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1 Introduction 
Applications that deal with potentially unbounded, 
continuous streams of data are becoming increasingly 
popular due to a confluence of advances in real-time, 
wide-area data dissemination technologies and the 
emergence of small-scale computing devices (such as 
GPSs and micro-sensors) that continually emit data 
obtained from their physical environment. Example 
applications include sensor networks, position tracking, 
fabrication line management, network management, and 
financial portfolio management. All these applications 
require timely processing of large volumes of continuous, 
potentially rapid and asynchronous data streams.  

We have designed a system called Aurora [2], a data 
stream manager that addresses the performance and 
processing requirements of stream-based applications. 
Aurora supports multiple concurrent continuous queries, 
each of which produces results to one or more stream-
based applications. Each continuous query consists of a 
directed acyclic graph of a well-defined set of operators 
(or boxes in Aurora terminology). Applications define 
their service expectations using Quality-of-Service (QoS) 
specifications, which guide Aurora’s resource allocation 
decisions.  

A key component of Aurora, or any data stream 
management architecture for that matter, is the operator 
scheduler that decides which operators to execute and 
how long to execute them. A naïve approach to 
scheduling would pick a tuple to run through an operator, 
schedule that operator, then loop back to pick another 
tuple. For operators with very low execution costs (e.g. 
filter or union), this tuple-at-a-time approach would 
experience serious performance problems because it does 
not take various execution and scheduling overheads into 
account. When operator costs are low, such overheads 
become dominant and scheduling without considering 
overhead leads to system degradation.  

In this paper, we present a glimpse into our scheduling 
model which is designed to take advantage of our 
overhead reducing techniques. We also discuss the 
specific overheads encountered during initial 
development of our Aurora prototype. We have not found 
other stream management systems that take these 
overheads into account for scheduling. 

2 Operator Execution Model 
The traditional model for structuring database servers is 
thread-based execution, which is supported widely by 
traditional programming languages and environments. 
The basic approach is to assign a thread to each query or 
operator. The operating system (OS) is responsible for 
providing a virtual machine for each thread and 
overlapping computation and I/O by switching among the 
threads. The primary advantage of this model is that it is 
very easy to program, as the OS does most of the job. On 
the other hand, especially when the number of threads is 
large, the thread-based execution model incurs significant 
overhead due to cache misses, lock contention, and 
switching. More importantly for our purposes, the OS 
handles the scheduling and does not allow the overlaying 
software to have fine-grained control over resource 
management.  

We suggest using a state-based execution model. In 
this model, there is a single scheduler thread that tracks 
system state and maintains the execution queue. The 
execution queue is shared among a small number of 
worker threads responsible for executing the queue 
entries, where each entry is a sequence of operators 
belonging to a (sub-)query. This state-based model avoids 
the mentioned limitations of the thread-based model, 
enabling fine-grained allocation of resources according to 
application-specific targets (such as QoS). Furthermore, 
this model also enables effective batching of operators 
and tuples, which we expect to have a significant effect 
on system performance as it cuts down the scheduling 
and box execution overheads. 

An important challenge with the state-based model is 
that of designing an intelligent but low-overhead 
scheduler. In this model, the scheduler becomes solely 
responsible for keeping track of system context and 
deciding when and for how long to execute each operator. 
In order to meet application-specific QoS requirements, 
the scheduler should carefully multiplex the processing of 
multiple continuous queries. At the same time, the 
scheduler should try to minimize the system overheads, 
time not spent doing “useful work” (i.e., processing), 
with no or acceptable degradation in its effectiveness. 
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3 Reducing Overhead with Scheduling 
We have built a prototype of Aurora based on the state-
based model. Building the prototype rather than a 
simulator has enabled us to understand the actual system 
overheads involved in scheduling continuous queries (and 
their respective operators) for streaming data. Overheads 
fall into two categories: (1) the amount of processing 
overhead per tuple required to execute an operator 
(ideally, we want only to execute the operator, however, 
there is overhead associated with each operator execution 
including scheduling, box invocation, and queuing 
operations); (2) the number of times the stream 
management system goes to disk for each tuple 
processed. This second overhead is only relevant for 
memory-constrained systems requiring disk storage. 

Our approach to overhead reduction takes advantage of 
batching. We use batching in two ways: The first 
approach, which we refer to as train-scheduling, 
schedules batches (or trains) of tuples within a single box 
execution. This reduces the total number of box 
executions required to process the tuples, thereby 
reducing overhead associated with scheduling, calls to 
box code, and context switches. Also, train-scheduling 
improves memory utilization by reducing the number of 
times tuples are moved between memory and disk. 

The second approach to batching that we suggest is 
superbox-scheduling where a sequence of boxes is 
scheduled as a group. This can reduce overhead in two 
significant ways. First, scheduling overhead is reduced 
since multiple boxes are scheduled as a single unit. 
Second, memory utilization can be improved by 
allocating memory for the entire superbox at once rather 
than for each operator execution. 

We suggest using a multi-level scheduling approach to 
address the execution of multiple simultaneous queries 
while also accommodating superboxes and trains. A first-
level decision involves inter-query scheduling; i.e., 
determining which (sub-)query, or superbox, to process. 
This entails dynamically assigning priorities to queries, 
according to tuple train opportunities and QoS 
specifications. Sharing of operators (sub-queries) makes 
this decision much more interesting. A second-level 
scheduling decision involves intra-query scheduling 
(deciding how the selected query should be processed). 
This decision entails choosing the order in which tuple 
trains will be pushed through component operators. The 
outcome of these decisions is a sequence of operators, 
referred to as a scheduling plan, to be executed one after 
another. The scheduling plan is inserted into the 
execution queue to be later picked up and executed by 
one of the worker threads. 

Our initial implementation of this two-level scheduling 
model has revealed significant improvements in overhead 
reduction. This is seen in terms of tolerance to increasing 
loads. We observed that using train-scheduling over a 
simple tuple-at-a-time approach yields significant 
performance improvements in terms of both memory 

usage and processing overhead. Also, pushing tuple-
trains through superboxes allows our prototype to handle 
higher loads by further reducing scheduling overhead and 
improving upon memory utilization. 

4 Ongoing work 
An interesting tension exists between user expectations 
(latency-based QoS goals) and system throughput. Very 
high throughput can be achieved by allowing tuples to 
queue up at the inputs to a stream management system, 
however, this causes higher latencies which, in turn, 
lowers result utilities. This could create an interesting 
tradeoff between our batching techniques and user 
expectations. We plan to study our approaches in a QoS 
framework. The challenge is to find the correct degree of 
batching to meet QoS goals while achieving high 
throughput. 

5 Related Work 
We have begun to study the various scheduling 
techniques in more detail and provide initial results in [3]. 
We refer the reader to that paper for a detailed discussion 
of related work. 

Of particular note is Eddies [1] tuple-at-a-time 
scheduling  which provides extreme adaptability but has 
limited scalability. Also, work on continuous queries by 
Viglas and Naughton [5] discusses rate-based query 
optimization for streaming wide-area information sources 
in the context of NiagaraCQ. The primary scheduling 
goal of STREAM involves the minimization of the 
intermediate queue sizes [4]. None of these projects 
consider the overheads discussed here. 
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