
 1

Reducing Execution Overhead in a Data Stream Manager

Don Carney┼, Uğur Çetintemel┼, Alex Rasin┼, Stan Zdonik┼

Mitch Cherniack§, Mike Stonebraker±

┼Department of Computer Science, Brown University
§Department of Computer Science, Brandeis University

±Laboratory for Computer Science & Department of EECS, Massachusetts Institute of Technology

1 Introduction
Applications that deal with potentially unbounded,
continuous streams of data are becoming increasingly
popular due to a confluence of advances in real-time,
wide-area data dissemination technologies and the
emergence of small-scale computing devices (such as
GPSs and micro-sensors) that continually emit data
obtained from their physical environment. Example
applications include sensor networks, position tracking,
fabrication line management, network management, and
financial portfolio management. All these applications
require timely processing of large volumes of continuous,
potentially rapid and asynchronous data streams.

We have designed a system called Aurora [2], a data
stream manager that addresses the performance and
processing requirements of stream-based applications.
Aurora supports multiple concurrent continuous queries,
each of which produces results to one or more stream-
based applications. Each continuous query consists of a
directed acyclic graph of a well-defined set of operators
(or boxes in Aurora terminology). Applications define
their service expectations using Quality-of-Service (QoS)
specifications, which guide Aurora’s resource allocation
decisions.

A key component of Aurora, or any data stream
management architecture for that matter, is the operator
scheduler that decides which operators to execute and
how long to execute them. A naïve approach to
scheduling would pick a tuple to run through an operator,
schedule that operator, then loop back to pick another
tuple. For operators with very low execution costs (e.g.
filter or union), this tuple-at-a-time approach would
experience serious performance problems because it does
not take various execution and scheduling overheads into
account. When operator costs are low, such overheads
become dominant and scheduling without considering
overhead leads to system degradation.

In this paper, we present a glimpse into our scheduling
model which is designed to take advantage of our
overhead reducing techniques. We also discuss the
specific overheads encountered during initial
development of our Aurora prototype. We have not found
other stream management systems that take these
overheads into account for scheduling.

2 Operator Execution Model
The traditional model for structuring database servers is
thread-based execution, which is supported widely by
traditional programming languages and environments.
The basic approach is to assign a thread to each query or
operator. The operating system (OS) is responsible for
providing a virtual machine for each thread and
overlapping computation and I/O by switching among the
threads. The primary advantage of this model is that it is
very easy to program, as the OS does most of the job. On
the other hand, especially when the number of threads is
large, the thread-based execution model incurs significant
overhead due to cache misses, lock contention, and
switching. More importantly for our purposes, the OS
handles the scheduling and does not allow the overlaying
software to have fine-grained control over resource
management.

We suggest using a state-based execution model. In
this model, there is a single scheduler thread that tracks
system state and maintains the execution queue. The
execution queue is shared among a small number of
worker threads responsible for executing the queue
entries, where each entry is a sequence of operators
belonging to a (sub-)query. This state-based model avoids
the mentioned limitations of the thread-based model,
enabling fine-grained allocation of resources according to
application-specific targets (such as QoS). Furthermore,
this model also enables effective batching of operators
and tuples, which we expect to have a significant effect
on system performance as it cuts down the scheduling
and box execution overheads.

An important challenge with the state-based model is
that of designing an intelligent but low-overhead
scheduler. In this model, the scheduler becomes solely
responsible for keeping track of system context and
deciding when and for how long to execute each operator.
In order to meet application-specific QoS requirements,
the scheduler should carefully multiplex the processing of
multiple continuous queries. At the same time, the
scheduler should try to minimize the system overheads,
time not spent doing “useful work” (i.e., processing),
with no or acceptable degradation in its effectiveness.

2

3 Reducing Overhead with Scheduling
We have built a prototype of Aurora based on the state-
based model. Building the prototype rather than a
simulator has enabled us to understand the actual system
overheads involved in scheduling continuous queries (and
their respective operators) for streaming data. Overheads
fall into two categories: (1) the amount of processing
overhead per tuple required to execute an operator
(ideally, we want only to execute the operator, however,
there is overhead associated with each operator execution
including scheduling, box invocation, and queuing
operations); (2) the number of times the stream
management system goes to disk for each tuple
processed. This second overhead is only relevant for
memory-constrained systems requiring disk storage.

Our approach to overhead reduction takes advantage of
batching. We use batching in two ways: The first
approach, which we refer to as train-scheduling,
schedules batches (or trains) of tuples within a single box
execution. This reduces the total number of box
executions required to process the tuples, thereby
reducing overhead associated with scheduling, calls to
box code, and context switches. Also, train-scheduling
improves memory utilization by reducing the number of
times tuples are moved between memory and disk.

The second approach to batching that we suggest is
superbox-scheduling where a sequence of boxes is
scheduled as a group. This can reduce overhead in two
significant ways. First, scheduling overhead is reduced
since multiple boxes are scheduled as a single unit.
Second, memory utilization can be improved by
allocating memory for the entire superbox at once rather
than for each operator execution.

We suggest using a multi-level scheduling approach to
address the execution of multiple simultaneous queries
while also accommodating superboxes and trains. A first-
level decision involves inter-query scheduling; i.e.,
determining which (sub-)query, or superbox, to process.
This entails dynamically assigning priorities to queries,
according to tuple train opportunities and QoS
specifications. Sharing of operators (sub-queries) makes
this decision much more interesting. A second-level
scheduling decision involves intra-query scheduling
(deciding how the selected query should be processed).
This decision entails choosing the order in which tuple
trains will be pushed through component operators. The
outcome of these decisions is a sequence of operators,
referred to as a scheduling plan, to be executed one after
another. The scheduling plan is inserted into the
execution queue to be later picked up and executed by
one of the worker threads.

Our initial implementation of this two-level scheduling
model has revealed significant improvements in overhead
reduction. This is seen in terms of tolerance to increasing
loads. We observed that using train-scheduling over a
simple tuple-at-a-time approach yields significant
performance improvements in terms of both memory

usage and processing overhead. Also, pushing tuple-
trains through superboxes allows our prototype to handle
higher loads by further reducing scheduling overhead and
improving upon memory utilization.

4 Ongoing work
An interesting tension exists between user expectations
(latency-based QoS goals) and system throughput. Very
high throughput can be achieved by allowing tuples to
queue up at the inputs to a stream management system,
however, this causes higher latencies which, in turn,
lowers result utilities. This could create an interesting
tradeoff between our batching techniques and user
expectations. We plan to study our approaches in a QoS
framework. The challenge is to find the correct degree of
batching to meet QoS goals while achieving high
throughput.

5 Related Work
We have begun to study the various scheduling
techniques in more detail and provide initial results in [3].
We refer the reader to that paper for a detailed discussion
of related work.

Of particular note is Eddies [1] tuple-at-a-time
scheduling which provides extreme adaptability but has
limited scalability. Also, work on continuous queries by
Viglas and Naughton [5] discusses rate-based query
optimization for streaming wide-area information sources
in the context of NiagaraCQ. The primary scheduling
goal of STREAM involves the minimization of the
intermediate queue sizes [4]. None of these projects
consider the overheads discussed here.

References
[1] R. Avnur and J. Hellerstein. Eddies: Continuously

Adaptive Query Processing. In Proceedings of the 2000
ACM SIGMOD International Conference on Management
of Data, Dallas, TX, 2000.

[2] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S.
Lee, G. Seidman, M. Stonebraker, N. Tatbul, and S.
Zdonik. Monitoring Streams: A New Class of Data
Management Applications. In proceedings of the 28th
International Conference on Very Large Data Bases
(VLDB'02), Hong Kong, China, 2002.

[3] D. Carney, U. Cetintemel, A. Rasin, S. Zdonik, M.
Cherniack, M. Stonebraker. Operator Scheduling in a Data
Stream Manager. In proceedings of the 29th International
Conference on Very Large Data Bases (VLDB'03),
September 2003. To Appear.

[4] B. Babcock, S. Babu, M. Datar, and R. Motwani. Chain:
Operator Scheduling for Memory Minimization in Data
Stream Systems. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2003.

[5] S. Viglas and J. F. Naughton. Rate-Based Query
Optimization for Streaming Information Sources. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, Madison, Wisconsin,
2002.

