
Typed-Based Verification of Web Sandboxes

Joe Gibbs Politz
Brown University

Providence, RI 02912

Arjun Guha∗

University of Massachusetts
Amherst, MA 01003

Shriram Krishnamurthi
Brown University

Providence, RI 02912

February 22, 2014

Abstract

Web pages routinely incorporate JavaScript code from third-party
sources. However, all code in a page runs in the same security con-
text, regardless of provenance. When Web pages incorporate third-party
JavaScript without any checks, as many do, they open themselves to at-
tack. A third-party can trivially inject malicious JavaScript into such a
page, causing all manner of harm. Several such attacks have occurred in
the wild on prominent, commercial Web sites.

A Web sandbox mitigates the threat of malicious JavaScript. Sev-
eral Web sandboxes employ closely related language-based techniques to
maintain backward-compatibility with old browsers and to provide fine-
grained control. Unfortunately, due to the size and complexity of the Web
platform and several subtleties of JavaScript, language-based sandboxing
is hard and the Web sandboxes currently deployed on major Web sites do
not come with any formal guarantees. Instead, they are routinely affected
by bugs that violate their intended sandboxing properties.

This article presents a type-based approach to verifying Web sand-
boxes, using a JavaScript type-checker to encode and verify sandboxing
properties. We demonstrate our approach by applying it to the ADsafe
Web sandbox. Specifically, we verify several key properties of ADsafe,
falsify one intended property, and find and fix several vulnerabilities, ul-
timately providing a proof of ADsafe’s safety.

1 Introduction

Many popular Web sites incorporate content from external, independent sources:
e.g., Facebook embeds third-party games, My Yahoo! and iGoogle embed third-

∗Corresponding author. Tel: +1 (413) 545-2447, Email: arjun@cs.umass.edu.

1

party widgets, and so on.1 Moreover, such content is much more common than
some Web users may realize. Much of the commercial Web’s business model
is driven by advertising, and these ads are typically served by third-party ad
networks. Therefore, when a user visits a “single” Web site, such as a newspaper,
that site often triggers the browser to fetch content from ad networks and other
sites [64].

This external content includes not just HTML markup, images, and cookies,
but third-party JavaScript too. If third-party JavaScript is naively included
on a page, it runs in the same trust-domain as the page itself. This allows
embedded third-party code to easily attack Web pages, by including malicious
code that does all manner of harm. For example, using JavaScript, an attacker
can steal cookies to hijack sessions, track which links the user follows, read
password fields, completely and subtly alter the content of a Web page (e.g.,
planting false stock news into a financial newspaper), and more.

Many Web pages do trust third-parties and include JavaScript hosted on
third-party servers. In some cases, this trust is warranted, but many third-
parties—who may be trustworthy on their own—include JavaScript from other
less-trustworthy parties. For example, an ad network allows anyone with a credit
card to upload JavaScript-based ads. Although a Web site may trust a major
advertising network, it is unwise to trust all the advertisers who use them. In
fact, there have been several incidents where major sites have been compromised
by malicious ads that were hosted on trustworthy advertising networks. For
example, a third-party ad took over the entire New York Times Web site and
encouraged visitors to buy fake anti-virus software [59]. MSNBC and several
other sites were similarly compromised, when attackers uploaded a malicious ad
onto Google’s DoubleClick network [7]. Notably, several of these attacks start
with malicious JavaScript but escalate to drive-by downloads of native binaries.
Therefore, malicious JavaScript affects not just Web sites, but can be used as a
vector to harm users’ systems too.

There are several mechanisms that one could use to safely embed third-party
JavaScript. As a first attempt, a page may try to isolate third-party code us-
ing an IFrame, which loads content in an isolated, embedded frame within a
page. However, JavaScript within an IFrame can still open windows, communi-
cate with servers, and perform other operations that a Web sandbox disallows.
Furthermore, inter-frame communication is difficult when desired. Other mech-
anisms that do work include proposed changes to the IFrame mechanism, other
browser modifications, browser plug-ins, and abandoning JavaScript to program
in more secure languages that compile to JavaScript. We discuss these other ap-
proaches in related work (section 11). The focus of this article is on a technique
known as language-based Web sandboxing.

Language-based Web Sandboxing There are several Web sandboxes for
JavaScript that make it safe to embed untrusted, third-party code in Web pages.

1Some authors call these mashups. The precise terminology is open to interpretation and
irrelevant to the content of this paper, so we do not use this term further.

2

ADsafe [12], Caja [46], FBJS [18], and Microsoft Web Sandbox [1] are some of
the most prominent examples of these. Using the Google Caja sandbox (and
its evolution, Secure ECMAScript or SES), Google Sites and Google Docs allow
end users to run their own JavaScript code to script Web sites and Web-based
spreadsheets, presentations, and documents. Hotmail Active Views, which is
based on the Microsoft Web Sandbox, allows third-parties to create interactive
emails using sandboxed JavaScript.

All these Web sandboxes employ broadly similar security mechanisms: they
use both static and dynamic checks to ensure that untrusted JavaScript behaves
“safely”. Despite introducing these additional checks, they also strive to provide
a familiar programming experience that is almost identical to programming
ordinary JavaScript.

Unfortunately, Web sandboxing is a brittle technology and there have been
a stream of sandbox-breaking bugs reported.2 These bugs occur because Web
sandboxes have to address several complex issues simultaneously. First, the
correctness of most Web sandboxes depends on a delicate interplay between
several static and dynamic checks; just one omitted check can break the entire
sandbox. Second, Web sandboxes have to correctly attenuate access to the
Web browser API that both provides rich functionality and suffers incidental
complexity; it is difficult to ensure that all API calls are safe and called with
safe parameters. Finally, Web sandboxes have to sandbox JavaScript code;
JavaScript may have a small and simple core, but the full programming language
is large, powerful (e.g., unfettered mutability), and has a number of corner-cases
(e.g., rampant overloading), that make it a poor fit for strong formal reasoning.

The issues above make building and verifying Web sandboxes a challenge.
The result is that Web sandboxes are developed using ad hoc techniques and
have no formal guarantees.

Web Sandbox Verification This paper presents an approach to Web sand-
box verification that we have successfully applied to the ADsafe Web sandbox,
finding and fixing sandbox-breaking bugs along the way. We chose ADsafe for
two reasons. First, it is intended as a real sandbox, and hence deals with numer-
ous real-world subtleties, thus providing a vigorous test of our tools. Second,
several previous projects had already studied it; this provided us with a bench-
mark to see, for instance, whether we could reproduce the errors they found
(section 10.2), find new vulnerabilities (section 10.1), and to relate our work
to past characterizations of vulnerabilities and properties in the same sandbox
(section 11). Nevertheless, because the several Web sandboxes have similar de-
signs [40, 42], we firmly believe our techniques are applicable to other sandboxes
too (section 12).

We make the following contributions:

2For example, a series of results in academic papers revealed weaknesses in FBJS and
ADsafe[40–43], and the Caja team has disclosed at least a dozen sandbox-violating bugs, an
archive of which is at https://code.google.com/p/google-caja/w/list?can=2&q=security+

advisory.

3

https://code.google.com/p/google-caja/w/list?can=2&q=security+advisory
https://code.google.com/p/google-caja/w/list?can=2&q=security+advisory

Figure 1: Web sandboxing architecture

� We provide a new characterization of ADsafe as two inter-dependent com-
ponents: a type-checker and a reference monitor. This characterization is
the basis of our verification methodology.

� We define what it means for ADsafe to be “safe”, first informally in prose
and then formally using types.

� We present a type-based approach to verifying both components of the
sandbox. In particular, we start with an existing, sophisticated type sys-
tem for JavaScript, but show that some simple, sound modifications make
verification feasible.

� We uncover several new bugs in ADsafe and are able to detect old bugs.
Notably, these bugs manifest as type errors.

Our type checker and several auxiliary files are available online at

http://cs.brown.edu/research/plt/dl/adsafety/v2/

2 Language-based Web Sandboxing

Web browsers provide rich APIs to JavaScript code for network access, disk
storage, geolocation, and so on. In fact, browsers constantly add new APIs
to give Web applications access to more user data [47]. If used legitimately,
these APIs allow programmers to write rich applications. Malicious code can,
however, exploit these APIs to cause harm. A Web sandbox attenuates or
outright prevents access to these APIs, allowing pages to safely embed untrusted
programs. These untrusted programs are commonly referred to as widgets.

ADsafe [12], Caja [46], FBJS [18], and BrowserShield [53] are language-based
sandboxes that employ broadly similar security mechanisms. Maffeis, Taly, and
Mitchell first characterized these mechanisms as follows [40]:

4

http://cs.brown.edu/research/plt/dl/adsafety/v2/

� A Web sandbox includes a static code checker that filters out certain
widgets that are almost certainly unsafe. This checker is run before the
widget code is executed by the browser.

� A Web sandbox provides runtime wrappers that attenuate access to the
Web browser’s APIs. These wrappers are defined in a trusted runtime
library that is linked with the untrusted widget.

� Static checks are necessarily conservative and can reject benign programs.
To avoid being overly restrictive, Web sandboxes rewrite possibly-unsafe
programs to employ the wrappers, which perform checks dynamically.

Figure 1 illustrates this architecture. In the figure, an untrusted widget from
adnet.com is embedded in a page from paper.com. The widget (widget.js) is
filtered by the static checker. If static checking passes, the untrusted widget is
rewritten to invoke the wrappers (sandbox.js) in the trusted runtime library.
Both the runtime library and the checked, rewritten widget must be hosted on
a site trusted by paper.com, and are assumed to be free of tampering.

Reference Monitors We observe that a Web sandbox can also be charac-
terized as a reference monitor between the untrusted widget and the browser
APIs. Anderson’s seminal work on reference monitors identifies their certifica-
tion demands [4, p 10-11]:

The proof of [a reference monitor’s] security requires a verification
that the modeled reference validation mechanism is tamper resistant,
is always invoked, and cannot be circumvented.

Therefore, a Web sandbox must come with a precisely stated notion of security,
and a proof that its static checks and runtime library correctly maintain security.
The end result should be a quantified claim of safety over all possible widgets
that execute against the runtime library.

Our technique obeys this plan. But, as we shall see, it is not enough to
simply verify the ADsafe reference monitor. This essential detail becomes clear
on a close examination of the reference monitor code.

3 Code-Reviewing Web Sandboxes

Imagine we are given a Web sandbox and asked to determine (1) what guarantees
it tries to provide and (2) if it does so correctly. If, like ADsafe, the system does
not come with a precise, formal statement of its guarantees, we might begin with
a code-review. In this section, we discuss the results of our first code-review of
ADsafe. This review guides the verification we do in the rest of this article.

ADsafe, like most Web sandboxes, has two interdependent components (fig. 2
shows fig. 1 specialized for ADsafe):

5

adnet.com
paper.com
paper.com

reject

untrusted code

Figure 2: Architecture of ADsafe

� a static checker, called JSLint,3 which filters out widgets not in a safe
subset of JavaScript, and

� a runtime library, adsafe.js, which implements wrappers for the Web
browser API and other runtime checks.

These two components conspire to make it safe to embed untrusted widgets,
though “safe” is not precisely defined. The code review in this section will help
uncover ADsafe’s notion of safety, which we will state in section 4.

Attenuated Access to the Web Browser API Web browsers have sev-
eral object-oriented APIs that give JavaScript programs access to a variety of
services. For example, the DOM API 4 provides the ability to read and write
anything on the Web page, the XMLHttpRequest and WebSockets APIs provide
network access, the Geolocation API provides access to users’ physical locations,
and the local storage and file system APIs provide disk access. There are too
many APIs to enumerate them all.

A key feature of ADsafe, which is immediately apparent on inspecting its
code, is that does not give untrusted widgets direct references to any of these
APIs. Direct references are dangerous because most Web browser objects have

3Readers familiar with JSLint may know that it performs several kinds of checks. The
checks we discuss are enabled by an ADsafe-specific flag.

4Document Object Model

6

references that lead back to the root of the object graph, which is the window

object. For example, if elt is a reference to any element on the page (i.e., a
DOM element), a program can get a reference to window, which has references
to all Web browser APIs:

var myWindow = elt.ownerDocument.defaultView;

myWindow.XMLHttpRequest;

myWindow.localStorage;

myWindow.geolocation;

Therefore, most of the code in ADsafe is concerned with sandboxing the DOM
API. If the DOM sandbox were circumvented, the widget could get unfettered
access to all browser APIs.

ADsafe provides wrapped references to the DOM, called Bunches. Bunches
form the bulk of the adsafe.js reference monitor and they have several dynamic
checks and programming patterns that need to be carefully verified:

� The reference monitor manipulates DOM references internally, but returns
them to the widget wrapped in Bunches. We must verify that all returned
values are in fact Bunches, and that the monitor cannot be tricked into
returning a DOM reference.

� Bunches invoke DOM methods on behalf of the widget, such as appendChild

and removeChild, which take DOM references as arguments. We must verify
that the runtime cannot be tricked with a maliciously crafted object that
mimics the DOM interface and steals references.

� The monitor attaches DOM callbacks on behalf of the widget. But, the
Web browser invokes callbacks directly and passes them event objects that
include DOM references. For example, a mouse-click event object would
have a reference to the element that received the click. We must verify
that these event objects are also correctly wrapped before they are passed
to untrusted callbacks in the widget.

� ADsafe designates a sub-tree of the DOM for the widget to manipulate;
the widget is not permitted to access elements outside this subtree. But,
ADsafe provides wrappers for several tree-traversal methods, too. These
wrappers have runtime checks to ensure that the widget doesn’t get a
reference (DOM or Bunch) to any element outside the subtree. We must
verify that these runtime checks are correct.

� Bunches provide access to DOM functions that are only conditionally safe,
such as the createElement function. This function can create any kind of
DOM element, such lists, paragraphs, and bold-face text, that is safe.
But, it can also create unsafe elements, such as <script> elements that
load arbitrary new JavaScript. Similarly, Bunches allow widgets to set
CSS styles, but a CSS URL-value can also load external code. We must
verify that the arguments supplied to these DOM functions are safe.

7

function safeDiv(x, y) {

if (y !== 0) {

return x / y;

}

else {

throw "violation";

}

}

(a) The wrapper.

var checked = false;

var bad = {

valueOf: function() {

if (checked) {

return 0;

}

else {

checked = true;

return 1;

}

}

};

safeDiv(10, bad);

(b) The attack.

function safeDiv(x, y) {

if (typeof x === "number" &&

typeof y === "number" &&

y !== 0) {

return x / y;

}

else {

throw "violation";

}

}

(c) The fixed wrapper.

Figure 3: A buggy wrapper and a widget that attacks it

ADsafe exposes twenty Bunch-manipulating functions to the widget that face
all the issues enumerated. These functions depend on several private helper
functions that also demand verification.

ADsafe also needs to ensure that a widget’s static HTML and CSS are safe.
Both HTML and CSS can contain embedded JavaScript in a number of places
(for example, event attributes like onclick). To restrict widget behavior, JSLint
ensures that all JavaScript is only found in a single script tag, and not embedded
in other contexts. We do not model JavaScript embedded in these different
contexts, or model HTML and CSS. It is a limitation of our verification that
we only model JavaScript in the top-level context of the page. Despite this
limitation, our type-checker did find a bug related to inserting unsafe values
into CSS via JavaScript, which manifested itself as a type error in a runtime
regular-expression test (section 10).

JavaScript Semantics There are several features and warts of JavaScript
that make it even harder to build DOM wrappers such as ADsafe Bunches:

� Some JavaScript features are unsafe to use in widgets. For example, the
following code obtains a reference to window, the root of the object graph,
so it is rejected by JSLint:

f = function() { return this; };

var myWindow = f();

The unsafe feature used above is the this variable, which is a reference
to window within function calls. (Within method calls, this behaves as one
would expect.) JSLint rejects widgets that uses the this keyword and
several other unsafe features. We have to characterize the sub-language
of JavaScript that JSLint admits and ensure that it does not violate the
assumptions of adsafe.js.

8

ADSAFE : ADSAFE.get(obj,name)

dojox.secure : get(obj,name)

Caja : $v.r($v.ro('obj'),$v.ro('name'))

WebSandbox : c(d.obj,d.name)

FBJS : a12345_obj[$FBJS.idx(name)]

Figure 4: Similar rewritings for obj[name]

� Many JavaScript operators and functions include implicit type conver-
sions and method calls that are difficult to reason about. Consider the
safeDiv(x,y) function in fig. 3a, which is a wrapper around JavaScript’s
division operator. This function has two arithmetic expressions: the ex-
pression y != 0 is trying to ensure that x / y, does not divide by zero.
However, this wrapper suffers a common security bug.

The attack in fig. 3b invokes safeDiv, passing an object instead of a number
as the y argument. This triggers two implicit methods calls within safeDiv:
y.valueOf() != 0 and x / y.valueOf(). The attack is crafted to first return 1,
which passes the runtime check, and then return 0, which breaks the wrap-
per. One way to fix the wrapper is to also assert that typeof x === 'number'

and typeof y === 'number', shown in fig. 3c.

There are several functions in adsafe.js with similar checks that may
suffer similar bugs. In addition, adsafe.js and JSLint also ensure that
widgets cannot define their own valueOf and toString methods.

These and other JavaScript quirks confound even the most experience program-
mers. Indeed, the bugs we discover (section 10) are not deep design errors, but
bugs in code to circumvent JavaScript’s semantic quirks.

JavaScript Encapsulation For JavaScript objects, all fields are public. The
language has no notion of private fields. If object operations are not restricted,
a widget could access built-in prototypes (via the __proto__ field) and modify
the behavior of the container. Web sandboxes statically reject such expressions:

obj.__proto__

There are several other fields that are also blacklisted by sandboxes. However,
syntactic checks alone cannot determine whether computed field names are un-
safe:

obj["__pro" + "to__"]

Therefore, widgets are instead rewritten to use runtime checks that restrict
access to these fields. As fig. 4 shows, different Web sandboxes rewrite field
accesses in similar ways. Some sandboxes insert these and other checks auto-
matically, giving the illusion of programming in ordinary JavaScript. ADsafe
does not provide tool support for the rewriting, so in practice it is done manu-
ally. JSLint will reject programs that have not been properly rewritten to use
these checks.

9

Web sandboxes use this technique to also simulate private fields. For exam-
ple, ADsafe stores direct DOM references in the __nodes__ field of Bunches, and
blacklists the __nodes__ field.

The Reviewability of Web Sandboxes

We have highlighted a plethora of issues that a Web sandbox must address,
with examples from ADsafe. Although ADsafe’s source follows JavaScript best
practices, the sheer number of checks and abstractions make it difficult to review.
There are approximately 50 calls to three kinds of runtime assertions, 40 type-
tests, 5 regular-expression based checks, and 60 DOM method calls in the 1, 800
LOC adsafe.js library. Various ADsafe bugs were found in the past and this
article presents a few more (section 10). Note that ADsafe is a small Web
sandbox relative to larger systems like Caja.

The Caja project asked an external review team to perform a code review [5].
The findings describe many low-level details that are similar to those we dis-
cussed above. In addition, two higher-level concerns stand out:

� “[Caja is] hard to review. No map states invariants and points to where
they are enforced, which hurts maintainability and security.”

� “Documentation of TCB is necessary for reviewability and confidence.”

These remarks identify an overarching requirement for any review: the need for
specifications. Specifications both tell us whether a given system will meet our
needs, and provide a target against which to determine whether the implemen-
tation is correct.

4 Verification Roadmap

Defining Safety Because humans are expensive and error-prone, and because
the code review needs to be repeated every time the program changes, it is best
to mechanize the review process: we should use simple verification tools that
do not require onerous annotations or extensive changes to ADsafe. These tools
should be robust to simple changes to ADsafe as the code evolves.

However, before we begin, we need to define what security means. We
present a definition that is specific to ADsafe, though the properties are simi-
lar to the goals of other Web sandboxes. From our code review (section 3) we
posited some properties that we sent to the author of ADsafe, who amended and
enhanced them. They are given below, rewritten slightly to use the terminology
of this article:

Definition 1 (ADsafety) If the containing page does not augment built-in
prototypes5 and all embedded widgets pass JSLint, then:

5This requirement was highlighted by Maffeis and Taly [43].

10

1. widgets cannot load new code at runtime, or cause ADsafe to load new
code on their behalf;

2. widgets cannot affect the DOM outside of their designated subtree;

3. widgets cannot obtain direct references to DOM nodes; and

4. multiple widgets on the same page cannot communicate.

We emphasize that, while there are many reasonable variations on this set of
properties, these were the ones defined by the author of ADsafe, and were hence
taken by us to be definitional for the system.

Note that the first two properties are common to sandboxes in general—
allowing arbitrary JavaScript to load at runtime compromises all sandboxes’
security goals, and all sandboxes provide mediated access to the DOM. We
also note that the assumption about built-in prototypes is often violated in
practice [19]; many Web pages do extend builtin prototypes in a manner that
breaks ADsafe’s assumptions. ADsafe is not designed to check for such prob-
lems, so we cannot verify that it does. To address this issue, one would have to
add new features to ADsafe, as Finifter et al. [19] do, but our goal is to only fix
bugs that violate ADsafety as defined by the author of ADsafe.

The ADsafety definition is precise, but it is informal. A mechanized verifi-
cation requires a formal definition of ADsafety, which depends on a formalism
for JavaScript and our choice of verification technology.

Verification Technology: Type Checking There are many ways to verify
JavaScript code, including program analysis [14, 22, 25, 31], program logic [21],
and type checking [10, 27, 51, 57]. We employ a general purpose JavaScript
type-checker [37] to define and verify ADsafety. Type-checking is well-suited
for this task for several reasons. First, programmers are familiar with type
systems, and ours is mostly standard (the novelties are discussed in section 6).
This lessens the burden on sandbox developers who need to understand what the
verification is saying about their code. Second, our type system is reasonably
efficient, leading to a quick procedure for checking ADsafe’s runtime library (20
seconds). Efficiency and understandability allow for incremental use in a tight
development loop. Finally, our type system is accompanied by a soundness
proof. This property enables the actual verification. Thus, the features of
comprehensibility, efficiency, and soundness combine to make type checking an
effective tool for verifying some of the properties of Web sandboxes.

In section 9, we make type-based arguments to prove an ADsafety theorem.
This is only possible after fixing the bugs our type-checker discovers, which we
detail in section 10.

Verification Tasks Since our goal is to verify ADsafe using types, we might
try to just type-check the reference-monitor code (adsafe.js). However, on
its own, this will surely fail because the adsafe.js reference monitor does not
monitor arbitrary JavaScript code. It is only ever linked to code that has passed

11

the static checks of JSLint. In fact, if the JSLint checks are skipped, it becomes
trivial to circumvent the reference monitor. Therefore, we have to first under-
stand what it means for code to pass JSLint’s static checks.

JSLint is a lint-like tool that applies ad hoc syntactic restrictions. For verifi-
cation, we have to characterize the semantic consequences of these restrictions.
For example, JSLint signals errors when code is poorly-indented (as linting tools
do). Indentation has no semantic consequence, but JSLint has other restrictions
that matter for security. We must understand the nature of these restrictions
and ensure they are correctly implemented by JSLint. In our work, we use static
types to capture these restrictions.

Therefore, we have two distinct tasks: to characterize JSLint (section 7)
and to then use this characterization to verify ADsafe’s reference monitor (sec-
tion 8). We will use types as the basis for both tasks (section 6). However,
we must first address an even more fundamental problem: we need a semantic
model of JavaScript that is suitable for building a type checker and proving type
soundness.

5 Modeling JavaScript

A type-based verification of ADsafe, or any Web sandbox, requires type-checking
JavaScript code. Unfortunately, JavaScript is a large language and has several
tricky corner cases in its semantics. Combined, these make it very difficult to
build a type-system for JavaScript (let alone prove it sound). The JavaScript
specification [15] is not helpful, since it simply codifies the complexity of the
language: it is a 200+ page document of prose and pseudocode (along with
several ambiguities).

Maffeis, Mitchell, and Taly [39] have distilled the JavaScript specification
into a much smaller (30-page) operational semantics. Their semantics closely
follows the specification and, by doing so, finds several ambiguities and incon-
sistencies in the specification itself. For our purposes, however, this semantics is
problematic because we require a semantics that is small enough to be amenable
to type-checking and proofs of soundness. Each additional syntactic form and
each new semantic rule makes building the type-checker and doing proofs harder.
Therefore, we need a semantics that can “shrink” the language.

We use the λJS semantics of of Guha et al. [26], which was designed to
achieve these goals. λJS is a small language that models the essentials features
of JavaScript:6 prototype-based objects, first-class functions, mutable state, and
a few simple control operators. The full syntax of λJS is presented in fig. 5. It is
significantly smaller than the syntax of JavaScript itself, which runs for several
pages. Since there are so few syntactic forms, there are commensurately few
semantic rules (fewer than 30 rules). It is thus much easier to build tools and

6λJS models ECMAScript 3 [15], which is the target of our verification. Modern Web
browsers conform to ECMAScript 5 [16], which adds several new features and breaks compat-
ibility with ECMAScript 3 in some corner cases.

12

v = num numbers
| str strings
| bool boolean values
| undefined a special JavaScript constant
| null a special JavaScript constant
| func(x1 . . . xn).e functions of arity n
| { str:v. . . } objects

e = x variables
| v values
| let (x = e1)e2 let bindings
| ef(e1 . . . en) function application
| e[e] lookup object member, or undefined if not found
| e1[e2] = e2 update object member, or create if not found
| delete e[e] remove object member; no error on failure
| e = e heap cell update
| ref e heap cell allocation
| deref e heap cell dereference
| if (e) e else e conditional
| e;e sequence
| while(e) e loop
| label: e labeled expression
| break label e break to label
| try e catch (x) e catch exception
| try e finally e finally block
| throw e throw exception
| opn(e1 . . . en) primitive operator

Figure 5: Syntax of λJS (adapted from Guha et al. [26])

do proofs for λJS . Guha et al. also define a desugaring function7 that translates
JavaScript code to λJS .

The λJS semantics was designed based on an intimate knowledge of the lan-
guage, and intends to accurately mirror the specification. Nevertheless, errors
can occur given the size of the specification, the number of corner-cases in the
language, and the fact that we are mapping JavaScript to a smaller language.
Unfortunately, the specification is an English document, so it is not clear how
one can automatically check any semantics for conformance to it.

It is, however, easy to define an evaluator for λJS , and the composition of
the evaluator with desugaring results in another evaluator for source JavaScript
terms. This can then be compared against real browser implementations for

7Technically this is a syntax-directed compiler, because it is translating JavaScript to
a slightly different language. However, the term “desugaring” is evocative of the intended
purpose and nature of this compiler.

13

JavaScript Program
desugar //

Real Implementations

��

λJS Program

λJS interpreter

��
stdout oo

diff
// stdout

Figure 6: Testing strategy for λJS [26]

consistency (fig. 6). The λJS paper substantiates the following claims for a
portion of the Mozilla test suite:

Claim 1 (Desugaring is Total) For all JavaScript programs e, desugarJeK is
defined.

Claim 2 (Desugar Commutes with Eval) For all JavaScript programs e,
desugarJevalJavaScript(e)K = evalλJS

(desugarJeK).

In principle, of course, this process should be applied to every JavaScript eval-
uator; doing so is mainly a matter of labor. In practice there are situations
where individual evaluators either behave differently from one another, or even
do not conform to their own test suites. Deciding what to do in these cases is a
function of the intended purpose. In security settings, matching the behavior of
browsers over the standard may be wise, as attackers attack implementations,
not specifications. Recognizing the problems posed by browser variations, how-
ever, the ECMAScript community now publishes its own conformance suite,
and a successor of λJS [49] now matches that, thereby further erasing the gap
between the specification and the tested semantics.

This testing strategy, and the simplicity of λJS , helps us gain confidence in
the tools discussed in this article. In fact, for the same reasons, other authors
have also employed λJS to build JavaScript verification tools [10, 20, 57].

6 Type-Checking JavaScript

Our verification approach is to use a sophisticated type-system for JavaScript
to express and verify security properties. In earlier work, we proved our type-
checking techniques sound [23, 27, 51]. However, to verify ADsafe, we have to
make one additional modification to the previously documented type system:
we relax several typing rules to allow more runtime errors [52]. In this section,
we illustrate why this modification is necessary and argue that it is safe. We
begin with an overview of our type system’s other key features.

14

S, T = Num | Str | True | False | Undef base types
| T1 ∪ T2 union types
| T1 ∩ T2 intersection types
| µα.T recursive types
| Ref T heap reference type
| S1 × . . .× Sn → T function type
| S1 × . . .× Sn × Srest · · · → T variable-arity function type
| {Lp11 : T1 . . . L

pn
n : Tn, LA : abs} object types

L = . . . regular expressions
p = ↓ field definitely present
| ◦ field possibly absent

Figure 7: Types for λJS

6.1 Type System Features

Our JavaScript type-checker works by first desugaring JavaScript to λJS , then
type-checking the resulting λJS program. As discussed in section 5, this design
makes it easier to engineer the type-checker and to be assured that it is correct.
Our system requires some type annotations,8 which we insert into the source
program as JavaScript comments. Concretely, any comment that begins with a
colon is parsed as a type annotation:

/*: Num */

/*: Bool -> Bool */

This design has a significant engineering benefit: we can simply run the typed
program unmodified in the browser. Formally, this means that our type system
satisfies a simple type erasure property.

Our type language has several features [37], but the fragment of our types
necessary for verification is presented in fig. 7. Most of the types are conven-
tional, but it includes two unusual features: (i) untagged union types, which we
discriminate with flow typing [27] and (ii) support for objects with first-class
member names [51]. Both these features are necessary to type-check program-
ming patterns that ADsafe employs liberally.

Flow Typing JavaScript has powerful reflection mechanisms that programs,
including adsafe.js, use to inspect the structure of values at runtime. In
contrast to languages like ML and Haskell, which support pattern matching,
JavaScript programs use arbitrary control operators and mutable state to dis-
criminate values.

Figure 8 shows a few patterns that JavaScript programs use:

a. An if-split [55] is a simple, syntactic type-test: the if-condition tests the
type of a variable x, and the type of x thus differs in each branch.

8We use bidirectional typechecking, which is able to infer many annotations.

15

/*: Num ∪ Str→ Undef */

function(x) {

if (typeof x === "number") {

// x is a number

...

}

else {

// x is a string

...

}

}

(a) A simple, syntactic if-split

/*: Num ∪ Str→ Undef */

function(x) {

if (typeof x === "number") {

// x is a number

...

return;

}

// x is a string

...

}

(b) Using return and fall-through

/*: Num ∪ Undef→ Undef */

function(x) {

if (typeof x === "undefined") {

// x is the value undefined

x = 0;

}

// x is a number: the body of the

// if-statement sets x to 0; if

// the body is skipped, the type

// annotation states that x is

// a number.

...

}

(c) Using state and control

/*: Str ∪ Bool ∪ Num→ Undef */

function(x) {

switch (typeof x) {

case "boolean":

case "number":

// x is either a boolean or a

// number, due to fallthrough

...

break;

default:

// x is a string, since other

// cases are handled above.

...

}

}

(d) Using switch and case-fall-through

Figure 8: A few patterns for discriminating types in JavaScript

16

b. JavaScript has several statements that alter the normal flow of control.
Consider testing if x is a number, and then using return to abort the function
if the test holds. Then, when the test does not hold, the function does
not abort, and we can narrow the type of x in the rest of the function.

c. A program can also use state to change the type of a variable. A common
JavaScript pattern is to test if a variable x is the special value undefined9

and then set it to a default value with a different type.

d. Finally, JavaScript has several other control operators, including the switch

statement, which supports C-like fallthrough when cases elide break. Pro-
grams rely on these features to discriminate types, too.

To avoid heavy modifications to ADsafe, we have to be able to type-check
code that uses control and state to reason about types. We do so using flow
typing [27], which augments type checking with a control-flow analysis. The
control-flow analysis runs locally on each function (i.e., it is intraprocedural). It
is not as powerful as whole-program static analyses [22, 25, 31]. However, it is
powerful enough to tackle ADsafe and runs with reasonable speed.

Objects with First-Class Member Names JavaScript uses prototype in-
heritance, and thus has no notion of classes. Instead, all objects can be freely
modified: fields can be arbitrarily created, updated, and even deleted. Such
modifications aren’t just possible, they are also easy, because JavaScript has
a convenient dictionary notation for accessing and updating objects. In ear-
lier work, we developed a type system that is able to type-check JavaScript
objects [51] which we summarize below.

The key to typing objects in ADsafe is to use regular expressions to ascribe
types to collections of fields. For example, the following type says that fields
beginning with ”x” are numbers:

{x.* : Num}

However, in the type above, it is not clear whether an object contains all such
fields (i.e., has an infinite set of fields) or just some fields of that type. To resolve
this ambiguity, our type system uses presence annotations on field names:

� x↓ : T indicates that the field x is definitely present and has type T .

� x◦ : T indicates that the field x is possibly present (thus possibly absent
too). If it is present, it has type T . Note that xmay be a regular expression
that denotes a set of possibly present fields.

� abs : x indicates that the field x is definitely absent. Again, x may be a
regular expression that denotes a set of absent fields.

9When a function’s argument is elided, JavaScript does not signal arity-mismatch errors,
but instead sets missing arguments to the value undefined, thereby supporting a lightweight
form of variable arity.

17

For example, in the following type, y is definitely present, the collection x.*

is possibly present, and z is definitely absent:

{y↓ : Bool, x.*
◦ : Num, z : abs}

Despite these extensions, our object types are conventional in the following
key way: any field not mentioned in a type is inaccessible. Thus, types can be
used to hide fields by subsumption. Information hiding using types is key to
our approach.

6.2 Type Errors and Type Soundness

In earlier work, we established the soundness of our type-checking techniques [23,
27, 51]. However, to check ADsafe, we made an unusual change: we modified our
type checker to allow many runtime errors to occur, instead of rejecting them
statically. For example, consider the following function application expression,
which has a number in function position:

100(9);

If this is evaluated, JavaScript signals an exception:

TypeError ’100’ is not a function

Most type-checkers, including ours, would statically reject this program, so that
the dynamic error is caught statically. However, for ADsafe verification, we had
to relax the type system to allow this error.

We relax our type system in this manner for two reasons. Our first reason is
pragmatic: there are several expressions (such as functional applications) within
the ADsafe reference monitor that can signal runtime errors. These errors are
perfectly safe: they do not violate ADsafety (definition 1). In principle, we could
modify ADsafe to insert additional runtime checks around these expressions. In
practice, this would involve extensive modifications that would fundamentally
alter ADsafe, whereas we want to analyze the system as-is.

Our second reason is fundamental: without this change, we would not be
able to account for JSLint using types (section 7). The static checks in JSLint
allow JavaScript runtime errors to occur within widgets. (After all, a widget
can’t do harm if it stops running.) If our type checker eliminated JavaScript’s
runtime errors too, we wouldn’t be modeling JSLint at all, but a subset of
JavaScript that is free of runtime errors and completely artificial.

Having made this change, however, we need to argue that it does not violate
soundness. This particular relaxation—allowing numbers in function position—
is perfectly sound. It would be unsound to allow functions to be applied to
arguments of the wrong type; this would break type-preservation. In contrast,
our modification is sound, since it is preserves types and just adds an additional,
well-defined error. The generalization of this idea, which we call progressive typ-
ing (because it parameterizes the type system over the meaning of progress [62])
has also been formalized and proven sound separately [52].

18

function fac(n) {

var r = 1; // error: bad indentation

for (var i = 1; i <= n; i++) { // error: declare variables on top

r = r*i; // error: missing spaces around *

}

return r;

}

Figure 9: Many of JSLint’s errors are irrelevant to ADsafety

Finally, instead of following our approach, which brings verification technol-
ogy to an existing Web sandbox, we could have modified ADsafe extensively
or just built a Web sandbox anew. Both alternatives are likely to be more
amenable to verification. Yet, we believe the harder approach that we follow
will be more fruitful, as it pushes the limits of existing techniques and helps
distill informal, but pervasive, “best practices”.

7 JSLint: Modeling A Secure Sublanguage

The ADsafe reference monitor expects to execute against widgets that have been
statically checked and rewritten to pass JSLint, as shown in fig. 1. By linting
widgets in this manner, the reference monitor can assume that they are written
in an implicit sub-language of JavaScript. For verification, it is necessary to
define this sub-language explicitly.

As the name suggests, many of JSLint’s checks and errors are lint-like code-
quality checks (fig. 9). They make programs easier for humans to understand,
but are actually inconsequential to ADsafety. JSLint also checks the static
HTML of a widget. For example, it ensures that the HTML doesn’t load other,
non-JavaScript code such as Java applets. As we mentioned earlier, verifying
HTML is beyond the scope of our work; we do not discuss it further. We instead
focus on the security-related static JavaScript checks in JSLint.

7.1 A Type for Widgets

The adsafe.js reference monitor makes several assumptions about the shape
of untrusted widget values. These assumptions are not documented precisely,
but they correspond to various static checks in JSLint. In this section, we give
examples of several widget fragments that both pass and fail JSLint. These
examples illustrate the attacks JSLint tries to thwart, the invariants it tries to
maintain, and the shape of values it allows.

These examples will also help us write down a type (the “Untrusted” type)
that precisely describes the shape of untrusted values. The Untrusted type,
which we derive from JSLint, will then play a key role in the verification of
adsafe.js in the next section. The full type is shown in fig. 10 and we derive
it by example over the course of this section.

19

Primitives As a warmup, we note that JSLint admits JavaScript’s primitive
values: numbers, strings, booleans, and the special values null and undefined. To
express the union of all these types of values, we define the union type Prim:

Prim ≡ Num ∪ Str ∪ True ∪ False ∪ Null ∪ Undef

Programs can discriminate this union using reflection, as illustrated in section 6.
Therefore, the Untrusted type subsumes Prim, but JSLint allows several other

values, such as objects and functions. However, untrusted widgets cannot use
objects and functions indiscriminately. JSLint restricts the use of objects and
functions in several ways to maintain ADsafety.

Objects and Blacklisted Fields JSLint allows widgets to create objects,
such as these:

var x = { ”x”: 34, ”y”: 70 };

var y = { ”name”: ”foo” };

However, certain field names make JSLint signal errors. For example, JSLint
rejects the following code because it uses the field name valueOf:

var z = { valueOf: 10 }

The code above is innocuous. But, recall from section 3, that a malicious widget
can subvert runtime checks by setting valueOf to a stateful method (fig. 3b).

JSLint maintains a blacklist of fields that untrusted values cannot contain.
The blacklist is as follows:

� The toString and valueOf fields are blacklisted. As we saw in fig. 3b, the
valueOf method is implicitly invoked in several JavaScript contexts and can
be used to circumvent adsafe.js. Therefore, JSLint simply prohibits
widgets from defining valueOf methods. JSLint blacklists toString for the
same reason: this method is also invoked implicitly in several JavaScript
contexts. This makes building (and verifying) the reference monitor much
easier.

� The fields arguments, caller, and callee, watch, and unwatch are blacklisted.
Popular browsers define these fields for certain builtin objects. An attacker
can use them to walk the JavaScript stack and even inspect stack frames
for code in the reference monitor. ADsafe conservatively blacklists these
fields from all objects.

� The field prototype is blacklisted. A malicious widget may try to modify
the prototypes of builtin JavaScript objects (e.g., strings and numbers),
which would change the semantics of code in the reference monitor.

� The fields eval and constructor are blacklisted. On some objects, these fields
refer to the canonical eval function that can be used by an attacker to load
arbitrary code (constructor can be used to get access to eval, too). The use
of eval is thus problematic because it circumvents JSLint.

20

� The field proto is blacklisted.10 This field holds a reference to an object’s
prototype. If a widget could access or modify builtin prototypes, it could
change the semantics of operations used within adsafe.js.

� All fields that begin and end with two underscores are blacklisted. More
succinctly, fields that match the regular expression .* are blacklisted.
ADsafe uses these fields internally as “private” fields, in which it stores
references to underlying DOM objects that untrusted code should not be
able to directly manipulate. This hack is necessary because JavaScript
itself has no notion of private fields.

We can formally specify this blacklist as a type. Using regular expressions
and presence annotations, as described in section 6, we write a type that de-
scribes all fields that are not blacklisted as follows:

� We define a regular expression that accounts for all blacklisted fields, with
the exception of toString and valueOf. These two fields require slightly dif-
ferent treatment, which we address below:

blacklist ≡ (”caller” | ”callee” | .* | . . .)

Above, we abbreviate the blacklist for readability, but the full list is shown
in the final type in fig. 10.

� All fields that are not blacklisted are possibly present in untrusted code:

blacklist
◦

Above, blacklist is an extended regular expression that denotes the com-
plement of blacklist and the “◦” superscript is a presence annotation that
indicates that non-blacklisted fields may or may not be present.

� Non-blacklisted fields may hold any untrusted value, i.e., Untrusted-typed
values: {

blacklist
◦

: Untrusted
}

� The valueOf and toString methods must be absent, but they cannot be black-
listed entirely:{

blacklist
◦

: Untrusted, (”toString” | ”valueOf”) : abs
}

10The presence of ” proto ” as an accessible field (rather than a hidden internal prop-
erty of objects) is actually non-standard behavior per the ECMAScript specification, but
the ” proto ” field is a de facto standard in browsers. Therefore, to be pragmatic, AD-
safe accounts for proto and our tools model its semantics. Several years after we
made this decision, it is now in the draft proposal for the next version of ECMAScript
(ES6), because of its ubiquity in browsers (see July 15, 2013 version, section B.2.2 at
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts).

21

http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts

This type design allows adsafe.js to invoke the built-in valueOf and toString

methods, which are safe, but prevents untrusted code from overriding
them with unsafe methods. Even if adsafe.js does not invoke these
methods explicitly, there are situations where the JavaScript runtime may
invoke them implicitly (e.g., fig. 3c). This type design ensures that implicit
invocations are possible and safe.

� Finally, we combine the object type above with the type of primitive values
using a union type:

Untrusted = Prim ∪ Ref

{
(”caller” | ”callee” | .* | . . .)

◦
: Untrusted,

(”toString” | ”valueOf”) : abs

}
This type shows a detail of our type system: Ref indicates that the ob-
ject is mutable. Here we also explicitly introduce the recursive nature of
Untrusted, which refers back to itself in the type of non-blacklisted fields.11

Functions JSLint permits widgets to define functions, such as the increment
function below:

function incr(x) { return x + 1; }

But, a widget can then apply incr to any argument. For example, JSLint permits
all the following function calls, even though some pass the wrong number of
arguments and others pass non-numeric values to incr:

incr(5); // ok
incr(); // argument missing
incr(4,5); // extra argument
incr(”{ x: ”hello” }”) // wrong type of argument

We need to give incr a type that accounts for this variety of arguments. This
turns out to be straightforward to do: since the arguments are defined in widget
code, they all have the type Untrusted. Therefore, the type of incr is a function
that receives Untrusted-typed values and produces an Untrusted-typed value.
In fact, all functions in a widget can be given exactly the same type! This
observation is key, because it means that our approach, although it uses types
internally, requires no type annotations in widgets themselves.

The formal type for functions exposes some of JavaScript’s quirks, which we
discuss next. But, these are not exposed to widget programmers. Functions in
JavaScript are objects with an internal code field. λJS makes this explicit: it
desugars functions to objects with a code field and desugars function application
to extract the function from the code field. In addition, λJS makes JavaScript’s
this keyword an explicit first argument for all functions.

11We use the same name (Untrusted) on the left and right-hand sides of the type, which
indicates a recursive type. The underlying theory and implementation use textbook equi-
recursive types.

22

Therefore, in our type, we simply add the type of code to the object type:

. . .Ref

{
code : Global ∪ Untrusted× Untrusted · · · → Untrusted,
. . .

}
The type of the code field indicates that widget-functions may have an arbitrary
number of Untrusted-typed arguments and return Untrusted-typed results.12 It
also specifies that the type of the implicit this-argument (which is the explicit first
argument in λJS) may be either Untrusted or Global—a JavaScript peculiarity
we explain below.

The type of this reflects a key semantic subtlety of JavaScript: all functions
have a this argument. if an application does not syntactically resemble a method
call (i.e., o.m() vs. f()) then this is bound to the “global object”. In browsers,
the global object is window, which holds methods to access the network, query
the geolocation API, etc. Therefore, it is very important that there be a type-
distinction between Global and Untrusted. In particular, the type Global is not
a subtype of Untrusted, which expresses the underlying reason for JSLint’s re-
jection of all widgets that contain this.

Prototypes There are two related fields in JavaScript that interact with pro-
totype inheritance. The first, ” proto ”, holds a value that the runtime delegates
to (recursively) for field lookup when fields aren’t found on the object. For ex-
ample:

var o = { proto : {x: 5}};

o.x; // evaluates to 5
var o2 = { proto : { proto : {y: 5}}};

o2.y; // evaluates to 5

JSLint does not allow widgets to explicitly manipulate objects’ prototypes.
However, since field lookup in JavaScript implicitly accesses the prototypes, we
specify the type of prototypes in Untrusted:

. . .Ref

{
” proto ” : Object ∪ Function ∪ . . . ,
. . .

}
The ” proto ” field enumerates several safe prototypes, such as Object and Func-
tion above, which denote the prototypes of all JavaScript objects and functions
respectively. Notably, the full list of safe prototypes does not include any pro-
totypes of the Web browser APIs. This ensures that a widget cannot get a
direct reference to any Web browser API object, which ensures that they are
sandboxed as intended (section 3).

There is a second field, ”prototype”, that is distinct in behavior from ” proto ”,
though related. Each created function, as well as every built-in function, has a
”prototype” field. It usually holds functions that are intended to be shared across
instances of a datatype; it also has a field ”constructor”, which holds a reference
to the original function:

12The T · · · syntax is a literal part of the type, and means the function can be applied to any
number of additional T -typed arguments. This is uniform variable-arity polymorphism [56].

23

function f() {}

f.prototype; // is defined
f.prototype.constructor === f; // is true
”a−string”.charAt === String.prototype.charAt; // is true

JSLint blocks direct use of ”prototype”, because it allows code to modify the
behavior of built-ins, which could change the behavior of ADsafe itself (which
relies on values like String.prototype.charAt). However, JavaScript itself makes use
of ”prototype” when using the special new operator:

function f() {}

f.prototype; // is defined
var o = new f();
o. proto === f.prototype; // is true

Since new is syntactic sugar (that λJS makes explicit in its desugaring step)
for a pattern that uses the ”prototype” field, we cannot blacklist ”prototype” and
still type-check new expressions; the type-checker will rightly complain that the
new expression is accessing a blacklisted field. Instead, we give a precise type to
the ”prototype” field that is compatible with its behavior in new expressions:

NewProto = {” proto ” : Object, {”constructor”} : abs}

This type directly blacklists the ”constructor” field on the prototype, in keeping
with its blacklisting on Untrusted in general. Since all the other fields are absent
but ” proto ”, and Object is already included in the set of allowed prototypes
for Untrusted, this doesn’t extend the set of values that can be found on a field
lookup. We include NewProto in the allowed types of the ” proto ” field of
Untrusted to capture objects that are created via new (fig. 10).13

Typing Private Fields Widgets cannot create fields that begin and end with
underscores. However, ADsafe uses some of these fields itself as private fields
to build the Bunch abstraction:

. . .Ref

 ” nodes ” :Array〈HTML〉 ∪ Undef,
” star ” : Bool ∪ Undef,
. . .


Notably the type of ” nodes ” Array〈HTML〉∪Undef is not a subtype of Untrusted,
so widgets themselves cannot access it.

JSLint as a Type Checker The full Untrusted type in fig. 10 is a formal
specification of the shape of values that widgets manipulate. The ADsafe refer-
ence monitor assumes that all the values it receives have this type and ensures
that all the values it returns to widgets have this type, too.

13Although JSLint allows new expressions, their use cases are fundamentally limited by
other restrictions. Without the ability to use this or prototype, new is no more than a function
call with the side-effect of instantiating a new object. ADsafe’s author cited compatibility
[personal communication] with third-party libraries (not necessarily checked by JSLint) that
provide interfaces to their APIs via new as a reason to allow it. Though this is a somewhat
narrow use case, we model new to faithfully capture JSLint’s behavior.

24

NewProto = {” proto ” : Object, {”constructor”} : abs}

Untrusted = Prim ∪ Ref



 ” ”{”proto”, ”nodes”, ”star”}” ”,
”arguments”, ”caller”, ”callee”, ”eval”,
”watch”, ”unwatch”, ”constructor”


◦

: Untrusted,

code : Global ∪ Untrusted× Untrusted · · · → Untrusted,

” proto ” :
Object ∪ Function ∪ Bunch ∪ Array,
∪ RegExp ∪ Str ∪ Num ∪ Bool
∪ Undef ∪ NewProto

” nodes ” :Array〈HTML〉 ∪ Undef,
” star ” : Bool ∪ Undef,
”prototype” : NewProto,
{”toString”, ”valueOf”} : abs


Figure 10: The Untrusted type

JSLint satisfies the reference monitor’s assumptions by statically ensuring
that all sub-expressions in the widget have type Untrusted. This property is very
easy to express with types and enforce with a type-checker. This is all that we
need to verify of the reference monitor. But, before we do so, we should pause
to ensure that our type-based characterization of JSLint is accurate.

7.2 Untrusted and JSLint Correspondence

As a matter of principle, we would like know if our characterization of JSLint
as a type-checker matches the actual behavior of JSLint. That is, we would like
to substantiate the following claim:

Claim 3 (Linted Widgets Are Typable) If JSLint (with ADsafe checks)
accepts a widget e, then e and all of its variables and sub-expressions can be
Untrusted-typed.

In principle, we could try to exploit the fact that JSLint is written in JavaScript
and attempt to analyze its source. However, this is not a general technique be-
cause not every sandbox’s static checker has this property; indeed, the checker
(and rewriter) of Caja is implemented in Java. We would therefore prefer a tech-
nique that is independent of the implementation language (though, of course, it
can be complemented, or even replaced, by one that analyzes source).

Therefore, we instead validate the claim of JSLint-Untrusted correspondence
by testing.14 We use ADsafe’s sample widgets as positive tests—widgets that
should be typable and lintable—and our own suite of negative test cases (widgets
that are untypeable or unlintable). The direction of the implication is inten-
tional: an unlintable widget may still be typable, and indeed our type checker
admits widgets that JSLint rejects (as we discuss below). Thus, our testing,

14Testing revealed a security vulnerability in JSLint (section 10).

25

combined with the direction of the implication above, gives users confidence
that using JSLint is an acceptable means of obtaining our security guarantee.

However, as our verification only depends on the Untrusted type, a user
could use our type checker—checking for the Untrusted type—as a substitute for
JSLint, and thus be able to safely use a larger set of widgets with adsafe.js.
Doing so would also eliminate having to trust the testing process for JSLint-
Untrusted conformance. Users are thus free to choose between accepting the
testing (and continuing to use JSLint) or using our type-checker instead (and
thus changing their workflow, but being able to write more widgets).

7.3 Differences Between JSLint and Typed Widgets

We argue that if a widget passes JSLint, then it is also Untrusted-typable. How-
ever, Untrusted-typability does not imply that the widget passes JSLint. JSLint
is a “code quality tool” that was retrofitted to perform security checks. Some of
these code quality checks are irrelevant for safety, so they reject safe code that
the Untrusted-type admits. We give some examples below.

Banned Names The Untrusted-type states that prototype, arguments, and sev-
eral other strings cannot be used as field names. However, it is safe to use them
as identifiers:

ADSAFE.lib(”Widget ”, function() {

var prototype, arguments;
});

JSLint rejects this program because it simply scans for “banned names”.

Unused Identifiers JSLint requires identifiers to be used and hence rejects
this program:

ADSAFE.lib(”Widget ”, function() {

var unusedVariable;
});

However, this program is perfectly safe and Untrusted-typable.

Pascal-style Declarations JSLint requires all variable declarations to be at
the head of a function, so it rejects this program:

ADSAFE.lib(”test ”, function () {

var x = 34;

x = x + 1;

var y = 45;

});

However, this program is Untrusted-typable.

26

Exceptions JSLint does not allow try blocks in untrusted programs. Excep-
tion objects leak information about the internals of ADsafe, and also contain
dangerous fields with information about the stack trace at the point of throwing.

In our type system, we are conservative by necessity with respect to excep-
tions. Without a global analysis, it’s impossible to tell which exception handlers
may catch which exceptions, and any value can be thrown, so we give the excep-
tion handler the type Any. Thus, our type-checker allows try blocks in widgets,
but any use of the parameter that holds the exception will be flagged as a type
error, since Any is not a subtype of Untrusted. This allows widgets to catch
exceptions, but prevents them from examining them.

8 Verifying the Reference Monitor

In section 7, we discussed modeling the sublanguage of widgets interacting with
the sandboxing runtime. In the case of ADsafe and JSLint, we built up the
Untrusted type as a specification of the kinds of values that the reference monitor,
adsafe.js, can expect at runtime. In this section, we discuss how we use the
Untrusted type to model the boundary between the reference monitor and widget
code, and ensure that the runtime library correctly guards critical behavior.

8.1 ADsafe’s Structure

A key property of widgets is that they do not directly interact with the Web
browser environment; they use the reference monitor’s “wrapper” functions in-
stead. Figure 11 shows an outline of the structure of ADsafe and its wrapper
functions. The JSLint checker allows the widget access to two special values,
dom and ADSAFE, which provide the top-level entry points into the library.15 The
first provides an API for creating and searching for DOM elements, and ma-
nipulating them within the subtree allotted to the widget. The second provides
protected field access and update (ADSAFE.get and ADSAFE.set), as well as several
other wrapped utility functions.

The dom wrappers create and return Bunch objects, which are a simple ab-
straction around a list of DOM elements. They have a number of methods
which provide further utilities for manipulating the DOM, and have their own
set of checks for potentially malicious invocations. The widget is intended to
never have direct access to the __nodes__ field, in order to emulate that the field
is private to the Bunch methods.

Figure 11 shows a number of checks that ADsafe performs:

� Checking that this is not the global object at the top of all Bunch methods
(line 18). Since (in browsers) the global object has a field called window that
refers back to itself, checking for the presence of that field is sufficient for

15This is actually a slightly simplified presentation, as there is an extra layer of instantia-
bility to give multiple widgets on the same page different instantiations of dom restricted to
their respective subtrees.

27

1 var banned = { 'arguments': true, callee: true, . . . }
2 // other shared initialization variables...

3 var makeableTagName = { a: true, abbr: true, acronym: true, . . . };
4 function error(message) { throw { name: "ADsafe", message: message }; }

5 function string_check(string) {

6 if (typeof string !== 'string') error("ADsafe string violation.");

7 return string; }

8 function reject_name(n) { return banned[n] || /* n has underscores*/; }

9 function reject_global(that) { if (that.window) { error(); } }

10

11 // ... many other helper functions

12

13 function Bunch(nodes) {

14 this.__nodes__ = nodes;

15 }

16 Bunch.prototype = {

17 append: function(appendage) {

18 reject_global(this);

19 var nodes = this.__nodes__;

20 // Append things to nodes

21 return this;

22 },

23 blur: function () { . . . },
24 check: function (value) { . . . },
25 count: function () { . . . }
26 // ... many Bunch methods

27 };

28 dom = {

29 append: function (bunch) { . . . },
30 count: function () { . . . },
31 tag: function(name) {

32 name = string_check(name);

33 if(makeableTagName[name] === true) {

34 return new Bunch([document.createElement(name)]);

35 }

36 }

37 // ... many dom functions

38 };

39 ADSAFE = {

40 get: function (object, name) {

41 if(reject_name(name))

42 error();

43 else

44 return object[name]

45 },

46 later: function (func, timeout) {

47 if (typeof func === 'function')

48 setTimeout(func, timeout || 0);

49 else

50 error();

51 }

52 // ...

53 };

Figure 11: The structure of adsafe.js

28

{

setTimeout: Untrusted ∪ Global× (Untrusted→ Untrusted)× Untrusted→ Int,
document: {

. . .
},

. . .
}

Figure 12: A fragment of the type of window

ruling out the global object, and ensuring that an Untrusted-typed object
is in fact bound to this.

� Checking that only appropriate types of DOM nodes are created dynam-
ically (line 35). Notably, the makeableTagName whitelist doesn’t contain the
"script" tag, which allows loading new code at runtime.

� Checking that banned fields are not used, by a combination of reject_name

and ADSAFE.get (lines 8 and 42).

� Checking that primitives that contain eval-like behavior aren’t passed ar-
guments that would exercise this (line 49).

To verify, using types, that these patterns adequately restrict behavior demands
that we: define the types of the values being passed into the reference monitor
(which we do with the Untrusted type); ascribe types to the Web browser’s
built-in APIs that capture only good behavior; and check that, given values of
type Untrusted, the wrappers respect the safe types given to these APIs.

8.2 Types for the DOM

The ADsafe reference monitor directly interacts with the Web browser and the
DOM. To type-check the reference monitor code, we have to ascribe types to
these APIs. This appears to be daunting: the browser exposes an enormous API
that is constantly growing. Furthermore, different browsers implement different
APIs and even have different types for the same function name.

Fortunately, we only have to ascribe types to the fragment of these APIs that
the reference monitor actually uses (500 lines of type definitions). Any function
that is not typed is inaccessible to the reference monitor. (If we accidentally
omit a function that ADsafe uses, our type-checker raises a type-error.)

Most of this task is routine. But, we are careful when ascribing types to a
few well-known functions, such as eval. Since eval can load new code, we simply
do not give it a type. This makes eval completely inaccessible to the reference
monitor. Happily, the ADsafe reference monitor is written in a straightforward,
eval-free manner, so this simple approach works for eval and related functions
such as document.write.

29

var dom = {

append:

function(bunch)

/*: Untrusted ∪ Global× Untrusted · · · → Untrusted */

{ // body of append ... },

combine:

function(array)

/*: Untrusted ∪ Global× Untrusted · · · → Untrusted */

{ // body of combine... },

q:

function (text)

/*: Untrusted ∪ Global× Untrusted · · · → Untrusted */

{ // body of q... },

// ... more dom ...

};

Figure 13: Annotations on ADsafe’s DOM wrapper

Some functions must, however, be handled more subtly. Consider the func-
tion setTimeout, which consumes a callback argument that it queues for invo-
cation after the given time. We would expect this callback argument to be of
function type. However, if setTimeout is given a string instead, it parses it as
JavaScript and uses it as the body of the callback. This is effectively another
eval. To prevent this backdoor, our type environment permits only function
values in the callback position, as shown in fig. 12. This type environment is
essentially the specification of foreign DOM functions, typically implemented in
C++, that are exposed to JavaScript code.

This type environment is therefore subtle to construct. We build ours based
on our and communal knowledge of unsafe functions and their arguments, and
our verification is implicitly parameterized over the quality of this environment.
However, as new attacks are found, we believe it is easy to modify the environ-
ment to quickly reflect the underlying vulnerabilities. Repeating the verification
against this new environment would identify places where these new-found vul-
nerabilities affect the safety of the sandbox.

8.3 Type-Checking the Reference Monitor

The Untrusted type specifies the shape of widget values that the ADsafe run-
time manipulates. Untrusted is therefore used pervasively in our verification of
adsafe.js. A Bunch (see the constructor function Bunch in fig. 11) is an object
with a __nodes__ field and a number of methods for manipulating and querying
__nodes__ without directly returning the value of that field. At first glance, it
appears these methods are intended to take Bunches and other flat data (like
numbers and strings) as their arguments, and return flat data or new Bunches.

30

It is thus tempting to say that each Bunch object has the same type:

ABunch =


"__nodes__" : Array〈HTML〉,

"__proto__" :

 "append" : ABunch× ABunch→ ABunch,
"count" : ABunch→ Num,
...




However, there are a few ways in which this simple approach is not an accurate
model of of these values and their potential uses.

Bunch Values and the Untrusted Type JSLint puts no additional restric-
tions on the uses of Bunch values in the widget code beyond what we’ve already
discussed, making no effort to distinguish them from other values. This pro-
gram, for example, uses the dom.tag entry point to create a DOM node wrapped
in a Bunch object, and then assigns into some of its fields:

var p = dom.tag("p");

p.foo = "new, exciting value";

p.append = function() { return "This function shadows Bunch.prototype.append"; };

A more accurate type for the value of p after this process is no longer the
ABunch type above, but rather something like:

ABunch =



"__nodes__" : Array〈HTML〉,
"foo" : Str,
"append" : ()→ Str,

"__proto__" :

 "append" : ABunch× ABunch→ ABunch,
"count" : ABunch→ Num,
...




The fields "foo" and the shadowed "append" could well have been any Un-

trusted-typed value. If we tried to use the more restricted ABunch type on the
return values of Bunch-producing methods, type-checking widgets like the above
would fail, with the type-checker complaining about assignments into unknown
fields. This would make our type-checking process fail to correspond with JS-
Lint. We thus design the Untrusted type to be a supertype of the ABunch type,
so we can safely widen the type of Bunch values to Untrusted. The type-checker
does this when we annotate these methods with the return type Untrusted rather
than ABunch, so the "append" field would become:

"append" : ABunch× ABunch→ Untrusted,

This explains two of the components of the Untrusted type (fig. 10). The Bunch
type in the "__proto__" field’s union is an alias for the type of the Bunch proto-
type containing the shared methods like "append". The __nodes__ field, if defined,
must contain an array of DOM nodes. These design choices are what let Bunch
values be included in the Untrusted type, and thus fit into our typed account of
allowed values in widget code.

31

One final important detail is that the type of the "__nodes__" field, Ar-
ray〈HTML〉, is not compatible with Untrusted. Objects of type HTML have
a "__proto__" field that is not included in the union of prototypes in Untrusted.
A widget that contains a lookup on the field "__nodes__" will not type-check,
and the type-checker will report an error that the type HTML cannot be safely
widened to Untrusted. This is an interesting distinction between our type-
checking approach and JSLint. JSLint bans "__nodes__" merely by name—as
it would any other field starting with "_"—whereas our type-checker disallows
it because of type incompatibility. Both prevent widget code from accessing the
underlying unsafe objects, but for very different reasons.

Defensive Bunch Methods So far, we justified why the return type of
Bunch methods should be Untrusted, and how Bunches can safely be considered
Untrusted-typed values. We must next consider what the methods of Bunches
can assume about their arguments. The type we suggested for a method like
"append" was:

ABunch× ABunch→ Untrusted

With this type the method body will type-check, but we will now not be able
to invoke this method in code that passed JSLint (a type-error will occur).

This is because JSLint allows programs to invoke methods such as append

with invalid arguments, as long as they are Untrusted-typed. For example, the
following program passes JSLint:

var func = someBunch.append;

func(900, true, "junk", -7);

After the call above, in the body of append, this is bound to window, the first
argument is a number (not an ABunch), and there are additional arguments.
We account for this behavior by weakening the type of append, so that it can
receive the kinds of values that a widget may provide:

Untrusted ∪ Global× Untrusted · · · → Untrusted

For append to do useful work, it must narrow the type of its arguments to Bunch.
To do so, it applies runtime checks to ensure it does not receive invalid argu-
ments. In this case, the checks are routine:

Bunch.prototype.append = function(child) {

reject_global(this); // raises exception if Global

var elts = child.__nodes__; // has type Array〈HTML〉, if the field exists

. . .
return this;

}

The runtime check in append’s body (namely, reject_global(this)) is responsible
for checking that this is not the global object before manipulating it. Our type
checker recognizes such checks and narrows the broader type to Untrusted after
appropriate runtime checks are applied. If such checks were missing, the type of
this would remain Untrusted∪Global, and return this would signal a type error
because Untrusted∪Global is not a subtype of the stated return type Untrusted.

32

Ascribing types to functions of the ADsafe interface is actually trivial. All
functions must have the same type:

Untrusted ∪ Global× Untrusted · · · → Untrusted

Therefore, most of the type annotations are trivial (fig. 13).

Types for Private Functions ADsafe also has a number of private functions
that are not exposed to the widget. These functions use types that widgets
cannot safely use, such as HTML. For example, ADsafe defines a hunter object,
which contains functions that traverse the DOM and accumulate arrays of DOM
nodes. These functions all have the type HTML→ Undef, and add to an array
result that has type Array〈HTML〉. ADsafe can freely use these types internally,
as long as they aren’t exposed to widgets. Our annotations ensure they do not,
since they are not compatible with the type Untrusted.

8.4 Required Refactorings

Our type system cannot type check the ADsafe runtime as-is; we need to apply
some simple refactorings. The need for these refactorings does not reflect a
weakness in ADsafe. Rather, they are programming patterns that we cannot
verify with our type system. Naturally, we were tempted to add new features
to the type system to verify all of ADsafe as-is. However, in a few cases, we
concluded that the cost of additional type-system complexity would far outweigh
the trivial refactorings documented below.

Additional reject_name Checks ADsafe uses reject_name to check accesses
and updates to object properties in adsafe.js. If-splitting uses these checks
to narrow string set types and type-check object property references. However,
ADsafe does not use reject_name in every case. For example, it uses a regular
expression to parse DOM queries, and uses the result to look up object prop-
erties. Because our type system makes conservative assumptions about regular
expressions, it would erroneously indicate that a blacklisted field may be ac-
cessed. Thus, we add calls to reject_name so the type system can prove that the
accesses and assignments are safe.

We add 7 new reject_name checks to Bunch methods that use JavaScript
objects as dictionaries. We do not believe these checks imply the presence of
security bugs; they are only necessary to to pass the conservative checks in the
type checker.

Inlined reject_global Checks Most Bunch methods begin with the assertion
reject_global(this), which ensures that this is Untrusted-typed in the rest of
the method. Our type system cannot account for this non-local side-effect,
because the flow analysis is intraprocedural. Instead, we inline reject_global,
which allows if-splitting to refine types appropriately. For example, in the

33

Bunch.prototype.append example earlier in this section, we had to inline the ap-
plication of reject_global(this).

The inlining of reject_global checks has the largest impact in terms of lines of
code. There are 48 Bunch methods, all of which have the check changed from a
function call to an inlined if statement with an explicit return. This is because
our type-checker can easily handle local flows [27], but cannot refine types based
on calls that throw exceptions in certain conditions. Latent predicates [61]
do handle interprocedural calls, but are designed for predicates rather than
exceptional behavior. We believe that a type checker that combines flow typing
and latent predicates would not need this refactoring.

makeableTagName ADsafe has a whitelist of safe DOM elements that it defines as
a dictionary:

var makeableTagName =

{ "div": true, "p": true, "b": true, . . . };

Notably, this dictionary omits an entry for "script". The document.createElement

DOM method creates new nodes. We ensure that <script> tags are not created
by typing it as follows:

document.createElement : "script"→ HTML

ADsafe uses its tag whitelist before calling document.createElement:

if (makeableTagName[tagName]) {

document.createElement(tagName);

}

Our type checker cannot account for this check. We instead refactor the whitelist
as follows (a technique noted elsewhere [42]):

var makeableTagName =

{ "div": "div", "p": "p", "b": "b", . . . };

The type of these string constants are the strings themselves. Since "script"

is not among these string constants, the type of makeableTagName[tagName] now
matches the argument type of createElement. This refactoring works because
all strings in JavaScript are “truthy” values that the program can successfully
branch on.

The makeableTagName refactoring happens in two (identical) implementations
of a method named tag, one in the dom object and one on the Bunch prototype.

8.5 The Verification Process and Unverifiable Code

A complex body of code like the ADsafe runtime cannot be type-checked from
scratch in one sitting. We therefore found it convenient to augment the type
system with a cheat construct that ascribes a given type to an expression without
descending into it. We could thus use cheat when we encountered a type error
and wanted to make progress on a different part of the program. Our goal, of
course, was to ultimately remove every cheat from the program.

34

var reject_name = function (name) {

return

((typeof name !== 'number' || name < 0) &&

(typeof name !== 'string' ||

name.charAt(0) === '_' ||

name.slice(-1) === '_' ||

name.charAt(0) === '-'))

|| banned[name];

});

function F() {} // only used below

ADSAFE.create =

typeof Object.create === 'function'

? Object.create

: function(o) {

F.prototype =

typeof o === 'object' && o

? o : Object.prototype;

return new F();

};

Figure 14: The unverified portion of ADsafe

We were unable to remove two cheats, leaving eleven unverified source lines
in the 1,800 LOC ADsafe runtime. We can, in fact, ascribe meaningful types
to these functions, but checking them is beyond the power of our type system.
Figure 14 shows these eleven unverified lines, and we discuss them below.

reject name The reject_name function returns true if its argument is a black-
listed field and false otherwise. This function is used as a predicate to guard
against invalid field accesses, so we ascribe it an intersection type:

(UnsafeField→ True) ∩ (UnsafeField→ False)

where UnsafeField is the set of blacklisted field names. Our implemented type-
checker does not support checking functions with intersection types, but we
type-check applications of intersection-typed functions in the usual way.

ADSAFE.create In the ECMAScript 5 standard, Object.create takes an object o

as a parameter and creates a new object whose prototype is o; if o is not an
object, the new object’s prototype is Object.prototype. ADsafe provides this
same functionality for older browsers through ADSAFE.create. This function is
never used by ADsafe; it is only intended for widgets. The implementation of
ADSAFE.create for older browsers uses a sophisticated imperative pattern that we
cannot type-check. But, by inspection, the type of ADsafe.create is evidently:

Global ∪ Untrusted× Untrusted · · · → Untrusted

35

ADSAFE._intercept Finally, ADsafe allows the hosting Web page to define in-
terceptors, which are functions that get direct access to the DOM. Since inter-
ceptors are application-specific and not a standard part of ADsafe, we do not
bother verifying any particular set of interceptors. However, note that our tools
can do better. We can verify interceptors using the same technology we use to
verify the ADsafe runtime—our typechecker!

8.6 Annotation Effort

In total, we insert 322 annotations into the body of adsafe.js that don’t change
the code itself. The majority fall into three categories:

1. Untrusted-annotations on functions that are exposed to untrusted widgets,

2. upcasts on arrays and objects to the Untrusted type, and

3. upcasts on variables that are initialized after they are declared.

These annotations are straightforward to apply. For (1), the widget-facing
interface of ADsafe is easy to find; it is the Bunch methods, the dom object,
and the ADSAFE object. For (2), a failure to provide such an annotation results
in a type error complaining about a type mismatch with Untrusted, and hence
these annotations can be performed incrementally at the prompting of the type-
checker. Similarly, for (3), missing such an annotation results in a type error
that mentions an incompatibility between a type and Undef, since the variable
was uninitialized, and the initialization point needs an upcast.

Typing the internals of ADsafe requires a deep understanding of its workings.
For example, ADsafe has several functions that do the actual work of querying
collections of HTML elements. These functions consume “query objects” with
verify specific fields:

Selector = {"op" : Str, "name" : Str, "value" : Str, "__proto__" : Object}

These fields describe operations to perform (e.g., lookup a style field, set visibil-
ity, update text value), on a set of DOM nodes. Then, a function that performs
all these operations on an array of nodes has a type like:

Array〈Selector〉 × Array〈HTML〉 → Array〈HTML〉

We do have to understand the internals of adsafe.js to add these annota-
tions, which amounts to type-checking a mini-DOM API. This part of annota-
tion is labor-intensive, but adsafe.js is remarkably easily typable. We did find
some type errors during development that we reported as correctness bugs (not
security vulnerabilities), because the incorrect program wouldn’t type-check, or
required odd-seeming types (e.g., using the same variable as a number and a
string). Several of these were acknowledged and fixed by ADsafe’s author.

36

9 ADsafety Theorems

Sections 7 and 8 gave the details of our strategy for modeling JSLint and veri-
fying adsafe.js. In this section, we combine these results and relate it to the
original definition of ADsafety (definition 1). The use of a type system allows
us to make straightforward, type-based arguments of safety for the components
of ADsafe.

The lemmas below formally reason about type-checked widgets. Claim 3
(section 7.2) establishes that linted widgets are in fact typable. Therefore,
we do not need to type-check widgets. Widget programmers can continue to
use JSLint and do not need to know about our type checker. However, given
the benefits of uniformity provided by a type checker over ad hoc methods
like JSLint (section 10 details one exploit that resulted from such an ad hoc
approach), programmers may be well served to use our type checker instead.

Theorem 1 (ADsafety) Given our type environment Γ, for all widgets p, if

1. p and all subexpressions of p are Untrusted-typable in Γ,

2. the reference monitor r is typable in Γ,

3. the reference monitor r, paired with the initial store σ0, evaluates to some
value v and the store σ (written σ0, r →∗ σ, v),

4. σ is typable by Γ,

5. σp→ σ′p′ (single-step reduction),

then all subexpressions of p′ are Untrusted-typable in Γ, and σ′ is typable by Γ.

Proof: This follows from type-preservation [27, 51]. Note that the type
system for ADsafe verification allows additional, well-known runtime errors.
We argued that it is safe to do so in section 6. �

It’s useful to explain several of these pieces in more detail:

� Γ is our type environment (described in section 8.2). It has types for the
built-in prototypes, the browser API, the global object, and the global
identifiers that are used by both adsafe.js and the widget program p.

� σ is the model of the dynamic store in λJS . Its locations hold the values
of objects and variables at runtime. The distinguished initial environment
σ0 represents the store at the start of computation. Each global identifier
in Γ corresponds to a single location in σ0. Each of these identifiers is
substituted for its corresponding location in the store as the first step of
running the program.

� We require that both adsafe.js and the widget program p type in the
same environment Γ. This ensures that the runtime library and the un-
trusted program are verified with respect to the same assumptions about

37

the environment they run in. So, for example, the global variable ADSAFE

created as the entry point in the reference monitor has the same type in
the typing of adsafe.js and the widget program.

With this background, each of the preconditions of the proof warrant some
justification and relation to the ADsafe system. Precondition 1 we describe in
section 7, and argue via testing that all widget programs passing JSLint enjoy
this typability property. Precondition 2 we justify by running our type-checker
on the code of adsafe.js, described in section 8. Precondition 3 we will return
to in a moment. For precondition 4, we assume that the type environment we
write down is an accurate model of the browser runtime after adsafe.js has
run. Precondition 5 is simply stating the execution of the program as it takes
steps in λJS , modelling widget programs running in the browser.

Precondition 3 describes adsafe.js initialization, which is done primarily
by updating global state, before the widget starts running. This update is
necessary so that the widget runs in state σ rather than σ0. We model the
widget running against σ, which contains values consistent with our model of
the environment, Γ. Our environment is not an accurate model of σ0, since it
assumes that adsafe.js has run (i.e., the heap in the browser is in state σ).
This opens up the possibility that our verification doesn’t properly account for
these updates, and is missing vulnerabilities that occur as a result. In what
follows, we mitigate this concern and also discuss how to guard against it.

The reference monitor makes two widget-visible changes to the environment.
First, and less importantly, it assigns into the global variable ADSAFE with the
entry points for the untrusted program to start. This is less interesting because
if adsafe.js failed to perform this assignment, the untrusted program would
simply halt with an error, so no vulnerability is masked by the presence or
absence of this assignment.

Second, and more interestingly, the run-time system might provide excessive
authority. For instance, in older versions of Firefox, some methods on the Array
prototype could leak the global object. That is, for that run-time system they
have a type like:

(Untrusted ∪ Global)× Untrusted · · · → (Untrusted ∪ Global)

Since it would violate ADsafety to allow the untrusted program access to the
global object, ADsafe assigns into the array prototype to overwrite these meth-
ods with safe versions. We type-check the wrappers that ADsafe installs at the
usual safe type of

(Untrusted ∪ Global)× Untrusted · · · → Untrusted

This means that the wrappers themselves are safe. We ascribe these safe types to
the wrapped methods in our environment, so the assignments type-check. The
only thing we haven’t verified is that the assignment into the Array prototype
fields actually happens, overriding whatever the value was before adsafe.js

runs. It is easy to run adsafe.js in a browser and see that the wrapped

38

functions are in fact present after it runs, giving a good deal of confidence in
our model of the environment.

To fully capture this set-up behavior, we would need a type system that sup-
ports modelling strong update, capturing in the verification system information
about the pre- and post-heaps. Another option would be to run adsafe.js in
λJS and type-check the resulting store directly. For now, our tools only run
over static source, and we do not account for strong update. However, as we
have argued, the threat to the validity of the verification is minor, and limited
to this initialization portion.

There are just two more subtleties to note about the ADsafety theorem:

� We don’t require any particular type for the reference monitor, which
may seem odd at first. The actual type is irrelevant because the initial
communication between the reference monitor and the widget program p
occurs through several shared names, and we type-check the widget pro-
gram against the types of the names bound to interesting values by the
reference monitor. For example, the type we give to the global variable
ADSAFE in the widget environment assumes the type predicted (and veri-
fied) for the value bound to that name based on type-checking the runtime
library. This is why the actual type of the reference monitor isn’t partic-
ularly important and adsafe.js might as well have type Undef: it’s the
identifiers it binds and the structures it initializes that matter for both
verification and the environment of the widget.

� We require not just that p have type Untrusted, but also that all the
variables and sub-expressions of p have type Untrusted. This ensures that
a program that simply happens to evaluate to a Untrusted-typed value
doesn’t actually get access to an unsafe value like a DOM node. For
example, consider this program:

function f() /*: → Untrusted */ {

// document.createElement returns a direct reference to a DOM node

var elt = document.createElement("p");

elt.addEventListener("click", function() {

/* Untrusted code shouldn't be able to attach events directly */ });

return { __nodes__: [elt] }; // This *does* fit inside the Untrusted type

}

This function acquires a direct reference to a DOM node, which is a viola-
tion of ADsafety, despite having the safe-seeming return type of Untrusted.
So, we require that all the pieces of the program have type Untrusted; this
rules out access to the identifier document, and the return value of its call
to createElement, which is a raw DOM node.

We now return to our goal of using this theorem to argue for the ADsafety
properties from definition 1. To restate, this theorem says that for all widgets p
whose subexpressions are Untrusted-typed, if adsafe.js type-checks and runs
in the browser environment, p can take any number of steps and will still have
the Untrusted type at all sub-expressions. Since types are preserved, two further
key lemmas hold during execution:

39

Corollary 1 (Widgets cannot load new code at runtime) For all widgets
e, if all variables and sub-expressions of e are Untrusted-typed, then e does not
load new code.

Proof: By section 8.2, eval-like functions are not ascribed types, hence cannot
be referenced by widgets or by the ADsafe runtime. Furthermore, functions
that only eval when given strings, such as setTimeout, have restricted types that
disallow string-typed arguments. Therefore, neither the widget nor the ADsafe
runtime can load new code. �

Corollary 2 (Widgets do not obtain DOM references) For all widgets e,
if all variables and sub-expressions of e are Untrusted-typed, then e does not ob-
tain direct DOM references.

Proof: The type of DOM objects is not subsumed by the Untrusted type. �
The terse proof above is true, but we note that it is dependent on the typa-

bility of both the widget and the reference monitor. Notably, functions in the
ADsafe reference monitor have the type:

Untrusted ∪ Global× Untrusted · · · → Untrusted

Thus, functions in the ADsafe runtime do not leak DOM references, as long as
they are only applied to Untrusted-typed values. Since all subexpressions of the
widget e are Untrusted-typed, all values that e passes to the ADsafe runtime are
Untrusted-typed. By the same argument, e cannot directly manipulate DOM
references either.

Widgets can only manipulate their DOM subtree We cannot prove this
claim with our tools. JSLint enforces this property by also verifying the static
HTML of widgets; it ensures that all element IDs are prefixed with the widget’s
ID. The wrapper for document.getElementById ensures that the widget ID is a
prefix of the element ID. Verifying JSLint’s HTML checks is beyond the scope
of this work.

In addition, the wrapper for Element.parentNode checks to see if the current
element is the root of the widget’s DOM subtree. It is not clear if our type
checker can express this property without further extensions.

Widgets cannot communicate This claim is false. In section 10.1, we
present one counterexample and discuss others.

10 Bugs in ADsafe

Our type-checker (section 6) takes about 20 seconds to type-check adsafe.js

(mainly due to the presence of recursive types). In some cases, type-checking
failed due to the weakness of the type checker; these issues are discussed in
section 8.4. The other failures, however, represent genuine errors in ADsafe

40

ADSAFE.go("AD_", function (dom, lib) {

var myWindow, fakeNode, fakeBunch, realBunch;

fakeNode = {

appendChild: function(elt) {

myWindow = elt.ownerDocument.defaultView;

},

tagName: "div",

value: null

};

fakeBunch = {"__nodes__": [fakeNode]};

realBunch = dom.tag("p");

fakeBunch.value = realBunch.value;

fakeBunch.value(""); // calls phony appendChild

myWindow.alert("hacked");

});

Figure 15: Exploiting JSLint

that were present in the production system. The same applies to instances
where JSLint and our typed model of it failed to conform.

In addition to the new bugs we found, we also ran our type-checker on other
versions of adsafe.js that had vulnerabilities that were discovered before (or
concurrent with) our effort. Our type-checker reported type errors on these
programs too, which we describe at the end of this section.

10.1 New Bugs Found in ADsafe

By type-checking adsafe.js and testing our type-checker against JSLint, we
found several vulnerabilities that manifested as type errors, which we report
on here. All the errors listed below have been reported, acknowledged by the
author, and fixed.

Missing Static Checks JSLint inadvertently allowed widgets to include un-
derscores in quoted field names. In particular, the following expression was
deemed safe:

fakeBunch = { "__nodes__": [fakeNode] };

A malicious widget could then create an object with an appendChild method, and
trick the ADsafe runtime into invoking it with a direct reference to an HTML
element, which is enough to obtain window and violate ADsafety. The full exploit
is in fig. 15.

This bug manifested itself as a discrepancy between our model of JSLint as
a type checker and the real JSLint. Recall from section 7 that all expressions
in widgets must have type Untrusted (defined in fig. 10). For the expression

41

ADSAFE.go("AD_", function (dom, lib) {

var called = false;

var obj = {

"toString": function() {

if (called) {

return "url(evil.xml#exp)";

}

else {

called = true;

return "dummy";

}

}

};

dom.append(dom.tag("div"));

dom.q("div").style("MozBinding", obj);

});

<!-- evil.xml -->

<?xml version="1.0"?>

<bindings><binding id="exp">

<implementation><constructor>

document.write("hacked")

</constructor></implementation>

</binding></bindings>

Figure 16: Firefox-specific exploit for ADsafe

{ "__nodes__": [fakeNode] } to type as Untrusted, the "__nodes__" field must have
type Array〈HTML〉∪Undef. However, [fakeNode] has type Untrusted, which sig-
nals the error.

JSLint similarly allowed "__proto__" and other fields to appear in widgets.
We did not investigate whether they can be exploited as above, but setting them
causes unanticipated behavior. Fixing JSLint was simple once our type checker
found the error. (As we have said, an alternate solution would be to use our
type system as a replacement for the ADsafety part of JSLint.)

Missing Runtime Checks Many functions in adsafe.js incorrectly as-
sumed that they were being applied only to primitive strings. For example,
Bunch.prototype.style began with the following check, to ensure that widgets do
not programmatically load external resources via CSS:

Bunch.prototype.style = function(name, value) {

if (/url/i.test(value)) { // regex match?

error();

}

...

};

Thus, the following widget code would signal an error:

someBunch.style("background",

"url(http://evil.com/image.jpg)");

42

The bug is that if value is an object instead of a string, the regular-expression
test method will inadvertently invoke value.toString().

A malicious widget can construct an object with a stateful toString method
that passes the test when first applied, and subsequently returns a malicious
URL. In Firefox, we can use such an object to load an XBL resource16 that
contains arbitrary JavaScript (fig. 16).

We ascribe types to JavaScript’s built-ins to prevent implicit type conver-
sions. Therefore, we require the argument of Regexp.test to have type Str.
However, since Bunch.prototype.style can be invoked by widgets, its type is
Untrusted× Untrusted→ Untrusted, and thus the type of value is Untrusted.

This bug was fixed by adding a new string_check function to ADsafe, which is
now called in 18 functions. All these functions are not otherwise exploitable, but
a missing check would cause unexpected behavior. The fixed code is typable.

Bug Bounty When ADsafe was first announced,17 its author offered a bounty:

If [a malicious client] produces no errors when linted with the ADsafe
option, then I will buy you a plate of shrimp.

At the end of this work, the author of ADsafe bought the first two authors all
seven shrimp dishes available at a restaurant. (The third author is vegetarian,
illustrating the dangers of poorly-designed incentive systems.)

Counterexample to Communication Isolation Finally, a type error in
the code of Bunch.prototype.getStyle helped us generate a counterexample to
ADsafe’s claim of widget noninterference (definition 1, part 4). The getStyle

method is available to widgets, so its type must be Untrusted→ Untrusted. The
following code is the essence of getStyle:

Bunch.prototype.getStyle = function (name) {

var sty;

reject_global(this);

sty = window.getComputedStyle(this.__nodes__);

return sty[name];

}

The bug above is that name is unchecked, so it may index arbitrary fields, such
as __proto__:

someBunch.getStyle("__proto__");

This gives the widget access to the prototype of the browser’s CSSStyleDeclaration

objects. Thus the return type of the body is not Untrusted, yielding a type error.
A widget cannot exploit this bug in isolation. However, it can replace built-

in methods of CSS style objects and interfere with the operation of the hosting
page and other widgets that manipulate styles in JavaScript.

16https://developer.mozilla.org/en/XBL
17tech.groups.yahoo.com/group/caplet/message/44

43

https://developer.mozilla.org/en/XBL
tech.groups.yahoo.com/group/caplet/message/44

This bug was fixed by adding a reject_name check that is now used in this
and other methods. Despite the fix, ADsafe still cannot enforce non-interference,
since widgets can reference and affect properties of other shared built-ins:

var arr = [];

arr.concat.channel = "shared data";

The author of ADsafe pointed out the above example and retracted the claim
of non-interference. (Maffeis, et al. [42] found an analogous problem in FBJS.)

Fixing Bugs and Tolerating Changes Each of our bug reports resulted in
several changes to the source, which we tracked. In addition to these changes,
the reference monitor also underwent non-security related refactorings during
the course of this work. Even though we did not provide our type checker to
its author, we easily continued type-checking the code after these changes. One
change involved adding a number of new Bunch methods to extend the API.
Keeping up-to-date was a simple task, since all the new Bunch methods could
be quickly annotated with the Untrusted type and checked. In short, our type
checker has shown robustness in the face of independent program edits.

10.2 Prior Bugs as Type Errors

Before and during our implementation, other exploits were found in ADsafe and
reported [42, 58]. We ran our type checker on the exploitable code, and our tools
catch the bugs and report type errors.

Misusing this Maffeis et al. [42] found a bug where ADsafe accidentally re-
turned the special identifier this from a DOM API wrapper. The exploit in-
volved using function invocation syntax rather than method call syntax to call
the function, which causes this to be bound to the global object. The buggy
code is (with type annotations):

var ephemeral;

function ephemeral_method() /*: Untrusted ∪ Global→ Untrusted */ {

if (ephemeral) {

ephemeral.remove();

}

ephemeral = this;

return this;

}

On this fragment, our type-checker reports an error on return this. The type
error is simple: the this parameter is annotated with a union of Untrusted type
with the global object type HTMLWindow, which does not match the annotated
return type of just Untrusted.

Unrestricted Dictionary Assignment Taly et al. [58] discovered an exploit
involving an unchecked dictionary assignment. This could be used to assign into
the __nodes__ field of an object and pass an object to the ADsafe runtime that
could masquerade as a Bunch wrapper. The offending code was:

44

var adsafe_id; // a string used to detect initialization

// not important for this bug

var adsafe_lib; // a shared dictionary for user-written

// ADsafe libraries

function lib(name, f) /*: Untrusted× Untrusted→ Untrusted */ {

if (!adsafe_id) {

return error();

}

adsafe_lib[name] = f(adsafe_lib);

}

The type-checker signals an error, stating that the program using a non-string
expression as a field name.

Abusing toString An abuse of the implicit call to toString was also present in
the check for whitelisted tag names in the wrapper for the createElement function
of ADsafe [42]. The following code is buggy, because both dictionary lookup and
the built-in createElement function call toString on their argument, so a stateful
toString can fool the first check, and provide a value like script to createElement:

var makeableTagName = {"div": true, "p": true, ...};

function tag(name) /*: Untrusted→ Untrusted */ {

var node /*: upcast HTML ∪ Undef */;

if(makeableTagName[name] === true) {

node = document.createElement(name);

}

}

The type-checker again complains that a non-string is being used in object
lookup. If we had added a simple if-split, like:

var makeableTagName = {"div": true, "p": true, ...};

function tag(name) /*: Untrusted→ Untrusted */ {

var node /*: upcast tdom HTML ∪ Undef */;

if(typeof name === "string") {

if(makeableTagName[name] === true) {

node = document.createElement(name);

}

} else {

error();

}

}

The type-checker would instead complain that createElement is passed a value
outside of the restricted domain we give it, which is the set of strings in the
makeableTagNames dictionary, as all it knows is that name must be a string. To the
best of our knowledge, the above code actually is safe. Our type-checker simply
isn’t sophisticated enough to reason about it. This is why we have to refactor
it to make it type-check (8.4).

45

11 Related Work

JavaScript Web Sandboxes ADsafe [12], BrowserShield [53], Caja [46], and
FBJS [18] are archetypal Web sandboxes that use static and dynamic checks to
safely host untrusted widgets. However, the semantics of JavaScript and the
browser environment conspire to make JavaScript sandboxing difficult.

Maffeis et al. [40] use their JavaScript semantics to develop a miniature
sandboxing system and prove it correct. Armed with the insight gained by
their semantics and proofs, they find bugs in FBJS and ADsafe (which we also
catch). However, they do not mechanically verify the JavaScript code in these
sandboxes. They also formalize capability safety and prove that a Caja-like
subset is capability safe [42]. However, they do not verify the Caja runtime or
the actual Caja subset. In contrast, we verify the source code of the ADsafe
runtime and account for ADsafe’s static checks.

Taly, et al. [58] develop a flow analysis to find bugs in the ADsafe run-
time (that we also catch). They simplify the analysis by assuming the browser
runs a simpler JavaScript subset, SESlight (Secure ECMAScript), which is aug-
mented with a guarded property lookup operation that isn’t found in real-world
JavaScript. In contrast, ADsafe is designed to run on current browsers, and
thus supports older and more permissive versions of JavaScript. We use λJS
and associated tools (section 5), which are not limited to strict mode, and we
find new bugs in the ADsafe runtime. In addition, Taly, et al. use a simplified
model of JSLint. In contrast, we provide a detailed, type-theoretic account of
JSLint, and also test it. We can thus find security bugs in JSLint as well.

Lightweight Self-Protecting JavaScript [44, 48] is a unique sandbox that
does not transform or validate widgets. It instead solely uses reference mon-
itors to wrap capabilities. These are modeled as security automata, but the
model ignores the semantics of JavaScript. In contrast, this article and the
aforementioned works are founded on detailed JavaScript semantics.

JSand [2] is another sandbox that does not require browser modification,
and works by using a special JavaScript loader to load third-party code (rather
than simply loading a page with <script> tags in the markup). Then, the
loaded code is run in a sandboxed environment that is initialized by a startup
script (part of Secure ECMAScript18). This sandboxed environment can be
configured to attenuate or block access to the browser’s APIs by providing
guarded versions to the sandboxed code (for example, to stop the untrusted
code from using document.appendChild to add an un-sandboxed script to the
page). These guarded functions still need to be implemented correctly, since a
mis-implemented guard could break the sandbox, and the work does not provide
a verification. The type-based approach presented in this work may be appropri-
ate for verifying these guards in much the same way we verify the widget-facing
interface of adsafe.js.

Yu, et al. [63] use JavaScript sandboxing techniques to enforce various secu-
rity policies on untrusted code. Their semantic model, CoreScript, simplifies the

18https://code.google.com/p/es-lab/wiki/SecureEcmaScript

46

https://code.google.com/p/es-lab/wiki/SecureEcmaScript

DOM and scripting language. CoreScript cannot be used to mechanically verify
the JavaScript implementation of a Web sandbox, which is what we present in
this article.

Modeling the Web Browser There are formal models of Web browsers
that are tailored to model whole-browser security properties [3, 8, 35]. These do
not model JavaScript’s semantics in any detail and are therefore orthogonal to
semantic models of JavaScript [26, 39] that are used to reason about language-
based Web sandboxes. In particular, ADsafe’s stated security goals are limited
to statements about JavaScript and the DOM (section 4). Therefore, we do not
require a comprehensive Web-browser model.

Static and Dynamic Analysis of JavaScript GateKeeper [22] uses a com-
bination of program analysis and runtime checks to apply and verify security
policies on JavaScript widgets. GateKeeper’s program analysis is designed to
model more complex properties of untrusted code than we address by modeling
JSLint. However, the soundness of its static analysis is proven relative to only
a restricted sub-language of JavaScript, whereas λJS handles the full language.
In addition, they do not demonstrate the validity of their run-time checks.

Chugh et al. [11] and VEX [6] use program analysis to detect possibly ma-
licious information flows in JavaScript. Our type system cannot specify infor-
mation flows, although we do use it to discover that ADsafe fails to enforce a
desirable information flow-like property. VEX’s authors acknowledge that it is
unsound, and Chugh et al. do not provide a proof of soundness for their flow
analysis. Our type system and analysis are proved sound.

Other static analyses for JavaScript [25, 31, 32] are not specifically designed
to encode and check client-side security.

Heidegger, et al. [29] use regular expressions to describe object shapes in a
manner that resembles our regular expressions. However, their invariants are
dynamically checked contracts, whereas ours are statically checked types.

The F* programming language has a front-end for verifying JavaScript pro-
grams [57]. Using F*, one can specify and verify sophisticated properties that
are beyond the scope of the type system that we use in this article. However,
the aforementioned paper only verifies properties of small, synthetic JavaScript
programs. Its verification times are also much slower than ours. It is conceivable
that with more engineering effort, F* can be used to directly verify programs
on the scale of ADsafe in a reasonable amount of time. Instead of pursuing that
goal, the F* team has developed a fully abstract compiler from a subset of F*
to JavaScript [20]. This makes it possible to write a reference monitor in F*,
which has a simpler and saner semantics than JavaScript. One would still have
to verify properties such as “no direct DOM references”, but it would be easier
to do so for F* than JavaScript. This approach entails discarding existing Web
sandboxes and writing new ones, which is not the goal of our work.

47

Language-Based Security Schneider et al. [54] survey the design and type-
based verification of language-based security systems. JavaScript Web sand-
boxes are inlined reference monitors [17].

Cappos, et al. [9] present a layered approach to building language sandboxes
that prevents bugs in higher layers from breaking the abstractions and assur-
ances provided by lower layers. They use this approach to build a new sandbox
for Python, whereas we verify an existing, third-party JavaScript sandbox. How-
ever, our verification techniques could easily be used from the onset to build a
new sandbox that is secure by construction.

Hedin and Sabelfeld [28] have developed and formalized a type system for
JavaScript information flow control. Their checks occur dynamically and are
thus able to tackle JavaScript features such as eval that our type system cannot
handle. Some of this power is not necessary for ADsafe, which eschews eval

entirely. However, we note that the claimed property of ADsafe that we falsify
(section 10.1) is akin to non-interference; this means, if the property were true,
our type-checker would not be able to verify it without also tackling information
flow security.

IFrames IFrames are widely used for widget isolation. However, JavaScript
that runs in an IFrame can still open windows, communicate with servers, and
perform other operations that a Web sandbox disallows. Furthermore, inter-
frame communication is difficult when desired; there are proposals to enhance
IFrames to make communication easier and more secure [30]. Language-based
sandboxing is somewhat orthogonal in scope, is more flexible, and does not
require changes to browsers.

Runtime Security Analysis of JavaScript There are various means to
secure widgets that do not employ language-based security. Some systems rely
on modified browsers, additional client software, or proxy servers [13, 14, 33,
34, 38, 45, 63]. Some of these propose alternative Web programming APIs that
are designed to be secure. Language-based sandboxing has the advantage of
working with today’s browsers and deployment methods, but our verification
ideas could potentially apply to the design of some of these systems, too.

Differences from Conference Version This article is an extended version
of an earlier conference paper [50]. Beyond expository improvements, it expands
the technical material in several ways:

� The conference version presented some very specialized typing rules for
JavaScript objects. We have since developed a generalization of that type
system [51] that is more widely applicable to JavaScript programs. In
this article, we give an overview of the new type system and update the
presentation to use it.

� The conference version elided discussion about exactly how our type sys-
tem was used in this verification. We actually relax the underlying sound-

48

ness theorem; this is a vital step in being able to check the ADsafe source
with minimal changes. This version discusses this important detail.

� The conference paper abbreviated several technical details about ADsafe
(e.g., the nature of JSLint) and our verification (e.g., the nature of λJS
and its use in this work). This article has expanded discussions on these
topics and it thus more self-contained than the conference version.

� Of the 1, 800 lines of JavaScript in ADsafe, our type system cannot type-
check eleven. The conference version elided discussing these offending
lines; this article discusses them thoroughly.

12 Conclusion

Our work has its limitations, which we summarize below. However many of
these limitations are not fundamental and we believe our methodology is widely
applicable to other security-critical JavaScript code.

12.1 Limitations

The work presented in this article has the following limitations:

� We require some type annotations (section 8.6) and refactorings (sec-
tion 8.4) within the ADsafe reference monitor. But, these do not affect
the users of ADsafe in any way, as the ADsafe interface is unchanged.

� We identify four key properties of ADsafe, but could not prove one of them
(section 9). This is not an inherent limitation of a type-based strategy, as
other type checkers can potentially verify these properties [24, 57].

� We do not verify eleven lines of the ADsafe reference monitor, out of 1, 800
total lines of code (section 8.5). Again, a more sophisticated type-checker
might be able to type-check these.

� ADsafe checks some simple properties of untrusted CSS and HTML. Doing
so is beyond the scope of our tools. We focus on checking properties of
untrusted JavaScript, which is the primary concern of ADsafe also.

� We do not verify ADsafe’s JSLint static checker, but build an executable,
type-based model of JSLint and use tests to argue that we faithfully model
JSLint (section 7.2). However, our model can be used as a JSLint replace-
ment that is actually more flexible and equipped with safety theorems.

12.2 Beyond ADsafe

Despite these limitations, our work retrofits security guarantees onto an existing
Web sandbox that was not designed for verification. This demonstrates the

49

power of our technique. But, naturally, our type-based strategy would be even
more effective if used to drive the design of new sandboxes.

We propose the following concrete roadmap for sandbox designers:

1. formally specify the language of widgets using a type system;

2. use this specification to define the interface between the sandbox and
untrusted code; and,

3. check that the body of the sandbox adheres to this interface using a sound
type-checker.

Rather than trying to retrofit the type system’s features onto existing static
checks, the sandbox designer can work with the type system to guarantee safety
constructively from the start. Tweaks and extensions to the type system are
certainly possible—for example, one may want to design a sandboxing frame-
work that forbids applying non-function values and looking up fields of null,
which the current type system allows (section 9).

ADsafe shares many programming patterns with other Web sandboxes (sec-
tion 3), but doesn’t cover the full range of their features. We outline here some
of the extensions that could be used to verify them:

Abstracting Runtime Tests Our type system accounts for inlined runtime
checks, but requires some refactorings when these checks are abstracted into
predicates. Larger sandboxes, like Caja, have more predicates, so refactoring
them all would be infeasible. We could instead use ideas from occurrence typ-
ing [60], which accounts for user-defined predicates.

Modeling the Browser Environment ADsafe wraps a small subset of the
DOM API and we manually check that this subset is appropriately typed in
the initial type environment. This approach does not scale to a sandbox that
wraps more of the DOM. If the type environment were instead derived from the
C++ DOM implementation, we would have significantly greater confidence in
our environmental assumptions.

As a step in this direction, in more recent work [36], our colleagues have
generated a typed API for the DOM by parsing interface definition language
specifications and generating corresponding types. This process is necessarily
somewhat incomplete, but it generates a very good first approximation auto-
matically, which can then be refined in the relevant places with manual effort.

Different Sandbox Models New sandboxes, such as SES,19 behave some-
what differently. In the same spirit as Lightweight Self-Protecting JavaScript,
the reference monitor, like adsafe.js, is a JavaScript program that is loaded be-
fore widgets. Upon loading, the program walks the object graph of the browser

19https://code.google.com/p/es-lab/wiki/SecureEcmaScript

50

https://code.google.com/p/es-lab/wiki/SecureEcmaScript

runtime, starting at globally available references, and either removes or inter-
poses on all potentially dangerous operations. This approach, as opposed to the
sandbox architecture described in this paper (which involves static checks and
a “passive” reference monitor), has the virtue that widget programs do not first
need to pass through an external checker. In fact, after setting up the initial
safe environment, SES itself fearlessly calls an eval-like function on widget code
to start it! This reduces the friction in the build and execution processes and
better integrates sandboxing into existing JavaScript toolchains.

These sandboxing approaches rely to some extent on newer versions of
JavaScript (ECMAScript 5 and later), which seal off many of the attack surfaces
that systems like ADsafe had to address. For example, ADsafe prevents access
to the constructor field across all objects, since it gives access to the built-in
Function object, which has eval-like behavior. In contrast, SES uses ES5’s get-
ters to execute functions at property access time. This allows SES to interpose
on accesses to Function and provide a safe wrapped version, which has a benign
constructor field. Thus untrusted code is free to use the constructor field
of all objects, with SES ensuring that only safe versions are ever seen. While
we would still need to verify the source of the reference monitor, we would
no longer need to encode a rich static invariant about widgets: this invariant
would instead be implicit in the semantics of the language and in the types of
the DOM. Our semantics for ES5 [49], which like λJS has also been tested for
conformance, is likely to be valuable here.

Acknowledgments

We thank Spiridon Eliopoulos for his contributions to a previous version of this
work; Douglas Crockford for discussions, open-mindedness, insightful feedback,
and several plates of shrimp; Mark S. Miller, Sergio Maffeis, Ankur Taly, and
John Mitchell for enlightening discussions; Matthias Felleisen, Andrew Fergu-
son, and David Wagner for numerous comments that helped us understand
weaknesses in our exposition; our anonymous reviewers for the kind of detailed
and thorough reading that only the journal process provides, and which substan-
tially improved this presentation; Andrei Sabelfeld for editorial shepherding; the
NSF and Google for financial support; StackOverflow and Claudiu Saftoiu (our
lower-latency version of StackOverflow) for unflagging attention to detail; and
Schloss Dagstuhl, for putting social networking over computer networking.

References

[1] Microsoft Web Sandbox, 2012. http://websandbox.livelabs.com.

[2] Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H. Phung, Lieven
Desmet, and Frank Piessens. JSand: Complete client-side sandboxing of
third-party javascript without browser modifications. In Annual Computer
Security Applications Conference, 2012.

51

http://websandbox.livelabs.com

[3] Devdatta Akhawe, Adam Barth, Peifung E. Lam, John C. Mitchell, and
Dawn Song. Towards a formal foundation of Web security. In IEEE Com-
puter Security Foundations Symposium, 2010.

[4] James P. Anderson. Computer Security Technology Planning Study. Tech-
nical Report ESD-TR-73-51, Deputy for Command and Management Sys-
tems, HQ Electronic Systems Division (AFSC), L. G. Handscom Field,
Bedford, Massachusetts 01730, October 1972.

[5] Ihab Awad, Tyler Close, Adrienne Felt, Collin Jackson, Ben Laurie, Felix
Lee, Ka-Ping Lee, David-Sarah Hopwood, Jasvir Nagra, Eric Sachs, Mike
Samuel, Mike Stay, and David Wagner. Caja external security review.
Technical report, Google Inc., 2008. http://google-caja.googlecode.

com/files/Caja_External_Security_Review_v2.pdf.

[6] Sruthi Bandhakavi, Samuel T. King, P. Madhusudan, and Marianne
Winslett. VEX: Vetting browser extensions for security vulnerabilities.
In USENIX Security Symposium, 2010.

[7] Armorize Malware Blog. “HDD Plus” malware spread through major ad
networks, using malvertising and drive-by download, 2009. http://blog.

armorize.com/2010/12/hdd-plus-malware-spread-through.html.

[8] Aaron Bohannon and Benjamin C. Pierce. Featherweight Firefox: Formal-
izing the core of a Web browser. In USENIX Conference on Web Applica-
tion Development, 2010.

[9] Justin Cappos, Armon Dadgar, Jeff Rasley, Justin Samuel, Ivan Beschast-
nikh, Cosmin Barsan, Arvind Krishnamurthy, and Thomas Anderson. Re-
taining sandbox containment despite bugs in privileged memory-safe code.
In ACM Conference on Computer and Communications Security, 2010.

[10] Ravi Chugh, David Herman, and Ranjit Jhala. Dependent types for
javascript. In ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages & Applications, 2012.

[11] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. Staged
information flow for JavaScript. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, 2009.

[12] Douglas Crockford. ADSafe. www.adsafe.org, 2011.

[13] Andreas Dewald, Thorsten Holz, and Felix C. Freiling. ADSandbox: San-
boxing JavaScript to fight malicious websites. In Symposium On Applied
Computing, 2010.

[14] Mohan Dhawan and Vinod Ganapathy. Analyzing information flow in
JavaScript-based browser extensions. In Computer Security Applications
Conference, 2009.

52

http://google-caja.googlecode.com/files/Caja_External_Security_Review_v2.pdf
http://google-caja.googlecode.com/files/Caja_External_Security_Review_v2.pdf
http://blog.armorize.com/2010/12/hdd-plus-malware-spread-through.html
http://blog.armorize.com/2010/12/hdd-plus-malware-spread-through.html
www.adsafe.org

[15] ECMAScript language specification, 1999.

[16] ECMAScript language specification, 2009.

[17] Úlfar Erlingsson. The Inlined Reference Monitor Approach to Security Pol-
icy Enforcement. PhD thesis, Cornell University, 2003.

[18] Facebook. FBJS, 2011. http://developers.facebook.com/docs/fbjs/.

[19] Matthew Finifter, Joel Howard Willis Weinberger, and Adam Barth. Pre-
venting capability leaks in secure javascript subsets. In Network and Dis-
tributed System Security Symposium, 2010.

[20] Cédric Fournet, Nikhil Swamy, Juan Chen, Pierre-Evariste Dagand, Pierre-
Yvew Strub, and Benjamin Livshits. Fully abstract compilation to
JavaScript. In ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 2013.

[21] Philippa Gardner, Sergio Maffeis, and Gareth Smith. Towards a program
logic for JavaScript. In ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, 2012.

[22] Salvatore Guarnieri and Benjamin Livshits. GateKeeper: Mostly static
enforcement of security and reliability policies for JavaScript code. In
USENIX Security Symposium, 2009.

[23] Arjun Guha. Semantics and Types for Safe Web Programming. PhD thesis,
Brown University, 2012.

[24] Arjun Guha, Matthew Fredrikson, Benjamin Livshits, and Nikhil Swamy.
Verified security for browser extensions. In IEEE Symposium on Security
and Privacy, 2011.

[25] Arjun Guha, Shriram Krishnamurthi, and Trevor Jim. Using static analysis
for Ajax intrusion detection. In International World Wide Web Conference,
2009.

[26] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The essence
of JavaScript. In European Conference on Object-Oriented Programming,
2010.

[27] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. Typing local
control and state using flow analysis. In European Symposium on Program-
ming, 2011.

[28] Daniel Hedin and Andrei Sabelfeld. Information-flow security for a core of
JavaScript. In IEEE Computer Security Foundations Symposium, 2012.

[29] Philip Heidegger, Annette Bieniusa, and Peter Thiemann. Access per-
mission contracts for scripting languages. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2012.

53

http://developers.facebook.com/docs/fbjs/

[30] Collin Jackson and Helen J. Wang. Subspace: Secure cross-domain commu-
nication for Web mashups. In International World Wide Web Conference,
2007.

[31] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis
for JavaScript. In International Static Analysis Symposium, 2009.

[32] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Interprocedural
analysis with lazy propagation. In International Static Analysis Sympo-
sium, 2010.

[33] Trevor Jim, Nikhil Swamy, and Michael Hicks. BEEP: Browser-enforced
embedded policies. In International World Wide Web Conference, 2007.

[34] Emre Kıcıman and Benjamin Livshits. AjaxScope: A platform for remotely
monitoring the client-side behavior of web 2.0 applications. In Symposium
on Operating System Principles, 2007.

[35] Benjamin S. Lerner, Matthew J. Carroll, Dan P. Kimmel, Hannah Quay-
de la Vallee, and Shriram Krishnamurthi. Modeling and reasoning about
DOM events. In USENIX Conference on Web Application Development,
2012.

[36] Benjamin S. Lerner, Liam Elberty, Neal Poole, and Shriram Krishnamurthi.
Verifying web browser extensions’ compliance with private-browsing mode.
In European Symposium on Research in Computer Security, 2013.

[37] Benjamin S. Lerner, Joe Gibbs Politz, Arjun Guha, and Shriram Krish-
namurthi. TeJaS: Retrofitting type systems for JavaScript. In ACM SIG-
PLAN Dynamic Languages Symposium, 2013.

[38] Mike Ter Louw, Karthik Thotta Ganesh, and V. N. Venkatakrishnan. Ad-
Jail: Practical enforcement of confidentiality and integrity policies on web
advertisements. In USENIX Security Symposium, 2010.

[39] Sergio Maffeis, John C. Mitchell, and Ankur Taly. An operational seman-
tics for JavaScript. In Asian Symposium on Programming Languages and
Systems, 2008.

[40] Sergio Maffeis, John C. Mitchell, and Ankur Taly. Isolating JavaScript with
filters, rewriting, and wrappers. In European Symposium on Research in
Computer Security, 2009.

[41] Sergio Maffeis, John C. Mitchell, and Ankur Taly. Run-time enforcement
of secure JavaScript subsets. In Web 2.0 Security and Privacy, 2009.

[42] Sergio Maffeis, John C. Mitchell, and Ankur Taly. Object capabilities and
isolation of untrusted Web applications. In IEEE Symposium on Security
and Privacy, 2010.

54

[43] Sergio Maffeis and Ankur Taly. Language-based isolation of untrusted
JavaScript. In IEEE Computer Security Foundations Symposium, 2009.

[44] Jonas Magazinius, Phu H. Phung, and David Sands. Safe wrappers and
sane policies for self protecting JavaScript. In OWASP AppSec Research,
2010.

[45] Leo Meyerovich and Benjamin Livshits. ConScript: Specifying and enforc-
ing fine-grained security policies for JavaScript in the browser. In IEEE
Symposium on Security and Privacy, 2010.

[46] Mark S. Miller, Mike Samuel, Ben Laurie, Ihab Awad, and Mike
Stay. Caja: Safe active content in sanitized JavaScript. Technical re-
port, Google Inc., 2008. http://google-caja.googlecode.com/files/

caja-spec-2008-06-07.pdf.

[47] Mozilla Developer Network. Firefox OS, 2013. https://developer.

mozilla.org/en-US/docs/Mozilla/Firefox_OS.

[48] Phu H. Phung, David Sands, and Andrey Chudnov. Lightweight self-
protecting JavaScript. In ACM Symposium on Information, Computer and
Communications Security, 2009.

[49] Joe Gibbs Politz, Matthew J. Carroll, Benjamin S. Lerner, and Shriram Kr-
ishnamurthi. A tested semantics for getters, setters, and eval in JavaScript.
In ACM SIGPLAN Dynamic Languages Symposium, 2012.

[50] Joe Gibbs Politz, Spiridon Aristides Eliopoulos, Arjun Guha, and Shriram
Krishnamurthi. ADsafety: Type-based verification of JavaScript sandbox-
ing. In USENIX Security Symposium, 2011.

[51] Joe Gibbs Politz, Arjun Guha, and Shriram Krishnamurthi. Semantics and
types for objects with first-class member names. In ACM SIGPLAN Inter-
national Workshop on Foundations of Object-Oriented Languages, 2012.

[52] Joe Gibbs Politz, Hannah Quay-de la Vallee, and Shriram Krishnamurthi.
Progressive types. In ACM International Symposium On New Ideas,
New Paradigms, and Reflections on Programming and Software (Onward!),
2012.

[53] Charles Reis, John Dunagan, Helen J. Wang, Opher Dubrovsky, and Saher
Esmeir. BrowserShield: Vulnerability-driven filtering of dynamic HTML.
In Symposium on Operating Systems Design and Implementation, 2006.

[54] Fred B. Schneider, Greg Morrisett, and Robert Harper. A language-based
approach to security. In Reinhard Wilhelm, editor, Informatics: 10 Years
Back, 10 Years Ahead, volume 2000 of Lecture Notes in Computer Science.
Springer-Verlag, 2001.

55

http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS

[55] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD
thesis, Carnegie Mellon University, 1991.

[56] T. Stephen Strickland, Sam Tobin-Hochstadt, and Matthias Felleisen. Prac-
tical variable-arity polymorphism. In European Symposium on Program-
ming, 2009.

[57] Nikhil Swamy, Joel H. W. Weinberger, Cole Schlesinger, Juan Chen, and
Benjamin Livshits. Verifying higher-order programs with the Dijkstra
monad. In ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, 2013.

[58] Ankur Taly, Úlfar Erlingsson, Mark S. Miller, John C. Mitchell, and Jasvir
Nagra. Automated analysis of security-critical JavaScript APIs. In IEEE
Symposium on Security and Privacy, 2011.

[59] The New York Times. On the web, ads can be a security hole, 2009. http:
//www.nytimes.com/2009/09/15/technology/internet/15adco.html.

[60] Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementa-
tion of Typed Scheme. In ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, 2008.

[61] Sam Tobin-Hochstadt and Matthias Felleisen. Logical types for untyped
languages. In ACM SIGPLAN International Conference on Functional
Programming, 2010.

[62] Andrew Wright and Matthias Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1), 1994.

[63] Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov. Javascript
instrumentation for browser security. In ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, 2007.

[64] Chuan Yue and Haining Wang. Characterizing insecure JavaScript prac-
tices on the Web. In International World Wide Web Conference, 2009.

56

http://www.nytimes.com/2009/09/15/technology/internet/15adco.html
http://www.nytimes.com/2009/09/15/technology/internet/15adco.html

	Introduction
	Language-based Web Sandboxing
	Code-Reviewing Web Sandboxes
	Verification Roadmap
	Modeling JavaScript
	Type-Checking JavaScript
	Type System Features
	Type Errors and Type Soundness

	JSLint: Modeling A Secure Sublanguage
	A Type for Widgets
	Untrusted and JSLint Correspondence
	Differences Between JSLint and Typed Widgets

	Verifying the Reference Monitor
	ADsafe's Structure
	Types for the DOM
	Type-Checking the Reference Monitor
	Required Refactorings
	The Verification Process and Unverifiable Code
	Annotation Effort

	ADsafety Theorems
	Bugs in ADsafe
	New Bugs Found in ADsafe
	Prior Bugs as Type Errors

	Related Work
	Conclusion
	Limitations
	Beyond ADsafe

