

CORNFLOWER
LIBRARY

October 2008 User Guide and Reference Manual

CORNFLOWER LIBRARY

Page 1

Table of Contents

PREFACE WELCOME TO CORNFLOWER .. 3
About this manual .. 3
How this manual is organized ... 3
Prerequisites .. 4
Website ... 4
Terms of use .. 4
License information .. 4
Contact .. 4

PART 1 CONTEXT-FREE GRAMMAR CONSTRAINTS (CFGC) ... 5
Introduction .. 6
CFGC Definition ... 6
CFGC Filtering .. 6
CFGC Example ... 6
Incremental Computation .. 8

 Efficient CFGC Filtering ... 8
 Example .. 8
 How to backtrack? .. 8
Building the Example ... 11

Ilog Solver Extension ... 11
 Download .. 11
 Compilation and Linking ... 11
 Implementation .. 11
Standalone Application .. 13
 Download .. 13
 Compilation and Linking ... 13
 Implementation .. 13

Writing a search goal ... 16
References ... 17
Reference Manual .. 18

PART 2 KNAPSACK CONSTRAINT (KP) .. 25
KP Definition ... 26
KP Filtering .. 26
Using KP Library .. 26
 KP Solver ... 26
 Key Functions .. 26
 Initializing KPF ... 27

 Filtering items and Updating .. 29
 Bounds and Thresholds

CORNFLOWER LIBRARY

Page 2

References ... 30
Reference Manual .. 31

PART 3 SYMMETRY BREAKING ... 35
Introduction .. 36
A brief overview ... 36
Signatures .. 36
 Example ... 36
StaticSSB .. 37
Building The Example Using Ilog Solver .. 38

Download .. 38
Compilation and Linking .. 38

 Implementation ... 38
References ... 38
Reference Manual .. 41

CORNFLOWER LIBRARY

Page 3

Welcome to Cornflower
PREFACE

Cornflower Project aims to solve the algorithmic problems that arise in the context of optimization driven

decision support systems. Our main goal is to develop techniques that allow inexperienced users to

exploit optimization power efficiently. We integrate and hybridize ideas developed in different

communities in order to provide easily accessible high performance optimization technology. Particularly,

we focus on the development of high-level constraints that allow users to model the problems as

conjunctions of intuitive substructures and provide hybrid methods for their efficient combination.

Moreover, we develop automization techniques for the handling of symmetries that can the cause of

severe inefficiencies when handled poorly. Cornflower Library makes our algorithms and methods

publicly available. Read more about Cornflower from our webpage.

About this manual
This guide is composed of parts that use an example based learning strategy to illustrate the algorithms

implemented in Cornflower Library. Each part is build around a sample problem and a user works on

partially completed code examples. Then, you can compile the final code and run and analyze the

results. At the end of each part, there is a reference manual for the available methods.

The manual is designed to be used by C++ programmers who may or may not have any knowledge of

high-level constraints, hybrid methods and symmetry breaking. The ideal usage context for this manual is

to work through the examples step by step, with Cornflower Library downloaded in your computer.

How this manual is organized
This manual is divided into three parts:

 Part I: Context-Free Grammar Constraints
 Part II: Knapsack Constraint
 Part III: Symmetry Breaking

CORNFLOWER LIBRARY

Page 4

Prerequisites
The Cornflower library requires knowledge of C++ without exposing any syntactic extension. You should
have required header files and libraries downloaded before using the manual.

Website
http://cs.brown.edu/research/cornflower

Terms of Use
You may use the available software without limitation for academic purposes. We kindly request you to
cite our related publication(s) if you use Cornflower in your research. If you wish to use the software for
commercial applications, please obtain the prior permission of Prof. Meinolf Sellmann.

License Information

LICENSE

Copyright (c) 2008. Brown University

Under no circumstances shall this software and associated documentation (the
"Software") be used in a commercial endeavour without the prior expressed
permission of Prof. Meinolf Sellmann (Meinolf_Sellmann@brown.edu).

Excluding the above provision, permission is hereby granted, free of charge,
to any person obtaining a copy of the Software, to deal in the Software for
non-commercial applications without restriction, including without
limitation the rights to use, copy, modify, merge, publish and to
distribute.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMEN.IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER EALINGS
IN THE SOFTWARE.

Contact
You can share your development experience with us through serdark@cs.brown.edu. Please let us know
for any suggestions and/or bug reports.

CORNFLOWER LIBRARY

Page 5

 Part I
 CONTEXT-FREE GRAMMAR CONSTRAINTS

CORNFLOWER LIBRARY

Page 6

1. Introduction
 A major strength of constraint programming is its ability to provide the user with high-level constraints
that capture and exploit problem structure. However, this expressiveness comes at the price that the user
must be aware of the constraints that are supported by a solver. One way to overcome this problem is
by providing highly expressive global constraints that can be used to model a wide variety of problems
and that are associated with efficient filtering algorithms. A promising avenue in this direction is the
introduction of constraints that are based on formal languages, which enjoy a wide range of applicability
while allowing the user to focus on the desired properties of solutions rather than having to deal for
herself with the problem of constraint filtering.
 [Sellmann, 2006] devises algorithms which perform filtering for context-free grammar constraints in
polynomial time and [Kadioglu and Sellmann, 2008] focuses on an incremental filtering algorithm which
combines low memory requirements with very efficient incremental behavior.

2. Context-Free Grammar Constraints (CFGC)
Definition: For a given grammar G (∑ (alphabet), N (non-terminals), P(productions), S0(start symbol)) and
variables X1,…,Xn with domains D1ؔ D(X1),…, Dn ؔ D(Xn) ك ∑, we say that GrammarG(X1…Xn) is true for
an instantiation X1 ← w1,…, Xn ← wn if and only if it holds that w = w1…wn א LG ת D1 x … x Dn. We
denote a given constraint GrammarG(X1…Xn) over a context-free grammar G in CNF by CFGCG(X1,…,Xn).

3. CFGC Filtering
 [Sellmann, 2006] presents the filtering algorithm for CFGCG which is based on the Cooke, Younger,
Kasami (CYK) parsing algorithm. Given a word of size n, let wij denote the sub-sequence of letters starting
at position i with length j. Based on a grammar G (∑, N, P, S0) in Chomsky Normal Form, CYK determines
iteratively the set of all non-terminals from where we can derive wij for all 1≤ i ≤ n and 1≤ j ≤ n-i. It is
easy to initialize the sets Si1 just based on wi and all productions (A → wi) א P. Then for j from 2 to n and I
from 1 to n - j + 1, we have that Sij = ڂ ሼ ܣ | ሺܣ ՜ ሻܥܤ א ܤ ݄ݐ݅ݓ ܲ א ܥ ݀݊ܽ ݇݅ܵ א ܵ݅ ൌ ݇, ݆ െ ݇ሽିଵ

ୀଵ .
Then a word is in a language if and only if S0 א S1n. The algorithm works bottom-up by computing sets Sij
for increasing j after initializing Si1 with all non-terminals that can produce in one step a terminal in the
domains of Xi. Then, the algorithm works top-down by removing all non-terminals from each set Sij which
cannot be reached from S0 א S1n. We refer the interested reader to [1] and [2] for many details that are
omitted here.

4. Example: Language of all correctly bracketed expressions
 Assume that we are given a context-free, normal form grammar G and decision variables Xi:1, 2, 3, 4
with initial domains Di as shown below. In Figure 1, we illustrate how our filtering algorithm works. First,
we work bottom-up, adding non-terminals to the sets Sij if they allow generating a word in Di x …. x Di+j-1.
Then, in the second step, we work top-down and remove all non-terminals that cannot be reached from So
 S1n. We see that the constraint filtering algorithm determines the only word “[], []” and the domains of א
the decision variables are filtered accordingly.

CORNFLOWER LIBRARY

Page 7

 Language of all correctly bracketed expressions.
 Context-Free Grammar G Decision Variables X1, 2, 3, 4

 Initial domains

 CFGCG (X1, X2, X3, X4)

 Figure.1

 Updated domains

[,] [,] [[,]

 [] []

So → SoSo So → AC
So → BC B → ASo

A → [C →]

1) The filtering algorithm first
works bottom-up by computing
sets Sij for increasing j after
initializing Si1with all non-
terminals that can produce in
one step a terminal in the
domain of Xi.

2) Then the algorithm works
top-down removing all non-
terminals from each set Sij which
cannot be reached from S0 א
S1n.

(Kadioglu, Sellmann AAAI’08)

CORNFLOWER LIBRARY

Page 8

5. Incremental Computation
 One way to speed up filtering algorithms is to incorporate mechanism for incremental update of
important data structures. In fact, the filtering algorithm is often applied with slightly changed domain
information. Therefore, it is desirable that the data structures built during the first filtering operation are
maintained dynamically without building them again for each subsequent run. Specifically, we consider
the incremental grammar constraint filtering in this section.

5.1 Efficient CFGC Filtering
 In Figure.1 we observe that the algorithm first works bottom-up, determining from which non-terminals
of the grammar we derive a legal word. Then it works top-down determining which non-terminal nodes
can be used in a derivation that begins with start symbol S0 א S1n. In order to save both space and time,
we will modify these two steps such that every non-terminal in each set Sij will perform just enough work
to determine whether its respective node will remain in the shrunken graph. To this end, in the first step
that works bottom-up we will need a routine that determines whether there exists a support from below:
That is, this routine determines whether a node has any outgoing arcs. Analogously, in the second step
that works top-down we will rely on a procedure that checks whether there exists a support from above:
Formally, this procedure determines whether a node has any incoming arcs.

 The challenge is to avoid having to pay with time what we save in space. To this end, we need a
methodology which prevents us from searching for supports (from above or below) that have been
checked unsuccessfully before. Very much like the well-known arc-consistency algorithm AC-6 for binary
constraint problems we achieve this goal by ordering potential supports so that, when a support is lost,
the search for a new support can start right after the last support, in the respective ordering. We refer
the interested reader to [Sellmann, 2006] and [Kadioglu and Sellmann, 2008] for many details that are
omitted here.

5.1.1. Example
 Consider our previous example of correctly bracketed expressions with four variables each with a
domain ({,}). Below, we show how the filtering algorithms construct and maintain the necessary data
structures. The algorithms differ when an update occurs in one of the variable’s domain. While non-
incremental filtering disregards the previous structure and creates a new structure from scratch,
incremental filtering updates only the necessary parts of the initial structure.

5.1.2. How to backtrack?
 As the data structure is created again and again for every decision point in the non-incremental
algorithm, we do not need an explicit backtrack operation. However, in the incremental case only a
subpart of the original structures is changed, hence we need a way to undo the changes that we have
committed and to restore back to a previous state. This is possible by storing extra information whenever
a node is removed from any Sij (notice that that domain filtering monotonically decreases the number of
nodes in S). A node can be created given its position i, j and the production rules that were supporting it
from above and below along with their splitting indices. Therefore, to save space, we do not store a
node as a whole but only the enough information to create it again. This information is stored in a array
called Tracer (see below). A pointer, called marker is used to refer the most recent backups in the Tracer.
Each time a branching decision is made, the marker is increased. The backtrack method operates on the

CORNFLOWER LIBRARY

Page 9

part of the Tracer that is pointed by the marker, Tracer[marker], considering the changes in reverse order
it re-creates the removed nodes using their stored information.

 Non-Incremental Filtering

1) Create the initial data structure S0. The figure on the left works bottom-up and the picture on the right
works top-down. Left parenthesis is removed from the domain of first variable and right parenthesis is
removed from the domain of last variable.

2) Now, consider a change in the domain of third variable. The algorithm clears the old data structure S0

and creates a new data structure, S1. Again the left figure works bottom-up and the right figure
works top-down. Notice the filtered values from the domains.

CORNFLOWER LIBRARY

Page 10

 Incremental Filtering

1) The initialization part is identical to the non-incremental case; create the initial data structure S0.
The figure on the left works bottom-up and the picture on the right works top-down. Left parenthesis is
removed from the domain of first variable and right parenthesis is removed from the domain of last
variable.

2) Now, when the left parenthesis is removed from the domain of third variable the incremental
algorithm removes the corresponding node (the node in red circle) from S0 and propagates the effect
of this removal up (the nodes in blue circle) and down (the nodes in green circle). As the nodes are
removed’ backup information is stored in Tracer. At each decision point the marker is shifted to right.
When backtrack is invoked the nodes in Tracer[marker] is re-created and marker is shifted to left.

CORNFLOWER LIBRARY

Page 11

6. Building the example

6.1. Ilog Solver Extension

 Download cfgc.tar.gz file from the webpage and unzip it. The package includes a precompiled
library (.a) file, necessary header files (cfgc.h, grammar.h, IlcGCI.h) and a sample main.cpp
together with a make file to compile them all. All source codes are compiled using g++.4-1 and
Ilog Solver 6.4 on a Linux machine.

 Compilation and Linking
Inside the unzipped package type “make main” to compile. You have to change $SOLVERDIR
parameter in the make file to your own Ilog Solver directory. In order to link your source codes to
our library you can use -L option of g++ compiler. If you are using another compiler please refer
to its manual.

 Implementation

 Include the necessary header files.

 Construct a grammar. The input grammar file must have one production per line and must

be in Chomsky Normal Form.

Example input file for the language of all correctly bracketed expressions:

 input.txt

#include “grammar.h”
#include “cfgc.h”
#include “IlcGCI.h”
#include <ilsolver/ilosolverany.h>

grammar g(“input.txt”);

S0 S0 S0
S0 A C
S0 B C
B A S0

A [
C]

CORNFLOWER LIBRARY

Page 12

 Initialize domains. The domain size is determined by the number of terminals in the
grammar. The getDomain() function returns a pointer for each terminal value to be
represented in the domain.

 Create decision variables. Decision variables are of the type IloAnyVar and they have a
set of pointers in their domain to terminal values of the given grammar.

 Construct CFGC. The parameters are grammar g, instance of an IloSolver, IloAnyVarArray
decision variables of size numVariables. A boolean flag is used to select between
incremental and non-incremental propagation. The last parameter is the constraint id.

 Add CFGC to problem model. We wrap our cfgc instance into an Ilog constraint using
IloGC class.

IloAnyArray domain(env, g.getNumTerminals());

for(i=0; i < g.getNumTerminals(); i++)
{
 domain[i] = (IloAny) g.getDomain(i);
}

IloAnyVarArray variables(env, numVariables);

for(i=0; i < numVariables; i++)
{
 IloAnyVar anyVar(env, domain);
}

cfgc* cfgcPtr = new cfgc(g, solver, variables,
numVariables, incremental, “correctly bracketed”);

model.add(IloGC(env, variables, cfgcPtr, incremental)

CORNFLOWER LIBRARY

Page 13

 You can introduce additional constraints using operators = and ≠.

 Run solver. IlcGCI class implements a simple branching routine, IloMyBranching, which
selects the variable with the minimum domain size and assigns it to the first value in its
domain. You can modify IlcGCI file to implement your own branching heuristic.

 Display solution.

6.2. Standalone Application

 Download cfgc.tar.gz file from the webpage and unzip it. The package includes a precompiled
library (.a) file, necessary header files (cfgc.h, grammar.h) and a sample main.cpp together with
a make file to compile them all. All source codes are compiled using g++.4-1 on a Linux machine.

 Compilation and Linking
Inside the unzipped package type “make main” to compile. In order to link your source codes to
our library you can use -L option of g++ compiler. If you are using another compiler please refer
to its manual.

 Implementation

 Include the necessary header files.

model.add (variables[2] != g.getTerminal(“]”);

solver.solve(IloMyBranching(env, variables, cfgcPtr,
incremental))

for(i=0; i < numVariables; i++)
{
 solver.out ا
 ((string)solver.getAnyValue(variable[i]));
}

#include “grammar.h”
#include “cfgc.h”

CORNFLOWER LIBRARY

Page 14

 Construct a grammar. The input grammar file must have one production per line and must
be in Chomsky Normal Form.

Example input file for the language of all correctly bracketed expressions:

 input.txt

 Initialize domains. A STL set container is used a domain. The domain size is determined by

the number of terminals in the grammar. The getDomain() function returns a pointer for
each terminal value to be represented in the domain.

 Create decision variables. Decision variables are of type STL set which have string values
in their domains. Precondition: The string values in the domains must be terminal values in
input the grammar as initialized above.

 Construct CFGC. The parameters are grammar g, number of variables, a pointer to the
variables and an id for the constraint.

grammar g(“input.txt”);

vector<set<string*> > variables(numVariables, domain);

cfgc c(g, numVariables, &variables, “correctly bracketed”);

S0 S0 S0
S0 A C
S0 B C
B A S0

A [
C]

set<string*> domain;

for(i=0; i < g.getNumTerminals(); i++)
{
 domain.insert = g.getDomain(i);
}

CORNFLOWER LIBRARY

Page 15

 Non-incremental filtering. This method is used to generate the graph in the Figure1.
Whenever a variable is modified, you can re-call the method again. Variable array is
updated when filterFromScratch is called.

 Incremental filtering. You should invoke filterFromScratch method as the first filtering in
order to generate the initial graph in the Figure1. Then, whenever a variable is updated
you can store its domain delta and call filterFromUpdate method. Here, we do not
generate a graph again; instead we update only the necessary parts of the initial graph.
Variable array is updated when filterFromScratch is called.

 Backtrack. The filterFromUpdate method records the necessary information that will allow
backtracking to a previous state. A restore point can be created by setMarker method
before calling filterFromUpdate method. Then, you can roll back the changes using
backtrack() method.

 Display solution.

c.filterFromScratch();
variables[2].erase(g.getTerminal(“]”));
c.filterFromScratch();

c.setMarker();
variables[2].erase(g.getTerminal(“]”));
vector< pair<int, string*>> affected;
affected.push_back(pair<int, string*>
 (2, g.getTerminal(“]”));
c.filterFromUpdate(affected);
c.backtrack();

for(i=0; i < numVariables; i++)
{
 coutا”Domain(var: “اiا”) = ”;
 set<string>const_iterator iter;
 for(iter = variables[i].begin();
 iter != variables[i].end(); ++iter)
 {
 cout.out ا *((string*)*iter ا” ”;
 }
}

CORNFLOWER LIBRARY

Page 16

7. Writing a Search Goal
 IlcGCI class provides a sample search goal. This goal works as follows; it selects the variable with the
minimum domain size and assigns it the first value in its domain. You may want to implement different
search goals for your specific problems by modifying IlcMyBranhing method of IlcGCI class. When you
are using incremental filtering, you should invoke setMarker method of cfgc class as you set or remove a
value from a variable and you should invoke backtrack and propagate methods of cfgc class in your
IlcPropate and IlcBacktrack functions. Please refer to Ilog user’s manual for details about Ilog search goal.

CORNFLOWER LIBRARY

Page 17

8. References
[1] Meinolf Sellmann
The Theory of Grammar Constraints
Proceedings of the 12th intern. Conference on the Principles and Practice of Constraint Programming (CP),
Springer LNCS 4204, pp. 530-544, 2006.

[2] Serdar Kadioglu and Meinolf Sellmann
Efficient Context-Free Grammar Constraints
Proceedings of the 23rd National Conference on Artificial Intelligence (AAAI), pp. 310-316, 2008.

CORNFLOWER LIBRARY

Page 18

9. REFERENCE MANUAL

CFGC

Category Class

Inheritance Path

Definition File cfgc.h

Include File grammar.h
 <ilsolver/ilosolverany.h>
 <ilsolver/ilosolverint.h>

Description The class cfgc is at the core of grammar constraints. It implements both
incremental and non-incremental filtering algorithms. An instance from
grammar class is used as a private member to enforce the production rules
and to prune infeasible values from the domain of IloAnyVar variables.

Constructor Summary

public cfgc(grammar g, IloSolver s,
IloAnyVarArray V, int n, bool
incremental, string id)

public cfgc(grammar g, string id)

Method Summary

public bool propagate()

public void setMarker()

public void backtrack()

public void filterFromScratch()

public void filterFromUpdate()

public void filterFromUpdate(vector<
pair<int, string*> > affected)

CORNFLOWER LIBRARY

Page 19

Constructor cfgc (grammar g, IloSolver s, IloAnyVarArray V, int n,
bool incremental, string id)

 This constructor creates an instance of grammar constraint to be used as an
Ilog extension. Before using it in Ilog, you must wrap it into an Ilog grammar
constraint. See also IlcGCI class.

 cfgc (grammar g, vector< set<sring** variablesPTr,
string id)

 This constructor creates an instance of grammar constraint to be used for
standalone applications.

Methods public bool propagate()

 This member function is invoked when the incremental algorithm is called.
When a domain change happens in any of the variables, propagation is
called. You should use that function if you want to modify the Ilog search
goal. The method returns true unless the propagation causes an empty
domain for some variable.

 public void setMarker()

 Whenever a variable is assigned to a value setMarker is used to create a
restore point. You should use that function if you want to modify the
provided Ilog search goal. The setMarker method indicates the nearest
restore point on Tracer data structure which is used to store backtrack
information.

public void backtrack()

This member is invoked when propagation returns false. It restores back the
previous state before the propagation using a data structure called Tracer.
Whenever a node in the graph is removed or its supports change, the Tracer
saves its previous support indices from above and below and the splitting
indices to be used later as backtrack information. See also setMarker().

public void filterFromScratch()

Non-incremental filtering algorithm.

CORNFLOWER LIBRARY

Page 20

public void filterFromUpdate()

public void filterFromUpdate(vector< pair<int, string*> >
affected)

Incremental filtering algorithm. The second function is used in standalone
applications. It requires an array of domain delta information which stores a
variableIndex and pointer to removed value.

CORNFLOWER LIBRARY

Page 21

GRAMMAR

Category Class

Inheritance Path

Definition File grammar.h

Include File structs.h

Description This class is used to create an instance from user’s grammar input. It provides
pointers to initialize domains of IloAny variables.

Constructor Summary

public grammar(string inputfile)

Method Summary

public bool getStatus()

public int getNumProductions()

public int getNumTerminals()

public int getNumNonTerminals()

public string * getTerminal(string s)

public string * getDomain(int i)

public string getStartSymbol()

public void setStartSymbol(string s)

CORNFLOWER LIBRARY

Page 22

Constructor grammar (string inputfile)

 This constructor creates an instance of grammar given the input file. The file
must contain one production per line. The grammar must be context-free and
in Chomsky Normal Form. See sample grammar in the package.

Methods public bool getStatus()

 Returns true if the grammar object is successfully created.

public int getNumProdcutions()

Returns the number of productions in the given grammar.

public int getNumTerminals()

Returns the number of terminals (alphabet, ∑) in the input grammar. The
initial domain size for IloAny variables is equal to that number.

public int getNumNonTerminals()

Returns the number of non-terminal in the input grammar.

public string* getTerminal(string s)

Returns a pointer to the terminal string s in the grammar. This member is used
when adding extra constraints to problem. See the example in section 4.
Precondition: s is a terminal in the input grammar.

public string* getDomain(int i)

Returns a pointer for the ith terminal. This member is used to initialize
variable domains. See the example in section 4.

public string getStartSymbol()

Returns the start symbol S0 of the grammar. The default start symbol is the
left hand side production in first line of the input file.

public void setStartSymbol(string s)

This method can be used to change start symbol if needed.
Precondition: s is a left hand side terminal in the given grammar.

CORNFLOWER LIBRARY

Page 23

ILCGCI

Category Class

Inheritance Path

Definition File IlcGCI.h

Include File <ilsolver/ilosolverint.h>
 <ilsolver/ilosolverany.h>

Description This class is used to convert a grammar constraint into an Ilog grammar
constraint.

Constructor IloGC (IloSolver s, IloAnyVarArray V, cfgc* c, bool
incremental)

 This constructor creates an instance of Ilog grammar constraint given an Ilog
solver, decision variables, actual grammar constraint and a flag to filter
incremental or not. IloGC is a wrapper used around IlcGCI class.

Constructor Summary

public IloGC(IloSolver s, IloAnyVarArray
V, cfgc* c, bool incremental)

Method Summary

public void propagate()

ILCGOAL2 backtrack()

CORNFLOWER LIBRARY

Page 24

Methods public void propagate()

 This method invokes an Ilog fail(), if grammar constraint filtering returns
failure.

ILCGOAL2 backtrack()

This method invokes an Ilog fail(). If you choose to filer incrementally it
makes a call to backtrack() method of cfgc class.

CORNFLOWER LIBRARY

Page 25

 Part II
 KNAPSACK CONSTRAINT

CORNFLOWER LIBRARY

Page 26

1. Knapsack Constraint (KP)
Definition: For a given set of items I each with a weight wi and a profit pi, find the subgroup SŒ I such that
the total profit of the included items is greater than some threshold B and the accumulated weight of the
included items is less than or equal to another threshold C. [1]

2. KP Filtering
Given the knapsack problem and the thresholds, the filtering algorithm computes which items must be
included or excluded in order to satisfy the given constraints. A simple example of this would be the
algorithm finding that an item is too heavy to be included in any solution or that another item must be
included because even combined all other items would not exceed the profit bound. Performing this type
of filtering can often simplify the problem that needs to be solved by shrinking the number of variables
and constraints that need to be considered.

3. Using KP Library
An example program that uses the kpf library is provided in the kp.tar.gz. This program creates a small
random knapsack problem and solves it using a standard branch and bound approach. The following
section describe how to set up this example, and goes over the main functions, explaining how the kpf
library can be used.

3.1. KP Solver
 Download kp.tar.gz file from the webpage and unzip it. The package includes a precompiled

library (.a) file, necessary header files (kpf.h, kp.h, general_includes.h) and a sample solver.cpp,
solver.h, and main.cpp together with a make file to compile them all. All source codes are
compiled using g++.3-3 on a Linux machine.

 Compilation and Linking
Inside the unzipped package type “make main” to compile. In order to link your source codes to
our library you can use -L option of g++ compiler. If you are using another compiler please refer
to its manual.

3.2. Key Functions
This section describes the functionality of the methods in the KPF class and their usage.

3.2.1 Initializing KPF

To initialize an instance of the KPF filtering class, the constructor needs to be passed information
specifying the knapsack problem being solved. To describe the knapsack problem, the user must
specify the number of items, an array of weights and profits of each item, the maximum allowed
weight, and the minimum allowed profit.

The example bellow generates a random knapsack problem and then initializes the KPF instance
with this information:

CORNFLOWER LIBRARY

Page 27

3.2.2 Filtering Items and Updating

Once the KPF instance is initialized, it has all the information about the knapsack problem, and
calling the filter method will set the passed in arrays to the items that must be either included or
excluded (respectively) from the knapsack in order to achieve the specified weight and profit
thresholds. filter is called with references to the two arrays that will hold the indices of the filtered
items, as well as references to the sizes of these arrays. These provided arrays must be allocated
to hold twice the number of items in the problem. Upon completion, the method returns the total
number of filtered items.

Thus, to find which items can be filtered from the current knapsack problem, the following code
can be used:

// set the number of items to be a random value
// between 20 and 40
int numItems = rand()\%20+20;

// set the maximum weight threshold to be
// between 100 and 200
int C = rand()\%100+100;

// set the minimum profit threshold
int B = 0;

// allocate memory for the weight and profit
// arrays (respectively)
long long* w = (long long*)malloc(numItems*sizeof(long long));
long long* p = (long long*)malloc(numItems*sizeof(long long));

// generate items randomly where the weights and profits
// are between -100 and 100
for(int ii = 0; ii < numItems; ii++){

p[ii] = rand()\%200 - 100;
w[ii] = rand()\%200 - 100;

}

// initialize KPF
KPF* kp = new KPF(numItems, w, p, C, B);

CORNFLOWER LIBRARY

Page 28

Once filter returns the arrays of items that can be filtered, the changes can be applied to the
internal representation of the KPF instance through the update function. update takes in an array
of the items to be committed, the size of this array, and the new statuses of the items. The status of
the item is set to 1 if the item is being included, 0 if it is being excluded, and -1 if the status of the
item is undetermined. Therefore, once we know which items can be filtered by using the above
code, we can commit these changes by calling update as in the example bellow:

// number of items that need to be included
long long numInclude = 0;

// number of items that can be excluded
long long numExclude = 0;

// total number of items that can be filtered
long long numFilter = 0;

// array to hold the items that need to be included to
maintain feasibility
long long*
 fInclude = (long long*)malloc(2*numItems*sizeof(long long));

// array to hold items that can be excluded since they will
// not be part of any feasible solution
long long*
 fExclude = (long long*)malloc(2*numItems*sizeof(long long));

// filter all possible itmes
numFilter =
 kp->filter(fInclude, fExclude, numInclude, numExclude);

// array of items to be filtered
long long*
filter = (long long*)malloc(numFilter*sizeof(long long));

// array of the statuses of the filtered items
long long* status = (char*)malloc(numFilter*sizeof(char));

// record the items that need to be included
for(int ii = 0; ii < numInclude; ii++){

filter[ii] = fInclude[ii];
status[ii] = 1;

}

// record the items that need to be excluded
for(int jj = 0; jj < numExclude; jj++){

filter[jj+numInclude] = fExclude[jj];
status[jj+numInclude] = 0;

}

// update the kp solver to register the changes
kp->update(filter, numFilter, status);

CORNFLOWER LIBRARY

Page 29

Once the status of an item is set using the above code, it can be reverted back to its original
undefined status by calling update again, this time setting the status to -1. It is therefore important
for the user to manually keep a history of all the changes if they want to backtrack, as is the case
in a branch and bound search.

3.2.3 Bounds and Thresholds

In addition to maintaining an internal representation of the knapsack problem and filtering items,
the KPF instance can also be used to inquire about statistics of the current knapsack problem.
These statistics include the upper bound on the achievable profit and the lower bound on the
accumulated weight. These values can be extracted by calling getUpperBoundProfit and
getLowerBoundWeight respectively, as is demonstrated bellow:

The user can change the thresholds of the knapsack problem being filtered by KPF using
setNewThreshold and setNewCapacity.

// get the upper bound on the achievable profit of the
// knapsack problem, given the items that have
// been filtered
double upperBoundProfit = kp->getUpperBoundProfit();

// get the lower bound on the achievable weight of the
// knapsack problem, given the items that have
// been filtered
double lowerBoundWeight = kp->getLowerBoundWeight();

// Require that a feasible solution have an accumulated profit
// greater or equal to the current accumulated profit
kp->setNewThreshold(kp->getTotalProfit());

// Require that a feasible solution have an accumulated weight
// less than the current accumulated weight
kp->setNewCapacity(kp->getTotalWeight());

CORNFLOWER LIBRARY

Page 30

4. References
[1] Yuri Malitsky, Meinolf Sellmann, Willem-Jan van Hoeve
Length-Lex Bounds Consistency for Knapsack Constraint
Proceedings of the 12th intern. Conference on the Principles and Practice of Constraint Programming (CP),
Springer LNCS 5202, pp. 266-281, 2008.

CORNFLOWER LIBRARY

Page 31

5. REFERENCE MANUAL

KPF

Category Class

Inheritance Path

Definition File kpf.h

Include File kp.h

Constructor Summary

public KPF(long long n, long long* weight,
long long* profit, long long C,
long long B)

Method Summary

public long long filter(long long* filter1,
long long* filter0,
long long& filteredAlready1,
long long& filteredAlready0,
bool noCommit=true)

public bool update(long long* filter,
long long n, char* newStatus,
bool dive = false)

public bool upperBoundProfit(void)

public double getLowerBoundWeight(void)

public double getUpperBoundProfit(void)

public void setNewThreshold(long long t)

public void setNewCapacity(long long c)

public long long getTotalWeight(void)

public long long getTotalProfit(void)

CORNFLOWER LIBRARY

Page 32

Description The KPF class provides the interface to the KP class, enforcing all the
production, filtering and bounding rules.

Constructor KPF(long long n, long long* weight, long long* profit,
long long C, long long B)

 This constructor creates an instance of the knapsack problem.

Methods public long long filter(long long* filter1, long long*
filter0, long long& filteredAlready1, long long&
filteredAlready0, bool noCommit=true);

 The method computes which items must be included into or excluded from the
knapsack in order to satisfy the defined thresholds. This function takes in four input
parameters all of which are references to variables that are to be set by the
function. The first parameter is an allocated array of size 2n which will hold the
indices of the items that must be included in the knapsack. The second parameter is
another pre-allocated array of size 2n which will hold the indices of the items that
cannot be part of a satisfying solution. The third and fourth parameters should be
set to 0 and are then set to the number of items in the respective arrays by the
function. The fifth, optional, parameter is a Boolean which states whether the found
item changes should be automatically committed. By default this is set to false. The
function returns the total number of filtered items or -1 if a feasible solution can't
be attained.

public bool update (long long* filter, long long n,
char* newStatus, bool dive = false)

 This function changes the status of items of the problem. The first parameter is an
array of indices of the items whose status needs to be changed. The second
parameter defines the number of items that need to be changed, while the third is
a character array that states the new status of the items (1 for inclusion, 0 for
exclusion, and -1 for undecided). The fourth is an optional Boolean parameter
meant to be a safety feature that prevents changing the status of items that have
already been set to be either included or excluded. By default this parameter is
set to false. The update functions returns true if all updates were successful and
false otherwise. Setting an item to a state it’s already in does not change the state
of the problem.

CORNFLOWER LIBRARY

Page 33

public bool upperBoundProfit(void)

Returns true if the relaxed solution is integer.

public double getLowerBoundWeight(void)

Returns the lower bound on the weight for the current partial assignment.

public double getUpperBoundProfit(void)

Returns the upper bound on the profit on the current partial assignment.

public void setNewThreshold(long long t)

Sets the new threshold on the knapsack such that the gained profit is greater
or equal to the passed-in variable.

public void setNewCapacity(long long t)

Sets the new capacity on the knapsack such that the accumulated weight is
smaller or equal to the passed-in variable.

public long long getTotalWeight(void)

Returns the total accumulated weight of the items included in the current
partial assignment.

public long long getTotalProfit(void)

Returns the sum profit of the included items in the current partial assignment.

CORNFLOWER LIBRARY

Page 34

 Part III

 SYMMETRY BREAKING

CORNFLOWER LIBRARY

Page 35

1. Introduction
Symmetries occur naturally in many problems (i.e two identical flights to operate or rotation and
reflection symmetries in magic square problem) and can cause severe difficulties for exact solvers since
we might waste time visiting symmetric solutions and the parts of the search space that we visited
already. Hence, symmetry breaking is crucial for search space exploration.

We can define two types symmetry. A variable symmetry is a bijection on variables that preserves
solutions. For example, consider an all-different constraint on a set of variables. We can always change
any two variable. Analogously, value symmetry is a bijection on values that preserves solutions. Again, in
our all-different example, we can freely interchange any two values.

2. A Short Overview of Symmetry Breaking
There are various methods to break symmetries. Static symmetry breaking adds static constraints to the
problem before the search and dynamic symmetry breaking tries to detect symmetries during search.
[Fahle et al, 2001] presents one such dynamic method; symmetry breaking by dominance detection
(SBDD) where they filter values based on symmetric dominance analysis when comparing the current node
with other previously expanded nodes. [Sellmann and Hentenryck, 2005] devised structural symmetry
breaking (SSB) for problems exhibiting both piecewise symmetric values and variables. Static and
dynamic SSB was developed in [Flener et al, 2006] and recently, [Heller et al, 2008] compared static
SSB and dynamic SSB in practice. It was shown that static SSB works much faster than dynamic counter
part. However, one disadvantage of static SSB is reported to be the variance in runtime when static
symmetry breaking constraints clashes with dynamic search orderings or when the static search orderings
is not performing well for different problem instances. [Heller et al, 2008] combines static SSB with
“model restarts” to address this problem. The details and formal definitions which are omitted here can
be found in related papers. In Cornflower library we offer a method to apply static SSB given the
symmetric partition for values and variables.

3. Signatures
Before we outline static SSB, we need to introduce the definition of signature. Given a partial assignment
A to variables, we define a signature for each value as follows:

 SignatureAሺValue vሻ ؔ ሺ |Variable x א ሺx, vሻ א A| ሻinumberOfVariablePartitions

That is, given an assignment A, the signature of a value v is the tuple that counts, for each variable
partition, the number of variables x that are assigned to the value v .

3.1 Example
Consider the following problem with variables {X1… X8} over domains D(Xi) = {v1…v6}. Assume that
the first four and the last four variables are symmetric with each other, i.e. P1 = { X1… X4} and P2 =
{X5… X8}. Further assume that there are two value partitions V1 = {v1… v3} and V2 = { v4… v6}.
Suppose we are given the assignment in Figure 1.

CORNFLOWER LIBRARY

Page 36

 FIGURE 1: Assignment A

The signatures for each value are:

I. v2 א V1 has signature (2,2)
II. v1 א V1 has signature (1,1)

III. v6 א V2 has signature (1,1)

4. Static SSB
As shown in [Flener et al, 2006], we can use the signature abstraction to devise a linear set of constraints
which provably leaves only one solution in each equivalence class of solutions. We break the symmetries
as follows:

I. To break variable symmetry, we force the variables with smaller indices to take smaller or
equal values within each variable partition.

II. To break value symmetry, we use the signature of values in complete assignments. Within
each value partition we require that smaller values have lexicographically larger or equal
signatures than larger values. This is accomplished by using the global cardinality
constraint (GCC) which counts how many times a value is taken by a given set of variables.

P1

P2

V1

V2

CORNFLOWER LIBRARY

Page 37

For the example above, we introduce constraints I-II to break variable symmetry and constraints III-VI to
break value symmetry.

I. X1 ≤ X2 ≤ X3 ≤ X4
II. X5 ≤ X6 ≤ X7 ≤ X8
III. GCC ([X1, X2, X3, X4] , [v1, v2, v3, v4 v5, v6] , [cardv11, cardv21, cardv31, cardv41, cardv51, cardv61]
IV. GCC ([X5, X6, X7, X8] , [v1, v2, v3, v4 v5, v6] , [cardv12, cardv22, cardv32, cardv42, cardv52, cardv62]
V. (cardv11, cardv12) ≥LEX (cardv21, cardv22) ≥LEX (cardv31, cardv32)
VI. (cardv41, cardv42) ≥LEX (cardv51, cardv52) ≥LEX (cardv61, cardv62)

5. Building the example using Ilog Solver

 Download ssbb.tar.gz file from the webpage and unzip it. The package includes a precompiled
library (.a) file, necessary header files (staticSSB.h) and a sample main.cpp together with a make
file to compile them all. All source codes are compiled using g++.4-1 and Ilog Solver 6.4 on a
Linux machine.

 Compilation and Linking
Inside the unzipped package type “make main” to compile. You have to change $SOLVERDIR
parameter in the make file to your own Ilog Solver directory. In order to link your source codes to
our library you can use -L option of g++ compiler. If you are using another compiler please refer
to its manual.

 Implementation

 Include the necessary header files.

 Declare the size of variable partitions.

 Declare the size of value partitions.

int numVarPartitions = 2;
vector<int> varPartitionSize (numVarPartitions);
varPartitionSize[0] = 4;
varPartitionSize[1] = 4;

#include “staticSSB.h”

CORNFLOWER LIBRARY

Page 38

 Declare the minimum and the maximum value that is possible among the domains of all
variables.

 Define an Ilog environment, model and solver.

 Create decision variables. The domains of the variables not necessarily have to be
between the minimum and the maximum value. They can be a smaller subset too.

 You can decide the order of variable partitions in the value signatures.

int numValPartitions = 2;
vector<int> valPartitionSize (numValPartitions);
valPartitionSize[0] = 3;
valPartitionSize[1] = 3;

IloEnv env;
IloModel model(env);
IloSolver solver(model);

IloArray<IloIntVarArray > variables (env, numVarPartitions)

for(i=0; i < numVarPartitions; i++)
{
 for(i=0; i < g.getNumTerminals(); i++)
 {
 variables[i] = IloIntVarArray(env,

partitionSize[i],
minValue,
maxValue);

 }
}

vector<int> signatureOrder (numVarPartitions);
signatureOrder [0] = 0;
signatureOrder [1] = 1;

int minValue = 1;
int maxValue = 6;

CORNFLOWER LIBRARY

Page 39

 Now, you can use static structural symmetry breaking.

staticSSB(env, model, variables,
 minValue, maxValue,
 valPartitionSize,
 signatureOrder);

CORNFLOWER LIBRARY

Page 40

8. References
[1] Daniel Heller, Aurojit Panda, Meinolf Sellmann, Justin Yip
Model Restarts for Structural Symmetry Breaking
Proceedings of the 14th intern. Conference on the Principles nad Prctice of Constraint Programming (CP),
Springer LNCS 5202, pp. 539-544, 2008.

[2] Meinolf Sellmann and Pascal Van Hentenryck
Structural Symmetry Breaking
Nineteenth International Joint Conference on Artificial Intelligence (IJCAI), 2005

[3] Pierre Flener, Justin Pearson, Meinolf Sellmann, Pascal Van Hentenryck
Static and Dynamic Structural Symmetry Breaking
Proceedings of he 12th intern. Conference on the Principles and Practice of Constraint Programming (CP),
Springer LNCS 4204, pp. 695-699, 206

[4] Torsten Fahle, Stefan Schamberger, Meinolf Sellmann
Symmetry Breaking
Proceedings of the 7th intern. Conference on the Principles and Practice of Constraint Programming (CP),
Springer LNCS 2239, pp. 93-107, 2001

CORNFLOWER LIBRARY

Page 41

staticSSB

Category Class

Inheritance Path

Definition File staticSSB.h

Include File <ilsolver/ilosolverint.h>

Description This class provides the staticSSB method to enforce symmetry breaking given the variab

Methods public void staticSSB (&IloEnv, &IloModel,
IloArray<IloIntVarArray> variables, int minValue, int
maxValue, vector<int>valPartitionSize, signatureOrder)

This method modifies a given Ilog Environment and Model based on the provided
variable and value partitions. The method starts by updating the model with static
less than or equal constraints within each variable partition to break variable
symmetries. Then, it uses global cardinality constraint (GCC) to obtain the
cardinality information of the each value within each variable partition. Signatures
are formed for each value using the cardinalities and finally, lexicographic
constraints are added to the model for each value partition to break value
symmetries. The user has the option to decide on the ordering of variable partition
in the signatures.

Method Summary

public void staticSSB(&IloEnv,
&IloModel,
IloArray<IloIntVarArray>
variables,
int minValues,
int maxValues,
vector<int>
valPartitionSize,
signatureOrder)

