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A ADDITIONAL RELATEDWORK

There is relatively little related work in this space. Some authors have focused speci�cally on asymptotic e�ciency
(speci�cally big-O complexity) from several perspectives: identifying what makes big-O hard [16], tools for big-O
practice [22], alternate approaches to teaching big-O [11, 19] and more. These are quite removed from our focus. A
few authors have focused on trying to identify misconceptions in algorithm analysis and data structures [4, 6]. These
are closer to our work but still focused on algorithmic topics rather than basic programs, and on abstract measures of
complexity.
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B ADDITIONAL STUDY PROGRAMMING LANGUAGE CONSIDERATIONS

We could have created unfamiliarity by using a made-up pseudocode. However, that would create many new confounds.
Students could be guessing about the meaning of the syntax in the absence of concrete knowledge of the language, and
their answers might merely re�ect their guesses. The answers might also re�ect the extent to which the constructs
reminded them of other languages they already knew, and that could be di�cult to trace. Furthermore, if they responded
saying that they didn’t know, (a) those could be statements of ignorance about the language rather than of concepts; and
(b) those answers might obscure misconceptions that they do su�er from (and that surfaced in our study). Therefore,
we feel Racket was useful for this initial study. Nevertheless, it would be important to perform many more studies of
this sort (section 13); our study can serve as a baseline for other such studies (section 14).
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C DETAILS OF STUDY INSTRUMENTS

Here we describe the study instruments. We provide a superset of the instruments with accompanying ground-truth
performance explanations. In appendix C.1 and appendix C.2 we explain the di�erences between years.

The heart of the instrument is three sets of behaviorally identical programs, followed by questions designed to learn
about student perceptions. The programs are shown in �g. 1, �g. 2, and �g. 3.

We will use the term BOT for big-O time complexity, and ART for actual running time (what is often called “wall-clock
time”, but we avoid the abbreviation ��� to avoid potential confusion with “worst-case time”).

Program Set 1 cond is a multi-armed conditional, akin to an if . . . else if . . . else if . . . else . . .

construct in other languages.
All three versions expect to consume a list. If the list has no elements, they perform P. If it has one element, they
perform Q. If it has more than one element, they perform R. Note that their BOT is identical.
In terms of actual running time and space, versions (A) and (C) are literally equivalent: the Racket compiler
translates cond into a sequence of cascading ifs. Therefore, both programs will expand into exactly the same
program. Version (B) appears to do more work: the question (cons? x) (which asks whether x is a non-empty
list) appears to be syntactically extra. However, because Racket is a safe language, the operation (rest x),
which operates only on non-empty lists, will �rst check whether x is empty: i.e., it will perform a (cons? x)

check. Depending on various aspects of the compiler, it can recognize that this check is redundant, therefore
performing it only once: thereby rendering (B) to be exactly the same code as (A) and (C).
In short, the correct answer to any time comparison is “(A) and (C) are identical in ART, and (B) may or may not
be depending on speci�cs of the implementation strategy, its current con�guration (e.g., optimization level), and
current state (e.g., in case of a just-in-time compiler)”. However, students would not necessarily know about the
expansion of cond. Thus, ignorance would be very reasonable here.
It is also worth noting that the ART di�erence, even if present, could be minuscule. The function f as written
may not be recursive (it depends, in particular, on the code in R). If it is not recursive, then the extra check is
performed only once independent of the size of the list. Given contemporary tag representations, the value x
already being in a register, and so on, it is unclear this di�erence can even be measured if the check does not
occur frequently.

Program Set 2 In this case, we compare a manual implementation of a list-length function, and the built-in
implementation. We chose this pair to understand student conceptions of built-in functions. Clearly, again, their
BOT is the same.
In terms of ART, is a built-in function necessarily faster? It depends! A built-in could, of course, exploit low-level
representations that are not available at the source level. Therefore, it could potentially be much faster. However,
it could also be slower for multiple reasons. It could have a much more general implementation: e.g., it may take
arbitrary arity arguments, which—depending on the both the source and implementation [5]—could incur a large
penalty at every call-site; the single-arity version avoids that penalty. It may also need to perform more safety
checks that were assumed away in the manual implementation. Therefore, with the information provided, it is
impossible to be sure.

Program Set 3 In this case, we sum the numbers in a list through either a recursive function or a higher-order
function. This pair e�ectively re�nes the previous pair: here we are probing student conceptions of built-in
higher-order functions.
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We intentionally choose the higher-order function foldr: its counterpart foldl is tail-recursive, and therefore
would not correspond to version (A). But foldr has the same (non-tail-recursive) recursion structure as the sum
function.
Again, both programs have the same BOT. In terms of ART, the same argument applies as above. The addition of
a higher-order function does not substantially alter the situation. A particularly knowledgeable person might
note that, in Racket, whereas length can take only one argument—obviating one of the ambiguity-inducing
factors for Program Set 2—foldr can indeed take any number of lists, potentially reinforcing the calling penalty.
(None of our students, however, made any such arguments.) Thus, again, with the information provided, we
cannot say for sure.

C.1 Version from 2020

Programs Used. Our initial study consisted of only Program Sets 1 and 2. Furthermore, Program Set 1 had only two
versions, (A) and (B).

Instrument Details. For each Program Set, students were asked to pair-wise describe which they thought was “more
e�cient” than the other, with four choices: each one more e�cient than the other, both equally e�cient, and “I don’t
know” (IDK). Because the two Program Sets each had only two programs, there was only one comparison question per
Set.

After each Set, students were asked:

Please explain your choice. If you chose one of the �rst three options (not “I don’t know”), please explain
in as much detail as you can, step by step, why your answer is correct. BE SURE TO take into account
the transformations a compiler performs on code and the optimizations an architecture performs during
execution that would apply in this setting.

(emphasis in original). The last portion was meant to trigger the IoED, given that we expected that most students had
little to no knowledge of the internals of compilers.

After responding to the two Program Sets (and hopefully having their IoED for these programs triggered), students
were shown the same Program Sets, in the same order, again, and this time asked only to provide the choices. We would
hope to see a movement away from �rm answers to IDK.

C.2 Version from 2021: First Iteration

After the 2020 iteration, we observed ways in which we could strengthen our instrument (and also corrected a benign
typo). The changes do not materially change the interpretation of S20; they only add depth so we can better interpret
our �ndings. These were the changes:

(1) We asked students up front whether they knew “anything at all about program e�ciency”. Only students who
answered a�rmatively proceeded to the rest of the instrument.

(2) We added version (C) to Program Set 1. Note that to a reader who understands the language (or even similar
concepts from other languages), this program is e�ectively syntactically identical to version (A). This was added
to study the extent to which students would continue to believe they found di�erences even in programs that
are truly identical.

(3) Because Program Set 1 had three programs, we added two more “more e�cient” questions to cover all three
comparisons (1A–1B, 1A–1C, and 1B–1C).
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(4) With each question, students were also asked to state “How con�dent do you feel about your opinion?” on a
7-point Likert-like scale from “Not con�dent at all” to “Very con�dent”.

(5) We added Program Set 3 to see whether their misconceptions about library functions carried over to higher-order
functions. It was conceivable that, with little prior experience with higher-order functions, students would be
much more likely to confess ignorance.

In 2020, we saw that most students provided only speculative verbal answers, not well-grounded in any technical
details. We also anticipated that the IDKs would have little to say (per our instructions), but found some students
answering the question anyway. (We analyze all responses in detail in section 11.)

In 2021, we therefore changed our strategy. After each Program Set we asked students to respond textually only if
they had an opinion:

For questions where you didn’t choose “I don’t know”, please explain your choice in as much detail as you
can.

Note that this does not include the text about compilers and architecture, which had been roundly ignored.
Instead, we chose to make the compilers aspect extremely manifest. After students had responded to the three

Program Sets the �rst time, we provided a list of 18 di�erent compiler optimizations (e.g., “Basic-block merging”, “Last-call
replacement”, “Touch optimization”); students were asked to check o� which of these they knew “well”.

The hope was that this explicit enumeration would achieve the I�ED triggering that the previous version had failed
to accomplish. Students were then asked to respond to the same three Program Sets again, without textual answers:
just choosing which, if any, might be faster, and re-stating their con�dence. The goal of IoED is to at least reduce their
con�dence in their beliefs.

C.3 Version from 2021: Second Iteration

After the �rst iteration was �nished, students were sent a refutation text (appendix J). This was shared again before the
second iteration. In addition, it was again linked to the top of the second iteration instrument. Students were asked to
con�rm that they had read the linked document before continuing (though of course some may not have).

For the second iteration, conducted late into the semester, the instrument began with:

Topic of Focus
Like the earlier quiz, we are again dealing with “program e�ciency”. Over the course of the semester
we’ve extensively studied Big-O as a measure of e�ciency. But in this quiz we’re asking you to NOT
discuss Big-O but relate to your other notions of e�ciency instead.

It also asked them what “e�ciency” meant to them “now that the semester is over”.
The second iteration did not employ IoED. Instead the goal was to measure the impact of the refutation texts. For

each Program Set, students were therefore asked to:

(1) Choose pairwise between the programs.
(2) Express their con�dence for each pairwise choice.
(3) If they didn’t choose “I don’t know”, to explain their choice “in as much detail as you can”.

Our hope was that the refutation texts would cause students to largely choose IDK, so we were most interested in the
case they chose di�erently.1

1In retrospect, it would have been wise to ask them why in either case, to con�rm that they actually used the refutation text and picked the right reason.
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D DETAILS OF ANALYSIS METHODS

Multiple questions ask students for written feedback. We assessed their prose response using a rubric. For both rubrics,
two authors generated a draft rubric; another author (who is signi�cantly more experienced with qualitative methods,
the course content, and the programming language performance concepts) reviewed it and provided feedback. The two
authors revised the rubric, as they felt appropriate, using the feedback. They then applied it to a portion of the data and
computed inter-rater reliability using Cohen’s ^ [2]. This process iterated until they obtained a rubric that was both
satisfactory to the other author and achieved a high enough reliability score. After this, the two authors split up and
applied the rubric to the entire set of student responses, and lightly cross-checked each others’ work.

Students were asked for their conceptions of e�ciency on all three administrations. In two iterations, the team was
able to obtain a ^ of 0.88. This rubric is shown in �g. 4.

For the program pairs, an earlier (pre-2020) version of the instrument had not had multiple-choice answers for
students to express their opinion about the relative e�ciency of the di�erent versions, leading to answers that were
di�cult to analyze (and in some cases even decipher). For that reason, the instrument used in this paper was designed
to make analyzing their overall conception easy while still providing rich narrative information.

Concretely, their opinions about the versions are easy to check just by counting. As we have noted above, all pairs
of programs are identical by BOT; in terms of ART, they are either the same (because they are e�ectively the same
program) or we cannot be certain without knowing a great deal more about the innards of the implementation. By
design, there is never a case where one program is certain to be meaningfully faster than the other.

Even if we consider other measures of “e�ciency” such as readability (section 10), there are still few substantial
di�erences, and even here the answers are not obvious and open to interpretation. For instance, consider versions (A)
and (B) from Program Set 1. It may seem that (A) is more readable because it’s shorter. However, as How to Design
Programs explains, (B) is arguably better because the structure of the program matches the structure of the datum; by
collapsing cases, (A) makes the program harder to trace and hence maintain. Similarly, in the comparison of (B) and (C),
(B) makes the type of x explicit in the else case, which can be an improvement for certain kinds of readability.

In addition to their rankings, students also provided written textual responses. The rubric for this is presented in
�g. 5. This rubric obtained a ^ of 0.839 after �ve iterations.
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E MORE ABOUT EFFICIENCY CONCEPTIONS

Figure 4 shows what conceptions students had about e�ciency.
We do see some di�erences between S21-1 and F21-2. While these could be a function of population di�erences,

some of these changes are also explicable in the course context. The course asked students to consider (during lecture,
not on any assignments) performance factors such as network utilization, power, and so on. The course also heavily
assessed students on code readability and style. These could explain the increases in ���, ����, ����, and ���. The
exposure to big-O analysis on functional programs, and to the refutation texts, could explain the reduction in ����.
Nevertheless, the dominance of big-O time analysis on the assignments may explain the rise of ����.
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F MORE ABOUT PROGRAM RANDINGS

In presenting our �ndings we have chosen to not compute statistical signi�cance, which we discuss in section 14. All
%ages are rounded to nearest whole number for simplicity. Thus some sums may be very slightly above or below 100%.

F.1 Results from S20

Recall that students were not asked whether they had any understanding of e�ciency. In 2020, 22% of students said they
“don’t really” have prior opinions on program e�ciency (section 6). One might therefore assume that these students
would mark most of their answers as IDK. Yet they did not!

We present student responses in the following format. Each row gives the comparison of one program pair. The �rst
column (e.g., “1A–1B”) lists the pair. The second shows the percentage who expected the left entry (in this example,
“1A”) to be faster than that on the right (“1B”). The third shows how many had the opposite expectation. The fourth
shows how many expected the two were equal. The last shows those who said they didn’t know.

These are the results the �rst time they were shown the programs:

Pair L > R R > L Equal IDK
1A–1B 74% 8% 12% 7%
2A–2B 6% 45% 29% 20%

Their written responses, written after they make their choices, were meant to trigger an IoED reaction. These are their
results from the second time they saw the same programs:

Pair L > R R > L Equal IDK
1A–1B 70% 11% 11% 8%
2A–2B 6% 47% 28% 19%

For direct comparison, we subtract the �rst percentage from the second. Recall that we would hope to see IDK
signi�cantly increase and the others to decrease. Instead we see:

Pair L > R R > L Equal IDK
1A–1B -4% +3% -1% +1%
2A–2B 0% +2% -1% -1%

which is essentially no real change at all. Perhaps more surprisingly, a small number of students switched from choosing
one to the other being more e�cient, without any particular reason for why. This suggests that perhaps their beliefs
are not stable and �rmly rooted—but they are still switching, in e�ect, between two wrong answers.

F.2 Results from S21-1

Recall (appendix C.2) that students were asked if they knew about program e�ciency; those who answered “no” were
not invited to respond further. Our results are from the 58% (i.e., # = 35) that felt they had an opinion.

These are their preliminary rankings:

Pair L > R R > L Equal IDK
1A–1B 83% 6% 11% 0%
1A–1C 26% 9% 63% 3%
1B–1C 3% 74% 23% 0%
2A–2B 0% 57% 23% 20%
3A–3B 6% 49% 31% 14%
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Recall that 1A and 1C are the same program. Indeed, 63% recognize them as equal, but 35% do not; in particular, 26% are
misled by the longer syntactic length (echoing [12] and [23]).

After this, they were asked to indicate which compiler optimizations they knew. 80% of the students indicated
they knew none. Five were chosen by no students. Only two (“Dead code/store elimination” and “Inlining”) had three
students claim to recognize them; the remainder had only two or one. Therefore, most students admitted to little or no
knowledge of the inner workings of programming language implementations.

When they were asked to rank programs again, their responses were:

Pair L > R R > L Equal IDK
1A–1B 80% 6% 14% 0%
1A–1C 31% 9% 57% 3%
1B–1C 6% 69% 26% 0%
2A–2B 3% 54% 27% 14%
3A–3B 9% 46% 31% 14%

Again, we subtract the second from the �rst, hoping to see IDK be positive and the others negative:

Pair L > R R > L Equal IDK
1A–1B +3% 0% -3% 0%
1A–1C -5% 0% +6% 0%
1B–1C -3% +5% -3% 0%
2A–2B -3% +3% -4% +6%
3A–3B -3% +3% 0% 0%

We see almost none of that, with opinion just moving between the other columns in most cases. Indeed, their belief in
the equivalence of 1A and 1C seems to go down (positive value)!

Recall that we also asked them for their con�dence in their view. Their con�dence was given on a 7-point Likert-like
scale. We can summarize their con�dence by simply computing the average weighted sum. Here we show the rating
con�dence for each pair. We also show the increase (second minus �rst), hoping to see negative values (i.e., a decrease):

Pair Round 1 Round 2 Increase
1A–1B 4.86 5.00 +0.14
1A–1C 4.40 4.57 +0.17
1B–1C 4.74 4.85 +0.11
2A–2B 4.00 4.20 +0.20
3A–3B 4.09 4.09 0

Instead, we see that, after being confronted with a long list of compiler optimizations that they did not know, students
seem to have increased in their con�dence in assessing e�ciency.

Despite these outcomes, there could be a silver lining in the data: it would be heartening if the con�dence resided purely
in students who responded IDK, and those who thought they did know exhibited very low con�dence. Unfortunately,
that is not the case:
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Pair IDKs
1A–1B there were no IDKs
1A–1C the only IDK had a con�dence of 2
1B–1C there were no IDKs
2A–2B the IDKs had an average con�dence of 3.40
3A–3B the IDKs had an average con�dence of 2.80

We have examined the data from several angles and found that in general, the moral seems to be clear. Students hold
views that are either questionable or outright incorrect; they are con�dent in their views; and their con�dence seems
largely unshakeable.

F.3 Results from F21-2

Three months after the previous iteration, students were again asked to respond to the same questions. In the intervening
time students had been exposed (section 4) to many ideas new to them in computer science, had become pro�cient at
(early stage) big-O analysis, and had learned about real-world considerations when applying big-O. Still, they were
being asked to respond not in terms of big-O (appendix C.3). Their ratings were as follows:

Pair L > R R > L Equal IDK
1A–1B 45% 7% 29% 19%
1A–1C 10% 3% 71% 16%
1B–1C 3% 58% 23% 16%
2A–2B 0% 10% 58% 32%
3A–3B 10% 13% 55% 23%

Here, even though students were told to not use big-O analysis, their familiarity with it would have led them to better
understand program behavior. This likely explains the better (but not perfect) results for 1A–1C.

Fortunately, we see many more students unclear on their answer, perhaps caused by exposure to the refutation texts
(but possibly also by a semester of complex material reducing their certainty). The greater uncertainty for 2A–2B and
3A–3B could be because both programs had features directly referenced in the refutation text (�g. 7).

Because we have more students expressing doubt, we examine the con�dence �gures by population. Here again we
may see some impact of the refutation text:

Pair Con�dence of IDKs Con�dence of Not-IDKs
1A–1B 4.67 4.96
1A–1C 5.00 5.04
1B–1C 5.00 4.96
2A–2B 5.60 4.91
3A–3B 5.42 5.21

We note that their con�dence is fairly high even when misplaced, but refutation texts may have some value, at least
when programs visibly use features that they reference.

Most tellingly, in a space given for �nal remarks, one student wrote:

Overall it felt as if most of these were in the doc and it was di�cult to draw concrete conclusions. In the
document it was said that a lot of things were “not necessarily” true, which doesn’t really give me the
means to draw relevant conclusions (I think).
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This was the only student who had chosen IDK across the board, but had also given all those scores a con�dence of
1 (lowest). There is a telling disconnect between the student feeling all the programs were covered by the refutation
text (which they were!), but feeling like they cannot draw conclusions from those very explanations. We applaud this
student for their intellectual honesty, which at least did not lead to misplaced con�dence (though in this case, their
con�dence would have been absolutely appropriate!).
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G MORE ABOUT RANKING EXPLANATIONS

We now explain three salient numbers in �g. 5:

• 28.8% of students in S20 reference compilers, which seems a surprisingly high knowledge of this topic. In fact,
this is an artifact of the prompt (appendix C.1): the actual answers do not demonstrate any deep understanding
of or engagement with them; many answers even suggest they have little to no understanding of what a compiler
is (yet this did not prevent them from writing about one!). For instance, answers include:
– “E�ciency is a word I’d use to compare the speed at which a compiler reads and performs the intended actions
of code.”

– “[E�ciency is] the number of steps needed to evaluate the code by the compiler.”
– “[E�ciency] means the amount of operations that the compiler has to perform on a program to produce a
result”

• 16.7% of F21-2 students reference Racket. After lengthy engagement with another programming language (Pyret)
and with functional programming, looking back at Racket code seems to have made them speak about it directly.
Some answers also indicated ignorance of the innards of Racket.

• 51.8% of F21-2 students admit to ignorance. Many of these responses explicitly reference the refutation text. This
would seem to be a success! Unfortunately, as the other codes show, many students admitted to ignorance based
on the text, but proceeded to venture an opinion anyway. We discuss this more in section 14.
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H THREATS TO VALIDITY IN DETAIL

This work naturally has many threats to validity. We discuss them below.

Internal Validity. We have notable di�erences in populations across years, and only a subset of S21-1 also took F21-2.
These make some comparisons across these instances tricky. In particular, having similar populations might alter some
of the ratios: seemingly problematic di�erences might disappear, while seeming non-di�erences may now stand out.
We discuss this more in section 14.

In both S20 and S21-1, students saw the same pairs of programs twice. This could cause some entrenchment of views
that reduces the impact of the IoED intervention. Giving isomorphic programs instead might show greater impact
from the intervention. However, what might seem mathematically isomorphic might have hidden factors (as seen, for
instance, in variants [3, 24] of the Wason selection task [27]) that trigger di�erent outcomes from humans, making the
results hard to interpret, which is why we did not use this approach.

In general, we have sampled students on very few programs. It is just possible that the programs we picked are
especially problematic, and many similar programs would not produce the same entrenched results. Even beyond
correcting for this, it would be valuable to use many more programs, and in particular similar programs, to test the
stability of student preferences, and to identify what syntactic characteristics might throw them o�.

Concretely, we have used pairs 2A–2B and 3A–3B to understand student conceptions of built-in functions: length
and foldr, respectively. One possible confound is that neither was truly built-in to the students: assuming they read
the text, they would have seen implementations of both of those functions. They may well have assumed that the
actual Racket implementation does exactly what the (simpli�ed) book version does. Some students still did assume that
built-ins might have special behaviors—e.g., access to internal representations—but not all did. More students might
have if we had used built-ins that were truly opaque to them—though if they are not even implementable in the source
language, then it becomes di�cult to perform the style of comparison used in this paper.

External Validity. There are many factors that a�ect the generalizability of our �ndings. Naturally, our choice of
peculiar programming language and perhaps non-standard pedagogy (section 4) is certain to have impact, especially on
the F21-2 data. In addition, our student population is almost certainly atypical of students leaving secondary school.
The fact that many of them have completed (and probably done well) on AP exams and the like might make them
overcon�dent. Still, we believe there is value to examining the attitudes of such students, because it could have impact
on what such courses and exams should and should not cover, and what misconceptions they should try to address.

Ecological Validity. The “programs” in our instruments are not actually programs but rather templates with placehold-
ers. This in itself may make the task somewhat arti�cial. When given real and full programs, students would naturally
simply be able to run and measure them, especially if their primary e�ciency concern is a physical quantity such as
time or memory. However, it is noteworthy to us that no students commented on this, nor did any give the impression
of having tried to �ll in the bodies with sample code and performed experiments.
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I ADDITIONAL DISCUSSION POINTS

On Statistics. We have chosen to not compute statistical signi�cance for our di�erences. We believe doing so is highly
unlikely to be meaningful. There are notable di�erences in populations between the years. In addition, even within
2021, F21-2 was an optional exercise. It is quite possible that the students who responded were the ones who felt they
were learning most from the course, who may also be the ones who also had their beliefs most challenged, leading to
more IDKs. However, they may have had any number of other motivations (e.g., it may have been students not doing
too well and looking for more learning opportunities).

Whatever the case, we feel statistics would be a distraction here. The macro phenomena we see are very telling.
Rather than squeeze more out of our data, we feel it would be much more productive to �rst perform similar studies
across several other populations. In other words, despite the presence of numbers and percentages, we think of this
work as primarily qualitative. Furthermore, we intend this as a formative study, meant to raise questions and provide
initial evidence for their importance rather than to o�er de�nitive answers.

Other Study Designs. There are many natural variations of our study that immediately come to mind. For instance,
one can imagine changing the programming language to one more familiar to students—though this familiarity may not
extend to having an accurate model of program execution, especially for languages that have sophisticated compilers.
(Furthermore, their familiarity may make students even more con�dent about wrong answers.) We might also wonder
about the impact of a completely arti�cial language that was �agged as such and designed to minimize interference
from languages they know.

Perhaps more intriguing is to present students with di�erent relationships between programs. All our programs
were chosen to have little to no di�erences; what happens when we choose programs that do have notable di�erences?
What if the programs are designed so that they are more expensive to execute but syntactically smaller, as in Gal-Ezer
and Zur [12]? What if the programs are amenable to signi�cant optimizations that students do not know about—do
they posit a “super-compiler” (akin to the “superbug” [17]) or do they retain a ���� interpretation?

Other Study Populations. Our study population is quite uncommon, re�ecting (mostly) students who had strong
secondary-school computing. What about students without such a background? Do the results correlate with back-
ground? In particular, though we did not gather precise demographic information, based on the students in the class,
we know that it is largely (over 70–80%) male and White/Asian, which re�ects the demographic of many AP CS classes.
Could the misplaced con�dence we �nd be an artifact of this demographic?

Impact on Post-Secondary Courses. Our course context is unusual in that while it is “introductory”, (a) many students
coming in have had the AP A material, which is roughly similar to (at least the earlier parts of) a typical CS1 course; and
(b) the course itself covers algorithmic content (section 4) akin to, say, the �rst part of many post-secondary algorithms
courses. Therefore, the phenomena we see may possibly also be found in more typical student populations taking a
post-secondary algorithms course.2

The fact that manymisconceptions persist at the end of twomonths of instruction in algorithms—F21-2 was conducted
after students had studied and implemented multiple graph algorithms—suggests that simply taking a typical algorithms
course does not erase these misconceptions. In particular, a purely mathematical approach like big-O does not seem to

2However, there many be many di�erentiating factors. One readily apparent from section 6 is that many of these students consult Web sites like Reddit
and StackOver�ow, which may not be true of students who are less aware of such sites, are not as con�dent in their computing abilities, or are turned o�
by the nature of comments on such sites.
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(and indeed, perhaps should not) impact how students view low-level e�ciency issues. If these problems are found more
broadly, that suggests we should be rethinking our approach to algorithm education to better relate the mathematical
and physical models (akin to experimental algorithmics journals).

More broadly, we wonder about the impact of students’ experiences with the world they live in and the material they
learn in courses. Just like physics students experience forces long before formal physics education, many computing
students increasingly live in worlds with rich computation. Consider, for instance, a typical algorithmic topic: binary
search, and a proof that logarithmic complexity is a lower bound. Yet many students have spent a decade or more using
search engines, which clearly respond in constant time even as the Web keeps growing. (A small constant: as of March
2022, Google’s Core Web Vitals [https://web.dev/vitals/] claims that pages should start interacting in 100ms.)

How do students reconcile these phenomena? Do they fail to even make a connection (a form of failure to trans-
fer [25])? Do they think these are unconnected? Do they believe search engine companies have special resources (that
somehow negate bounds)? Do they simply hold contradictory views simultaneously? We believe these phenomena
need much more investigation, and the �ndings could reform traditional algorithms education.

Role of Secondary Education. We see that many of our students obtained their conceptions of e�ciency from past
teachers. Given the problematic conceptions we see here, and given that our students come from all across the USA and
some other countries, this potentially raises questions about the role of secondary school computer science education.
Are there dangers to a shallow exposure to post-secondary technical content? When such content is covered, should
it be done alongside materials (such as refutation texts) that also help students understand the limitations of their
knowledge? We believe this is an important topic that warrants further discussion.
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J REFUTATION TEXT

The refutation text is shown split across �g. 6, �g. 7, and �g. 8.

Several of you exhibited inaccurate beliefs in your responses on performance. I have therefore compiled the following
write-up to clarify these for you. Each one has been given a brief “code name” (like [HIDDEN]) to make it easier to

reference later.
Note that these are focused strictly on the actual running time (the “wall clock time”) of programs. They are not
statements about the big-O performance or any other measures.

Belief [HIDDEN]:
There are no hidden operations lurking below primitive operations.

Status:
Not true!

Explanation:
The programming language may check data before performing operations. For instance, before Racket applies �rst, it
checks that the parameter truly is a non-empty list (and reports an error if not; this is how it’s able to report an error).

Thus, what seems like a single operation may actually be multiple operations.

Belief [REPEAT]:
When an expression appears to have been evaluated to produce an answer, it must necessarily have been evaluated.

Status:
Not necessarily true!

Explanation:
If the implementation notices that an expression has been repeated, and the value cannot have changed between the
two instances, it may store the value and reuse it rather than re-compute it (i.e., trade o� space and time). This is

especially tricky given [HIDDEN].

Belief [LENGTH]:
A line of code takes a single unit (constant) amount of time to run.

Status:
Not necessarily true!

Explanation:
It depends on what code is on that line. Think about the most extreme case: you can write an in�nite loop in one line;
do you think an in�nite loop �nishes in one unit of time? Actually, it doesn’t �nish at all! In short, fewer lines of code

don’t necessarily run faster than more lines. A function call on that line means it could take a long time.

(continued)

Fig. 6. Refutation Text, part 1

26



Problematic and Persistent Post-Secondary
Program Performance Preconceptions Koli 2022, November 17–20, 2022, Koli, Finland

(continued)

Belief [KNOWLEDGE]:
A programming language implementation (“compiler”) knows what we know.

Status:
Not at all!

Explanation:
We may have all sorts of ways of knowing something about a program: a comment, facts about mathematics,

awareness of what a user will do, etc. An implementation may not know any of these things. Our knowledge could be
something as simple as an assumption that a particular variable is of a certain type; we can then assume that and skip
some steps, but an implementation can’t necessarily do that (e.g., [HIDDEN]). Unless we have explicitly communicated
our knowledge to the implementation, or we are certain that the implementation has a way of knowing the same thing
we do, we can’t assume anything about what it knows (and, indeed, should assume it doesn’t know what we know).

Belief [BUILT-IN]:
Built-in operations are faster than the same behavior written by hand.

Status:
Not necessarily. It could go either way.

Explanation:
On the one hand, a built-in operation may have access to some low-level programming features that are not provided
in the surface language. However, on the other hand, the built-in operation may contain many more checks for things
that the human did not think to write. It may even have to check for behavior caused by language features that the
human didn’t even know existed! All those checks and guards can make the built-in operator “safer” to use, but will

also create overhead that is not present in the manual implementation.

Belief [HOF]:
Using a built-in higher-order function is faster than writing the same behavior by hand as an explicit loop/recursive

function without a higher-order function.

Status:
Not necessarily. It could go either way.

Explanation:
Using the higher-order function may lead to more concise code, but as we’ve noted above ([LENGTH]), that doesn’t
make it faster. Similarly, a higher-order function may be built-in, but that also doesn’t necessarily make it faster (e.g.,

[HIDDEN]). It is certainly true that in general, a built-in higher-order function may be able to improve on a
hand-written version of the same behavior. However, there is also a cost associated with calling the function that we
pass in. That cost may or may not be greater than the savings from using the built-in. Some smarter implementations
can remove the overhead introduced by that call entirely, enabling the program to be more concise but equally fast or

faster, but not all implementations are (or can be) smart about that.

(continued)

Fig. 7. Refutation Text, part 2
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(continued)

Belief [BOUNDS]:
The implementation (“compiler”) has ways of making things faster that we don’t know about.

Status:
Maybe. But we can also reason about when this might not be possible.

Explanation:
The implementation is still governed by laws of physics, mathematics, and so on. In computer science we have results
known as “lower bounds” that prove that we can’t do certain things more e�ciently than some minimum (assuming we

want a correct answer!). The compiler, built-in functions, etc. can’t magically beat these bounds.

Belief [MEMORY]:
Programs that run faster use less memory.

Status:
No, it’s often an inverse relationship!

Explanation:
One of the most powerful ideas in computer science is the space-time tradeo�: that we can often make things faster by
using more memory, or increase memory-e�ciency by making them slower. So speed and memory are often in an

inverse relationship.

Belief [POWER]:
Programs that run faster consume less power.

Status:
It depends.

Explanation:
How much power a program consumes depends on the speci�c instructions that are executed. It is often possible to
�nd lower-power instructions that execute more slowly. Therefore, there can be a positive or negative correlation

between speed and power.

Fig. 8. Refutation Text, part 3
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