
Modeling and Reasoning about DOM Events

Benjamin S. Lerner Matthew J. Carroll Dan P. Kimmel
Hannah Quay-de la Vallee Shriram Krishnamurthi

Brown University

Abstract
Web applications are fundamentally reactive. Code in a
web page runs in reaction to events, which are triggered
either by external stimuli or by other events. The DOM,
which specifies these behaviors, is therefore central to
the behavior of web applications. We define the first
formal model of event behavior in the DOM, with high
fidelity to the DOM specification. Our model is concise
and executable, and can therefore be used for testing and
verification. We have applied it in several settings: to
establish some intended meta-properties of the DOM, as
an oracle for testing the behavior of browsers (where it
found real errors), to demonstrate unwanted interactions
between extensions and validate corrections to them, and
to examine the impact of a web sandbox. The model
composes easily with models of other web components,
as a step toward full formal modeling of the web.

1 Introduction

Modern web applications are fluid collections of script
and markup that respond and adapt to user interaction.
Because their programming model differs from classic
desktop applications, the analysis of such programs is still
in its infancy. To date, most efforts have focused on indi-
vidual portions in isolation: huge progress has been made
in clarifying the semantics of JavaScript [10, 16, 17], in
modeling the tree structure of HTML [9], and in under-
standing the overall behavior of the browser as a runtime
environment [2, 5, 14, 15, 18]. But each of these ap-
proaches ignores the crucial element of reactivity: web
programming is fundamentally event-driven, and employs
a powerful mechanism for event propagation. Perhaps
counterintuitively, the JavaScript loaded in web applica-
tions is largely inert, and only executes when triggered
by events dispatching through the HTML structure in
which it resides. To paraphrase John Wheeler’s famous
dictum, “HTML tells events how to propagate, and events
tell HTML how to evolve.”

The ability to model web applications more accurately
has widespread appeal. Webapps are large codebases
in languages with (currently) poor support for modular-
ity: how can we assure ourselves that a program doesn’t
exhibit unintended behaviors? Many webapps include
semitrusted or untrusted content such as ads: how can
we ensure that a program is robust in the face of the
injected content’s activity? And for many web-like ap-
plications, foremost among them Firefox or Thunderbird,
users avidly install extensions that deliberately and deeply
modify the markup and script of the underlying program:
what assurance do we have that the composite program
will work correctly? Even current tools that do attempt to
model both the page structure and the code [3, 4, 6] are
hampered by state-space explosion, as without a precise
model the potential code paths grow beyond feasibility.

Instead, we propose a simple, executable, testable
model of event dispatch in web applications, in the style
of λJS [10, 11, 17]. Our model is engineered to hew
closely to the structure of the spec [13], to build con-
fidence in the model’s adequacy. For our purposes we
abstract JavaScript and model only those APIs dealing
with page structure or events; the model is easily extended
to include λJS directly. Likewise we represent the page
structure as a simple tree in a heap; again the model can be
extended with a richer tree representation [9] for further
precision.

Contributions
This paper makes the following concrete contributions:

1. A short, executable, and testable model of event dis-
patch (Section 4.2). Writing such a model clarifies
potential sources of confusion in the spec itself, pro-
vides an oracle against which implementations can
be tested, and provides a foundation for future pro-
gram analyses. As a case in point, systematically
testing small examples in our model revealed dis-
crepant behavior among the major browsers.



2. Simple proofs (Section 4.1) that the model upholds
properties expected of the spec, such as precisely
how and when a script’s side effects can affect the
dispatching of current and subsequent events. Be-
cause the model closely resembles the spec, such
proofs lend confidence that the spec itself enjoys the
same properties; thus far such claims were merely
the intent of the lengthy, prose spec.

It also presents two initial applications of the model:

1. We examine two Thunderbird extensions to detect
a real conflict between them. The model is then
used to show that the fix (as implemented by one
extension author) currently suffices to correct the
bug, that another, simpler fix should be more robust,
and this simpler fix in turn reveals a bug in Gecko
(Section 4.3).

2. We re-examine the assumptions of ADsafe [1] in
light of event dispatch, to determine whether ADsafe
widgets may affect the control flow of their host
despite the ADsafe sandbox, and suggest directions
for more robust widgets (Section 4.4).

2 Web Program Control Flow Unpacked

An intuitive but incomplete model for programming web
pages is that of an asynchronous event loop. In this model,
events are triggered by user interaction, and event call-
backs have access to an object graph representing the
tree structure of the HTML, known as the Document Ob-
ject Model (DOM). The full definition of “the DOM” is,
however, spread over many specifications [12, 13, 19, 21,
among others], comprising far more than just this tree
structure. In reality, the DOM object graph is more inter-
connected than a mere tree and can be arbitrarily entan-
gled with the JavaScript heap; event callbacks are attached
directly to these DOM nodes; and while the event loop
itself is not available as a first-class entity through the
DOM, nodes may support APIs that implicitly cause fur-
ther events to be dispatched or that modify the document
structure.

In short, it is naïve to think of the execution of a
web program as merely an event loop alongside a tree-
structured data store. Rather, the structure of the docu-
ment influences the propagation of events, and the side
effects of events can modify the document. Understand-
ing web program behavior therefore requires modeling all
the subtleties of event dispatch through the DOM. Like
all portions of web-related programming, the event mech-
anisms were developed over time, resulting in historical
quirks and oddities. We explain the main features of event
dispatch in this section, and enunciate design goals for
our model to support, then develop our model of it in the
following section.

2.1 Event Dispatch in N Easy Stages
Static document structure, one event listener We
take as a running example a simple document fragment of
three nodes: 〈div〉〈p〉〈span/〉〈/p〉〈/div〉. In the simplest
case, suppose as the page loads we attach a single event
listener to the 〈span/〉:

spanNode.addEventListener("click",
function(event) { alert("In click"); });

This statement registers the function as a listener for
mouse “click” events only; any other event types are
ignored. When an event is dispatched to a particular
target, the listener on that target for that event type—if
there is one—is invoked. Thus a “click” event targeted at
the 〈span/〉 will yield the alert; a “keypress” event will
not, nor will a “click” event targeted at the 〈p/〉 node.

Note that scripts can construct new event objects pro-
grammatically and dispatch them to target nodes. These
events behave identically to browser-generated events,
with one caveat addressed later.

Design Goal 1’: Every node has a map of installed
listeners, keyed by event type. (To be refined)

Multiple listeners and the propagation path We now
expand the above model in two key ways. First, the
suggestively named addEventListener API can in fact
be used repeatedly, for the same node and the same event
type, to add multiple listeners for an event. These listeners
will be called in the order they were installed whenever
their triggering event is dispatched. This flexibility allows
for cleaner program structure: clicking on a form button,
say, might trigger both the display of new form fields and
the validation of existing ones; these disparate pieces of
functionality can now be in separate listeners rather than
one monolithic one.

Second, web programs frequently may respond to
events on several elements in the same way. One ap-
proach would be to install the same function as a listener
on each such element, but this is brittle if the page struc-
ture is later changed. Instead, a more robust approach
would install the listener once on the nearest common
ancestor of all the intended targets. To achieve this, event
dispatch will call listeners on each ancestor of the tar-
get node as well, known as the propagation path. Thus
adding a listener to the other two nodes in our example:

function listener(event) {
alert("At " + event.currentTarget.nodeName

+ " with actual target "
+ event.target.nodeName);

}
pNode.addEventListener("click", listener);
divNode.addEventListener("click", listener);



and then clicking in the 〈span/〉 will trigger three alerts:
“In click”, “At p with actual target span”, and “At div with
actual target span” in that order: the event bubbles from
the target node through its ancestors to the root of the
document.1

For symmetry, programs may want to perform some
generic response before the event reaches the target node,
rather than only after. Accordingly, event dispatch in
fact defines a so-called capturing phase, where listen-
ers are called starting at the root and propagating down
to the target node. To install a capture-phase listener,
addEventListener takes a third, boolean useCapture
parameter: when true, the listener is for capturing; when
missing or false, the listener is for bubbling.

Event dispatch therefore comprises three phases: “cap-
ture”, from root to the target’s parent and running only
capture-phase listeners; “target”, at the target node and
running all listeners; and “bubble”, from the target’s par-
ent to the root and running only bubble-phase listeners.
The event parameter to each listener contains three fields
indicating the current eventPhase, the currentTarget,
and the intended target of the event. For our running ex-
ample, an event targeted at the 〈span/〉 will call listeners

1. On 〈div/〉 for phase capture, then

2. On 〈p/〉 for phase capture, then

3. On 〈span/〉 for phase target, then

4. On 〈p/〉 for phase bubble, then

5. On 〈div/〉 for phase bubble.

Design Goal 1”: Every node has a map of installed lis-
teners, keyed by event type and phase. (To be refined)

Design Goal 2: Dispatch takes as input a node and its
ancestor chain, which it will traverse twice.

Aborting event propagation It may be the case that a
capture- or target-phase listener completely handles an
event, and that the app has no need to propagate the event
further. The app could maintain some global flag and
have each listener check it and abort accordingly, but this
is tedious and error-prone. Instead, the event object can
be used to stop event propagation in two ways:

• event.stopPropagation() tells dispatch to termi-
nate as soon as all listeners on the current node com-
plete, regardless of whether listeners are installed on
future nodes of the propagation path. Thus calling
this in a target-phase listener on 〈span/〉 will abort
dispatch between steps 3 and 4 above.

1Additionally, for legacy reasons it also propagates to the global
window object; this detail does not substantially change any of our
subsequent modeling.

• event.stopImmediatePropagation() tells dis-
patch to terminate as soon as the current listener
returns, regardless of whether other listeners are in-
stalled on this or future nodes in the propagation
path. Thus calling this in a capture-phase listener on
〈p/〉 will abort dispatch in the middle of step 2, even
if there are more capture-phase listeners on 〈p/〉.

Design Goal 3: Dispatch can be aborted early.

Dynamic document structure: no effect! So far our
example listeners have had no side effects; in general,
however, they often do. This may interact oddly with
the informal definitions above: for instance, if a target-
phase listener removes the target node from the document,
what should the propagation path be? Several options
are possible; the currently specified behavior is that the
propagation path is fixed at the beginning of dispatch, and
is unmodified by changes in document structure. Thus
in our running example, regardless of whether nodes are
deleted, re-parented or otherwise modified, the five steps
listed are unaffected.

Design Goal 4: The ancestor chain input to Design
Goal 2 is immutable.

Dynamic listeners: some effect! We can now address
the last oversimplification, that event listeners are added
once and for all at the start of the program. In fact they can
be added and removed dynamically (using the analogous
removeEventListener API) throughout the program’s
execution. For example, a common idiom is the “run-
once” listener that removes itself the first time it runs:

function runOnce(event) {
node.removeEventListener("click", runOnce);
...

}
node.addEventListener("click", runOnce);

Such actions have a limited effect on the current dis-
patch: listeners added to (resp. removed from) a future
node in the propagation path will (resp. will not) be called
by the dispatch algorithm; listeners added to (resp. re-
moved from) the current or past nodes in the propagation
path will be ignored (resp. will still be called). More
intuitively, a refinement of the five steps above says that
dispatching an event to 〈span/〉 will:

1’. Determine the capture-phase listeners on 〈div/〉 and
run them, then

2’. Determine the capture-phase listeners on 〈p/〉 and
run them, then

3’. Determine the target-phase (i.e., all) listeners on
〈span/〉 and run them, then



4’. Determine the bubble-phase listeners on 〈p/〉 and
run them, then

5’. Determine the bubble-phase listeners on 〈div/〉 and
run them.

Since the determination of the relevant listeners is lazily
computed in each step, dispatch will only notice added or
removed listeners that apply to later steps.

Design Goal 5: The listener map is mutable during
dispatch, but an immutable copy is made as each node
is reached.

Dealing with legacy “handlers” Unfortunately, the
mechanism explained so far—multiple listeners, cap-
turing and bubbling, and cancellation—was not the
first model proposed. Originally, authors could write
〈span onclick=“alert("In onclick");”/〉, and define
an event handler for the “click” event. There can be at
most one handler for a given event on a given node, which
takes the form of a bare JavaScript statement.

To incorporate this legacy handler mechanism into the
listener model above, handlers are implicitly wrapped
in function(event) { ... }2 and their return values
are post-processed to accommodate the ad-hoc nature
of legacy handler support. Handlers can be altered by
modifying the onclick content attribute or by modifying
the onclick property of the node:

node.setAttribute("onclick",
"alert(’New handler’);");

node.onclick =
function(event) { alert("New handler"); }

and for legacy compatibility, these mutations must not
affect the relative execution order of the handler and any
other “click” listeners.

Design Goal 1: Every node has a map of installed
listeners and handlers, keyed by event type and phase.

Default actions Finally, browsers implement a great
deal of functionality in response to events: clicking a link
will navigate the page, typing into a text box will modify
its contents, selecting one radio button will deselect the
others, and so forth. Such default actions behave mostly
like implicitly-installed listeners, with a few caveats. De-
fault actions are not prevented by stopPropagation
or stopImmediatePropagation; instead, listeners must
call preventDefault. Legacy handlers can return true
(or sometimes false) to achieve the same effect. Also, de-
fault actions are not run for programmatically constructed
events; these events are considered “untrusted” and can-
not be used to forge user interaction with the browser.

2The expert reader will note that some contortions are needed to
supply the right this object and scope to the handler.

The default action for many events is in fact to trigger
the dispatch of a new event: for example, the default ac-
tion of a “keydown” event will dispatch a new “keypress”
event; likewise, the default action for “mouseup” is to dis-
patch a “click” event and possibly a “doubleclick” event.
Note that these are new dispatches; any and all changes to
the document structure made by script-installed listeners
will be visible in the propagation path of these new events.

Design Goal 6: Events are equipped with a default
action which is the final handler of the dispatch.

2.2 Challenges
Analyzing the full control-flow of an application is diffi-
cult enough even in ideal settings when only one devel-
oper writes the complete program. Still, a whole-program
analysis is possible in principle, since the entirety of the
codebase is available for inspection. On the web, how-
ever, programmers frequently include code they did not
author. We consider two scenarios: the intentional inclu-
sion of third-party code such as ads, and the unforeseeable
injection of user-installed extensions.

2.2.1 Invited third-party code

A typical webapp may include ads sourced from vari-
ous third parties, a Twitter or blog feed, social network
sharing operations, and so on. These all take the form
of some user-visible UI, and nearly always include addi-
tional scripts to make the UI interactive. But such inclu-
sion can have several unpleasant side-effects. The obvious
security consequence, in the worst case when the webapp
takes no precautions, is that the inserted content runs
in the same JavaScript context as the webapp, with the
same permissions, and can inadvertently or maliciously
break the webapp. Fortunately, several frameworks exist
to mitigate such naïve mistakes: tools like ADsafe [1]
or Caja [20] attempt to sandbox the inserted content, iso-
lating it within a subtree of the surrounding document
and within a restricted JavaScript environment. But these
also have weaknesses in the face of DOM events, as we
discuss in Section 4.4.

2.2.2 Uninvited third-party code

Virtually every major browser now permits the installation
of extensions. These are specifically intended for users
to modify individual webapps or the browser itself. For
example, there are app- or site-specific extensions that,
say, supplant existing webmail auto-completion methods,
or replace ads with contacts, or customize the UI of a
particular newspaper or social networking site. While
these extensions are sometimes written by the creators
of the original application or site, in other cases they



pre-dispatch dispatch-collect

dispatch-nextdispatch dispatch-default

pd-buildPath

pd->dispatch

collect:found
collect:none

capture->capture-collect
capture->target-collect
target->bubble-collect
bubble->bubble-collect

more-to-do
stop-prop/more-to-do

target->default
bubble->default

stop-prop/done-with-node
stop-immediate/abort

gethandler:found
finished-handler

return-from-handler
gethandler:none
finished-listener

Figure 1: The core reduction steps in our model, implementing the event dispatch state machine.

are written by third parties. Other browser extensions
personalize the browser’s whole look-and-feel. All these
extensions can be highly invasive to apps, and there is
no way for app authors to anticipate these modifications.
Instead, they must code defensively in all event listeners,
for which they need a model of what to defend against.

3 Modeling DOM Events

Having informally laid out how event dispatching works,
we are ready to model it precisely. We will first describe
the model itself, then explain how we account for its
relationship to the actual DOM specification. Design
goals 1, 3, and 6 are used to construct the model; the other
three express properties about that model that we prove in
Section 4.1. Section 5 presents extensions to the model.

3.1 Model Highlights
Because the DOM is essentially a large automaton that
determines what operations will execute next, we model
it using an operational semantics. In particular, because
of the ability to abort dispatch in subtle ways (see Design
Goal 3), we find it most effective to use the evaluation
context style of Felleisen and Hieb [8], which was initially
designed to model control operators (such as exceptions
and continuations) in regular programming languages and
is thus well suited for that purpose.

Our full model, which can be found at http://www.
cs.brown.edu/research/plt/dl/domsemantics/,
is 1200 lines of commented code. It is implemented using
the PLT Redex modeling language [7], which provides
programming environment support for models in the
Felleisen-Hieb style. Here we present the highlights that
will help the reader navigate that document.

3.1.1 Stages of a Dispatch

The Events spec defines the procedure for synchronously
dispatching a single event in careful detail, and the prose
is full of challenging nuances. Conceptually, however,
the spec defines a single event dispatch as an automaton
with five states. The states and their transitions, as named
in our model, are shown in Fig. 1; we discuss the key
transitions below. Our model identifies eight transitions,
with eighteen triggering conditions: a reasonable size,
given the many interacting features of event dispatch, and
certainly more concise than the original spec.

1. Determining the propagation path. Event dispatch
begins by determining the propagation path for the event:
the ancestors of the target node at the time dispatch is ini-
tiated. Our model builds this path in the pre-dispatch
state. The spec states that “once determined, the propa-
gation path must not be changed,” regardless of any page
mutations caused by listeners that are triggered during
dispatch (Design Goal 1). This is trivially maintained by
our model: every transition between the dispatch-next,
dispatch-collect and dispatch states (described be-
low) preserve the path without modification.

2. Determining the next listener. The flow of an event
dispatch may be truncated in one of three ways: after the
completion of the current listener, after the completion
of any remaining listeners on the current node and phase,
or the default action may be canceled. Further, some
events may skip the bubble phase entirely. When any
given listener completes execution, the dispatch algorithm
must check whether any of these truncations have been
signaled, and abort dispatch accordingly (Design Goal 3).
If none have, then dispatch proceeds to the next listener

http://www.cs.brown.edu/research/plt/dl/domsemantics/
http://www.cs.brown.edu/research/plt/dl/domsemantics/


body

div

div

p

p

emspan

div

p

div
id=d1, class=foo, . . .

click keydown· · ·

Listeners for keydown

Capture Target Bubble
(listener #t L1)
(listener #t L2)

(listener #f L3)
(listener #f L4)

(listener #t L5)

Figure 2: Schematic representation of the model’s store. The store contains nodes connected in a tree structure (left).
Each node stores its name, attributes, pointers to its parent and children, and suites of event listeners, grouped by event
type (middle). Each suite contains three lists, one for each phase of dispatch; listeners for either 〈capture〉 or 〈bubble〉
phases also apply—in order—to the 〈target〉 phase (right). Each listener holds a pointer (Li) to its actual code.

for the current node and phase or, if no such listener exists,
begins collecting listeners for the next node (and possibly
phase) on the propagation path. Precisely identifying
these conditions is the crux of our model, which reifies
them as ten transitions out of the dispatch-next state.

3. Determining listeners for the current node and
phase. Perhaps one of the subtlest requirements of the
spec determines which listeners must be called when dis-
patch reaches a node on a propagation path—and not all
browsers currently get this right (see Section 4.2). As
noted in Section 2.1, the list of listeners for a given node
and phase is fixed only when dispatch reaches that node;
this step is accomplished by the dispatch-collect
model state (Design Goal 5). Unfortunately here the
spec conflates specification and representation: it implic-
itly assumes a flat list of the installed event listeners, and
must include qualifiers to predicate which listeners should
run. Our model avoids making assumptions about rep-
resentation, using a structure that exposes the semantic
intent (see Section 3.1.2 below), and merely copies the
relevant list of installed listeners for the current phase into
the dispatch context, thereby insuring that any changes
to the installed listeners on the current node and phase
will not take effect until a subsequent dispatch. (Still, any
modifications to listeners installed on nodes for phases
later in the current dispatch will be visible.) Accordingly,
the model’s transitions here are far clearer than the spec
they implement.

4. Executing a listener. Either transition from
dispatch-next to the dispatch state determines that a
given listener should be executed. The model then records
both the current listener and the remaining target nodes,
and begins executing the listener body. While in this state,

listeners may invoke additional, reentrant (“synchronous”)
event dispatches, may cancel the current event dispatch,
or generally may modify the DOM however they choose.
Once a dispatch context completes its listener body, it
transitions back to dispatch-next to determine the next
listener to call.

5. Default actions. When dispatch-next reaches the
end of the propagation path, or when the bubble phase
would begin but the current event does not bubble, the
algorithm must execute the default actions, if any, for
the given event and event target. We model this with a
dispatch-default state (Design Goal 6) and a meta-
function (not shown) to compute the relevant default
actions. This meta-function is the only portion of the
dispatch algorithm that inspects the detailed form of the
event and target; everything else is agnostic. A model
of the full HTML spec would supply this meta-function,
specializing the event dispatch mechanism to the events
applicable to HTML documents.

3.1.2 Representing Event Listener Lists

The precise storage for event listeners encodes several
requirements culled from disparate portions of the spec,
and embodies Design Goal 1. We give the precise type in
Fig. 3b, and explain its design in four stages.

First, the spec mandates that event listeners installed
for the same node, event type and dispatch phase must be
called in the order they were installed. Accordingly, every
node contains a map (LS) from event type and phase to a
vector of listeners.

Second, the spec elsewhere states listeners may be
installed for either 〈capture〉 and 〈target〉 phases, or
〈target〉 and 〈bubble〉 phases. At first glance, it



seems that we might simply maintain separate lists for
〈capture〉- and 〈bubble〉-phase listeners, but that runs
afoul of the ordering requirement when dispatch reaches
the 〈target〉 phase. Instead, we must also maintain a
list of 〈target〉-phase listeners, and when adding a new
listener, we must update two lists in our map: this is
accomplished by the addListener meta-function.

Third, the spec requires that the triple of argu-
ments (〈eventType〉, 〈usesCapture〉, 〈listener〉) must
be unique within each node: while a given function may
be installed both as a capture-phase listener and as a
bubble-phase listener on the same node, subsequent in-
stallations will have no effect. In combination with the
previous requirement, one implicit consequence is that a
function may be called twice during the target phase;
though true, this is not immediately obvious from the spec
wording, but is evident from our rules.

Finally, the spec defines how event listeners may be
removed from a node: again, from both capture and
target phases, or from both target and bubble phases.
Thanks to the uniqueness requirement and our model-
ing of addEventListener, we know that a given listener
may be present twice in the target-phase list, so we must
record which target-phase listeners were also installed
on the capture phase, and which were not, or else we
might remove the wrong listener and violate the ordering
requirement. Consider the following program fragment:

node.addEventListener("click", true, f1);
node.addEventListener("click", true, f2);
node.addEventListener("click", false, f1);
node.removeEventListener("click", true, f1);

While it is intuitively clear that the call to
removeEventListener must remove f1 in the
capture phase, it must also remove the corresponding
f1 in the target phase, i.e., the first one.

Remark: In prior work [15], in which the first author
implemented the event dispatch algorithm, he read the
documentation for addEventListener too quickly; it is
excerpted in Fig. 3a. Note the emphasized text: in fact, the
specification is inconsistent in defining on which phases
listeners may be installed! By contrast, the meta-function
in Fig. 3b uses the useCapture flag exactly once, and
hence avoids and resolves this error.

The store as described here is redundant: the 〈target〉
list by itself contains sufficient information to produce
the spec-defined behavior. However, this redundancy is
intentional: it simplifies the determination of relevant
listeners (the dispatch-collect state earlier), empha-
sizes the “doubled” effect of addEventListener, and
indirectly encourages implementers to treat the model as
a specification rather than an implementation guide.

3.2 Modeling Challenge: Adequacy
Whenever researchers build a model of a system, they
must demonstrate why the model adequately represents
the system being examined, or else the model is of no
relevance. This is an inherently informal process, as the
system here is the prose of the specification; if the spec
were amenable to formal methods in the first place, there
would be no need for a formal model!

To simplify the case for our model’s adequacy, we
have annotated each paragraph of the spec with a link to
the relevant definitions and reduction rules of our model.
A reasonably knowledgeable reader could flip back and
forth between the spec and the model, and convince her-
self that the model faithfully represents the intent of the
spec. An excerpt of this is shown in Fig. 3, where we
show the spec’s definition for addEventListener and
the corresponding Redex metafunction that installs the
listener into our model.3

Of course, the DOM also lives through many imple-
mentations. We can therefore test our model to determine
whether it conforms to the behavior of actual implemen-
tations. We have begun doing so, and discuss the results
in Section 4.2. Ultimately, we have to choose between
modeling a specific browser or the spec; we have chosen
the latter, but the decisions we have made are localized
and can thus be altered to reflect one particular implemen-
tation, if desired.

4 Applications

We now demonstrate the utility of our model by discussing
its application in various settings.

4.1 Provable Properties of the Model
We concern ourselves here only with well-formed states
of the model: a finite statement/heap pair (S,H) is well-
formed if

1. There are no dangling pointers from S into H .
2. The heap is well-typed: Every heap location men-

tioned in S is used consistently either as a node or
as a listener.

3. There are no dangling pointers withinH: the parents
and children of every node n must be present in H .

4. The nodes in the heap are tree-structured: No node
is its own ancestor, descendant or the child of two
distinct nodes.

5. For every listener (listener b L) or handler
(handler L), L points to a statement S′ and
(S′, H) is well-formed.

3The spec requirement that addEventListener be idempotent is
in fact defined elsewhere; that text in turn corresponds to the (elided)
addListenerHelper metafunction.



addEventListener

Registers an event listener, depending
on the useCapture parameter, on the
capture phase of the DOM event flow or
its target and bubbling phases.

Parameters:

type of type DOMString: Spec-
ifies the Event.type associated
with the event for which the user
is registering.

listener of type EventListener:
. . .

useCapture of type boolean: If
true, useCapture indicates that
the user wishes to add the event
listener for the capture and tar-
get phases only, i.e., this event lis-
tener will not be triggered during
the bubbling phase. If false, the
event listener must only be trig-
gered during the target and bub-
bling phases.

(a) Excerpt from the specification of
addEventListener; emphasis added to
highlight self-inconsistencies.

P ∈ PHASE ::= 〈capture〉
∣∣ 〈target〉 ∣∣ 〈bubble〉

L ∈ LISTENER ::= listener S

S ∈ STMT ::= skip
∣∣ return bool

∣∣ S;S∣∣ stop-prop
∣∣ stop-immediate∣∣ prevent-default∣∣ addEventListener N T bool L∣∣ remEventListener N T bool L∣∣ debug-printstring

T ∈ EVTTYPE ::= "click"
∣∣ "keydown" ∣∣ · · ·

LS ∈ LMAP ::= (T × P )⇀ (
−−−−−→
bool × L)

N ∈ NODE ::= (node name LS . . .)

(define-metafunction DOM
[(addListener

LS string_type bool_useCapture L)
(addListenerHelper

(addListenerHelper
LS string_type target L)

string_type
,(if (term bool_useCapture)

(term capture)
(term bubble))

L)])

(b) Excerpt from our Redex model of addEventListener. Note that
the impact of the useCapture is defined exactly once, leaving no
room for self-inconsistency.

Figure 3: Defining and modeling addEventListener

We can now prove that our model upholds the invariants
stated in our Design Goals:

Theorem 1. Once computed, the event propagation path
is fixed for each dispatch. (Design Goal 4)

Proof sketch. By inspection of the reduction rules: every
rule between dispatch-next, dispatch-collect and
dispatch leaves the path unchanged. Rules leading to
dispatch-default vacuously leave the path unchanged,
since dispatch has passed the end of the path. The remain-
ing rules in pre-dispatch compute the path itself.

Theorem 2. During dispatch, once the event listener list
for a given node and phase is computed, it is unaffected by
calls to addEventListener or removeEventListener
in any invoked listeners. (Design Goal 5)

Proof sketch. This is the express purpose of
dispatch-collect: only it examines the store to
collect the currently installed listeners, and copies that list
into the dispatch-next context. All further reductions
from dispatch-next use the copy, and are unaware of
any changes in the store.

Theorem 3. Event dispatch is deterministic.

Proof sketch. By inspection of the reduction rules: the
left hand sides of the rules never overlap.

Additionally, we can prove several other key properties:

Lemma 1. Preservation of well-formedness: given
a well-formed (S,H) such that (S,H) → (S′, H ′),
(S′, H ′) is well-formed.

Lemma 2. Progress: a well-formed term is either
(skip, H) or it can take a step via (→).

Theorem 4. Termination: assuming all listeners and
handlers terminate, and do not recursively dispatch
events, every well-formed event dispatch completes:
((pre-dispatch locn () e), H)→∗ (skip, H ′).

Proof sketch. The propagation path of any node in a well-
formed state is finite, because the heap is finite and tree-
structured. Every transition from dispatch-next either
reduces the number of remaining listeners on the current
node, or the number of remaining nodes in the propaga-
tion path. Every transition out of dispatch-collect



returns to dispatch-next in a single step. By assump-
tion, every listener or handler terminates (in our minimal
language this is trivial; in full JavaScript it is not), so ev-
ery transition to dispatch will return to dispatch-next
in finite time. Finally, again by assumption, the default
handlers run by dispatch-default terminate.

Theorem 5. Double dispatch (Design Goal 2): for every
node on a well-formed propagation path that is not the
target node, if dispatch is not stopped then that node will
be visited exactly twice, once for capture and once for
bubbling phases.

Proof sketch. Because the heap is tree-structured, and
by construction, every node in the propagation path
is distinct. By construction, pd->dispatch collects
listeners for the root node; all subsequent transitions
from dispatch-next to dispatch-collect collect
listeners for the remaining nodes on the path ex-
cept the target (capture->capture), then the target
(capture->target), then the path is traversed back-
ward (target->bubble and bubble->bubble). By im-
mutability of the path, every node visited in capture phase
is therefore visited again in bubble phase.

These properties are intuitively expected by the authors
of the dispatch spec, and formally hold of our model; the
adequacy of our model (Section 3.2) implies that these
properties do hold of the spec itself.

4.2 Finding Real-World Inconsistencies

Our proof of determinism, combined with the model’s ad-
equacy, is tantamount to stating that the spec is unambigu-
ous. We have not encountered any obvious ambiguities;
our reading of the spec assigned to every claim a spe-
cific interpretation (see Section 3.2). But we nevertheless
observe differing behavior on real browsers.

Erroneous Treatment of removeEventListener We
can use our model to randomly construct test cases, or
systematically generate a suite of related test cases, ob-
serve their behavior in the model, then translate the tests
to HTML and JavaScript and test existing browsers to see
if they match our expectations. We have been doing so,
and continue to test ever larger instances of the model
against browsers.

During testing, we have already found several diver-
gences between our model and real browsers, which fur-
ther revealed inconsistencies between major browsers
themselves. The simplest example appears in a systematic
suite checking the handling of removeEventListener.
These tests all use the same 〈div〉〈p〉〈span/〉〈/p〉〈/div〉
document, and install the following listeners:

var targetNode, targetCapture;
var triggerNode, triggerCapture;
function g(event) { alert("In g"); }
function f(event) {

targetNode.removeEventListener("click",
g, targetCapture);

}
triggerNode.addEventListener("click", f,

triggerCapture);
targetNode.addEventListener("click", g,

targetCapture);

In words, this installs listener f on triggerNode, either
for capture (triggerCapture = true) or not, that will
then remove g. It then installs listener g on targetNode
for capture or not (targetCapture). A systematic search
of all possible values of these four variables reveals that
when targetNode = triggerNode 6= 〈span/〉 and
targetCapture = triggerCapture, browser behavior
differs. Chrome (v15 and v16), Safari (v5.0.1) and Fire-
fox (v3.6 through v8) will not execute g, while Internet
Explorer (v9) and Opera (v11) will.

Our model predicts the latter behavior is correct, but in
truth one of three situations may hold: IE, Opera and our
model may be right, or Chrome, Safari and Firefox may
be right, or all six may be wrong. Regardless, our model
simplifies making testable predictions about browsers.

Treatment of Legacy Handlers Another example
probes the corner cases surrounding setting and clear-
ing legacy handlers. Within a few minutes of generating
tests, we found examples where our model disagrees with
IE, Chrome and Firefox—and the browsers all disagree
with each other, too. Here, the events spec delegates re-
sponsibility to the HTML 5 spec itself, which defines how
the setting and clearing of handlers interacts with existing
listeners. Browsers, however, appear to have implemented
variations on the specified behavior. We have identified
two variations each for setting and clearing handlers; our
model can accommodate them by changing the setting
or clearing rule, without needing changes anywhere else.
Further testing is needed to decide which of these vari-
ations, if any, corresponds to each browser’s behavior.
More broadly, by continuing to run such tests, we hope to
build greater confidence in the quality of the model (and,
perhaps, improve the uniformity of browsers, too).

4.3 Detecting Real Extension Conflicts
One of the authors routinely uses extensions to customize
Thunderbird. One such extension is Nostalgy4, which pro-
vides several convenient hot keys for archiving messages
and navigating among folders. For example, pressing ‘S’

4http://http://code.google.com/p/nostalgy/

http://http://code.google.com/p/nostalgy/


(a) Nostalgy’s main interface: a folder selector in the status bar

(b) Thunderbird Conversation’s main interface: text boxes in the
conversation view for quick replies

Figure 4: Screenshots of the conflicting extensions’ UIs.

will save the current message. This is achieved by two
event listeners on the Thunderbird global window object:

function onNostalgyKeyPressCapture(event) {
// handle ESC key and cancellation

}
function onNostalgyKeyPress(event) {
// show folder selector and handle commands

}
window.addEventListener("keypress",

onNostalgyKeyPress, false);
window.addEventListener("keypress",

onNostalgyKeyPressCapture, true);

Implicit in this code is the assumption that all key
presses are intended to control Thunderbird, and not, say,
to input text. However, another extension, Thunderbird
Conversations5, redefines the email preview pane to show
a Gmail-like conversation view, complete with “quick
reply” boxes where the user can compose a response
without leaving the main window. This functionality is
implemented by the default actions of the quick-reply
〈textarea/〉 tags, along with a bubble-phase listener on
their grandparent 〈div/〉:

quickReplyDiv.addEventListener("keydown",
function convKeyDown(event) {
// ENTER=>send message, ESC=>cancel
event.stopPropagation();

});

5https://github.com/protz/GMail-Conversation-View/

At first glance, nothing in this code appears prob-
lematic; indeed, Conversations and Nostalgy are lis-
tening to two different events. However, our model
includes the fact that the default action of a “key-
down” event is to dispatch a “keypress” event, and
while Conversations does stopPropagation, it does not
preventDefault—which means that any key strokes
typed into the quick-reply box will effectively call
convKeyDown, onNostalgyKeyPressCapture and fi-
nally onNostalgyKeyPress. Consequently, typing a
word containing an ‘S’ will steal focus from editing the
message, and jump to Nostalgy’s “Save Message” UI!
And indeed, if we input the Thunderbird DOM and these
three event listeners into our model, it confirms that this
behavior is correct according to the event dispatch rules.

The author reported this bug to Conversations’ devel-
oper, who produced the following fix:

quickReplyDiv.addEventListener("keypress",
function convKeyPress(event)

{ event.stopPropagation(); });
quickReplyDiv.addEventListener("keyup",

function convKeyUp(event)
{ event.stopPropagation(); });

Adding these two listeners to our model shows
that event dispatch now calls convKeyDown,
onNostalgyKeyPressCapture, and convKeyPress,
and no longer calls onNostalgyKeyPress, thereby
avoiding the bug for now. However, some of Nostalgy’s
code still gets called, leaving open the potential for future
bugs. Examining the model, and recalling that Nostalgy
never expected to “see” keypress events due to text input,
notice that Nostalgy’s code is called only because the
“keypress” is dispatched, which occurs only because
of the “keydown” default action. A simpler, and more
robust, fix is therefore available to Conversations: adding
a call to preventDefault in convKeyDown would
prevent the dispatch of the “keypress” event in the first
place. Implementing this approach in our model confirms
that the “keypress” event is never fired. However,
implementing it in Conversations does not work, and
instead reveals a bug in Thunderbird: “keypress” events
appear to be dispatched regardless of whether the default
has been prevented or not, contrary to the spec.

Generalizing from this example, we can annotate
listeners in our model with provenance information,
and then query the model for whether there exist any
(eventType, targetNode) pairs for which dispatch will
cause control to flow from one extension’s listeners to
another’s. We anticipate that such queries will statically
yield other pairs of extensions whose behavior might con-
flict; for example, Conversations is known to be incompat-
ible with other hotkey-related extensions; this analysis can
reveal others, then pinpoint where bugfixes are needed.

https://github.com/protz/GMail-Conversation-View/


4.4 Event Propagation and Sandboxes

We have previously discussed the use of sandboxes to
protect webapps against invited third-party code. Such
sandboxed content, or “widgets” as they are often called,
should not be able to suborn the surrounding document,
and in fact, some successful efforts have proven the effec-
tiveness of these sandboxing techniques [17]. However,
there is a serious weakness in these proofs. The authors
caveat their results as applying only over the DOM por-
tion they model—which does not include events. While
the sandboxes may successfully prevent widgets from
calling DOM methods or executing arbitrary code, event
dispatch provides an indirect way for widgets to invoke
portions of the code of the webapp.

Specifically, because widgets present some form of
UI, they can be the target of user-generated events. As
a hypothetical example, a malicious widget might dis-
play what looks like a typing game. Because of the
event dispatch rules, those keystrokes can bubble out of
the widget and potentially invoke listeners higher in the
webapp’s document. The widget could selectively call
stopPropagation, filtering out unwanted letters, and
thereby forge an input to the webapp that the user did
not intend. Worse, even if the sandbox stopped all propa-
gation, it cannot prevent against listeners being invoked
during the capture phase, which means the widget is get-
ting to execute code as the program. To date, we know of
no modeling effort that attempts to prove that widgets are
sandboxed from conducting such a spoofing attack.

There are two possible approaches to protect against
this. First, a conscientious webapp developer can pro-
tect his application against such unwanted events with
defensive code that checks—in every event handler in
the propagation path of a widget—whether the target of
the event is in their own content or in the widget. Such
coding practices are onerous and fail-open: one missed
check could suffice for the attack to proceed. And yet,
hardening every event listener would preclude extensions
from integrating properly into the webapp, as any events
originating from their UI would summarily be ignored!
Second, the sandbox could decide that, because it cannot
truly protect against a malicious widget due to the capture
phase, it might choose to implement its own event dis-
patch model (as some libraries like jQuery6 do). In such
cases, the sandbox or library developer undertakes the
burden of establishing properties of their custom event
model. In either case, our DOM model would be use-
ful: in the former case, to determine what propagation
cases the surrounding page’s listeners are missing, and in
the latter case, by being a basis for formalizing and then
proving properties about the custom event model.

6http://jquery.com

5 Related and Future Work

We have already introduced most of the related work in
earlier sections of the paper. In particular, Featherweight
Firefox [5] and Featherweight DOM [9] present the first
formal models of a browser and of DOM tree update,
while Akhawe et al. [2] model some security-relevant
events but not their dispatch. This work sits between
the three and reasons about the reactive behavior of web
pages. There are several avenues for future improvement:

Keeping pace with moving standards While building
our model, we were made aware of the DOM4 draft
spec [21], which will supercede the Level 3 Events spec
we modeled. At this time, the draft is not complete enough
to model, though it is not intended to introduce substantive
changes. Our model should carry over nearly unchanged.

Incorporating JavaScript Fully To focus on the
DOM, we have represented JavaScript procedures with a
simplified statement language for manipulating listeners
and handlers (Fig. 2). This is sufficient for many practical
modeling purposes, but it fails to fully capture the effect
of JavaScript, which may be needed for some analyses.

Fortunately, this is easy to remedy. Our Redex model is
formulated such that it will be straightforward engineering
to incorporate the Redex model of λJS . In particular,
though presented as states here, the five steps of event
dispatch are modeled as contexts, which provides a great
deal of flexibility. λJS models all of JavaScript with
evaluation contexts [8], including one for function calls.
In essence, event dispatch is a baroque form of a calling
context, namely one that invokes multiple functions in
sequence based indirectly on the DOM and the current
event, rather than a simple function pointer. Our DOM
model will change slightly to incorporate a reified event
object, rather than just data carried in the dispatch-*
contexts; we foresee no technical hurdles here.

We can therefore enhance our model by discard-
ing the simplified statement language in favor of true
JavaScript statements. Doing so brings significant benefit
to JavaScript analyses as well. Without the structure pro-
vided by our model, an analysis of a JavaScript program
would necessarily miss many flows that are not caused by
explicit function calls in the program text.

Modeling the Document Tree Naturally, the precision
of analyses is limited by the precision of modeling the
document’s structure. We currently model the tree merely
as a set of nodes connected by pointers: nothing explicitly
records that the structure is a tree rather than an arbi-
trary graph. We have engineered our model such that it
should be possible, though likely not simple, to integrate
more powerful tree logics such as separation or context
logic [9], and thus improve the model’s overall precision.

http://jquery.com


Iframes and nested documents Our model currently
assumes that there is only one document under considera-
tion. Consequently, event propagation (naturally) stops at
the document root. A richer model would incorporate a
notion of documents and their nesting within 〈iframe/〉
elements, and explicitly include a rule that terminates the
propagation path at the document root.

Additionally, because our model does not fully model
JavaScript, we do not model the window object, or in-
clude it as the first and last targets when constructing
propagation paths. This detail does not materially affect
our description of event dispatch, and is easy to include.

Non-tree-based dispatch We have focused in our
model on how event dispatch proceeds with tree-based
sources of events, as they dominate other event sources.
However, newer additions to the DOM also supply events
that are not dispatched along the tree. For example,
XMLHttpRequest responses, 〈audio/〉 and 〈video/〉 sta-
tus updates, and web workers all generate events as their
states change. To incorporate those into our model, we
need only create rules for each of them that construct their
specific propagation paths, bypassing pre-dispatch
and jumping directly to the dispatch-collect context.
From then on, dispatch proceeds as normal.

Acknowledgements

This work is partially supported by the US National Sci-
ence Foundation and Google. We are grateful for feed-
back about this work from Joe Politz and Arjun Guha. We
thank Robby Findler for his help getting our model off
the ground, and his co-authors and him for their excellent
PLT Redex semantics modeling tool.

References
[1] ADsafe. Retrieved Nov. 2009. http://www.adsafe.org/.

[2] AKHAWE, D., BARTH, A., LAM, P. E., MITCHELL, J., AND
SONG, D. Towards a formal foundation of web security. In
Proceedings of the 23rd IEEE Computer Security Foundations
Symposium (2010).

[3] BANDHAKAVI, S., KING, S. T., MADHUSUDAN, P., AND
WINSLETT, M. VEX: vetting browser extensions for security
vulnerabilities. In USENIX Security Symposium (Berkeley, CA,
USA, Aug. 2010), USENIX Association, pp. 22–22.

[4] BARTH, A., FELT, A. P., SAXENA, P., AND BOODMAN, A.
Protecting browsers from extension vulnerabilities. In Network
and Distributed System Security Symposium (NDSS) (2010).

[5] BOHANNON, A., AND PIERCE, B. C. Featherweight Firefox:
formalizing the core of a web browser. In USENIX Conference on
Web Application Development (WebApps) (Berkeley, CA, USA,
2010), USENIX Association, pp. 11–11.

[6] DJERIC, V., AND GOEL, A. Securing script-based extensibility
in web browsers. In Proceedings of the 19th USENIX conference
on Security (Berkeley, CA, USA, 2010), USENIX Security’10,
USENIX Association, pp. 23–23.

[7] FELLEISEN, M., FINDLER, R. B., AND FLATT, M. Semantics
Engineering with PLT Redex. MIT Press, 2009.

[8] FELLEISEN, M., AND HIEB, R. The revised report on the syntac-
tic theories of sequential control and state. Theoretical Computer
Science 103, 2 (1992), 235–271.

[9] GARDNER, P. A., SMITH, G. D., WHEELHOUSE, M. J., AND
ZARFATY, U. D. Local Hoare reasoning about DOM. In
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS) (New York, NY, USA, 2008), ACM
Press, pp. 261–270.

[10] GUHA, A., SAFTOIU, C., AND KRISHNAMURTHI, S. The
essence of JavaScript. In European Conference on Object-
Oriented Programming (ECOOP) (Berlin, Heidelberg, 2010),
Springer-Verlag, pp. 126–150.

[11] GUHA, A., SAFTOIU, C., AND KRISHNAMURTHI, S. Typing
local control and state using flow analysis. In Proceedings of the
20th European conference on Programming languages and sys-
tems: part of the joint European conferences on theory and prac-
tice of software (Berlin, Heidelberg, 2011), ESOP’11/ETAPS’11,
Springer-Verlag, pp. 256–275.

[12] HORS, A. L., HÉGARET, P. L., WOOD, L., NICOL, G., RO-
BIE, J., CHAMPION, M., AND BYRNE, S. Document object
model (DOM) level 3 core specification. Written Apr. 2004.
http://www.w3.org/TR/DOM-Level-3-Core/.

[13] IAN HICKSON, E. HTML5: A vocabulary and associated
APIs for HTML and XHTML. Retrieved July 6, 2011. http:
//dev.w3.org/html5/spec/Overview.html.

[14] LERNER, B. S. Designing for Extensibility and Planning for Con-
flict: Experiments in Web-Browser Design. PhD thesis, University
of Washington Computer Science & Engineering, Aug. 2011.

[15] LERNER, B. S., BURG, B., VENTER, H., AND SCHULTE, W.
C3: An experimental, extensible, reconfigurable platform for
HTML-based applications. In USENIX Conference on Web Appli-
cation Development (WebApps) (Berkeley, CA, USA, June 2011),
USENIX Association.

[16] MAFFEIS, S., MITCHELL, J. C., AND TALY, A. An opera-
tional semantics for javascript. In Asian Symposium on Program-
ming Languages and Systems (APLAS) (Berlin, Heidelberg, 2008),
Springer-Verlag, pp. 307–325.

[17] POLITZ, J. G., ELIOPOULOS, S. A., GUHA, A., AND KRISH-
NAMURTHI, S. Adsafety: type-based verification of javascript
sandboxing. In Proceedings of the 20th USENIX conference on Se-
curity (Berkeley, CA, USA, 2011), SEC’11, USENIX Association,
pp. 12–12.

[18] REIS, C. Web Browsers as Operating Systems: Supporting Robust
and Secure Web Programs. PhD thesis, University of Washington,
2009.

[19] SCHEPERS, D., AND ROSSI, J. Document object model (DOM)
level 3 events specification. Written Sept. 2011. http://dev.
w3.org/2006/webapi/DOM-Level-3-Events/html/DOM3-
Events.html.

[20] THE CAJA TEAM. Caja. Written Nov. 2009. http://code.
google.com/p/google-caja/.

[21] VAN KESTEREN, A., GREGOR, A., AND MS2GER. Dom4.
Written Jan. 2012. http://dvcs.w3.org/hg/domcore/raw-
file/tip/Overview.html.

http://www.adsafe.org/
http://www.w3.org/TR/DOM-Level-3-Core/
http://dev.w3.org/html5/spec/Overview.html
http://dev.w3.org/html5/spec/Overview.html
http://dev.w3.org/2006/webapi/DOM-Level-3-Events/html/DOM3-Events.html
http://dev.w3.org/2006/webapi/DOM-Level-3-Events/html/DOM3-Events.html
http://dev.w3.org/2006/webapi/DOM-Level-3-Events/html/DOM3-Events.html
http://code.google.com/p/google-caja/
http://code.google.com/p/google-caja/
http://dvcs.w3.org/hg/domcore/raw-file/tip/Overview.html
http://dvcs.w3.org/hg/domcore/raw-file/tip/Overview.html

