inspired by prior works [25, 33] that use 12 3
examples/unit tests for problem compre- 71 5
hension: < we use them for problem de- a2l 9 0

scription ». Thus, PORPOISE shows stu-
dents a set of examples, like this sample
for an addition function.

This representation has the benefit of being concrete and
of dodging linguistic concerns (e.g., students with different
native languages). Of course, many functions could meet a
particular definition, so the student has to infer the right
intent for the function; our actual examples have many more
rows, and we discuss this issue in our findings. Finally, it
connects PSs and programming to testing, which is especially
important in some curricula, such as those following HTDP.

I The name “PoRPOISE” is inspired by the sea turtle in Alice in Wonderland [5],
who is called a Tortoise because he “taught us”. Our tool hopes to teach
students to write better “porpoise statements” [sic].
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2.2 Purpose Statement Processing

Given these examples, the student writes a PS in a text box.
There is no a priori limit on its length. This text is sent to an
LLM, specifically (in this paper) OpenAI’s ChatGPT model
gpt-3.5-turbo. « The choice of models matters »; see §9.
Porpoisk opens the ChatGPT system prompt with the
following text, which was arrived at after several iterations
(the choice of programming language is explained in §4):
You are a programming assistant that generates
programs in the Racket programming language. Your
response should contain *only* a Racket program.
It should NOT include anything else: explanation,
test cases, or anything else. The output should be
a Racket function that can be evaluated directly.
It should begin with "(define" and end with ")",
e.g., (define (f x) x), but replaced with the
actual function you produce.

Crucially, Porpoise asks ChatGPT to generate « not one
but three implementations ». This is because it is possible
to get lucky with a weak PS once, but it is hard to get lucky
multiple times. In particular, PORPOISE « uses a high “tem-
perature” value of 0.8 ». The temperature is, very roughly,
an indication of how much randomness one wants in the
output; for ChatGPT, these values range between 0 (maximal
determinism) and 1 (least determinism). The high tempera-
ture therefore encourages ChatGPT to interpret the prompt
broadly. Thus, success requires robust prompts, not just get-
ting lucky.”

Alternatively, one could also use multiple LLM engines.
Since their underlying language models are not the same,
that itself will induce alternate interpretations. In either case,
the non-determinism models real-world communications
between humans in software development teams and thus
underlines the need to formulate PSs as precisely as possible
to be understood by different humans (or LLMs for that
matter).

2.3 Result Evaluation and Presentation

The three programs generated by the LLM are run against
test suites. « The test suite is broken up into a public suite
and a private one. » The public suite is exactly the examples
that students were shown when they asked for a problem
description. The private suite, however, stays hidden. The
reason for the private tests is to avoid overfitting, just like the
“training” versus “evaluation” sets used in machine learning.’®
Thus, a student might see output like this:

2This number was chosen empirically: by trying different PSs and seeing
what temperature value gave enough but not too much diversity of programs.
This will naturally depend on the specific LLM used, and so on.

3In our studies, we saw very few instances of students pasting the provided
examples into the prompt. Doing so would anyway not help, because an
over-specific function would fail the private suite. The private suite forces
the student to generalize.
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Implementation Private Public
5 H 5 5 -3 4
1 success | success | success | success | success | success | success | success | success | success
2 success | success | success | success | success | success | success | success | success | success
3 success | success | success | success | success | success | success | success | success | success

where the headers in the Public columns are the expected
outputs. This is of course the ideal case: all three implemen-
tations passed all tests. However, there are several kinds of
unhappy outcomes:

wrong answer For a public test, if the program produces
the wrong answer, POrpPOISE shows the answer that it pro-
duced. This lets a student try to infer what the generated
code actually does, so they can adjust their PS.

failure For a private test, if the program produces the wrong
answer, there is no point showing the answer because the
student has nothing to compare it to. Thus, they are just
told that there was a test failure.

error The code produced by ChatGPT produced an error
while running. Though this can happen for many reasons,
often it’s because there’s a mismatch in type from what
the tests were expecting and what ChatGPT produced.
Typically, it means the student should add more to the PS
about the number and type of expected arguments and
the type of the result.

Thus, a student might instead see a result like this:

Implementation Private Public
5 s 5 5 -3 4
1 failure -fnilure failure | success | 3/2 success | -7/2  |1/2 success
2 failure | success | success | success |2/3 success | 0 success | success | =1
3 success | success | failure | failure |success |success | success [-7/2 | 1/2 success

The student can see that the first implementation produced
the value 3/2 for input pair (3, 2), where it was expected
to produce 5. Based on these and other values, this imple-
mentation seems to be dividing instead of adding. (We wrote
a PS to suggest division in some implementations, so as to
generate the above grid.)

There are a few more output conditions that are not par-
ticularly interesting here: ChatGPT took too long to respond,
ChatGPT produced output that was simply not valid, and so
on. These correspond to various systems and LLM conditions
and were explained to students in a manual [20].

2.4 When to Stop?

Ideally, students would like to get an “all-success grid”. How-
ever, ChatGPT is not deterministic and we have a high tem-
perature setting, so even re-running an all-success PS does
not guarantee the same result because different code is gen-
erated the next time. And vice versa: if the student feels they
have a good PS, simply re-running it can achieve all-success.
This by itself, is a very important practical lesson to learn
for students who interact with LLMs.

In our manual, students were warned that (a) multiple iter-
ations were necessary, and (b) sometimes, even after several
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tries, it can be difficult to achieve all-success. They were told
to instead stop once they had made a good-faith effort.

2.5 Do Students See Source?

A natural question is, does Porro1st show students the code
generated by ChatGPT? « It does not, for three reasons: »

1. It is very difficult to get ChatGPT to generate code in
only the sub-language [14] being used in class. The
result is that the generated code (a) often violates the
course’s style guidelines, but even more importantly
(b) sometimes uses constructs students have not seen,
so they might have trouble understanding the program
at all.

2. By permitting it to use the full Racket language, rather
than a sub-language, we maximize ChatGPT’s chances
of finding a solution.

3. Finally, this lets us put the emphasis on purpose state-
ments rather than on code. The PS is the only mech-
anism the student has for steering the LLM to all-
success.

Note that even courses that do not use formal sub-languages,
as provided by Racket, often still have implicit sub-languages:
e.g., the course has introduced only one kind of loop or not
yet shown exceptions.

We could have chosen a different route. For instance, we
could have parsed the resulting program to check whether it
fit the stylistic rules and sub-language. But if it did not, the
student would have seen a somewhat mysterious failure. We
believe it is an open question how to show generated code
while adhering to stylistic constraints and sub-languages.

2.6 Faulty Code as Partial Specification

For Round 2 (§7), we added a new feature to PORPOISE. If
specified for a problem (§3), a student is shown not only the
examples suite but also a somewhat incorrect program as part
of the initial display. (In this case, the examples represent ad-
dition, but the buggy implementation performs subtraction
instead.)

Buggy Implementation Inputs | Output
(define (a x y) 2] 3 5
(= xy)» -1 -2 -3

Our goal was to see « whether this would help or hurt
students »: it could help by giving them a general sense
of the program, but it could also hurt by getting them to
fixate on incorrect features (and neglecting the examples).
We evaluate its effect in §7.4.

In our current implementation, this faulty program is not
shown every time. Instead, the software shows it half the time
and in alternation:* e.g., a student given six problems will

4Formally, PorpoISE chooses based on a combination of the problem’s
position and the last character of the student’s identifier. We choose the
last character because this is much more likely to be uniformly distributed,
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either see the faulty code (if provided) on the first, third, and
fifth problems, or on the second, fourth, and sixth problems.
This is mainly for research reasons: to see whether it makes
any difference to how quickly students solve a problem. This
is easy change, and the authors would be happy to help users
who want a different policy.

3 Problem Authoring

Instructors can easily define their own problems. These are
stored in a separate specification file, so that instructors
do not need to touch PoRPOISE source in any way. The
specification is a convenient semi-structured format (cur-
rently s-expressions, but we can easily support other syn-
taxes like JSON and XML on demand). See appendix A for
an example. (All supplementary material can be found at
https://cs.brown.edu/research/plt/dl/splash-e-2025/ .)

Each problem specification consists of a private name, syn-
thesized name, public test suite (“training” set), private test
suite (“evaluation” set), and optional bad implementation.

The private name (e.g., "addition") reflects the true pur-
pose of the problem. It is never shown to the student, or even
sent over the network (where a knowledgeable student can
use the browser’s inspection facilities to see the name). It
only appears in logs, where it makes reading and processing
log files much easier.

The synthesized name (e.g., "a") is the name both shown
in the menu and sent to the LLM. It is « important for the
name to not be suggestive of the purpose », because using sug-
gestive names tends to cause the LLM to “guess” the desired
function irrespective of the student’s PS. This is problematic
in two ways. Most obviously, it compensates for poor stu-
dent PSs. More subtly, it can cause the LLM to generate code
that it has been trained on but does not exactly match the
problem statement. For instance, we have seen the use of a
suggestive name cause ChatGPT to synthesize an imperative
rather than functional solution, causing the generated code
to fail all the tests for no fault of the PS. (The problem of
LLM guessing doesn’t end with the name; see §7.2.)

4 Choice of Language

As the system prompt in §2.2 shows, PORPOISE generates
Racket [13] code. While there is no fundamental reason for
this—in principle, PORPOISE can be made to work with any
language with suitable runtime control—we chose to use
Racket for the following reasons:
o In our experience, at this point LLMs have been trained
extremely well on code in commonly-used languages
like Python and Java. « It is therefore quite difficult to

whereas the initial characters often have special patterns. Of course, if
students are assigned random identifiers, then these can be designed to
ensure such a distribution.

SAll evaluation happens on a remote sever. The system is careful to not
send any data that could be exploited by a user familiar with the browser’s
facilities.
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get them to not infer intent and generate correct code. »
This makes them worse than useless for our applica-
tion, because they would give students false confidence
in how effective their PSs are. Picking an overly ob-
scure language means LLMs sometimes fail to generate
even syntactically correct code. In our experiments,
Racket has served as a useful mid-point.
We need to protect the evaluation server from acci-
dents and malice. For instance, a student could see a
problem asking them to add two numbers, but could
write “delete all the files”—for which ChatGPT will
generate perfectly accurate code. « Protecting against
such attacks is critical ». PORPOISE exploits Racket’s
sandbox library. That is, a student can write such a
PS, ChatGPT will generate accurate code, but when
PoRPOISE runs it, it has no effect.
In addition, < we must also protect against programs
that run for a long time or even forever », whether inten-
tionally or inadvertently. Racket’s engine abstraction
addresses this problem very nicely.
The latter two can be accomplished by other means (e.g.,
some systems use Docker to achieve similar kinds of isola-
tion), but puts some burden on installation for some users.
Conceptually, there is no reason PorPOISE could not use
some other programming language. Indeed, the generated
language should match what students are learning even if
they do not see the generated code. That way the vocabulary
is interpreted accurately. For instance, some students used
terms like “drop elements” in their PS. In Racket, it usually
means a functional update, whereas in Python or Java, it may
mean an imperative one; using the wrong language would
cause tests to fail for no fault of the PS.

5 Configuring and Running PORPOISE

PorpoIsE is designed to be easy to install and run. The soft-
ware is available from https://github.com/shriram/porpoise.
The instructor just needs an OpenAl (or other) access token
and a recent version of Racket, which installs seamlessly
on Linux, MacOS, and Windows. The repository gives full
instructions and offers an optional Dockerfile for those who
want one. PORPOISE has two configurations options:

e An OpenAl response timeout can be tweaked to reflect
server performance and number of students.

e A run of PorprOISE can be configured to take a specific
user login through a URL parameter. Students can thus
go to a form that performs institutional login, maps
their real identity to an anonymous one, and initiates
Porroise with the latter. This both saves PORPOISE
from having to handle each institution’s authentica-
tion mechanism and, critically, anonymizes its logs.
The initial form can even feature an initial survey. We
exploit this combination in §7.1.
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Indeed, we can report that users not connected to this paper
have been able to successfully install and run Porroiske for
their students without any assistance from the authors.

6 Intervention 1: US CS 1.5

For this paper, we conducted two interventions which dif-
fered along several dimensions: country, student background,
problem sets, etc. The first deployment was mainly forma-
tive, while the second drew on what we learned and was
structured more as a formal research project. Thus, instead of
artificially unifying them, we present them separately below
and in §7, respectively.

6.1 Institution and Students

This intervention, from July—August 2023, reports on student
performance at a highly-selective US university. Students
were in the process of placing into an accelerated introduc-
tory course. Most of the students had some prior program-
ming experience from high school. Therefore, most of them
are comparable to students who have finished a CS1 course
(though a few had no prior programming experience at all).
We therefore label this group “US CS 1.5”.

The process was conducted in Racket using HTDP. By the
time students arrived at this task, they had done four home-
works, covering atomic data (numbers, strings, Booleans,
images); functions over atomic data; structures; functions
that consume lists of atomic data and structures; functions
that consume and produce such lists; and basic higher-order
functions (which were not used in this assignment). Essen-
tially, they had seen and practiced material that would teach
them how to write these functions by hand for themselves.

Per the institution’s rules, this work does not fall under
Human Subjects Research. Nevertheless, students had an-
swered the question, “Can we use your work in educational
reports/research?” Of 88 students who did this task, 83 con-
firmed the use of their data. We limit ourselves to data from
students who gave consent.

PorpoISE was used as described in §2, with the exception
of §2.6 (which had not yet been conceived).

6.2 Problems Used

Students were given a total of 11 problems, of which one,
adding two numbers, was part of the manual. All 11 are
as summarized in fig. 1. The actual problems had several
examples (which can be seen in the repository); due to space
limitations, here we show just one for illustration. These are
routine CS1 programs in a functional programming course,
akin to the “finger exercises” in The Little Schemer [16].

6.3 Student Performance

Usage. Students collectively evaluated 3218 PSs. All told,
the cost came to about USD 13.50, paid from an institutional
account (i.e., free to students).
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Scores. To summarize student performance, each PS eval-
uation was given a numeric score. Each success was given
one point, each error lost a point, and to penalize overfitting,
each failure lost two points. The score across all tests was
divided by the number of tests. Thus, a perfect score would
be 1. In general we would hope to see scores of at least 0, but
a negative score is possible.

For each student, we considered their best performance
(which may not necessarily be their last evaluation). On all
problems other than rL, students had a median best score of
1. Students also had a mean best score over 0.9 on all but rRL
(0.57), ALT2 (0.83), RS (0.87), and Ts (0.58). We discuss what
we saw in more detail:

e More than half the class was able to fully solve just
about every problem (median score of 1), and the high
averages indicate that students were able to infer the
problem correctly from the examples and produce rea-
sonable PSs.

e Familiarity and vocabulary help! Students were famil-
iar with append, which is what y matches. Some rec-
ognized it and used the term. In contrast, most did not
know that z corresponded to zip. Simply using that
one word as the “purpose statement” would have suf-
ficed, but most students had to provide a much longer
description.

e RL was obviously problematic. The difficulty here is
that, while ChatGPT is often able to handle instruc-
tions about the first element of a list, it could not reli-
ably handle “last”. Many students resorted to reversing
the list, removing the first matching instance, and then
reversing it again.

e Ts posed problems because of the difficulty of getting
ChatGPT to “parse” the input list into a sequence of
sub-lists, each of which needed to be added.

e nNa scored well but also created problems. ChatGPT
often interprets “non-negative” as “positive”, thereby
producing the wrong results on some inputs.

e Sloppy words can cause problems. Colloquially, it is
perhaps reasonable to think of DBL as “doubling” each
element of a list. However, ChatGPT invariably in-
terprets that as multiplying each value by two. That
means ’ (1 2 3) would turn into ’ (2 4 6), which is
not at all the desired answer.

e Most of all, one would expect ALT1 and ALT2 to have
almost identical descriptions. However, while almost
any description of “alternating elements” produced
ALT1, it was surprisingly difficult to persuade ChatGPT
to produce an implementation corresponding to ALT2.
That is, one problem seems to be genuinely harder
than the other!

Uses per Problem. Another measure of problem difficulty
is how many times students evaluated PSs for it. We espe-
cially examine the last point at which they attained their
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Mlustrative Example

Short Name | Description
ADD | add two numbers
NNA | average of the non-negative numbers in a list
DBL | duplicates every list value
RL | removes the last instance of the second parameter from a list
ALT1 | keeps alternating elements (from the first one)
ALT2 | keeps alternating elements (from the second one)
RS | running sum
A3 | average-of-3
Ts | sum of elements between zeroes
J | append two lists
zip two lists

23 -5
"(12-1-449) — 4
(123 > ’(112233)
T(xy x) x> T(xy)
"(12345) - ’'(135)
12345 - @24
(12345 >’ 3610 15)
(13516-4) —>’(3341)
"(1210-1-10) — ’(4-2)
’(@b) ’(cd) - ’(abcd
(@c) '(bd) - ’(abcd

Figure 1. Intervention 1: Problem Descriptions.

highest score (students often undertook 10-20% more at-
tempts before stopping). Again, we summarize.

The average number of tries to get their best score varies
enormously. Familiar problems like ADD and j average around
two tries. It is under 10 for most problems except RL (34.43),
ALT2 (10.61, against 8.71 for ALT1s), and Ts (20.73).

The contrast between ALT1 and ALT2 is especially interest-
ing. Students made a mean of 5.94 (median 5) PS evaluations
for ALT1 before their first PS evaluation for ALT2. That means,
when they began to work on ArLT2, they had a fairly good PS
already, which needed only slight revision. We would then
expect to see them need very few tries for ALT2. The fact that
they needed more tries for ALT2 than for ALT1 shows that
these two very similar problems were, in fact, very different
to ChatGPT.

Purpose Statement Lengths. Finally, we ask: how long
do student PSs tend to be? This is a difficult to summarize
meaningfully because each student writes many PSs. Instead,
we examine one simple and meaningful statistic: per problem,
what was the length in characters of their most successful
attempt (the same ones we have considered above)?

The median lengths are 42 (for ApD) to 135 (for Ts) char-
acters. A median-length example for ADD is “takes in two
numbers and returns their sum” and for Ts is “given a list
of numbers, returns a list of numbers where each number is
the sum of all numbers including and preceeding a 0 in the
list”. An author manually reviewed the PSs and observed:

e Students put genuine effort into writing detailed PSs.

e For some problems, a purely declarative PS does not
suffice; it needs to procedurally guide the LLM, as
described above for RL.

e Similar problems that pose different difficulty to an
LLM, like ALT1 and ALT2, also manifest as differences
in PS length (median 84 versus 99).

e Even in cases where a function had a short name
known to students (like append for j), they often either
did not recognize or use it and instead wrote detailed
textual descriptions (for j the median is 69).

The Problem with RL. The data above show RL to be a
significant outlier. Students were also hurt by a mistake by
the instructor. One of the tests had a flaw, so it would always
produce an “error” output. The data used above correct for
this bug by removing these “errors” from the grading calcu-
lation, but clearly the presence of this bug impacted students
in other ways also (with many expressing frustration with
this problem on the course forum).

6.4 Student Reflections

After solving these problems in PoRPOISE, students were
asked to implement the same functions manually (in Racket).
They were then asked to reflect on the differences between
their experiences using the two approaches. Students were
told there were no “right answers”, and asked to present their
thoughts and preferences.
The instructor read and coded all the student responses.

Their comments largely made the following observations:

e They found the process of using PORPOISE interesting

and novel, and largely satisfying.

e They found it difficult to guide ChatGPT when it would
not recognize what a student thought was already a
quality PS.
They found manual coding more time-consuming. This
was in part due to lack of familiarity with Racket’s
libraries or not being allowed to use them (or even
thinking some concepts—like list indexing—don’t exist
in Racket, even though they do).
e They appreciated the predictability of manual pro-
gramming. Many noted liking having control over the
task, being able to estimate how much was left to do,
and so on.
Many students observed that if a PS yielded a partially-
correct solution, simply adding to it did not necessarily
improve the solution. Often they had to go for shorter
rather than longer, more detailed descriptions.
A few students picked up on the declarative versus pro-
cedural distinction, noting that to get working code, it
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was often necessary to write something they felt was
not a purpose statement (as opposed to an implementa-
tion plan: e.g., double-reversal).

e Most students who stated a preference felt they would
use Porroise first, but if they didn’t succeed—implicitly
defined here as passing the two test suites—in a few
tries, would switch to manual programming. (They
implicitly assumed that a “production” version of Por-
POISE would show them the generated code.)

Interestingly, many implicitly viewed PORPOISE as a general-
purpose code-generator. However, PorpoISE does not work
that way! It can only help with functions for which it has a
test suite. This was a useful nudge that writing one’s own
examples and tests is useful when interacting with LLMs,
much like writing acceptance tests to evaluate products built
by a third-party in commercial settings. On the class forum,
the instructor made a comment about this, which seemed to
be received well.

7 Intervention 2: Europe CS 1

As noted (§6), the second use of PORPOISE was structured in
a more traditional research format. Details of the research
questions are given in §7.4.

7.1 Institution and Students

The second intervention, from November—-December 2023,
reports on student performance at a selective European pub-
lic university. The course was a regular Introduction to Pro-
gramming course that covered both functional and object-
oriented programming. In the first half of the semester (Oc-
tober 2023-February 2024), the course followed the HTDP
book and thus matched the setting in §6; the intervention
was placed in that half of the semester. PORPOISE was used as
described in §2, including the feature in §2.6. In total, 296 out
of 335 students actively participating in the course took part
in the study. Additional details are given in appendix B.1.

7.2 Problems Used

First Round Problems. The first round of PORPOISE as-
signments was given after six weeks of the course. At this
point, students had been exposed to Racket for four weeks
and worked on assignments involving atomic data (numbers,
strings, Booleans) and functions over atomic data.

The problems for this round (see Figure 2) were divided
into three groups: the same warm-up (ADD) used in the first
intervention, four (SORTDEC, DIGITS, PRODMAX, DIVS) involv-
ing conditionals, and two on strings (REM, PIGLET).

The problems on conditionals were complemented by a
somewhat incorrect solution (following §2.6). The strings
problems was designed so that students could not solve them
using the language features they had seen so far; this way, we
sought to find out whether students realized that providing
meaningful PSs would empower them to “solve” assignments
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that required more advance knowledge. (See appendix B.2.)
A direct consequence of this decision, however, was that we
could not possibly provide “buggy” implementations as a
display option.

The final problem, PIGLET, is modeled after the well-known
“Pig Latin” (https://en.wikipedia.org/wiki/Pig_latin) language
game. This was chosen because this game is an in-class prob-
lem in the second half of the semester. However, almost any
PS—no matter how incorrect—that was suggestive of the
problem and used the exact suffix of Pig Latin (“-ay”) caused
ChatGPT to generate a correct Pig Latin solution! We there-
fore came up with this equivalent, but sufficiently different,
problem to ensure that the PS, and not prior knowledge about
this problem, was used to generate the solution.

Second Round Problems. The second round of PORPOISE
assignments was given after eight weeks of the course. At
this point, students had been exposed to Racket for six weeks
and—just like in §6.1—had homework assignments cover-
ing atomic data (numbers, strings, Booleans; they had not
worked on images but these were not part of any PORPOISE as-
signment); functions over atomic data; structures; functions
that consume lists of atomic data and structures; functions
that consume and produce such lists; and basic higher-order
functions. As with the first problem set, the last two problems
were problems that could not yet be solved by the students
manually because they had not been exposed to the relevant
language features. (See appendix B.2.)

Problem Vetting. Before deployment, the public test suites
were shown to both one author’s research group and to an-
other’s Teaching Assistants (TAs), and both were asked to
guess the function. We used their feedback to mould the tests.
Of course, there is still a significant expertise gap between
the respondents and typical CS1 students, and both research
group members and TAs are likely to have more shared con-
text and experience. Still, iterating with these groups helped
us get some sense that the intents are guessable from the
examples. Moreover, the iteration process both (a) got rid
of any typos and other small flaws in the test suite, and (b)
ensured that, by virtue of knowing the intended solutions,
we had not inadvertently left out vital examples.

7.3 Student Performance

Usage. Collectively, students evaluated 4147 PSs in round
1 and 2492 in round 2. The total cost came to under USD 30
paid from an institutional account (i.e., free to students). We
found corruption in the logs of 12 students, so these were
excluded from the analysis.

Scores. We used the same scoring system as in §6.3. The
scores are shown in fig. 4 and fig. 5 for the two rounds. Here,
we see very different performance than in §6.3. We do again
see conscientious PSs (confirmed by manual examination)—
in this case, most PSs were written in German. Students
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Short Name | Description Mlustrative Example
ADD | add two numbers 23 -5
SORTDEC | sort three numbers into decreasing order 132 —>"321"
DIGITS | concatenate two numbers such that the first number precedes the 210 — 210
second
PRODMAX | return the product of two numbers if both are positive, else their 23> 6
maximum
pIvs | determine whether the smaller of two numbers divides the larger 12 3 — #t
REM | remove all characters from a string that occur in another string "hey world" "aeiou" — "hy wrld"
PIGLET | convert a string to lowercase, add “-” to the end of the word, then "Erick" — "Rick-E-Dude"
moves the first letter to the end of this word and add “-Dude” if
this letter is a vowel and “-Mate” else. Finally, make the first letter
an uppercase letter

Figure 2. Intervention 2, Round 1: Problem Descriptions. Since students had not been exposed to lists, SORTDEC encoded the
result in a string.

Short Name

Description

Mlustrative Example

SUM-NON-NEG
z1p | interleave two lists, start with the first element in the first list

compute the sum of all non-negative numbers in a list

COUNTS | count the occurrences of a given symbol in a given list
BALANCED | determine whether a list contains as many strictly positive as
strictly negative numbers
TABLE-SUM | given a list of positive numbers separated by zeros, compute
the sum of the numbers in each segment
AVERAGE-3 | report the mean of the numbers in each sliding windows of size

three in a list of at least three elements

(<11 -334) —> 8
"(@bc) "(xy 2)
— '(axbycz)

"(’a’b ’a ’b) b — 2
(-1 0 1) — #t

10110210 — (12 3)

(40279 — '(236)

Figure 3. Intervention 2, Round 2: Problem Descriptions. Some problems as the same as in fig. 1.

Short Name Best Performance Purpose Statement Length Avg. Tries

Mean | Median | Std. Dev. || Mean | Median | Std. Dev. || To Best | Overall

SORTDEC || 0.362 0.667 0.764 157.40 119 139.68 8.718 | 10.399
DIGITS || 0.571 1.000 0.774 132.27 112 97.43 3.960 4.558
PRODMAX || 0.448 1.000 0.793 176.53 155 119.96 4.014 4.489
pIvs || 0.394 0.246 0.394 232.17 191 148.00 6.378 8.151

REM || -0.192 | -0.333 0.499 201.61 173 122.32 7.918 10.746

PIGLET || -0.142 | 0.000 0.706 333.77 315 147.72 6.326 7.961

Figure 4. Intervention 2, Round 1: Best performance, purpose statement length, and average tries.

rarely averaged ten or more tries, in contrast to numbers of
20 and over for some problems in §6.3.

Most of all, we see quite poor scores on several problems:
the negative means and medians close to zero are indicative
of real difficulty with the problems. Manual examination
of the PSs shows genuine attempts but with a variety of
issues. In PIGLET, students did not generalize to all vowels,
using only those in the training set. In REM, students tried to
remove substrings instead of characters, or wrote PSs that
only removed the first mach. For AVERAGE-3, students seemed

to entirely misunderstand the problem. Finally, for TABLE-
sum, students generally understood the problem, but their
PSs could not be interpreted accurately enough by ChatGPT.

In short, we see many failure modes. In some cases, despite
our vetting, our suite of examples was not enough to generate
the right problem understanding. In other cases, students
generally understood the problem but failed to generalize
enough. Finally, in some cases the problem was with getting
the LLM to translate their correct understanding into code.
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Short Name Best Performance Purpose Statement Length Avg. Tries
Mean | Median | Std. Dev. || Mean | Median | Std. Dev. || To Best | Overall
SUM-NON-NEG || 0.807 1.000 0.501 155.23 120 117.85 2.165 2.287
zip || 0.509 1.000 0.690 228.92 198 158.61 4.673 5.225
COUNTS || 0.744 1.000 0.514 186.14 154 131.75 2.398 2.591

BALANCED || 0.088 | -0.111 0.614 206.71 177 143.27 3.167 4.264
TABLE-SUM || -0.110 | 0.000 0.739 232.02 194 156.29 5.894 8.230
AVERAGE-3 || -0.484 | -0.648 0.942 222.74 188 186.63 3.607 4.779

Figure 5. Intervention 2, Round 2: Best performance, purpose statement length, and average tries.
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7.4 Research Questions and Their Answers

We now present research questions and brief answers to
them. All the details of our analyses are given in the appen-
dix (appendix B). Our questions arose from wondering: (a)
whether prompting gives them additional “programming”
capabilities; (b) whether PorpoISE changes their perception
of PSs; (c) whether the flawed code examples (§2.6) made any
difference; and (d) how Porroise impacted task complexity
and affective aspects. The first two were motivated by the
design of PorpoISE; the third to explore a design alternative;
and the last are standard for many tools.

RQ-Can’t-Code: Can students use PSs to successfully generate
code for problems they don’t yet know how to program?

All four problems that students would not have been able
to solve with their programming knowledge are the prob-
lems on which they did poorest with Porporske. Therefore,
this process did not showcase how an LLM could produce
solutions that they could specify but not code. Instead, the
results underline that programming has at least two impor-
tant facets: understanding the programming language used,
and mapping the task (e.g., “sliding window” from fig. 3) and
problem-solving concepts to the features of said program-
ming language.

While an LLM can remove most of the burden associated
with the former aspect, successfully addressing the latter
requires knowledge and expressiveness on the side of the
prompter. PORPOISE thus does not increase performance by
offloading cognitive tasks, which is a major risk to learning
associated with many uses of generative Al [34]. We return
to this point when we discuss consequences for program
composition (“planning”) in §9.

RQ-Perception: Does using PORPOISE change the students’
perceptions of purpose statements?

Students were asked to rate their perceived usefulness of
PSs before and after using Porpoise. The ratings were very
high (8/10) even before Round 1, so there was little room
for actual improvement. We therefore saw no significant
change after Round 1. Nevertheless, we did see a significant
improvement after Round 2.

RQ-Prompt: To what extent does it matter which kind of ini-
tial prompt they were given: just a table of examples, or flawed
code (violating the examples) in addition to the examples?

Good starting
point

Buggy programs
help
Comments
regarding tasks

Function
inference hard

(No reason
given)

Different
approaches

Choose
to ignore

Buggy programs
do not help

Reflections
Learning
experience

Figure 6. Intervention 2: Themes emerging from comments
regarding preferences, tasks, PORPOISE, and reflections.

Hamper
understanding

No difference
between tasks

preference

Comments
regarding PORPOISE

Bl

OpenAl
responsiveness

Show gen-
erated code

GenAl capabili-

ties/ limitations

There was no significant difference favoring either show-
ing on not showing a buggy program. Indeed, many students
reported not even looking at the buggy programs.
RQ-Complexity: What is the task-load complexity of POr-
POISE?

We used (most of) the NASA Task Load Index (NASA-
TLX) [17]. Students (unsurprisingly) found PorpOISE not
physically demanding, and not too temporally demanding.
They rated their ability to successfully use the tool slightly
more on the negative side, and effort slightly more on the
“working hard” side.

RQ-Emotion: What impact does PORPOISE have on emotions?

Students were asked to compare using PORPOISE against
traditional programming assignments, and assessed using
the instrument by Lishinski, et al. [22]. Generally, POrRrPOISE
evoked similar emotions to traditional programming assign-
ments. In Round 2, we did see that POrRPOISE induced less
feeling of inadequacy/stupidity.

7.5 Qualitative Results

The post-intervention survey also contained two free-form
text fields. The first asked students to comment on whether
or not the “buggy programs” were considered helpful; the
second asked for any comments they wanted to offer. The
thematic analysis [3] of the 143 free-text responses found six
themes to emerge from the data, shown in fig. 6. Students
were split regarding the helpfulness of the “buggy programs”,
with 34 responses commenting on the helpfulness, 40 re-
sponses commenting on the lack thereof, and 20 responses
stating no preference. A recurring comment was that each
setting resulted in a different problem-solving approach.
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Other feedback included complaints about difficulty dis-
cerning the latent functions and on the capabilities and lim-
itations of Generative Al, with students both enthusiastic
and disillusioned. None felt negative about the experience,
and many enjoyed “explaining the task” to the LLM.

8 Related Work

A large number of papers has been written in the past two
years about LLMs in introductory programming. We refer
to a recent survey [24] on these works.

With respect to the specific focus on presenting students
with problem descriptions, asking them to use an LLM to
produce solutions, and then assessing them against a test
suite, a small number of other papers are related closely.

Denny et al. worked with problem descriptions presented
as visual representations [9] or code snippets [10]. The visu-
alizations in the first study presented examples from which
students should infer the purpose of the code. In the second
study, students were asked to give an “explain in plain Eng-
lish” [23] description of the code’s purpose, which—as in the
first study—was then fed into an LLM to produce code which
then was checked against tests. Thus, there are many simi-
larities, but there are also important differences. In contrast
to our paper, these do not:

e Study their tools across multiple institutions or coun-

tries of different flavors.

Consider the impact of a misleading code prompt.

Use temperature to tease out poorly-written prompts.

Generate multiple implementations to give a better

sense of prompt quality.

Perform a qualitative analysis.

Suppress generated code. Their student comments

show some of the benefits and downsides of this.

Avoid overfitting (as we do) through separate training

and evaluation sets. Instead, they use images to present

tests (hoping students will not type them in).

e Discuss visual accessibility; nor is it at all clear how
they could support it. If the tests were presented as
“alt text”, students could just as well copy that. But by
not providing it, it renders screen-readers useless. Our
work does not obscure the text in any way.

In addition, in §7 we discuss multiple study conditions, ex-
amine task load, and evaluate affective issues.

A very recent paper [18] by a related set of authors also
reports on students’ reactions when interacting with LLM-
generated feedback. Their work differs from ours in that the
authors asked students to provide an “explain in plain eng-
lish” description of an algorithm shown to them as correct
C code, whereas we work with test cases and—at times—
buggy code. They too note the mixed reaction of students,
and identify concerns with the utility of their approach.

Finally, we have open sourced our work (§5) and others
have been able to use it. We are not aware of the other
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projects being available. Our system is also designed to work
with different data privacy concerns, e.g., GDPR.

Our work is also related to that of Babe et al. [1, 2]. Their fo-
cus is on generating a benchmark of students writing prompts
for LLMs. Their work uses the same format as PORPOISE to
describe problems. The main difference is that their goal is
to student-source prompts. (In principle, our data can be
used to the same end.) Their paper does provide a sophisti-
cated linguistic analysis of the student prompts. However, it
does not provide the many educational elements or analysis
described here.

It is possible we have missed other work in this space,
which is after all fast-growing. That said, we believe our
combination of: (a) a useful tool (that has been used by third-
parties), (b) discussion of design considerations, (c) deploy-
ment across multiple institutions and countries, (d) analysis
of both, with a detailed research evaluation of the second,
and (e) treatment of a language other than Python, all make
this work interesting.

9 Discussion

Choice of Models. Currently, PORPOISE uses OpenATl’s
gpt-3.5-turbo model, which is now well behind the state-
of-the-art. Practically speaking, weaker models are cheaper,
which matters economically. But more importantly, it is crit-
ical that the model not do too much. Weak models are good
at simulating a faulty listener, which forces the student to
write as precise a PS as possible.

There is a non-trivial concern that as models get better and
better, poorer and poorer PSs will still pass. In addition, the
degree to which these LLMs have been trained on program-
ming problems will also have an impact. Finally, there is little
commercial incentive to providing lower-quality models, so
they may disappear. Thus, over time a system like PORPOISE
will need to self-host a model. The growing availability of
so-called “open source” models that we can download and
preserve therefore becomes paramount.

Prose Quality. LLMs comfortably handle prose that falls
well short of high literary standards. Both in our (intentional)
tests and in student work, we see no problem caused by
typographical, grammatical, and punctuation errors. This
robustness stands in interesting opposition to the extreme
precision demanded by most programming languages, and
should be impressed more on students.

Linguistic Diversity. ChatGPT, being trained on Web
material amongst other content, appears to have a strong
English bias [8] and recent studies have focused on lin-
guistic diversity of both prompting and programming lan-
guages [26, 30]. However, for the level of our tasks, it has
no difficulty with many widely-used languages. We have
manually tested it on languages like French and Hindi PSs
and it works fine. In addition, most of the PSs in §7 were in



Porpoise: An LLM-Based Sandbox for Novices to Practice Writing Purpose Statements

German, and caused no difficulty. In contrast, providing a
PS in Samoan (using Google Translate; the authors do not
know Samoan) produced nonsensical output.

Instruction Sets. Traditional programming languages
provide a clear instruction set to which the user maps their
intent. In contrast, as problems like ALT2, RL, RS, and Ts (§6.3)
show, the LLM appears to have some latent “instruction
set”. Determining this instruction set is made significantly
complicated by many factors:

1. It must be discovered by experiment.

2. LLMs allow free-form natural language statement of
intent, creating an indeterminate input space.

3. LLMs never reject an input.

4. This set will vary (and presumably almost always
grow) over time.

5. This set will vary across LLMs, as a function of their
training and tuning.

This stands in stark contrast to the fixed instruction sets of
traditional programming. This type of discourse—which is
common to all instructional approaches that directly interact
with an LLM—can hinder a clear path from abstract to con-
crete and back [4] and, arguably, introduce new difficulties
into programming.

Dependency on “Paradigms”. We have only used Por-
POISE with students learning formal programming in Racket
in a functional style. Functional programming lends itself
especially well to unit-tests, where function arguments and
return values fully capture the function’s behavior without
having to write down messy input-output side-effects; in
addition, there is no state from one run to the next.

We believe it would be significantly more difficult to cre-
ate a system like PORPOISE in the latter setting. Indeed, it
is not surprising that whereas curricula like HTDP empha-
size writing examples and tests, many programs centered
on imperative programming do not, or at least do not use
automated testing: “testing” often means running a program
and manually examining the output.

Consequences for Program Construction. One of our
hopes is that Porpoist will change the way students think
about program construction. We often see students dive right
into programming without thinking about first decomposing
their task into smaller, semantically meaningful, manageable
pieces. In contrast, in the 1980s, the computing education
literature spent some effort thinking about program planning
(e.g., [28]). This work did not see much more attention until
roughly the past decade (e.g., [6, 15, 21]).

Traditional planning can still feel “unproductive” in a way
that a PS does, because it doesn’t yield executable artifacts. If
students realized, however, that a plan can then be automati-
cally turned into code, that may cause them to change their
approach to programming. Recent work on providing feed-
back on plans by leveraging LLMs takes this direction [27].
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While planning usually refers to a phase before program
authoring, a similar phenomenon occurs even while writing
an individual function. In the midst of one, we may find
we need to rely on some non-trivial piece of logic. This
may either be something that would make the function too
complicated to inline, or may even be something we don’t
immediately see how to write.

HTDP encourages students to put such functions on a
“wish list”. It recommends that every wish list entry have a
name, function header, dummy body, and purpose statement,
with the body to be completed later. The book says,

Writing down complete function headers en-
sures that you can test those portions of the
programs that you have finished, which is use-
ful even though many tests will fail. Of course,
when the wish list is empty, all tests should pass
and all functions should be covered by tests.

Now, however, we can have a define-by-wishing form that
uses an LLM to fill in the definition. It may not be perfect,
but it would at least make many more tests pass right away,
so that the student knows they are on the right track! The
student can also write definitional examples as part of the
wish list—ideally both training and evaluation examples,
mimicking what Porpoisk did for them.

10 Conclusion

Software engineers communicate in prose as much as code,
but novice students, in particular, often overvalue code and
undervalue prose. We created PORPOISE to put prose on a
more operational footing in a setting students are already
familiar with (PSs), while also giving them a controlled ex-
perience with LLMs.

Our experience is mixed: students were mostly success-
ful constructing PSs that achieved correct results. The tool
imposed low load, and reduced some feeling of stupidity or
inadequacy, which plagues novices (and causes some of them
to drop out of computing [11, 19, 22]). But it did not appre-
ciably improve their appreciation for writing. Therefore, we
believe much more work is needed in this space. We hope
PORPOISE can serve as a starting point, especially for novices,
and that the lessons of this paper spur further investigation.

Acknowledgments

We are grateful to Kathi Fisler for feedback, Arjun Guha
for discussions, and Tara for being our first (trial) user. We
thank our research group students and course teaching as-
sistants for trying out the problems and giving feedback.
We appreciate the thoughtful comments and suggestions
for improvements by the reviewers. TABLE-sUM is inspired
by Mike Clancy. SK acknowledges the US National Science
Foundation grant DGE-2208731 for partial support.



SPLASH-E °25, October 12-18, 2025, Singapore, Singapore

References
[1] Hannah McLean Babe, Sydney Nguyen, Yangtian Zi, Arjun Guha,

[10

[11

[12

[13

—

=

—

—

—

—

[t

]

—

[t

Molly Q Feldman, and Carolyn Jane Anderson. 2023. StudentEval: A
Benchmark of Student-Written Prompts for Large Language Models
of Code. arXiv:2306.04556 [cs.LG]

Hannah McLean Babe, Sydney Nguyen, Yangtian Zi, Arjun Guha,
Molly Q. Feldman, and Carolyn Jane Anderson. 2024. StudentEval: A
Benchmark of Student-Written Prompts for Large Language Models
of Code. In Findings of the Association for Computational Linguistics,
ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024,
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.). Association
for Computational Linguistics, Kerrville, TX, 8452-8474. doi:10.18653/
V1/2024.FINDINGS-ACL.501

Virginia Braun and Victoria Clarke. 2006. Using Thematic Analysis
in Psychology. Qualitative Research in Psychology 3, 2 (2006), 77-101.
doi:10.1191/1478088706qp0630a

Neil C. C. Brown, Felienne F. J. Hermans, and Lauren E. Margulieux.
2023. 10 Things Software Developers Should Learn about Learning.
Commun. ACM 67, 1 (Dec. 2023), 78-87. doi:10.1145/3584859

Lewis Carroll. 1898. Alice’s Adventures in Wonderland. Macmillan
Company, New York, NY, USA.

Kathryn Cunningham, Barbara J. Ericson, Rahul Agrawal Bejarano,
and Mark Guzdial. 2021. Avoiding the Turing Tarpit: Learning Conver-
sational Programming by Starting from Code’s Purpose. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems
(Yokohama, Japan) (CHI °21). ACM Press, New York, NY, Article 61,
15 pages. doi:10.1145/3411764.3445571

Nicola Dainese, Alexander Ilin, and Pekka Marttinen. 2024. Can doc-
string reformulation with an LLM improve code generation?. In Pro-
ceedings of the 18th Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Student Research Workshop, Neele
Falk, Sara Papi, and Mike Zhang (Eds.). Association for Computational
Linguistics, St. Julian’s, Malta, 296-312. https://aclanthology.org/2024.
eacl-srw.24/

Paresh Dave. 2023. ChatGPT Is Cutting Non-English Languages Out of
the AT Revolution. https://www.wired.com/story/chatgpt-non-english-
languages-ai-revolution/.

Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly,
Thezyrie Amarouche, Brett A. Becker, and Brent N. Reeves. 2024.
Prompt Problems: A New Programming Exercise for the Generative Al
Era. In Proceedings of the 55th ACM Technical Symposium on Computer
Science Education, SIGCSE 2024, Volume 1, Portland, OR, USA, March
20-23, 2024, Ben Stephenson, Jeffrey A. Stone, Lina Battestilli, Samuel A.
Rebelsky, and Libby Shoop (Eds.). ACM Press, New York, NY, 296-302.
doi:10.1145/3626252.3630909

Paul Denny, David H. Smith IV, Max Fowler, James Prather, Brett A.
Becker, and Juho Leinonen. 2024. Explaining Code with a Purpose:
An Integrated Approach for Developing Code Comprehension and
Prompting Skills. In ITiCSE "24: Proceedings of the 29th ACM Conference
on on Innovation and Technology in Computer Science Education Vol. 1,
Judithe Sheard and James Paterson (Eds.). ACM Press, New York, NY,
283-289. doi:10.1145/3649217.3653587

Maja Dornbusch and Jan Vahrenhold. 2024. “In the Beginning, I
Couldn’t Necessarily Do Anything With It”: Links Between Com-
piler Error Messages and Sense of Belonging. In ICER °24: Proceed-
ings of the 2024 ACM Conference on International Computing Educa-
tion Research — Volume 1, Paul Denny, Leo Porter, Maragret Hamil-
ton, and Briana Morrison (Eds.). ACM Press, New York, NY, 14-26.
d0i:10.1145/3632620.3671105

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram
Krishnamurthi. 2018. How to Design Programs (second ed.). MIT Press,
Cambridge, MA, USA. http://www.htdp.org/

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Kr-
ishnamurthi, Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Shriram Krishnamurthi, Thore Thief3en, and Jan Vahrenhold

2018. A Programmable Programming Language. Commun. ACM 61, 3
(March 2018), 62-71. doi:10.1145/3127323

Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew
Flatt, Shriram Krishnamurthi, Paul Steckler, and Matthias Felleisen.
2002. DrScheme: A Programming Environment for Scheme. Jour-
nal of Functional Programming 12, 2 (2002), 159-182. doi:10.1017/
50956796801004208

Kathi Fisler. 2014. The Recurring Rainfall Problem. In Proceedings of
the Tenth Annual Conference on International Computing Education
Research (Glasgow, Scotland, United Kingdom) (ICER ’14). ACM Press,
New York, NY, 35-42. doi:10.1145/2632320.2632346

Daniel P. Friedman and Matthias Felleisen. 1996. The Little Schemer (4
ed.). MIT Press, Boston, MA.

Sandra G. Hart. 2006. NASA-Task Load Index (NASA-TLX); 20 Years
Later. In Proceedings of the Human Factors and Ergonomics Society
Annual Meeting. SAGE Publications, Los Angeles, CA, 904-908. doi:10.
1177/154193120605000909

Chris Kerslake, Paul Denny, David H. Smith, Juho Leinonen, Stephen
MacNeil, Andrew Luxton-Reilly, and Brett A. Becker. 2025. Exploring
Student Reactions to LLM-Generated Feedback on Explain in Plain Eng-
lish Problems. In Proceedings of the 56th ACM Technical Symposium on
Computer Science Education V. 1 (Pittsburgh, PA, USA) (SIGCSETS 2025).
ACM Press, New York, NY, 575-581. doi:10.1145/3641554.3701934
Paivi Kinnunen and Beth Simon. 2010. Experiencing programming
assignments in CS1: the emotional toll. In Proceedings of the Sixth
International Workshop on Computing Education Research, ICER 2010,
Michael E. Caspersen, Michael J. Clancy, and Kate Sanders (Eds.). ACM
Press, New York, NY, 77-86. doi:10.1145/1839594.1839609

Shriram  Krishnamurthi.  2023. Introduction  to
Porpoise. https://docs.google.com/document/d/
1dHCev4LBFOQWKYQ1xA6i11uU7GCRHhAoMrVT2Ev_6wQ/
edit?usp=sharing.

Shriram Krishnamurthi and Kathi Fisler. 2021. Developing Behav-
ioral Concepts of Higher-Order Functions. In ICER 2021: Proceed-
ings of the 17th ACM Conference on International Computing Edu-
cation Research, Amy ]. Ko, Jan Vahrenhold, Renée McCauley, and
Matthias Hauswirth (Eds.). ACM Press, New York, NY, 306-318.
doi:10.1145/3446871.3469739

Alex Lishinski, Aman Yadav, and Richard Enbody. 2017. Students’
Emotional Reactions to Programming Projects in Introduction to Pro-
gramming: Measurement Approach and Influence on Learning Out-
comes. In Proceedings of the 2017 ACM Conference on International
Computing Education Research, ICER 2017, Josh Tenenberg, Donald
Chinn, Judy Sheard, and Lauri Malmi (Eds.). ACM Press, New York,
NY, 30-38. doi:10.1145/3105726.3106187

Raymond Lister, Beth Simon, Errol Thompson, Jacqueline L. Whalley,
and Christine Prasad. 2006. Not Seeing the Forest for the Trees: Novice
Programmers and the SOLO Taxonomy. In Proceedings of the 11th
Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education, ITiCSE 2006, Renzo Davoli, Michael Goldweber, and
Paola Salomoni (Eds.). ACM Press, New York, NY, 118-122. doi:10.
1145/1140124.1140157

James Prather, Juho Leinonen, Natalie Kiesler, Jamie Gorson Benario,
Sam Lau, Stephen MacNeil, Narges Norouzi, Simone Opel, Vee Pettit,
Leo Porter, Brent N. Reeves, Jaromir Savelka, David H. Smith, Sven
Strickroth, and Daniel Zingaro. 2025. Beyond the Hype: A Comprehen-
sive Review of Current Trends in Generative Al Research, Teaching
Practices, and Tools. In 2024 Working Group Reports on Innovation and
Technology in Computer Science Education (Milan, Italy) (ITiCSE 2024).
ACM Press, New York, NY, 300-338. doi:10.1145/3689187.3709614
James Prather, Raymond Pettit, Brett A. Becker, Paul Denny, Dastyni
Loksa, Alani L. Peters, Zachary Albrecht, and Krista Masci. 2019. First
Things First: Providing Metacognitive Scaffolding for Interpreting
Problem Prompts. In Proceedings of the 50th ACM Technical Symposium


https://arxiv.org/abs/2306.04556
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.501
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.501
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1145/3584859
https://doi.org/10.1145/3411764.3445571
https://aclanthology.org/2024.eacl-srw.24/
https://aclanthology.org/2024.eacl-srw.24/
https://www.wired.com/story/chatgpt-non-english-languages-ai-revolution/
https://www.wired.com/story/chatgpt-non-english-languages-ai-revolution/
https://doi.org/10.1145/3626252.3630909
https://doi.org/10.1145/3649217.3653587
https://doi.org/10.1145/3632620.3671105
http://www.htdp.org/
https://doi.org/10.1145/3127323
https://doi.org/10.1017/S0956796801004208
https://doi.org/10.1017/S0956796801004208
https://doi.org/10.1145/2632320.2632346
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1145/3641554.3701934
https://doi.org/10.1145/1839594.1839609
https://docs.google.com/document/d/1dHCev4LBFOQWKYQ1xA6i11uU7GCRHhAoMrVT2Ev_6wQ/edit?usp=sharing
https://docs.google.com/document/d/1dHCev4LBFOQWKYQ1xA6i11uU7GCRHhAoMrVT2Ev_6wQ/edit?usp=sharing
https://docs.google.com/document/d/1dHCev4LBFOQWKYQ1xA6i11uU7GCRHhAoMrVT2Ev_6wQ/edit?usp=sharing
https://doi.org/10.1145/3446871.3469739
https://doi.org/10.1145/3105726.3106187
https://doi.org/10.1145/1140124.1140157
https://doi.org/10.1145/1140124.1140157
https://doi.org/10.1145/3689187.3709614

Porpoise: An LLM-Based Sandbox for Novices to Practice Writing Purpose Statements

[26]

[27]

[28

—

[29

—

(30]

[31

—

(32

—

(33]

(34]

on Computer Science Education, SIGCSE 2019, Minneapolis, MN, USA,
February 27 - March 02, 2019, Elizabeth K. Hawthorne, Manuel A. Pérez-
Quifones, Sarah Heckman, and Jian Zhang (Eds.). ACM Press, New
York, NY, 531-537. doi:10.1145/3287324.3287374

James Prather, Brent N Reeves, Paul Denny, Juho Leinonen, Stephen
MacNeil, Andrew Luxton-Reilly, Jodo Orvalho, Amin Alipour, Ali
Alfageeh, Thezyrie Amarouche, Bailey Kimmel, Jared Wright, Musa
Blake, and Gweneth Barbre. 2025. Breaking the Programming Lan-
guage Barrier: Multilingual Prompting to Empower Non-Native Eng-
lish Learners. In Proceedings of the 27th Australasian Computing Ed-
ucation Conference. ACM Press, New York, NY, 74-84. doi:10.1145/
3716640.3716649

Elijah Rivera, Alexander Steinmaurer, Kathi Fisler, and Shriram
Krishnamurthi. 2024. Iterative Student Program Planning using
Transformer-Driven Feedback. In Proceedings of the 2024 on Innovation
and Technology in Computer Science Education V. 1. ACM Press, New
York, NY, 45-51. doi:10.1145/3649217.3653607

Elliot Soloway. 1986. Learning to Program = Learning to Construct
Mechanisms and Explanations. Commun. ACM 29, 9 (Sept. 1986),
850-858. doi:10.1145/6592.6594

Christoph Johann Stettina and Werner Heijstek. 2011. Necessary and
neglected? an empirical study of internal documentation in agile soft-
ware development teams. In Proceedings of the 29th ACM International
Conference on Design of Communication (Pisa, Italy) (SIGDOC ’11).
ACM Press, New York, NY, 159-166. doi:10.1145/2038476.2038509
Alaaeddin Swidan and Felienne Hermans. 2023. A Framework for the
Localization of Programming Languages. In Proceedings of the 2023
ACM SIGPLAN International Symposium on SPLASH-E. ACM Press,
New York, NY, 13-25. doi:10.1145/3622780.3623645

Christoph Treude, Justin Middleton, and Thushari Atapattu. 2020. Be-
yond accuracy: assessing software documentation quality. In Proceed-
ings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing (Virtual Event, USA) (ESEC/FSE 2020). ACM Press, New York, NY,
1509-1512. doi:10.1145/3368089.3417045

Akhila Sri Manasa Venigalla and Sridhar Chimalakonda. 2024. An
exploratory study of software artifacts on GitHub from the lens of doc-
umentation. Information and Software Technology 169 (2024), 107425.
doi:10.1016/j.infsof.2024.107425

John Wrenn and Shriram Krishnamurthi. 2019. Executable Examples
for Programming Problem Comprehension. In Proceedings of the 2019
ACM Conference on International Computing Education Research, ICER
2019, Robert McCartney, Andrew Petersen, Anthony V. Robins, and
Adon Moskal (Eds.). ACM Press, New York, NY, 131-139. doi:10.1145/
3291279.3339416

Lixiang Yan, Samuel Greiff, Jason M. Lodge, and Dragan Gasevic.
2025. Distinguishing performance gains from learning when us-
ing generative Al. Nature Reviews Psychology 4 (June 2025), 2 pages.
d0i:10.1038/s44159-025-00467-5

SPLASH-E °25, October 12-18, 2025, Singapore, Singapore


https://doi.org/10.1145/3287324.3287374
https://doi.org/10.1145/3716640.3716649
https://doi.org/10.1145/3716640.3716649
https://doi.org/10.1145/3649217.3653607
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/2038476.2038509
https://doi.org/10.1145/3622780.3623645
https://doi.org/10.1145/3368089.3417045
https://doi.org/10.1016/j.infsof.2024.107425
https://doi.org/10.1145/3291279.3339416
https://doi.org/10.1145/3291279.3339416
https://doi.org/10.1038/s44159-025-00467-5

SPLASH-E °25, October 12-18, 2025, Singapore, Singapore

A Example of Problem Authoring
For completeness, we show a sample problem specification:

((private-name "addition")
(synthesized-name a)
(public-test-suite
((check-equal? 5 2 3)
(check-equal? -3 -1 -2)
(check-equal? 5 7 -2)
(check-equal? @ -2 2)))
(private-test-suite
((check-equal? 5 1 4)
(check-equal? 5 5 @)
(check-equal? -7 -1 -6)
(check-equal? -14 -7 -7)))
(bad-impl
"(define (a x y)
= xy)N")

B Details and Analysis of Quantitative
Results

In this appendix, we provide additional information and
detailed analyses of the responses to the research questions.
The summary answers are given in the main paper in §7.4.

All statistical analyses were done with IBM SPSS Statis-
tics 29 using a = 0.05 for significance testing,.

B.1 Institution and Students

In addition to the previous study, we also sought not only to
capture performance data but also to survey demographic
attributes, emotions, and attitudes. IRB approval for this
study thus was applied for and approved by the local institu-
tional review board under number 2023-F10-32 (November 5,
2023). To ensure GDPR compliance, we deployed PORPOISE
on a locally hosted Kubernetes cluster, used a locally hosted
LimeSurvey instance for all surveys, and restricted access to
the institution’s virtual private network. Participants were
informed that their text would be sent to an externally hosted
LLM and reminded to not include personally identifying in-
formation.

In the course, students usually work in groups of three
on the weekly homework assignments. This study was con-
ducted in two rounds. Both times, one of the assignments
gave students the option of participating in the PORPOISE
study. Students who declined to opt-in were given a program-
ming assignment deemed to be of similar effort. For either
round, less than 12% (Round 1: 39/335; Round 2: 30/331) de-
clined to opt in. The problems and solutions to the non-opt-in
assignments were made public after each round.

Through the learning management system, each student
was assigned a unique, alphanumeric identifier which served
as an authentication token for both Porproist and the lo-
cal LimeSurvey installation; these identifiers guaranteed
that student data was kept in sync between PORPOISE and
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LimeSurvey. Upon logging into either system, the students
had to confirm that they were aware of the protocol and con-
sented to participate and have their data analyzed. The log
data extracted from these systems was then merged with the
data from the learning management system to award credit
for completion; an exercise was considered “completed” if
either all tests had been passed (for non-opt-in) or more than
one meaningful interaction had taken place (for opt-ins).
Cursory inspection revealed that students indeed tried to
interact with PORPOISE in a meaningful way: we found no
instances of students submitting the same text over and over,
or submitting irrelevant text.

B.2 RQ-Can’t-Code

Though for diverse reasons, all four problems that students
would not have been able to solve with their programming
knowledge (REM, PIGLET, TABLE-SUM, AVERAGE-3) are the
problems on which they did poorest with Porroise. There-
fore, this process did not showcase how an LLM could pro-
duce solutions that they could specify but not code. This
pattern is intriguing and warrants further analysis. As a
starting point, we hypothesize that the problems in Round 2
required more algorithmic abstraction than could have been
expected from students in their first semester.

B.3 RQ-Perception

Students were asked to rate their perceived usefulness of
PSs before and after using PORPOISE on a scale from 1 (“not
useful at all”) to 10 (“very useful”). We hypothesized that
students would find the tool would significantly increase
perceived usefulness, because it would show that one could
obtain a program directly from it without having to write
code. However, student ratings were very high even before
the first round, with a median value of 8/10. Comparing
pre- and post-intervention ratings with a Related-Samples
Wilcoxon Signed Rank test, we saw no significant change in
Round 1 but statistically significant increase in Round 2. Of
the 277 participants in Round 2, using PORpOISE increased
their rating for 56 participants while it decreased the rating
for 29; 192 participants reported unchanged ratings. Using
PorroisE elicited a statistically significant median increase,
z = 2.174, p = 0.030. Over the whole interventions, how-
ever, the changes were not statistically significant, with each
survey showing a median rating of 8/10.

B.4 RQ-Prompt

Unpaired-t-tests showed that, after Bonferroni correction for
multiple testing, there was no significant difference favor-
ing either showing on not showing a buggy program. Not
showing a buggy program resulted in significantly fewer
attempts for p1vs (Round 1), with a difference of 1.6 attempts
(Pagj = 0.036,¢ = 2.781,df = 694,CI = [0.470,2.730]); the
effect size, however, was small (d = 0.22). Notably, there was
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Round 1 (n = 274) | Round 2 (n = 281) Round1 | n Mean Zskewness | Zkurtosis
Mental Demand 4.48 + 1.359 4.88 + 1.349 PROUD | 273 | 2.81 +0.099 5.558" 0.565
Physical Demand 1.96 £ 1.456 1.87 £ 1.239 FRUSTRATED | 274 | 4.03 +0.113 | —0.095 -3.853"
Temporal Demand 3.49 +£ 1.704 3.65 + 1.563 STUPID | 259 | 3.54 +0.099 | 0.596 | —1.886
Performance 3.75 £ 1.497 3.78 +1.447
Effort 4.42 + 1.330 4.44 + 1.284 Round 2 n Mean Zskewness | Zkurtosis
PROUD | 280 | 3.18 £0.107 | 4.1307 | —1.686
Figure 7. Intervention 2: NASA-TLX results. Data on a scale FRUSTRATED | 279 | 3.89 + 0.106 0.657 | —3.2347
from 1 (low) to 7 (high) shown as mean + standard deviation. STUPID | 275 | 3.59 + 0.097 2136" | —=1.761

no appreciable difference on the problems where students
did especially poorly.

In student comments (see §7.5), some said they did not
even bother looking at the buggy program. If many students
followed this practice, it would explain why there were no
notable differences. (An interface that asked students to click
a button to see the buggy program would have helped know
how many bothered, but the very presence of the button may
create a friction that reduces seeing them.) Also, while there
was no “global” benefit (or notable harm), some individuals
may have found value to it: a handful of student comments
did indicate that it helped them get started.

B.5 RQ-Complexity

We administered the NASA Task Load Index (NASA-TLX) [17]
to examine how PoRrRPOISE was perceived. For ecological effi-
ciency, we moved from the TLX’s 21-point scales to seven
points. Since we assessed emotions using a separate survey
(appendix B.6), we also removed the “frustration” scale from
the instrument.

Figure 7 presents the results of administering the TLX im-
mediately after Round 1 and Round 2. Paired-samples -test
analyses revealed that only the “Mental Demand” subscale
showed significant differences: The n = 237 participants re-
sponding to both surveys reported a statistically significant
increase of 0.371 + 1.664 units (95% CI, 0.158 to 0.584) with
respect to mental demand from Round 1 (4.51 + 1.317) to
Round 2 (4.88 + 1.343), t(236) = 3.437, p < 0.001, d = 0.22).
As no other measure changed in a statistically significant
way, we interpret this change as being due to the increased
intellectual demand from Problem Set 1 to Problem Set 2.

Inspecting data for the other scales, we observe the follow-
ing for the data from Round 1. The “Physical Demand” (How
physically demanding was the task?) is very low, as expected.
The “Temporal Demand” (How hurried or rushed was the pace
of the task?) is centered, which suggests students did not feel
too rushed. For “Performance” (How successful were you in
accomplishing what you were asked to do?), the answers were
not found to be normally distributed (Kolmogorov-Smirnov
test, p < 0.001). We see a positive skewness (0.035 + 0.147,
z = 0.238) and a negative kurtosis (—0.611+0.293, z = —2.085,
thus violating normality), which indicate that the data was
slightly shifted to the “unsuccessful” side of the scale with

Figure 8. Intervention 2: Means for the “emotional response”
surveys; value + standard deviation. ': z-scores outside the
[-1.96,1.96] 95% CI, i.e., indicating violation of normality.

significantly more heavy tails than a normal distribution.
For “Effort” (How hard did you have to work to accomplish
your level of performance?), the answers were not found to be
normally distributed (Kolmogorov-Smirnov test, p < 0.001).
We see a negative skewness (—0.323 + 0.147, z = 2.192, thus
violating normality) and a positive kurtosis (0.175 % 0.293,
z = 0.597), which indicate that the data was significantly
shifted towards the “working hard” side with slightly less
heavy tails than a normal distribution.

For Round 2, we obtained similar results for “Physical De-
mand”, “Temporal Demand”, and “Effort” relative to Round 1
(see Figure 7). The “Performance” data was not found to be
normally distributed (Kolmogorov-Smirnov test, p < 0.001).
Here, we saw a positive skewness (—0.079 +0.145, z = 0.544),
so compared to Round 1, the responses had slightly moved
to the “successful” side of the scale, and, again, a negative
kurtosis (—0.588 + 0.290, z = 2.027, thus violating normal-
ity). This seems to indicate that the participants had gained
some traction to move from perceived slight underperform-
ing to perceived slight overperforming. As we do not have
any other data to triangulate with, we cannot do more than
speculate that this might be due to some habituation effect.

B.6 RQ-Emotion

In post-intervention surveys, we also administered a three-
item survey to capture the students’ emotional responses [22].°
It asked students to compare their experience with POrRPOISE
against their experience with “traditional” homework assign-
ments, on a scale from 1 (“Much more true of traditional
assignments”) to 7 (“Much more true of PORPOISE”):

e Upon completing the assignment, I felt proud/accomp-
lished [proOUD].

e While working on the assignment, I often felt frustra-
ted/annoyed [FRUSTRATED].

e While working on the assignment, I felt dictionte/stu-
pid [sTuPID].

®The original survey [22] contains a fourth item directed at self-efficacy,
which was not the focus of our evaluation.
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Figure 8 summarizes the results. Test for normality us-
ing the Kolmogorov-Smirnov test showed that for none
of the questions the responses in Round 1 were normally
distributed—which would have indicated that, by and large,
traditional assignments evoked the same emotions as the
assignments using PORPOISE. Instead, the positive skewness
together with the z-score for PROUD indicates that students
felt significantly more proud about their achievements when
working on traditional assignments. On the other hand, there
was a slight tendency to feel more frustrated when work-
ing with Porroist and a much broader range of “frustrating
experiences” in both conditions (FRUSTRATED). The data for
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STUPID was not normally distributed but did not show a clear
tendency.

This general trend was confirmed in Round 2: Students
felt more proud about their accomplishments in traditional
assignments and had a very broad variety of where they
experienced frustration. In this round, it became more clear,
though, that working with Porpoisk induced significantly
less feelings of stupidity or inadequacy: The skewness to-
wards “more true for traditional homework assignments”
was statistically significant.
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