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Abstract

Recently, significant efforts have focused on develop-
ing novel data-processing systems to support a new class
of applications that commonly require sophisticated and
timely processing of high-volume data streams. Early work
in stream processing has primarily focused on stream-
oriented languages and resource-constrained, one-pass
query-processing. High availability, an increasingly impor-
tant goal for virtually all data processing systems, is yet to
be addressed.

In this paper, we first describe how the standard high-
availability approaches used in data management systems
can be applied to distributed stream processing. We then
propose a novel stream-oriented approach that exploits
the unique data-flow nature of streaming systems. Using
analysis and a detailed simulation study, we characterize
the performance of each approach and demonstrate that
the stream-oriented algorithm significantly reduces runtime
overhead at the expense of a small increase in recovery time.

1 Introduction

High availability is a key goal of virtually all existing
data management systems [8, 17, 19, 21]. As critical appli-
cations move on to the Internet, providing highly available
services that seamlessly and quickly recover from failures,
is becoming increasingly more important. The standard ap-
proach to achieving high-availability (HA) involves intro-
ducing spare backup servers that take over the operation of
primary servers when the latter fail. In this approach, often
called process pairs [3, 9], each primary server periodically
sends checkpoint messages to its backup. Upon the failure
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of the primary, the backup immediately takes over from the
most recent checkpoint. Process pairs provide single-fault
resilience and a short recovery time but impose a high run-
time overhead due to checkpoints (added processing delays
and bandwidth utilization).

Recently there has been significant activity in the devel-
opment of novel data processing engines: stream processing
engines [1, 2, 4, 5, 15, 18]. The goal of these engines is
to better serve a new class of data processing applications,
called stream-based applications, where data is pushed to
the system in the form of streams of tuples, and queries are
continuously executed over these streams. These applica-
tions include sensor-based environment monitoring (car traf-
fic, air quality), financial applications (stock-price monitor-
ing, ticker failure detection), asset tracking, and infrastruc-
ture monitoring (computer networks, bridges).

Many stream-based applications are inherently dis-
tributed. Significant gains in scalability and efficiency can
be achieved if multiple distributed servers collectively pro-
cess and aggregate data streams as they are routed from their
points of origin to the target applications. To this end, re-
cent attention has also been geared toward extending stream-
processing engines to distributed environments [5, 7].

To achieve high availability in a distributed stream-
processing system (DSPS), one needs to devise a set of al-
gorithms that perform the following tasks: (1) periodically
and incrementally save (or replicate) the state of processing
nodes, (2) detect failures, (3) choose recovery nodes, (4) re-
generate the missing state from the saved state when a failure
occurs, and (5) handle network partitions. In this paper, we
address (1) and (4). We propose a new mechanism to effi-
ciently save the state of any processing node in a DSPS and
re-generate it when a failure occurs.

We first describe how two process-pair-based algorithms
can be adapted to provide high availability in DSPSs: (1)
passive standby: In this approach, each primary server
(a.k.a. node) periodically sends checkpoint messages to a
backup node. For our purposes, these messages contain

1



Active
Standby Passive

Standby

Backup
Upstream

Runtime
Overhead

Recovery Time (msec)

Figure 1. Runtime overhead and recovery time for
various high-availability approaches

the state of each operator and the contents of operator in-
put queues. If the primary fails, the backup takes over from
the last checkpoint; (2) active standby: In this second variant
of process-pairs, each primary node also has a backup node.
Unlike passive standby, the secondary processes all tuples in
parallel with the primary.

Given the high volume of data and the high process-
ing rate found in streaming applications, the overhead of
process-pair-based approaches renders them heavyweight
for stream processing systems. We therefore propose a
new approach, called upstream backup, that exploits the dis-
tributed and streaming nature of the processing in a DSPS
to reduce the runtime operation overhead while trading off
only a small fraction of the recovery time performance. In
this approach, upstream nodes (in the processing flow) act
as backups for their downstream neighbors by preserving tu-
ples in their output queues until their downstream neighbors
have processed them. If any of these neighbors fails, up-
stream nodes replay the logged tuples on a failover node.

Figure 1 illustrates the basic differences among the three
approaches. The traditional process-pair approaches (active
and passive standby) typically incur high overhead at run-
time to achieve short recovery times. The new upstream
backup approach, in contrast, incurs relatively low run-time
cost at the expense of longer recovery times. Recovery times
are in the order of milliseconds for all three approaches.

We use analysis and a detailed simulation study to quan-
titatively characterize these tradeoffs and to comparatively
evaluate the approaches with respect to the overheads they
incur during runtime and recovery. We find that upstream
backup significantly reduces runtime overhead compared
with both types of process-pair-based approaches. We find,
on average, a 95% reduction in bandwidth utilization for
high availability purposes. Using upstream nodes as back-
ups increases recovery time especially compared with ac-
tive standby. Interestingly, we find that the recovery time
of upstream backup is almost identical to that of passive
standby (both approaches re-transmit tuples from upstream
nodes through a recovery node and re-process on average
half a checkpoint interval). The gains in runtime overhead
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Figure 2. Query execution in a DSPS: Multiple
nodes collaborate in solving a query. Each node
runs a subset of operators

therefore more than justify a small increase in recovery time.
The rest of this paper is organized as follows. We pro-

vide some background on stream-processing in Section 2
and describe the high-availability problem in Section 3. We
present the three approaches in Section 4 and evaluate them
in Section 5. We summarize related work and conclude in
Sections 6 and 7.

2 Background

A data stream is a continuous sequence of tuples gener-
ated by a data source. Unlike the “process-after-store” data
in traditional database systems, streaming tuples are gener-
ated in real time and need to be processed as they arrive,
before being stored. Several recent projects [1, 2, 5] aim to
address this fundamental difference and are building stream-
processing systems. We use the Aurora data stream man-
ager [1] as our reference model. Our results, however, are
general and applicable to other stream processing models.

Aurora is a data-flow-oriented system where processing
is represented by a boxes-and-arrows paradigm popular in
most process-flow and work-flow systems. In an Aurora
node, tuples flow through a query-network: a loop-free,
directed graph of processing operators (also called boxes),
such as shown in Figure 2. Ultimately, output streams
are presented to applications. Aurora queries are specified
by application developers (within applications) or users by
means of a GUI tool. In both cases, queries are built from a
standard set of well-defined operators [1].

Aurora is designed to run on a single server. Aurora*
and Medusa [7] are two DSPSs that use Aurora as their core
single-site processing engine. Aurora* and Medusa take
queries destined to Aurora and partition them across mul-
tiple computing nodes and even multiple administrative do-
mains. Figure 2 shows an example of a query distribution
that would occur in a DSPS such as Aurora* or Medusa.
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In this figure, multiple streams arrive from various stream
sources. These streams are first processed by a set of op-
erators at nodes Ni and Nk. Streams resulting from this
processing are then transmitted to node Nj , and to other
nodes. Hence, each node can have multiple output streams
and each output stream can be forwarded to multiple down-
stream neighbors. Since messages flow on a path from Ni

to Nj , Ni is said to be upstream of Nj , and Nj is said to
be downstream of Ni (same for Nk and Nj). Eventually,
tuples entering Nj are processed by operators at Nj and re-
sulting tuples are forwarded to client applications, possibly
on multiple streams.

Streams crossing node boundaries are associated with
output queues, which are used to store tuples temporarily.
Each high-availability approach uses these output queues
differently, as discussed further in Section 4. Operator also
have input queues through which they receive tuples. These
queues are considered to be part of each operator’s state and
are not represented in the figure.

3 Problem Description and Assumptions

Some streaming applications are more tolerant to failures
than most data processing applications. If some data is lost,
say in a sensor-based environmental monitoring application,
the application can safely continue most of the time. Other
streaming applications, however, cannot tolerate data loss,
requiring that all tuples get processed correctly. Most fi-
nancial applications fall into this latter category. Supporting
such applications hence requires the development and im-
plementation of algorithms for high availability, where the
system can recover from node failures without lost tuples or
failed queries. The recovery must also be relatively “fast”,
as most streaming applications operate on data arriving in
real time and expect results to be produced in real time.

In this paper, we investigate high-availability approaches
for a DSPS to survive any single failure without losing tu-
ples and without stopping the processing of any query. Al-
though we focus on single-fault tolerance, we argue that our
approaches are easily extensible to higher degrees of fault
tolerance and provide hints toward this direction.

We describe our problem more precisely as follows. Con-
sider a boxes-and-arrows query-network embedded in an
overlay network of nodes connected over the Internet. Each
node Ni contains a subset of operators from the query-
network. In case of a failure of any node Ni, the goal of the
high-availability algorithm is to be able to re-start the oper-
ators that were running at Ni on a live node Nj and resume
the processing in a manner that results in no lost tuples.

In our analysis, we make the following simplifying as-
sumptions. First, we assume there are no network partitions.
Second, we assume that there are no cycles in the distri-
bution of a query-network across nodes. In reality, we can
avoid cycles by prohibiting their creation when queries are
first set-up and by constraining the location where parts of

any query can be moved upon failure or load re-balancing.
Avoiding cycles prevents a node from accidently becoming
its own backup. Third, the focus of this paper is on tech-
niques to save and recover the state of processing nodes. We
consider failure detection and choice of recovery nodes as
a separate aspect of high availability that is a research issue
on its own and is outside the scope of this paper. Fourth,
in this initial work, we only address operators that oper-
ate on individual tuples; we do not support operators that
require windows or persistent storage. Therefore we sup-
port filter, map, and union operators from Aurora’s language
SQuAl [1]. We plan to address the remaining operators in
future work. Fifth, we assume that data sources themselves
are capable of temporarily storing the tuples they produce
until they receive an acknowledgment from the DSPS.

4 High-Availability Approaches

In this section, we describe three alternate approaches to
achieve single-fault tolerance in a DSPS. We first describe
passive standby, an adaptation of the process-pairs model to
stream processing, where the backup server is passive. We
then introduce our new algorithm called upstream backup.
We finally describe active standby, the second adaptation of
the process-pairs models that also relies on some concepts
introduced in upstream backup. We discuss how each tech-
nique can be extended to support multiple failures. We fi-
nally address the issue of duplicate tuple generation during
recovery.

4.1 Passive Standby

In this section, we discuss process pairs with passive
backup and how they can be applied to a DSPS. We call
our adapted approach passive standby. The Tandem sys-
tem [21], which aims at providing nonstop transaction pro-
cessing, is one example of system that achieves single-fault
tolerance through process pairs [3, 9]: a primary process is
associated with a backup process that will take over when
the primary process fails. To keep the state of both processes
synchronized, the primary sends checkpoint messages to the
backup at critical points during execution.

The main advantage of process pairs is a short failure re-
covery time, achieved by having the backup hold a complete
and recent snapshot of the primary’s state. The main draw-
back is the bandwidth required to the periodic transmission
of possibly large checkpoint messages. Additionally, in pas-
sive standby, the primary sends checkpoint messages to the
backup synchronously to ensure state consistency at the ex-
pense of added delays in normal operations. For instance,
the primary does not commit until the checkpointed data is
available at the backup [19]. It is possible to reduce the
processing delays by making the primary and backup run
asynchronously: the primary does not wait for acknowledg-
ments from the backup before proceeding past a checkpoint.
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This approach, however, may lead to data losses or state in-
consistencies if the primary fails while sending a checkpoint
message to the backup.

To adapt the passive-standby model to a DSPS, we as-
sociate a standby node with each primary node and handle
failures at the granularity of nodes. Each checkpoint mes-
sage should thus contain the state of the query-network run-
ning at a node. This state is captured by: the internal state of
each operator, the contents of operator’s input queues, and
the contents of a node’s output queues. To avoid losing any
tuples that are in-flight between two nodes when a failure
occurs, output queues should preserve tuples until they have
been checkpointed and acknowledged by the downstream
nodes. Furthermore, to reduce the size of checkpoint mes-
sages, downstream nodes can acknowledge tuples only after
they have been processed by the first set of operators, thus
completely avoiding checkpointing the contents of their in-
put queues (except for the identifiers of the latest acknowl-
edged tuples).

The frequency of checkpoint messages, specified by the
checkpoint interval, determines the tradeoff between run-
time overhead and recovery time. Frequent checkpoints
shorten recovery time since less processing needs to be re-
peated but increase runtime overhead by increasing both the
bandwidth used to transmit checkpoint messages and the
processing required to create them.

When a primary fails, the backup takes over and sends all
tuples from its output queues to the primary’s downstream
neighbors. Also, the failed primary’s upstream neighbors
start sending tuples (including those in their output queues)
to the backup, which starts processing them starting from the
latest acknowledged tuples. When the old primary comes
back up, it becomes the new secondary.

4.2 Upstream Backup

Given the significant overhead of process-pair-based ap-
proaches, we propose an alternate model that leverages the
network-flow form of processing to reduce runtime overhead
at the expense of a small increase in recovery time.

In this approach, upstream nodes act as backups for their
downstream neighbors. For instance, in the network shown
on Figure 2, nodes Ni and Nk serve as backups for node
Nj . To serve as backup, each node holds tuples in its output
queues until all its downstream neighbors have completely
processed them. By doing so, if a downstream node fails,
any other node can restore the lost state by replaying the tu-
ples logged by the upstream neighbors. Tuples are trimmed
(i.e., removed) from output queues once they have been fully
processed by all downstream neighbors and tuples result-
ing from that processing have safely been transferred fur-
ther down the network. In Figure 2, nodes Ni and Nk hold
tuples in their output queues until Nj and the other down-
stream neighbors have all safely processed the tuples and
have forwarded resulting tuples to the application. If Nj
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Figure 3. Overview of inter-node communication in
upstream backup

fails, another node, the failover node, can recreate Nj’s state
by re-processing the tuples logged by Ni and Nk.

We assume that the description of the network of opera-
tors running at each node is stored in a distributed catalog
and the failover node uses the information from that catalog
to re-construct the missing network of operators.

With this approach, downstream nodes must periodi-
cally inform their upstream neighbors that it is safe to dis-
card some logged tuples. We call such notifications queue-
trimming messages since their reception results in an up-
stream node trimming its output queue. The difficulty of
generating these notifications is twofold. First, for the ap-
proach to scale and provide fault tolerance in the face of
multiple concurrent failures (as discussed in Section 4.4),
all notifications must be exchanged only between immediate
neighbors. Second, nodes must be able to map every tuple
they produced to the earliest input tuples that were used to
generate these outputs tuples (as discussed in Section 4.2.2).

Figure 3 shows three nodes (Ni, Nj , and App) and a typ-
ical communication sequence. When a node produces tu-
ples, it transmits them to its downstream neighbor and stores
them in its output queue. Periodically, each node acknowl-
edges the tuples it receives by sending a level-0 acknowl-
edgment to its immediate upstream neighbor. The reception
of these messages indicates to a node that some of the tuples
it produced have now been saved at the downstream neigh-
bor. The node, Nj for instance, can then inform its upstream
neighbor (Ni), by sending a level-1 acknowledgment, that
the tuples that contributed to producing the acknowledged
tuples can now be discarded from the upstream neighbor’s
(Ni’s) output queue. Each node trims its output queue when
it receives a level-1 acknowledgment (i.e., a queue-trimming
message). Leaf nodes in the query-processing graph, such as
Nj in Figures 2 and 3, use level-0 acknowledgments to trim
their output queues.

4.2.1 Queue Trimming Protocol

We first describe the details of queue-trimming message
generation and output-queue truncation assuming the exis-
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01. repeat forever
02. wait to receive an ACK(0, So, v) from Ni

03. down bound[0, So, Ni]← v

04. w ← min{down bound[0, So, Ni] : Ni ∈ N}
05. if w > min downbound[0, So]
06. min downbound[0, So]← w

07. ∀Si ∈ Sinput such that ∃ a path from Si to So

08. up bound[0, Si, So]← cause((So, w), Si)
09. x← min{up bound[0, Si, So] : So ∈ Soutput}
10. if x > min upbound[0, Si]
11. min upbound[0, Si]← x

12. acknowledge ACK(1, Si, x)

Figure 4. Algorithm for generating level-1 acknowl-
edgments

tence of a function that determines, for a given node, which
input tuples caused the generation of some output tuples. We
define this function as cause((So, v), Si) → (Si, u), where
Si and So identify streams, and u and v identify tuples on Si

and So respectively. Given an output tuple identifier (So, v)
and an input stream identifier Si, this function returns the
identifier, (Si, u) that marks the beginning of the sequence
of tuples on Si necessary to regenerate (So, v). We defer the
discussion of this function to Section 4.2.2.

To avoid possible loss of tuples in-flight between
neighbors, nodes generate queue-trimming messages only
after tuples have safely been received by all down-
stream neighbors. Level-0 acknowledgments, denoted with
ACK(0, Si, u), are used to confirm tuple reception at the
application level. Each node produces an acknowledgment
for every Mn tuples it successfully receives, every Ms sec-
onds, or whichever occurs first. Intuitively, a lower acknowl-
edgment frequency reduces bandwidth utilization overhead,
but increases the size of output queues and the recovery time.
We analyze this tradeoff in Section 5.

When a node receives level-0 acknowledgments from all
its downstream neighbors on all its output streams, it notifies
its upstream neighbors that the effects of processing some
of their tuples have been saved at all downstream neighbors.
These notifications are called level-1 acknowledgments (de-
noted ACK(1, Si, u)), since using them to trim queues al-
lows the system to tolerate any single failure.

Figure 4 shows the pseudocode of the algorithm for gen-
erating level-1 acknowledgments. Basically, every time all
downstream neighbors on a stream So acknowledge a tuple,
the node maps that tuple back up onto the earliest input tu-
ple, on each input stream, that “caused” it. For each input
stream, the node identifies the most recent tuple whose ef-
fect has propagated in such a manner on all output streams.
The node produces a level-1 acknowledgment for that tuple.

In this figure, we denote with N the set of down-
stream neighbors of a node, and with Sinput and Soutput

the sets of all input and output streams respectively. We

01. repeat forever
02. wait to receive an ACK(1, So, v)
03. down bound[1, Ni, So] = v

04. w← min{down bound[1, Ni, So] : Ni ∈ N}}
05. if w > min downbound[1, So]
06. min downbound[1, So]← w

07. trim output queue for So

up to but excluding min downbound[1, So]

Figure 5. Queue-trimming algorithm performed by
each node

also denote with Si[u], tuple u on stream Si and with
(Si, u), the identifier of that tuple. Each node uses
map down bound[0, So, Ni] to remember, for each output
stream, the latest tuple acknowledged at level-0 by each
downstream neighbor, and min downbound[0, So] to re-
member the latest tuple acknowledged by all these neigh-
bors. Similarly, to keep track of input tuples for which
queue-trimming messages can be issued, each node uses
map up bound[0, Si, So] and min upbound[0, Si].

The detailed algorithm for generating level-1 acknowl-
edgments in Figure 4 proceeds as follows. When a node
receives a level-0 acknowledgment from a neighbor Ni for
a stream So, it updates the value of the last tuple acknowl-
edged by that neighbor on that stream (line 02-03). The
node recomputes the minimum value acknowledged across
all neighbors for that stream (line 04). If the value has in-
creased (lines 05-06), the acknowledged tuple is mapped
onto each input stream Si that contributes to tuples of So.
The values resulting from these mappings are written in
up bound (lines 07-08). The actual tuple that determines
the new trimming bound on each stream Si is the minimum
of all values in up bound, associated with Si (lines 09-11).
The node generates a level-1 acknowledgment (line 12) for
that tuple (as a direct optimization, nodes can also generate
level-1 acknowledgments periodically).

As the upstream neighbor receives level-1 acknowledg-
ments, it trims its output queues up to the maximum values
acknowledged at level-1 by all its downstream neighbors.
Figure 5 shows the detailed algorithm.

Figure 6 illustrates one iteration of the upstream-backup
algorithms on one node. Figure 6(a) shows node Na

receiving level-0 and level-1 acknowledgments from two
downstream neighbors Nb and Nc: ACK(0, S3, 125),
ACK(0, S3, 123), ACK(1, S3, 50), and ACK(1, S3, 55).
Tuple S3[50] has thus been acknowledged by both neigh-
bors at level-1 and can be used to trim the output queue
(Figure 6(b)). Tuple S3[123] has now been acknowledged
by both downstream neighbors at level-0. S3[123] maps
onto input tuples identified with (S0, 200) and (S1, 100)
which can thus be acknowledged at level-1. While pro-
cessing acknowledgments, the node receives tuples S0[901]
and S1[257] from its upstream neighbors. The node can ac-
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Figure 6. One iteration of upstream-backup

knowledge these tuples at level-0, assuming Mn = 1.

4.2.2 Mapping Output Tuples to Input Tuples

To generate appropriate level-1 acknowledgments from
level-0 acknowledgments, a node must map arbitrary out-
put tuples to the earliest input tuples that contributed to
their production, i.e., the node must be able to compute
(Si, u) ← cause((So, v), Si). Such a mapping is operator
dependent. For simple operators such as filters or maps, each
output tuple corresponds directly to an input tuple. For op-
erators that manipulate windows of tuples or preserve some
temporary state, the same approach can also be applied but
only if the operators are able to identify, at any given time,
the first tuple on each of their input streams required to re-
generate their complete current state. For a query-network,
the cause function must yield the oldest (based on a locally
assigned sequence number) input tuple that contributes to
the state of any operator in the network.

The mapping is facilitated by appending queue-trimming
offset-indicators to tuples as they travel through opera-
tors on a node. For any tuple (S, w) (on an intermedi-
ate stream or an output stream), these indicators, denoted
with indicators((S, w)), represent the set of input tuples,
(Si, u), that cause the production of (S, w): each (Si, u) is
the oldest input tuple on Si necessary to generate S[w].

When a tuple Si[u] enters a node, its indicators are thus
initialized to the tuple itself. Figure 7 presents the algorithm

1. At each operator box b

2. for each output tuple produced b.So[v]
3. ∀b.Si ∈ b.Sinput

4. get oldest state-contributing tuple (b.Si, u)
5. if indicators(b.Si, u) = ∅
6. indicators(b.Si, u)← {(b.Si, u)}
7. ∀i ∈ indicators(b.Si, u)
8. indicators(b.So, v)← indicators(b.So, v) ∪ {i}

Figure 7. Algorithm for setting queue-trimming
offset-indicators on output tuples, at each box

for appending and composing indicators. When an operator
b produces a tuple, it determines the oldest tuple in its input
queue that has contributed to the state yielding the produc-
tion of the new tuple (lines 02-04). The operator reads
the indicators from the input tuple and appends them to the
indicators of the output tuple (lines 07-08). The first oper-
ators to see tuples initialize their indicators (lines 05-06).
The last operators to see tuples before they are forwarded
to downstream neighbors (the output operators) keep indi-
cators in output queues, but they do not send them further
(not shown). Operators with multiple inputs append multi-
ple indicators to output tuples, one indicator per input that
actually contributed to the generation of the tuple. For in-
stance, a union operator [1] would only append the indicator
for the stream from which the output tuple was issued.

Applying the cause function thus consists in reading
the set of indicators of a tuple in the output queue: i.e.,
cause((So, v), Si) = {(Sx, y) ∈ indicators((So, v)) :
x = i}. Due to operators such as union, however it
is possible that there exists a path from Si to So but
cause((So, v), Si)) returns an empty set. In that case, the
value used should be the first non-empty set returned by the
cause function for the tuples preceding u on So.

Operators with low selectivity may unnecessarily delay
queue-trimming by producing offset-indicators at a coarse
granularity. To avoid this problem, these operators may in-
troduce flow tuples (i.e., null output tuples) which are for-
warded unchanged through all the operators and only serve
the purpose of reducing the granularity of queue trimming.
Flow tuples are not forwarded to downstream neighbors.

Figure 6 shows an example of executing the offset-
indicator management algorithm. In Figure 6(a), the
filter operator produces tuple S2[500] which corresponds
to the previously received input tuple S0[900]. Hence,
indicators((S2, 500)) = {(S0, 900)}. In Figure 6(b), the
union operator processes tuples S2[500] and S1[257] to
produce S3[187] and S3[188] respectively. These tuples are
forwarded to downstream neighbors and placed in the output
queue. Moreover, indicators((S3, 187)) = {(S0, 900)}
and indicators((S3, 188)) = {(S1, 257)}. Therefore,
cause((S3, 188), S0) = (S0, 900), cause((S3, 188), S1) =
(S1, 257), and cause((S3, 187), S0) = (S0, 900).
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cause((S3, 187), S1) depends on the indicators on the
tuples preceding S3.

4.3 Active Standby

Finally, the last approach that we study is a variation of
process pairs but uses some features of upstream backup.
We call this approach active standby. Similarly to passive
standby, each processing node has a dedicated secondary
node. Unlike passive standby, however, secondary nodes
actively obtain tuples from their primaries’ upstream neigh-
bors and process them in parallel with their primaries.

The main advantage of active standby is its faster recov-
ery time compared with passive standby. In active standby,
when a backup node takes over, it does not need to repeat
all processing since the last checkpoint, because it kept pro-
cessing tuples even when the primary was down. This ad-
vantage, however, comes at the cost of using extra band-
width for sending input tuples to the secondary and using
extra processing power for duplicating all processing.

In active standby, secondary nodes log the tuples they
produce in output queues without sending them. These tu-
ples are discarded only when the primary node delivers all
the corresponding tuples to its downstream neighbors. If
the primary fails, the secondary takes over and re-sends the
logged tuples to all downstream neighbors.

Since the primary and secondary may schedule opera-
tors in a different order, they might have different tuples in
their output queues. This makes the task of bounding output
queues at the secondary particularly difficult. We tackle this
problem by exploiting queue-trimming offset-indicators in-
troduced in Section 4.2.2. When a primary receives a level-
0 acknowledgement from all its downstream neighbors on
a stream, it extracts the offset-indicators from the acknowl-
edged tuples and uses them to compose a queue-trimming
message for the secondary node. When the secondary re-
ceives that message, it retrieves the trimming bound for each
output queue and discards the appropriate tuples.

We use the example from Figure 6 to illustrate active
standby. When ACK(0, S3, 125) and ACK(0, S3, 123)
arrive, node Na determines that S3[123] is now acknowl-
edged at level-0 by both downstream neighbors. Since tu-
ple S3[123] maps onto input tuples identified with (S0, 200)
and (S1, 100), the set of identifiers {(S0, 200), (S1, 100)}
is added to the queue-trimming message as the entry value
for S3. When the secondary receives the queue-trimming
message, it discards tuples u (from the output queue corre-
sponding to S3) for which both cause((S3, u), S0) returns a
tuple older than (S0, 200) and cause((S3, u), S1) returns a
tuple older than (S1, 100).

4.4 K-safety

Tolerance to single failures significantly increases the
availability of a system. However, circumstances may arise

where multiple nodes fail concurrently (an error in a recent
upgrade, a large-scale natural catastrophe, or even an un-
likely coincidence). All approaches described above can be
extended to provide a higher degree of fault tolerance, al-
lowing the system to survive concurrent failures of up to K

nodes. We call such resilience K-safety.
To achieve K-safety with passive or active standby, K

backup nodes must be associated with each primary node.
Each backup must receive checkpoint messages or must
process tuples in parallel with the primary. To extend the
upstream-backup approach to K-safety, each node must pre-
serve tuples in its output queues until they have been pro-
cessed by K consecutive nodes on all K-length downstream
paths. To do so, level-1 acknowledgments must be used
to generate level-2 acknowledgments, and so on until a
node receives a level-K acknowledgment. Only level-K ac-
knowledgments are actually used to trim output queues.

Even with some optimizations, the overhead of high
availability grows linearly with K for all approaches: the
number of checkpoint messages or the number of acknowl-
edgments is proportional to K. For the upstream-backup
model, however, the rate of the increase is much lower since
the basic single-fault-tolerance overhead is low. This ap-
proach is thus better suited to achieve higher fault tolerance.

4.5 Duplicate Tuples

All three approaches may generate duplicate tuples dur-
ing failure recovery. With passive standby, when the sec-
ondary takes over, it resends all tuples not yet acknowledged
at the moment of the last checkpoint. Since the primary
could have failed after sending these tuples, they might be
received twice by downstream nodes. Duplicates, however,
are trivial to eliminate using the tuple identifiers, because the
tuples are exactly the same as the original ones.

For upstream backup, duplicate elimination is somewhat
more involved. When a failure occurs, the backup node re-
processes all tuples logged in the output queues and pro-
duces new tuples. These new tuples have the same content
as the original ones, but they may appear in a different order.
Duplicate elimination is therefore most easily performed by
the client itself in an application-specific manner. We do not
address duplicate elimination in this paper.

Active standby also does not guarantee that primary and
secondary nodes are always in exactly the same state. Al-
though both the primary and secondary nodes process tuples
in parallel, they may schedule operators in a different order.
During recovery, the active-standby approach may therefore
generate duplicate tuples, as in the case of upstream backup.

5 Evaluation

In this section, we use analysis and simulation to evaluate
and compare the basic runtime overhead and recovery-time
performance of the three high-availability approaches.
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Parameter Meaning Value

Stream Rate (tu-
ples/sec)

# of tuples generated by a stream
source per sec.

500

Tuple Processing
Cost (microsec.)

Time for an Aurora box to process
one tuple

10

Tuple Size (bytes) Size of a tuple 50
Tuple Identifier Size
(bytes)

Size of a tuple identifier 8

Selectivity For each box the expected value of
# of output tuples emitted

# of input tuples consumed

variable

Network Delay (mil-
lisec.)

Network link latency between any
pair of nodes

5

Network Bandwidth
(Mbps)

Bandwidth between any pair of
nodes

8

Failure Detection
Delay (millsec.)

Delay to detect the failure of a node 100

Failure Duration
(sec.)

Time for a failed node to recover 100

Queue-Trimming In-
terval (millisec.)

Time interval between consecu-
tive queue-trimming messages (up-
stream backup, eager standby)

variable

Checkpoint Interval
(millisec.)

Time interval between consecutive
checkpoint messages (process-pair)

variable

Table 1. Simulation parameters

Measure Meaning

Processing
Delay (millisec.)

Time difference between the moment an output tu-
ple t was produced and the moment the earliest tu-
ple that contributed to generating t was produced.

Partial Recovery
Time (millisec.)

Time interval between the detection of a failure and
the reception of the first non-duplicate tuple by a
node (or application) downstream from the failure.

Full Recovery
Time (millisec.)

Time interval between the detection of a failure and
the moment when the tuple end-to-end processing
delay returns to the pre-failure value.

Relative HA
Overhead

total data transferred for high availability
total data transferred for tuple processing

Table 2. Measured statistics

5.1 Simulation Environment

We built a detailed simulator modeling a distributed
stream-processing environment. The simulator, imple-
mented using CSIM [16], models (1) stream sources that
continuously generate tuples and inject them into the sys-
tem, (2) processing nodes on which operators, specified as
part of query networks, process tuples and produce new tu-
ples, and (3) client applications that act as tuple sinks. Each
experiment was run for five simulation minutes for warm-up
and another 10 simulation minutes for statistics collection.
Unless indicated otherwise, each point shown in a figure is
an average result of 25 independent simulation runs. Tables
1 and 2 summarize the simulation parameters and the mea-
sured statistics that we use as metrics, respectively.

5.2 Basic Runtime Overhead

We first compare the overhead of the approaches using
a simple scenario, where the system consists of only two
nodes, one upstream from the other. Each node runs a single

Parameter Values Default

Selectivity 0.2, 0.4, 0.6, 0.8, 1.0 1.0
Q. Tr. Interval (millisec.) 10, 20, 40, 60, 80, 100 10
Checkpoint Interval (millisec.) 10, 20, 40, 60, 80, 100 10

Table 3. Parameters values used in simulations
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Figure 8. High-availability overhead for various
queue-trimming or checkpoint intervals. The 8%
to 100% range on the y-axis is removed for clarity.

operator with a single output stream. Table 3 summarizes
the parameter values used for this micro-benchmark. We
measure the overhead during normal operation.

The main component of overhead is the bandwidth re-
quired to transmit checkpoint or queue-trimming messages.
Output queues also contribute to overhead, but since queue
sizes and bandwidth utilization are inversely proportional
and are both determined by queue-trimming intervals, we
focus our overhead analysis on bandwidth utilization only.
Longer output queues also translate into longer recovery
times which we analyze in the following section.

Figure 8 shows the relative high-availability overhead for
each approach when all parameters have their default val-
ues and selectivity is 1.0. The y-axis represents the over-
head computed as the ratio (%) of bandwidth used for high
availability purposes over the bandwidth used without high
availability. Since the overhead increases with increasing
checkpoint or queue-trimming-message frequency, we com-
pute the overhead for various communication intervals (x-
axis) between such messages. The figure shows that passive
and active standby incur almost the same overhead (100% to
110%), which is significantly greater than that of upstream
backup (less than 10%).

These results can be explained as follows. Since the
node runs a single operator, for passive standby each check-
point message contains the set of tuples produced in the last
checkpoint interval Ms as well as the identifier of the last
tuple acknowledged by all downstream neighbors (i.e., the
head position in the output queue). Therefore, all tuples pro-
duced are transferred to the backup creating a 100% over-
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head. The additional overhead is due to the transmission of
the head positions (from primary to secondary) and input-
tuple acknowledgements (from primary to upstream node).
Both are generated every Ms seconds. Assuming that x is
the size of tuple identifiers used for head positions and ac-
knowledgements, the total overhead is then:

Bpassive standby =
λcMs + 2x

λcMs

= 1 +
2x

λcMs

= 1 +
α

λMs

(1)

where c is the tuple-size and λ is the tuple arrival-rate.
λcMs is the byte-wise amount of tuples received and pro-
duced during the time-interval Ms. A shorter checkpoint
interval, thus increases overhead by sending queue head-
positions and acknowledgements more frequently.

In active standby, input tuples sent to the primary are also
sent to the backup, causing a 100% overhead in bandwidth
utilization. Additionally, every Ms sec a queue-trimming
message is sent from primary to secondary and acknowl-
edgements are sent from both primary and secondary to the
primary’s upstream neighbor. Active-standby’s overhead is
thus just a little over that of passive standby for the scenario
simulated (one extra x-byte identifier sent every Ms sec).

In contrast, in upstream backup, only one level-0 and
one level-1 acknowledgement, per stream crossing a node
boundary, are sent every Ms seconds. The overhead is thus:

Bupstream backup =
2x

λcMs

=
α

λMs

(2)

The key advantage of upstream backup is therefore to avoid
sending duplicate tuples to backup nodes.

5.3 Basic Recovery Time

We now consider the time to recover from single failures.
We use the same network configuration as above: one node
upstream of one other, each node running one operator. We
simulate the failure of the downstream node and the recovery
of the failed piece of Aurora network on a third spare node.1

We analyze the end-to-end tuple delay during failure and
recovery and measure the recovery times (as defined in Ta-
ble 2) of each approach. Figures 9 and 10 present the results
obtained. In Figure 9, each point represents a tuple: the x-
coordinate indicates the time when the application receives
the tuple, with the failure occurring at time 0 sec. The y-
coordinate represents the end-to-end processing delay of the
tuple. Using active standby as illustration, the figure also
summarizes the main parameters of recovery. When a fail-
ure occurs, it takes D msec before the failure is detected
(100 msec in the simulation). Once recovery starts, it takes
P msec, the partial recovery time, for the application to re-
ceive the first non-duplicate tuple. It takes R msec for the
end-to-end tuple delay to go back to its value before failure.
At that point, the recovery is fully completed.

1In passive standby and active standby, when a node fails, its query-
network is recovered on a pre-assigned backup node. In upstream backup,
recovery can be performed on any node. For fairness, we choose to recover
on a spare node as well.
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Figure 9. Dynamics of failure-recovery. The time
interval between 0 msec and 100 msec on the x-
axis is shortened for clarity.

The duration of partial recovery is determined by three
factors: (1) the time to re-create the query network of the
failed node, (2) the delay, K, before the first recovered tuple
reaches the node downstream from the failure, and (3) the
amount of time it takes to re-generate and re-transmit all du-
plicate tuples. For (1), we assume that the time is included
in the failure detection delay. For (3), we assume that tu-
ple processing is much faster than tuple transmission. The
partial recovery time is thus given by:

P = K +
Qc

B
(3)

where Q is the number of duplicate tuples; c is the tuple size;
and B is the network bandwidth.

For upstream backup, K is the sum of (i) the transmission
delay from upstream node to recovery node, (ii) the process-
ing delay at the recovery node, and (iii) the transmission de-
lay from recovery node to destination. For active standby, K
is only (iii), because the backup node keeps processing tu-
ples while the failure is being detected. For passive standby,
K can be either the same as active standby or the same as
upstream backup, depending whether the primary failed be-
fore or after transmitting its output tuples.

For upstream backup and active standby, Q is deter-
mined by the queue-trimming interval and by network de-
lays. Since level-0 acknowledgements are generated every
Ms seconds, there are on average Msλ

2
un-acknowledged tu-

ples. Even for Ms = 0 there is a constant delay between
tuple production and the reception of their level-0 acknowl-
edgements. With a d sec network delay, a λ tuples/sec ar-
rival rate, and assuming level-1 acknowledgements are trig-
gered by level-0 acknowledgements, the average number of
duplicate tuples in output queues is thus:

Q =
Msλ

2
+ 2dλ (4)
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Figure 10. Impact of increasing communication in-
terval on full recovery time

For passive standby, if the primary fails after sending its out-
put tuples, all tuples re-processed since the last checkpoint
are duplicates. Hence, Q is approximately Msλ

2
on average.

The results confirm that active standby has the shortest
partial recovery time (≈ 4 msec) and upstream backup has
the longest (≈ 9 msec). The results presented in that figure
show exactly one run. In that experiment, when the fail-
ure occurred, the output queue of the backup node in pas-
sive standby contained non-duplicate tuples making partial
recovery the same as that of active standby.

Once a failure is detected, the full recovery time is the
amount of time it takes for the output-queue draining pro-
cess to catch up with the queue-filing process. Roughly, the
output queues are drained at network transmission speed ( B

c

tuples/sec) and are filled up at λ tuples/sec. The difference
between the two values determines the slope of the curve.
Hence, the full recovery time is determined by the detection
delay (and whether tuples are processed or accumulated dur-
ing that time), the partial recovery time, and the slope of the
recovery curve.

Figure 10 shows the full recovery time (y-axis) of each
approach for various queue-trimming or checkpoint inter-
vals (x-axis). As the communication interval increases, Q

increases, lengthening the partial recovery time P and thus
the full recovery time. More importantly, when the com-
munication interval is doubled, the runtime overhead of up-
stream backup is halved (Figure 8), but its recovery time
(Figure 10) increases only linearly. For instance, when Ms

increases from 40 msec to 80 msec, the overhead drops
from 2% to 1% while the recovery time increases only from
12.5 msec to 14 msec). For the other approaches, recovery
time also increases linearly with the communication inter-
val, but the overhead remains roughly constant above 100%.

Finally, Figure 11 summarizes the tradeoffs between run-
time overhead and recovery time. Each point on a curve cor-
responds to a different communication interval. The figure
shows that, compared with active standby, upstream backup
increases failure-recovery time approximately from 8 msec
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Figure 11. Tradeoffs between relative HA overhead
and full recovery time

# boxes (1.0 selectivity) 1 4 9 16 25
overhead (%) 106.3 109.4 112.4 115.7 118.7

selectivity (25 boxes) 1.0 0.8 0.6 0.4 0.2
overhead (%) 118.5 98.8 78.3 57.1 33.2

Table 4. Impact of query-network complexity on
passive-standby overhead. The overheads of ac-
tive standby and upstream backup remain constant
at 110% and 6% respectively

to 12 msec for a query network consisting of one operator.
The increase is even smaller compared with passive standby
(11 msec to 12 msec only). If we include the failure de-
tection delays, which are significantly longer, the added re-
covery time becomes negligible: the total recovery increases
from 108 to 112 msec. On the other hand, upstream backup
reduces runtime overhead by approximately 95% compared
with both approaches. It is therefore the only approach
that makes it possible to achieve good recovery-time per-
formance with a relatively small overhead.

5.4 Effects of Query-Network Size and Selectivity

Table 4 shows the impact of varying the number of op-
erators and operator selectivity on the overhead of passive
standby. The overhead of the other approaches is indepen-
dent of these factors. Boxes had a fanout of 1 (i.e, each
box had a single output arc) and were placed such that the
query network had roughly the same width and depth. As
the number of boxes increases, passive standby consumes
more bandwidth and quickly exceeds the overhead of active
standby (crossing point is at four operators in the simula-
tion). Indeed, in passive standby, each checkpoint message
includes the content of each operator’s input queue and the
node output queues. In active standby, in contrast, only du-
plicate input tuples are sent to the backup.

Unlike the other approaches, passive standby is able to
exploit operator selectivity, incurring lower runtime over-
head with decreasing selectivity. Since passive standby does
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Figure 12. Tradeoffs between distribution overhead
and recovery time

not include input queues in checkpoint messages, tuples
dropped due to selectivity never appear in checkpoints, thus
lowering the overhead.

Independently of configuration, though, the overhead of
upstream backup is significantly lower than those of the
other two approaches.

5.5 Effects of Query-Network Distribution

Finally, Figure 12 shows the increase in bandwidth uti-
lization (y-axis) as a query network of 100 boxes is spread
across increasing numbers of primary nodes (4, 16, 36, 64,
and 100). The overhead is normalized by the bandwidth
used by upstream backup with 4 nodes. The figure also
shows how distribution decreases recovery time (x-axis),
since any failure requires recovering a query network with
fewer operators and fewer input queues. We recovered failed
query-networks on spare backup nodes for active standby
and passive standby, but on randomly chosen live nodes for
upstream backup, making the comparison unfavorable to the
latter (resulting in slightly longer recovery times).

Upstream backup gains most from distribution: small-
est bandwidth utilization increase (maximum 900% vs
1800% for active standby) for largest recovery time de-
crease (36 msec down to 7 msec). Indeed, for the process-
pair based approaches, any additional node requires up to
twice as much bandwidth as one additional node in upstream
backup. Active standby does not benefit from distribution at
all since recovery does not involve re-processing. For the
other two approaches, distribution helps most when the load
is high: when going from 4 to 16 nodes, full recovery is re-
duced from 36 msec to 15 msec for upstream backup and
from 23 msec to 12 msec for passive standby.

In conclusion, the evaluation shows that active standby
incurs by far the highest overhead of all the approaches, but
at the benefit of short recovery times. Passive standby in-
curs a somewhat lower overhead, but the overhead of that
approach is more difficult to predict as the effects of number
of operators and selectivities on overhead are opposite. Up-
stream backup is by far the lightest of all three approaches,

in all configurations. Its recovery-time performance is worse
than that of active standby but similar to that of passive
standby. In all cases, recovery is however dominated by fail-
ure detection. In our experiments, actual recovery durations
are in the order of 10s msec whereas failure detection is in
the order of 100s msec. Increasing detection and recovery
from approximately 105 msec to 115 msec makes the recov-
ery overhead incurred by upstream backup almost negligi-
ble.

For each approach, the tradeoff between overhead and re-
covery time can be somewhat adjusted by varying the com-
munication intervals between nodes. Since overhead is in-
versely proportional to the communication interval whereas
recovery time is directly proportional to it, a value at the
knee of the overhead/recovery-time curve is a good tradeoff.

6 Related Work

Recently, there has been much work on data-stream pro-
cessing (e.g., [1, 4, 5, 18, 20]). In addition to Aurora, which
we discuss in Section 2, NiagaraCQ [6], STREAM [18] and
TelegraphCQ [5] are also building general purpose stream
processing engines. Although we discuss our approaches in
the context of Aurora, our basic findings are general.

More recently, there have been proposals that extend
single-server stream processing systems to distributed mod-
els and environments. The fundamental idea behind Aurora*
and Medusa [7] is to transparently partition the logical Au-
rora processing network into multiple sub-networks and ex-
ecute them on distributed machines to increase system scal-
ability, robustness, and performance.

This paper discusses approaches for enhancing the avail-
ability of DSPSs such as Aurora* or Medusa. High avail-
ability has traditionally been achieved using two basic tech-
niques. In the first approach, often called process pairs, mul-
tiple copies of the same data are stored on disks attached
to separate processors. When one copy fails, another takes
overs. Examples of this approach include mirrored disks
(e.g. Tandem) [21], interleaved de-clustering, and chained
de-clustering [11]. In the second approach, which is not di-
rectly applicable to a DSPS, data and corresponding error
detection/correction information are spread across an array
of disks [10]. When errors are discovered, this redundant
information is used to restore the data.

Similarly to other data management systems [8, 17, 19],
many commercially available workflow systems [12] rely on
redundant components to achieve high availability. A vari-
ation of the process-pairs approach is used in the Exotica
workflow system [13]. Instead of backing up process states,
Exotica logs changes to the workflow components, which
store inter-process messages. This approach is similar to
upstream backup in that the system state can be recovered
by reprocessing the component backups. Unlike upstream
backup, however, this approach does not take advantage of
the data-flow nature of processing, and therefore has to ex-
plicitly back up the components at remote servers.
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The DR scheme [14], which efficiently resumes failed
warehouse loads, is similar to upstream backup. Instead of
offset-indicators, DR uses output tuples and properties of
operators to compute, during recovery, the trimming bounds
on input streams. In contrast to DR, our scheme supports in-
finite inputs by trimming output queues at runtime. We also
support failure recovery at the granularity of nodes instead
of the whole system. We do not require that input streams
have any property such as order on some attribute.

7 Conclusions

Many stream-oriented applications are mission critical
and demand high availability. Previous work in stream-
processing has focused on performance and language is-
sues, ignoring equally important issues that revolve around
achieving high availability. This paper presents an initial
step toward high availability in stream-processing systems.

We have argued that the streaming characteristics of our
target systems and applications raise a number of interest-
ing challenges and opportunities. We discussed how tradi-
tional availability approaches can be adapted to distributed
stream-processing environments. We also described a new
stream-oriented approach that leverages the data-flow nature
of distributed stream processing.

We compared our approaches using analysis and simu-
lation across a variety of configurations. Our results quan-
titatively characterized the runtime vs. recovery-time over-
heads of the approaches. In particular, the results revealed
that while traditional approaches can be effectively used to
achieve low recovery times, exploiting the natural flow of
data can significantly reduce runtime overheads (at the ex-
pense of a small increase in recovery times). We believe that,
given the continuous and network-centric nature of stream-
processing applications and the ever-improving hardware re-
liability factors, protocols that optimize for runtime messag-
ing overhead will be increasingly more desirable.

There are several immediate directions for future re-
search. First, we plan to provide support for more complex
operators that include windows and persistent storage. Sec-
ond, we plan to address the choice of failover nodes, which
is a non-trivial problem as solutions need to take into ac-
count potentially conflicting goals such as balancing load
and preserving query locality. Finally, we plan to implement
and deploy our approaches, in the context of Aurora* and
Medusa, to verify their practicality and effectiveness.
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