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Abstract

Strategic interactions often take place in environments rife with uncertainty

and information asymmetry. Understanding the role of information in strategic

interactions is becoming more and more important in the age of information we

live in today. This dissertation is motivated by the following question: What is the

optimal way to reveal information, and how hard is it computationally to find an

optimum? We study the optimization problem faced by an informed principal, who

must choose how to reveal information in order to induce a desirable equilibrium, a

task often referred to as information structure design, signaling or persuasion.

Our exploration of optimal signaling begins with Bayesian network routing

games. This widely studied class of games arises in several real-world settings. For

example, millions of people use navigation services like Google Maps every day. Is

it possible for Google Maps (the principal) to partly reveal the traffic conditions to

reduce the latency experienced by selfish drivers? We show that the answer to this

question is two-fold: (1) There are scenarios where the principal can improve selfish

routing, and sometimes through the careful provision of information, the principal

can achieve the best-coordinated outcome; (2) Optimal signaling is computationally

hard in routing games. Assuming P 6= NP, there is no polynomial-time algorithm

that does better than full revelation in the worst case.
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We next study the optimal signaling problem in one of the most fundamental

classes of games: Bayesian normal form games. We settle the complexity of (approx-

imately) optimal signaling in normal form games: We give the first quasipolynomial

time approximation scheme for signaling in normal form games; and complementing

this, we show that a fully polynomial time approximation scheme for optimal signal-

ing is NP-hard, and rule out any polynomial time approximation scheme assuming

the planted clique conjecture. It is worth noting that our algorithm works for games

with a constant number of players, and for a large and natural class of objective func-

tions including social welfare, while our hardness results hold even in the simplest

Bayesian two-player zero-sum games.

Complementing our results for signaling in normal form games, we continue

to investigate the optimal signaling problem in two special cases of succinct games:

(1) Second-price auctions in which the auctioneer wants to maximize revenue by

revealing partial information about the item for sale to the bidders before running

the auction; and (2) Majority voting when the voters have uncertainty regarding

their utilities for the two possible outcomes, and the principal seeks to influence

the outcome of the election by signaling. We give efficient approximation schemes

for all these problems under one unified algorithmic framework, by identifying and

solving a common optimization problem that lies at the core of all these applications.

Finally, we present the currently best algorithm (asymptotically) for computing

Nash equilibria in complete-information anonymous games. Compared to all other

games we study in this thesis, anonymous games are the only class of games whose

complexity of equilibrium computation is still open. We present the currently best

algorithm for computing Nash equilibria in anonymous games, and we also provide

some evidence suggesting our algorithm is essentially tight.
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Chapter 1

Introduction

1.1 Information Structure Design

What is the best way to reveal information to other strategic players? This is

a question we want to solve during a poker game at home, as well as in billion-dollar

industries like online ad auctions. The strategic decisions of the players depend

crucially on the information available to them, and the act of exploiting an infor-

mational advantage to influence the behavior of others is indeed universal.

In Bayesian games, players’ payoffs often depend on the state of nature, which

may be hidden from the players. Instead, players receive a signal regarding the

state of nature which they use to form beliefs about their payoffs, and choose their

strategies. Thus the strategic decisions and payoffs of the players depend crucially

on the information available from the signal they receive.

In this thesis, we study the optimization problem faced by an informed prin-

cipal, who must choose how to reveal information in order to induce a desirable

equilibrium, a task often referred to as information structure design, signaling or

persuasion. Similar to classic mechanism design1, we have a principal who is inter-

ested in the outcome of the game, but the difference is that the principal influences

1 Mechanism design is a field in economics and game theory that studies the design of mech-
anisms or incentives in strategic settings: A “principal” may choose the rules/structures of the
game to induce a desirable outcome, given that other players act rationally.
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the players by designing the information structure, rather than through designing

the game structure. We focus on the design of public information structures that

reveal the same information to all players. The study of private signaling schemes

is interesting in its own right, but falls beyond the scope of this thesis.

Like mechanism design, the information structure design question is inherently

algorithmic: How hard is it computationally to find the optimal information struc-

ture? In this thesis, we settle the computational complexity of optimal signaling

in several fundamental game-theoretic settings: Bayesian normal form games, and

Bayesian succinct games including network routing games, second-price auctions

and voting with threshold rule.

1.2 Motivating Examples

To motivate the questions we investigate in this thesis, we first give three

examples that are incomplete-information variants of classic examples studied in

game theory. The first example, presented in [47], is a Bayesian network routing

game adapted from Braess’ paradox. The second example, presented in [46], is

a Bayesian normal form game adapted from the prisoner’s dilemma. The third

example is a variation of a probabilistic single-item second-price auction in [52].

These three examples raise several interesting observations. First, designing

the optimal signaling scheme is an important task, because revealing the right infor-

mation can lead to much better results compared to trivial schemes like no revelation

and full revelation. Second, as opposed to the “Market for Lemons” [2] example2,

2 Akerlof [2] uses the market for used cars as an example to illustrate that information deficiency
can lead to worse outcomes. In his example, the market degrades in the presence of information
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sometimes more information can also degrade the payoffs of all players and/or the

principal, and the optimal information structure may reveal some but not all the

information available. Third, they put forward the modeling question of how we

should formulate the signaling problem, as well as the algorithmic question of how

hard it is computationally to find the optimal signaling scheme.

1.2.1 An Informational Braess’ Paradox

v

s t

w

ℓ(x
) =

x

ℓ(x) =
1

ℓ(x) = θ

ℓ(x) = 1

ℓ(x
) =

x

Figure 1.1: The informational Braess’ paradox.

Consider the informational Braess’ paradox given in Figure 1.1. It is a non-

atomic Bayesian network routing game of incomplete information, a variant of the

classic Braess’ paradox (See, e.g. [19, 82, 85]). We call it informational Braess’

paradox because in this example, somewhat counter-intuitively, all the drivers can do

worse if they have more information about the uncertainty in the traffic conditions.

In Figure 1.1, one unit of flow wants to travel from the source node s to the sink

node t in the network, and the latency function ℓ(x) on each edge describes the

delay experienced by drivers on that edge as a function of the fraction of overall

asymmetry between buyers and sellers, if the owner of the good used cars (“peaches”) cannot
distinguish himself from the owner of defective used cars (“lemons”).
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traffic using that road. The latency of the vertical edge is parameterized by a state

of nature θ, which is drawn uniformly from {0, 1}.

When θ = 0, this reverts back to the traditional Braess’ paradox. Selfish

drivers would all take the zig-zag path s → v → w → t, where all drivers experience

a latency of 2. If the drivers can cooperate rather than being selfish, the socially

optimal routing is to send half of the drivers on the top path s → v → t, and the

other half on the bottom path s → w → t. This way, all drivers experience a latency

of 1.5, but then each individual would benefit from switching to the zig-zag path,

and hence Braess’ paradox occurs.

Now suppose that every morning nature flips a coin and decides the latency of

the edge v → w to be either θ = 0 or θ = 1. The principal (e.g., navigation services

like Google Maps) knows the exact value of θ, but the drivers only know the prior

distribution of θ. Suppose that the principal wants to minimize the expected latency

experienced by the selfish drivers at equilibrium, assuming that the agents are risk

neutral3.

Observe that all players would drive along the zig-zag path when E[θ] ≤ 0.5.

When E[θ] ≥ 0.5, the delay on the edge v → w is enough to deter the drivers away

from using the edge. Consider the following signaling schemes:

• Full information: When θ = 0 the drivers experience latency 2, and when

θ = 1 the drivers experience latency 1.5. The expected latency is 1.75.

3 The decision of a risk neutral player is not affected by the degree of uncertainty in a set of
outcomes. A rational risk-neutral player always chooses the strategy with the highest expected
payoff.

4



• No information (Optimal signaling scheme): Risk neutral players treat θ as its

expectation E[θ] = 0.5, which is enough to incentivize the drivers to split and

play the socially optimal solution, so the latency is always 1.5.

1.2.2 Prisoner’s Dilemma of Incomplete Information

Cooperate Defect

Cooperate
−1 + θ 0

−1 + θ −5 + θ

Defect
−5 + θ −4

0 −4

Figure 1.2: Prisoner’s dilemma of Incomplete Information.

Consider a two-player game with incomplete information given by its normal-

form representation in Figure 1.2, a variant of the prisoner’s dilemma. Two members

of a criminal gang are arrested and imprisoned. Without communicating with each

other, they must choose to either cooperate with the other by remaining silent, or

to defect by betraying the other and testifying. The two players (row player and

column player) move simultaneously, and receive payoffs given in the cell specified

by the combination of their actions. In each cell, the lower-left number represents

the payoff of the row player, and the upper-right number represents the payoff of

the column player. The payoffs are also parameterized by a state of nature θ, which

affects players’ payoffs together with their actions.

When θ = 0, the game reverts back to the classic prisoner’s dilemma, in which

the socially optimal outcome is for both players to cooperate. However, the only

5



Nash equilibrium of the game is when both players defect, because it is strictly

better for each player to defect, no matter what the other player does.

Suppose nature flips a coin and decides to give the prisoners θ extra reward

for cooperating, where θ can be negative and is drawn uniformly from {0, 2}. The

principal knows the exact value of θ, but both players only know the prior distri-

bution. Suppose the principal cares about maximizing social welfare, which in this

game is equivalent to maximizing the probability of both players cooperating, again

assuming the players are risk neutral.

Observe that risk neutral players would play cooperate as an equilibrium if the

expected value of θ was at least 1. Consider the following signaling schemes:

• Full information: Players would defect when θ = 0. When θ = 2, players

would prefer to cooperate and therefore they cooperate 1/2 of the time.

• No information (Optimal signaling scheme): Both players treat θ as its expec-

tation E[θ] = 1, which is just enough to incentivize them to cooperate. So by

revealing no information, the principal gets the players to always cooperate

and obtain the highest expected social welfare.

1.2.3 A Probabilistic Second-Price Auction

Consider a single-item second-price auction of a probabilistic good whose

actual instantiation is known to the auctioneer but not to the bidders. This problem

was considered in [52] and [21], and Example 1.3 is adapted from [21]. We use θ

to denote the possible types of the probabilistic good. As shown in Figure 1.3, the

item has four possible types and we have four bidders participating in the auction.

6



Item type 1 Item type 2 Item type 3 Item type 4

Bidder 1 1 0 0 0

Bidder 2 0 1 0 0

Bidder 3 0 0 1 0

Bidder 4 0 0 0 1

Figure 1.3: An example of a probabilistic single-item auction.

Each bidder is only interested in one of the four possible item types with a valuation

of 1, and not interested in any other types.

Assume that the auction format is a second-price auction, that is, the per-

son who bids highest wins the item, but he needs to pay only the second highest

bid. Since we are running a second-price auction, risk neutral players play the

dominant-strategy truth-telling equilibrium, by bidding the expected value for the

item. The principal (auctioneer) can choose to reveal some information about the

actual realization θ, with the goal of maximizing her revenue.

Consider the following signaling schemes:

• Full information: If the principal reveals full information about θ, then only

one bidder bids 1 and everyone else bids 0. Since the principal is running a

second-price auction, the revenue of the auction is 0.

• No information: Without further information, the expected value of the item

is 1/4 to all bidders, so everyone bids 1/4, and the revenue of the auction is

1/4.

• Optimal signaling scheme: One of the possible signaling schemes that max-

imizes revenue is to reveal whether θ ∈ {1, 2} or θ ∈ {3, 4}. Upon learning

7



this information, two out of four bidders remain interested in the item, and

their expected value for the item increases from 1/4 to 1/2, because the item

now has only two possible types. The revenue of the auction is 1/2 since the

principal receives two bids of 1/2 and two bids of 0.

1.3 A Frontier of Computational Game Theory

Information revelation has been widely studied by game theorists and

economists, exploring how to reveal information strategically to other selfish agents

(e.g., see [2, 5, 13, 14, 16, 64, 73, 77, 83]). However, most of the studies on infor-

mation disclosure have been non-algorithmic, even though the demand for efficient

algorithms has never been higher in the age of information we live in today.

Whereas understanding the role of information in influencing strategies is a

classical problem in game theory, the computational problem of designing optimal

information structures for Bayesian games, commonly called the signaling problem,

has received mostly recent attention [7, 21, 46, 48, 49, 50, 52, 62]. These exciting

developments during the past decade have brought new insights towards a much

better understanding of the role of information through a computational lens.

Complexity theory, through concepts like NP-Completeness, aims to distin-

guish between the problems that admit efficient algorithms and those that are

intractable. In this thesis, we focus on the computational aspects of information

structure design. Our goals are to mathematically formulate the signaling problem,

to develop algorithms and prove matching lower bounds, and to characterize the

exact time complexity of optimal information revelation in different game-theoretic

scenarios.

8



For designing efficient algorithms, we analyze the structural properties of the

optimal signaling scheme, identify an optimization problem that arises naturally

when one seeks to craft posterior beliefs, and develop a powerful algorithmic frame-

work that solves the (approximately) optimal signaling problem in a variety of

games. For deriving hardness results, our goal is to design the information asym-

metry of the game to encode computation in the optimal information structure. For

example, if we have an oracle for optimal signaling, can we use it to find maximum

independent set of a graph, or to recover a hidden clique in a random graph? Exam-

ining the computational complexity of optimal signaling in different games helps us

recognize the essence of these problems.

Besides improving our understanding about the role of information in game

theory, the investigation of optimal information revelation has also led to powerful

algorithmic frameworks and basic open questions. For example, in Chapter 5 we

extract a common optimization problem that lies at the core of several signaling

problems, identify two “smoothness” properties which seem to govern the complexity

of near-optimal signaling schemes, and resolve a number of open problems under

one algorithmic framework. Another example is in Section 4.4, where we utilize the

equivalence between separation and optimization to show hardness of signaling in

normal form games. However, the proof would be much more elegant if we had a

better understanding of this equivalence in the approximate sense, in particular, if

we could resolve Open Problem 7.2 in the positive.

9



1.4 Our Contributions and Thesis Organization

We study the optimal signaling problem in several fundamental game-theoretic

settings: Bayesian network routing games, Bayesian normal form games, probabilis-

tic second-price auctions, and majority voting with incomplete information. We

focus on public signaling schemes where the principal reveals the same information

to all players. Our main contribution is to derive efficient approximation algorithms,

as well as hardness results for these classes of games that close the gap between what

is achievable in polynomial time (or quasipolynomial time) and what is intractable.

We start from an example of using information to battle selfishness in routing

games. We then continue to systematically study the signaling problem in both

normal form games with a bounded number of players, as well as succinct games

with many players.

Signaling in network routing games: In Chapter 3, we consider the signal-

ing problem in (nonatomic, selfish) Bayesian network routing games, wherein the

principal seeks to reveal partial information to minimize the average latency of the

equilibrium flow. We show that it is NP-hard to obtain any multiplicative approxi-

mation better than 4
3
, even with linear latency functions (Theorem 3.2). This yields

an optimal inapproximability result for linear latencies, since we show that full rev-

elation obtains the price of anarchy of the routing game as its approximation ratio

(Theorem 3.1), which is 4
3

for linear latency functions [85]. These are the first results

for the complexity of signaling in Bayesian network routing games.

Signaling in normal form games: In Chapter 4, we consider signaling in

Bayesian normal form games, where the payoff entries are parametrized by a state of

10



nature. Dughmi [46] initiated the computational study of this problem and obtained

various hardness results. On the algorithms side, we give two different approaches

(Theorem 4.1 and Theorem 5.12) for obtaining a bi-criteria QPTAS for normal-

form games with a constant number of players, and for a large and natural class

of objective functions like social welfare and weighted combination of players’ util-

ities [26, 27]. In other words, we can in quasipolynomial time approximate the

optimal reward from signaling while losing an additive ǫ in the objective as well as

in the incentive constraints.

For hardness results, [46] considered the special case of signaling in Bayesian

(two-player) zero-sum games, in which the principal seeks to maximize the equilib-

rium payoff of one of the players, and ruled out a fully polynomial time approxima-

tion scheme (FPTAS) for this problem assuming planted clique hardness. We show

that it is NP-hard to obtain an additive FPTAS (Theorem 4.7), settling the complex-

ity of the problem with respect to NP-hardness. Moreover, we show that assuming

the planted clique conjecture (Conjecture 2.6), there does not exist a polynomial

time approximation scheme (PTAS) for the signaling problem (Theorem 4.10).

Mixture selection framework In Chapter 5, we pose and study an algorithmic

problem which we term mixture selection, a problem that arises naturally in the

design of optimal information structures. The mixture selection problem is closely

related to the optimal signaling problem. We identify two “smoothness” property

of Bayesian games that seem to dictate the complexity of mixture selection and

optimal signaling: Lipschitz continuity and a noise stability notion that we define.

We present an algorithmic framework that (approximately) solves mixture selec-

tion (Theorem 5.6) and optimal signaling (Theorem 5.10) in a number of different
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Bayesian games. The approximation guarantee of our algorithm degrades grace-

fully as a function of the two smoothness parameters, in particular, when the game

is O(1)-Lipschitz continuous and O(1)-stable, we obtain an additive PTAS optimal

signaling. We also show that neither assumption suffices by itself for a PTAS (Theo-

rems 5.18 and 5.19). We give a new QPTAS for signaling in normal form game using

our algorithmic framework (Theorem 5.12). Moreover, our algorithms for signaling

in multi-player games also follow from the powerful mixture selection framework.

Signaling in anonymous games In Chapter 6, we consider signaling in anony-

mous games. In contrast to the normal form games we study in Chapter 4, anony-

mous games form an important class of succinct games, capturing a wide range of

game-theoretic scenarios, including auctions and voting. We start with two special

cases of anonymous games, both admitting a PTAS.

In Section 6.1, we consider signaling in the context of a probabilistic second-

price auction. In this setting, the item being auctioned is probabilistic, and the

instantiation of the item is known to the auctioneer but not to the bidders. The

auctioneer must decide what information to reveal in order to maximize her revenue

in this auction. Emek et al. [52] and Miltersen and Sheffet [21] considered several

special cases of this problem and presented polynomial-time algorithms when bidder

types are fixed. [52] showed that in the general setting, where the auctioneer holds

probabilistic knowledge on the bidders’ valuations, an FPTAS for signaling becomes

NP-hard. We resolve the approximation complexity of optimal signaling in the

Bayesian setting by giving an additive PTAS (Theorem 6.2).

In Section 6.2, we study the persuasion in voting problem proposed by Alonso

and Câmara [5]. Consider a binary outcome election — say whether a ballot measure
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is passed — when voters are not fully informed of the consequences of the measure,

and hence of their utilities. Each voter casts a Yes/No vote, and the measure

passes if the fraction of Yes votes exceeds a certain pre-specified threshold. We

consider a principal who has control over which information regarding the measure

is gathered and shared with voters, and looks to maximize the probability of the

measure passing. We present a multi-criteria PTAS for this problem (Theorem 6.5).

Section 6.3 takes a detour and studies anonymous games with complete infor-

mation. We give the first polynomial time algorithm for computing Nash equilibria

of inverse polynomial precision in anonymous games with more than two strategies

(Theorem 6.6), and present evidence suggesting that our algorithm is essentially

tight (Theorem 6.7). This gets us closer to pinning down the computational com-

plexity of Nash equilibria in anonymous games, and the only question left is whether

there is a FPTAS for computing equilibria or not.
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Chapter 2

Background and Notation

We use R+ for the set of nonnegative reals. For an integer n, let [n]
def
=

{1, 2, . . . , n}. If n ≥ 1, we use ∆n to denote the (n − 1)-dimensional simplex {x ∈
Rn

+ :
∑

i xi = 1}. We refer to a distribution y ∈ ∆n as s-uniform if and only if it

is the average of a multiset of s standard basis vectors in n-dimensional space. Let

1n ∈ R
n be the vector with 1 in all its entries, In×n be the n×n identity matrix, and

ei be the i-th standard basis vector containing 1 as its i-th entry and 0 elsewhere.

We use “iff” to abbreviate “if and only if”. For two functions f(n) and g(n), we

write f(n) = O(g(n)) iff there exists constants C and n0 such that |f(x)| ≤ C|g(x)|
for all n ≥ n0; we write g(n) = Ω(f(n)) iff f(n) = O(g(n)), and g(n) = Θ(f(n)) iff

f(n) = O(g(n)) and f(n) = Ω(g(n)). We say f(n) = o(g(n)) iff limn→∞
f(n)
g(n)

= 0,

and g(n) = ω(f(n)) iff f(n) = o(g(n)). We use poly(n) to denote a polynomial

function of n. When we say with high probability, we mean with probability at least

1 − 1
nα for some constant α > 0; and the parameter n will be clear from the context.

Let |I| denote the description size of the instance I. An (additive) polynomial

time approximation scheme (PTAS) is an algorithm that runs in time poly(|I|), and

returns a solution of value at least OPT(I) − ǫ for every instance I and constant

ǫ > 0. An fully polynomial time approximation scheme (FPTAS) is a PTAS whose

running time for an instance I and parameter ǫ is poly
(
|I|, 1

ǫ

)
. An quasipolynomial

time approximation scheme (QPTAS) is an algorithm that runs in time |I|O(log |I|)

and returns an ǫ-optimal solution for every instance I and constant ǫ > 0.

14



2.1 Bayesian Games and Signaling

A Bayesian game is a game in which the players have incomplete information

on the payoffs of the game. In this thesis, we consider a number of Bayesian games

in which payoffs are parametrized by θ, the state of nature. We use Θ to denote the

set of all states of nature, and assume θ ∈ Θ is drawn from a common-knowledge

prior distribution which we denote by λ. We consider Bayesian games given in the

explicit representation:

• An integer M denoting the number of states of nature. We index states of

nature by the set Θ = [M ] = {1, . . . ,M}.

• A common-knowledge prior distribution λ ∈ ∆M on the states of nature.

• A set of M games of complete information, one for each state of nature θ,

describing the payoff structure of the game.

Note that a game of complete information is the special case with M = 1, i.e.,

the state of nature is fixed and known to all.

In all our applications, we assume players a priori know nothing about θ other

than its prior distribution λ, and examine policies whereby a principal with access

to the realized value of θ may commit to a policy revealing information to the play-

ers regarding θ. The goal of the principal is then to commit to revealing certain

information about θ — i.e., a signaling scheme — to induce a favorable equilibrium

over the resulting Bayesian subgames. This is often referred to as signaling, persua-

sion, or information structure design. The recent survey by Dughmi [47] contains a

nice summary of the work on information structure design in the algorithmic game

theory community.

15



2.1.1 Signaling Schemes

A signaling scheme is a policy by which a principal reveals (partial) information

about the state of nature. We call a signaling scheme public if it reveals the same

information to all the players, and private when different signals are sent to the

players through private channels. In this thesis, we focus on the design of public

signaling schemes.

Let M = |Θ|. A signaling scheme specifies a set of signals Σ and a (possibly

randomized) map ϕ : Θ → ∆|Σ| from the states of nature Θ to distributions over

the signals in Σ. Abusing notation, we use ϕ(θ, σ) to denote the probability of

announcing signal σ ∈ Σ conditioned on the state of nature being θ ∈ Θ.

Each signal σ yields a posterior distribution µσ ∈ ∆M . It was observed by

Kamenica and Gentzkow [69] that signaling schemes are in one-to-one correspon-

dence with convex decompositions of the prior distribution λ ∈ ∆M : Formally, a sig-

naling scheme ϕ : Θ → Σ corresponds to the convex decomposition λ =
∑

σ∈Σ pσ ·µσ,

where (1) pσ = Prθ∼Θ[ϕ(θ) = σ] =
∑

θ∈Θ λ(θ)ϕ(θ, σ) is the probability of announc-

ing signal σ, and (2) µσ(θ) = Prθ∼Θ[θ|ϕ(θ) = σ] = λ(θ)ϕ(θ,σ)
pσ

is the posterior belief

distribution of θ conditioned on signal σ. The converse is also true: every convex

decomposition of λ ∈ ∆M corresponds to a signaling scheme. Alternatively, the

reader can view a signaling scheme ϕ as the M×|Σ| matrix of pairwise probabilities

ϕ(θ, σ) satisfying conditions (1) and (2) with respect to λ ∈ ∆M . Sometimes we also

describe a signaling scheme as {pµ}µ∈∆M
, where

∑
µ∈∆M

pµµ = λ1. The signals Σ in

such a signaling scheme are described implicitly, and correspond to the posteriors µ

for which pµ > 0.

1 We only deal with signaling schemes with finitely many signals in all of our algorithms and
analyses, so we use

∑
even though we are summing over the uncountable simplex.
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Note that each posterior distribution µ ∈ ∆M defines a complete-information

subgame: for every outcome s of the game (i.e., every pure strategy profile), risk

neutral players take the expected payoff over θ ∼ µ as their expected payoff under

s. The principal’s utility depends on the outcome of the subgames. Given a suitable

equilibrium concept and selection rule, we let f : ∆M → R denote the principal’s

utility as a function of the posterior distribution µ. For example, in an auction game

f(µ) may be the social welfare or principal’s revenue at the induced equilibrium,

or any weighted combination of players’ utilities, or something else entirely. The

principal’s objective as a function of the signaling scheme ϕ can be mathematically

expressed by F (ϕ, λ) =
∑

σ pσ · f(µσ).

Fix a Bayesian game, and let f+(λ) denote the value of the optimal signaling

scheme when the prior is λ. We note that f+(λ) is a concave function of the prior

λ, since if λ1 and λ2 form a convex decomposition of λ, so do the optimal posteriors

for λ1 and λ2. Therefore, the optimal choice of a signaling scheme is related to the

concave envelope f+ of the function f ([46, 69]).

Definition 2.1. The concave envelope f+ of a function f is the point-wise lowest

concave function h for which h(x) ≥ f(x) for all x in the domain. Equivalently, the

hypograph of f+ is the convex hull of the hypograph of f .

Specifically, such a signaling scheme achieves
∑

σ pσ · f(µσ) = f+(λ). Thus,

there exists a signaling scheme with (M + 1) signals that maximizes the principal’s

objective, by applying Carathéodory’s theorem2 to the hypograph of f .

2 In convex geometry, Carathéodory’s theorem [22] states that if a point x ∈ Rd lies in the
convex hull of a set P , then there exists a subset P ′ ⊆ P with |P ′| ≤ d + 1 such that x is in the
convex hull of P ′.
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2.1.2 Normal Form Games

A normal form game is defined by the following parameters:

• An integer k denoting the number of players, indexed by the set [k] =

{1, . . . , k}.

• An integer n bounding the number of pure strategies of each player. Without

loss of generality, we assume each player has exactly n pure strategies, and

index them by the set [n] = {1, . . . , n}.

• A family of payoff tensors A = {A1, . . . , Ak} with Ai : [n]k → [−1, 1], where

Ai(s1, . . . , sk) is the payoff to player i when each player j plays strategy sj .

A Bayesian normal form game is described by payoff tensors Aθ
i : [n]k →

[−1, 1], one per player i and state of nature θ, where Aθ
i (s1, . . . , sk) is the pay-

off to player i when the state of nature is θ and each player j plays strat-

egy sj. For a mixed strategy profile x1, . . . , xk ∈ ∆n, we use Ai(x1, . . . , xk) =
∑

s1,...,sk∈[n]

(
T (s1, . . . , sk) ·∏k

i=1 xi(si)
)

to denote player i’s expected payoff over the

pure strategy profiles drawn from (x1, . . . , xk).

In a general Bayesian normal form game, absent any information about the

state of nature beyond the prior λ, risk neutral players will behave as in the complete

information game Eθ∼λ

[
Aθ
]
. We consider signaling schemes which partially and

symmetrically inform players by publicly announcing a signal σ, correlated with

θ; this induces a common posterior belief on the state of nature for each value of

σ. When players’ posterior beliefs over θ are given by µ ∈ ∆M , we use Aµ to

denote the equivalent complete information game Eθ∼µ

[
Aθ
]
. As shorthand, we use

Aµ
i (x1, . . . , xk) to denote E

[
Aθ

i (s1, . . . , sk)
]

when θ ∼ µ ∈ ∆M and si ∼ xi ∈ ∆n.
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The principal’s objective is described by a family of tensors Aθ
0 : [n]k → [−1, 1],

one for each state of nature θ ∈ Θ. Equivalently, we may think of the objective as

describing the payoffs of an additional player in the game. For a distribution µ over

states of nature, we use Aµ
0 = Eθ∼µ

[
Aθ

0

]
to denote the principal’s expected utility in

a subgame with posterior beliefs µ, as a function of players’ strategies.

Extended Security Games

An extended security game is a family of Bayesian zero-sum games. A Bayesian

zero-sum game is specified by a tuple
(
Θ, {Aθ}θ∈Θ, λ

)
. For each state of nature

θ ∈ Θ, Aθ ∈ [−1, 1]n×n specifies the payoffs of the row player in a zero-sum game.

Let Row and Col denote the row player and the column player respectively.

An extended security game can be viewed as a polymatrix game between three

players: Nature, Row, and Col. Formally, the payoff matrix for state θ is given by

Aθ def
= A+ bθ

1

T
n + 1n(dθ)T , where A ∈ R

n×n, bθ ∈ R
n, dθ ∈ R

n. (2.1)

Let B and D be matrices having columns {b1, . . . , bM}, and {d1, . . . , dM} respec-

tively. The payoff of the row player is the sum of her payoffs in three separate

games: a game A between Row and Col, a game B between Row and Nature, and

a game D between Nature and Col. We obtain the following expressions for Aµ and

f(µ) for µ ∈ ∆M .

Aµ = A+ (Bµ)1T
n +1n(µTDT ), f(µ) = max

x∈∆n

{
xTBµ+ min

j∈[n]

(
xTA+µTDT

)
j

}
. (2.2)
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A special case of an extended security game (and the reason for this termi-

nology) is the network security game defined by [46]. Given an undirected graph

G = (V,E) with n = |V | and a parameter ρ ≥ 0, the states of nature correspond

to the vertices of the graph. The row and column players are called attacker and

defender respectively. The attacker and defender’s pure strategies correspond to

nodes of G. Let B be the adjacency matrix of G, and set A = DT = −ρIn×n. Then,

for a given state of nature θ ∈ V , and pure strategies a, d ∈ V of the attacker and

defender, the payoff of the attacker is given by eT
aBeθ − ρ(eT

a + eT
θ )ed. The interpre-

tation is that the attacker gets a payoff of 1 if he selects a vertex a that is adjacent

to θ. This payoff is reduced by ρ if the defender’s vertex d lies in {θ, a}, and by 2ρ

if d = θ = a.

2.1.3 Nash Equilibria

The celebrated theorem of Nash [80] states that every finite game has an

equilibrium point. The solution concept of Nash equilibrium (NE) has been tremen-

dously influential in economics and social sciences ever since (e.g., see [65]).

For a game with k players and n strategies per player, a mixed strategy is an

element of ∆[n], and a mixed strategy profile x = (x1, . . . , xk) maps every player i to

her mixed strategy xi ∈ ∆[n]. Throughout this thesis, we adopt the (approximate)

Nash equilibrium as our equilibrium concept. There are two variants. We define

them below in normal form games and note that the concept of Nash equilibria

is universal in games — it simply states that each player plays a best response to

other players’ strategies and has no incentive to deviate. We use x−i to denote the

strategies of players other than i in x. The support of a vector, supp(x), is the set

of indices i such that xi > 0.
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Definition 2.2. Let ǫ ≥ 0. In a k-player n-action normal form game with expected

payoffs in [−1, 1] given by tensors A1, . . . , Ak, a mixed strategy profile x1, . . . , xk ∈
∆n is an ǫ-Nash Equilibrium (ǫ-NE) if

Ai(x1, . . . , xk) ≥ Ai(ti, x−i) − ǫ

for every player i and alternative pure strategy ti ∈ [n].

Definition 2.3. Let ǫ ≥ 0. In a k-player n-action normal form game with expected

payoffs in [−1, 1] given by tensors A1, . . . , Ak, a mixed strategy profile x1, . . . , xk ∈
∆n is an ǫ-well-supported Nash equilibrium (ǫ-WSNE) if

Ai(si, x−i) ≥ Ai(ti, x−i) − ǫ

for every player i, strategy si in the support of xi, and alternative pure strategy

ti ∈ [n].

Clearly, every ǫ-WSNE is also an ǫ-NE. When ǫ = 0, both correspond to the

exact Nash Equilibrium. Note that we omitted reference to the state of nature in

the above definitions — in a subgame corresponding to posterior beliefs µ ∈ ∆M ,

we naturally use tensors Aµ
1 , . . . , A

µ
k instead.

Fixing an equilibrium concept (NE, ǫ-NE, or ǫ-WSNE), a Bayesian game

(A, λ), and a signaling scheme ϕ : Θ → Σ, an equilibrium selection rule distin-

guishes an equilibrium strategy profile (xσ
1 , . . . , x

σ
k) to be played in each subgame σ.

Together with the prior λ, the Bayesian equilibria X = {xσ
i : σ ∈ Σ, i ∈ [k]} induce a

distribution Γ ∈ ∆Θ×[n]k over states of play — we refer to Γ as a distribution of play.

We say Γ is implemented by signaling scheme ϕ in the chosen equilibrium concept
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(be it NE, ǫ-NE, or ǫ-WSNE). This is analogous to implementation of allocation

rules in traditional mechanism design.

For a signaling scheme ϕ and associated (approximate) equilibria X =

{xσ
i : σ ∈ Σ, i ∈ [k]}, our objective function can be written as

F (ϕ,X ) = E
θ∼λ

[
E

σ∼ϕ(θ)

[
E

s∼xσ
[A0(θ, s)]

]]
.

When ϕ corresponds to a convex decomposition {(µσ, pσ)}σ∈Σ of the prior dis-

tribution, this can be equivalently written as F (ϕ,X ) =
∑

σ∈Σ pσA
µσ
0 (xσ). Let

OPT = OPT(A, λ, A0) denote the maximum value of F (ϕ∗,X ∗) over signaling

schemes ϕ∗ and (exact) Nash equilibria X ∗. We seek a signaling scheme ϕ : Θ → Σ,

as well as corresponding Bayesian ǫ-equilibria X such that F (ϕ,X ) ≥ OPT − ǫ.

2.1.4 Network Routing Games

A network routing game is a tuple
(
G = (V,E), {ℓe}e∈E , {(si, ti, di)}i∈[k]

)
,

where G is a directed graph with latency function ℓe : R+ → R+ on each edge

e. Each (si, ti, di) denotes a commodity; di specifies the volume of flow routed from

si to ti by self-interested agents, each of whom controls an infinitesimal amount of

flow and selects an si-ti path as her strategy. A strategy profile thus corresponds

to a multicommodity flow composed of si-ti flows of volume di for all i; we call any

such flow a feasible flow.

The latency on edge e due to a flow x is given by ℓe(xe), where xe is the total

flow on e. The latency of a path P is ℓP (x)
def
=
∑

e∈P ℓe(xe). The total latency of

a flow x is L(ℓ, x)
def
=
∑

e∈E xeℓe(xe). An optimal flow xOPT is a feasible flow with

minimum latency. A Nash flow (also called a Wardrop flow) xNE is a feasible flow
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where every player chooses a minimum latency path; that is, for all i, all si-ti paths

P , Q with xNE(e) > 0 for all e ∈ P , we have ℓP (xNE) ≤ ℓQ(xNE). All Nash flows

have the same total latency (see, e.g., [85]).

The price of anarchy (PoA) measures how the efficiency of a system degrades

due to selfish behavior of its agents. In network routing games, the price of anarchy

is defined as the ratio between latencies of the Nash flow and the optimal flow:

PoA = L(ℓ, xNE)/L(ℓ, xOPT). The price of anarchy for a class of latency functions is

the maximum ratio over all instances involving these latency functions.

In a Bayesian network routing game, the edge latency functions {ℓθ
e}e∈E may

depend on the state of nature θ ∈ Θ (and, as before, we have a prior λ ∈ ∆Θ).

The principal seeks to minimize the latency of the Nash flow. Given µ ∈ ∆Θ,

the expected latency function on each edge e is ℓµ
e (xe)

def
=
∑

θ∈Θ µ(θ)ℓθ
e(xe). Define

f(µ)
def
= L(ℓµ, xµ

NE), where xµ
NE is a Nash flow for latency functions {ℓµ

e }. The

signaling problem in a Bayesian routing game is to determine (pµ)µ∈∆M
≥ 0 of

finite support specifying a convex decomposition of λ (i.e.,
∑

µ∈∆M
pµµ = λ) that

minimizes the expected latency of the Nash flow,
∑

µ∈∆M
pµf(µ).

In Bayesian network routing games, Vasserman et al. [90] study the problem

of signaling to reduce the average latency. They define the mediation ratio as the

average latency at equilibrium for the best private signaling scheme, to the average

latency for the social optimum, and give tight bounds on the mediation ratio for a

special family of Bayesian routing games. In contrast, we study the computational

complexity of obtaining the best public signaling scheme, and conclude that finding

an (4
3

− ǫ)-approximation is NP-hard.
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2.1.5 Second-Price Auctions

The following parameters describe a variant of an single-item auction3:

• An integer n denoting the number of bidders, indexed by the set [n].

• A common-knowledge prior distribution D on bidders’ valuations v ∈ [0, 1]n,

where vi denotes the value of player i for the item.

A probabilistic auction has M possible states of nature θ ∈ Θ, and each θ

represents a possible instantiation of the item being sold. Instead of having an

n-dimensional vector as bidders’ valuations, we now have valuation matrices V ∈
[0, 1]n×M , where Vi,j denotes the value of player i for the item corresponding to the

state of nature j. Again, we have a common-knowledge prior distribution D on V ,

given either explicitly or as a “black-box” sampling oracle.

We examine signaling in probabilistic second-price auctions, as considered by

Emek et al. [52] and Miltersen and Sheffet [21]. In this setting, the item being auc-

tioned is probabilistic, and the instantiation of the item is known to the auctioneer

but not to the bidders. The auctioneer commits to a signaling scheme for (par-

tially) revealing information about the item for sale before subsequently running a

second-price auction.

As an example, consider an auction for an umbrella: the state of nature θ can

be the weather tomorrow, which determines the utility Vi,θ of an umbrella to player

i. We assume that λ and D are independent. We also emphasize that a bidder

3 In this thesis, for normal form games, we use n to denote the number of strategies and k for
the number of players; for multi-player succinct games, we use n to denote the number of players
and k for the number of strategies. For both families of games, we are interested in games with
k = O(1) and we want to bound the running time as a function of n.
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knows nothing about θ other than its distribution λ and the public signal σ, and

the auctioneer knows nothing about V besides its distribution D prior to running

the auction.

The game being played is the following:

1. The auctioneer first commits to a signaling scheme ϕ : Θ → Σ;

2. A state of nature θ ∈ Θ is drawn according to λ and revealed to the auctioneer

but not the bidders;

3. The auctioneer reveals a public signal σ ∼ ϕ(θ) to all the bidders;

4. A valuation matrix V ∈ [0, 1]n×M is drawn according to D, and each player i

learns his value Vi,j for each potential item j;

5. Finally, a second-price auction for the item is run.

Note that step (4) is independent of steps (1-3), so they can happen in no particular

order.

We adopt the (unique) dominant-strategy truth-telling equilibrium as our solu-

tion concept. Specifically, given a signaling scheme ϕ : Θ → Σ and a signal σ ∈ Σ,

in the subgame corresponding to σ it is a dominant strategy for player i to bid

Eθ∼λ[Viθ|ϕ(θ) = σ] — his posterior expected value for the item conditioned on the

received signal σ. Therefore the item goes to the player with maximum posterior

expected value, at a price equal to the second-highest posterior expected value. The

algorithmic problem we consider is the one faced by the auctioneer in step (a) —

namely computing an optimal signaling scheme — assuming the auctioneer looks to

maximize expected revenue.
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2.1.6 Majority Voting

Consider an election with n voters and two possible outcomes, ‘Yes’ and ‘No’.

For example, voters may need to choose whether to adopt a new law or social policy;

board members of a company may need to decide whether to invest in a new project;

and members of a jury must decide whether a defendant is declared guilty or not

guilty. The new policy passes if the fraction of ‘Yes’ votes exceeds a certain pre-

specified threshold. We index the voters by the set [n] = {1, . . . , n}. Without loss

of generality, we assume utilities are normalized: voter i has a utility of ui ∈ [−1, 1]

for the ‘Yes’ outcome, and 0 for the ‘No’ outcome. In most voting systems with a

binary outcome, including threshold voting rules, it is a dominant strategy for voter

i to vote ‘Yes’ if the utility ui is at least 0.

We study the signaling problems encountered in the context of voting intro-

duced by Alonso and Câmara [5]. In this setting, voters have uncertainty regarding

their utilities for the two possible outcomes (e.g., the risks and rewards of the new

project). Specifically, voters’ utilities are parameterized by an a priori unknown

state of nature θ drawn from a common-knowledge prior distribution. We assume

voters’ preferences are given by a matrix U ∈ [−1, 1]n×M , where Ui,j denotes voter

i’s utility in the event of a ‘Yes’ outcome in state of nature j. A voter i who

believes that the state of nature follows a distribution µ ∈ ∆M has expected utility

u(i, µ) =
∑

j∈Θ Ui,jµj for a ‘Yes’ outcome.

We adopt the perspective of a principal — say a moderator of a political

debate — with access to the realization of θ, who can determine the signaling scheme

through which information regarding the measure is gathered and shared with voters.

Alonso and Câmara [5] consider a principal interested in maximizing the probability

that at least 50% (or some given threshold) of the voters vote ‘Yes’, in expectation
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over states of nature. They characterize optimal signaling schemes analytically,

though stop short of prescribing an algorithm for signaling.

2.1.7 Anonymous Games

We study anonymous games (n, k, {ui
a}i∈[n],a∈[k]) with n players labeled by

[n] = {1, . . . , n}, and k common strategies labeled by [k] for each player. The payoff

of a player depends on her own strategy, and how many of her peers choose which

strategy, but not on their identities. When player i ∈ [n] plays strategy a ∈ [k],

her payoffs are given by a function ui
a that maps the possible outcomes (partitions

of all other players) Πk
n−1 to the interval [0, 1], where Πk

n−1 = {(x1, . . . , xk) | xj ∈
Z+ ∧∑k

j=1 xj = n − 1}.

Approximate Equilibria in Anonymous Games. We define ǫ-approximate

Nash equilibrium for anonymous games. The definition is essentially equivalent

to ǫ-equilibrium in normal form games (Definition 2.2), except now the game has

a succinct representation. A mixed strategy profile s is an ǫ-approximate Nash

equilibrium in an anonymous game if and only if

∀i ∈ [n], ∀a′ ∈ [k], E
x∼s−i

[
ui

a′(x)
]

≤ E
x∼s−i,a∼si

[
ui

a(x)
]

+ ǫ,

where x ∈ Πk
n−1 is the partition formed by n − 1 random samples (independently)

drawn from [k] according to the distributions s−i. Note that given a mixed strategy

profile s, we can compute a player’s expected payoff by straightforward dynamic

programming (see, e.g., [84]).
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Poisson Multinomial Distributions. A k-Categorical Random Variable (k-

CRV) is a vector random variable supported on the set of k-dimensional basis vectors

{e1, . . . , ek}. A k-CRV is i-maximal if ei is its most likely outcome (break ties by

taking the smallest index i). A k-Poisson multinomial distribution of order n, or an

(n, k)-PMD, is a vector random variable of the form X =
∑n

i=1 Xi where the Xi’s are

independent k-CRVs. The case of k = 2 is usually referred to as Poisson Binomial

Distribution (PBD).

Note that a mixed strategy profile s = (s1, . . . , sn) of an n-player k-strategy

anonymous game corresponds to the k-CRVs {X1, . . . , Xn} where Pr[Xi = ea] =

si(a). The expected payoff of player i ∈ [n] for playing pure strategy a ∈ [k] can

also be written as E[ui
a(X−i)] = E

[
ui

a

(∑
j 6=i,j∈[n]Xj

)]
.

Let X =
∑n

i=1 Xi be an (n, k)-PMD such that for i ∈ [n] and j ∈ [k] we

denote pi,j = Pr[Xi = ej ], where
∑k

j=1 pi,j = 1. For m = (m1, . . . , mk) ∈ Zk
+, we

define the mth-parameter moments of X to be Mm(X)
def
=
∑n

i=1

∏k
j=1 p

mj

i,j . We refer

to ‖m‖1 =
∑k

j=1mj as the degree of the parameter moment Mm(X).

Total Variation Distance and Covers. The total variation distance between

two distributions P and Q supported on a finite domain A is

dTV(P,Q)
def
= max

S⊆A
|P (S) −Q(S)| = (1/2) · ‖P −Q‖1.

If X and Y are two random variables ranging over a finite set, their total variation

distance dTV(X, Y ) is defined as the total variation distance between their distribu-

tions. For convenience, we will often blur the distinction between a random variable

and its distribution.
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Let (X , d) be a metric space. Given ǫ > 0, a subset Y ⊆ X is said to be a

proper ǫ-cover of X with respect to the metric d : X 2 → R+, if for every X ∈ X there

exists some Y ∈ Y such that d(X, Y ) ≤ ǫ. We will be interested in constructing

ǫ-covers for high-variance PMDs under the total variation distance metric.

Multidimensional Fourier Transform. For x ∈ R, we will denote e(x)
def
=

exp(−2πix). The (continuous) Fourier Transform of a function F : Zk → C is the

function F̂ : [0, 1]k → C defined as F̂ (ξ) =
∑

x∈Zk e(ξ · x)F (x). For the case that F

is a probability mass function, we can equivalently write F̂ (ξ) = Ex∼F [e(ξ · x)].

Let X =
∑n

i=1 Xi be an (n, k)-PMD with pi,j
def
= Pr[Xi = ej]. To avoid

clutter in the notation, we will sometimes use the symbol X to denote the cor-

responding probability mass function. With this convention, we can write that

X̂(ξ) =
∏n

i=1 X̂i(ξ) =
∏n

i=1

∑k
j=1 e(ξj)pi,j.

2.2 The Posterior Selection Problem

The signaling problem can be formulated as the mathematical program (P),

max
∑

µ∈∆M

αµf(µ) s.t.
∑

µ∈∆M

αµµ(θ) = λθ for all θ ∈ Θ, α ≥ 0. (P)

Notice that any feasible α must also satisfy
∑

µ∈∆M
αµ = 1; hence, α is indeed a

distribution over ∆M , and a feasible solution to (P) yields a signaling scheme. Let

opt(λ) denote the optimal value of (P), and note that this is a concave function of

λ. Although (P) has a linear objective and linear constraints, it is not quite a linear

program (LP) since there are an infinite number of variables. Ignoring this issue for

now, we consider the following dual of (P).
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min wTλ s.t. wTµ ≥ f(µ) for all µ ∈ ∆M , w ∈ R
M . (D)

The separation problem for (D) motivates the following dual signaling problem.

Definition 2.4 (Dual signaling with precision parameter ǫ). Given an objective

function f : ∆M → [−1, 1], w ∈ RM , and ǫ > 0, distinguish between:

(i) f(µ) ≥ wTµ+ ǫ for some µ ∈ ∆M ; if so return µ ∈ ∆M s.t. f(µ) ≥ wTµ− ǫ;

(ii) f(µ) < wTµ− ǫ for all µ ∈ ∆M .

The posterior selection problem is the special case of dual signaling where

w = η1M for some η ∈ R.

Definition 2.5 (Posterior selection with precision parameter ǫ). Given an objec-

tive function f : ∆M → [−1, 1] and ǫ > 0, find µ∗ ∈ ∆M such that f(µ∗) ≥
maxµ∈∆M

f(µ) − ǫ.

2.3 Planted Clique Conjecture

Some of our hardness results are based on the hardness of the planted-clique

and planted clique cover problems.

In the planted clique problem PClique(n, p, k), one must distinguish the n-

node Erdős-Rényi random graph G(n, 1
2
) in which each edge is included indepen-

dently with probability 1
2
, from the graph G(n, 1

2
, k) formed by “planting” a clique

in G(n, 1
2
) at a randomly (or, equivalently, adversarially) chosen set of k nodes. This

problem was first considered by Jerrum [66] and Kuc̆era [72], and has been the sub-

ject of a large body of work since. A quasipolynomial time algorithm exists when

k ≥ 2 logn, and the best polynomial-time algorithms only succeed for k = Ω(
√
n)
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(see, e.g., [4, 30, 40, 56]). Several papers suggest that the problem is hard for

k = o(
√
n) by ruling out natural classes of algorithmic approaches (e.g., [55, 57, 66]).

The planted clique problem has therefore found use as a hardness assumption in a

variety of applications (e.g., [3, 46, 63, 67, 78]).

Conjecture 2.6 (Planted-clique conjecture). For some k = k(n) satisfying k =

ω(logn) and k = o(
√
n), there is no probabilistic polynomial time algorithm that

solves PClique
(
n, 1

2
, k
)

with constant success probability.

The planted clique cover problem was introduced in [46]. Multiple cliques are

now planted and one seeks to recover a constant fraction of them.

Definition 2.7 (Planted clique cover problem PCover(n, p, k, r) [46]). Let G ∼
G(n, p, k, r) be a random graph generated by:

(1) including every edge independently with probability p; and

(2) for i = 1, . . . , r, picking a set Si of k vertices uniformly at random, adding all

edges having both endpoints in Si.

We call the Si’s the planted cliques and p the background density. We seek to recover

a constant fraction of the planted cliques S1, . . . , Sr, given G ∼ G(n, p, k, r).

Dughmi [46] showed that the planted clique cover problem is at least as hard

as the planted clique problem. Given an instance G of PClique(n, p, k), we can

generate an instance G′ of PCover(n, p, k, r) by planting r − 1 additional random

k-cliques into G (as in step (2) of Definition 2.7). Because the cliques S1, . . . , Sr

are indistinguishable, recovering a constant fraction of the planted cliques from G′

would recover each of S1, . . . , Sr with constant probability. In particular, doing so

would recover the original planted clique with constant probability.
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2.4 The Ellipsoid Method

The ellipsoid method is an iterative method for minimizing convex functions,

and it does so by generating a sequence of ellipsoids whose volume decreases in each

step. The shallow-cut ellipsoid method is a variant of the ellipsoid method, which is

useful when we only have access to an approximate separation oracle. The classic

ellipsoid method, in each iteration, cuts the current ellipsoid using a hyperplane that

goes through the center of the ellipsoid. At a high level, the shallow-cut method

takes a “shallower” cut that is close to the center of the ellipsoid, removing slightly

less than half of the current ellipsoid. It turns out that this is still sufficient for

finding an (approximately) optimal solution.

We utilize the shallow-cut ellipsoid method to translate hardness results for

the posterior selection problem to hardness results for optimal signaling. Formally,

we use the following lemma.

Lemma 2.8 (Chapters 4, 6 in [61]; Section 9.2 in [81]). Let X ⊆ Rn be a polytope

described by constraints having encoding length at most L. Suppose that for each

y ∈ Rn, we can determine in time poly(size of y, L) if y /∈ X and if so, return a

hyperplane of encoding length at most L separating y from X.

(i) The ellipsoid method can find a point x ∈ X or determine that X = ∅ in time

poly(n, L).

(ii) Let h : Rn → R be a concave function and K = supx∈X h(x) − infx∈X h(x).

Suppose we have a value oracle for h that for every x ∈ X returns ψ(x)

satisfying |ψ(x) − h(x)| ≤ δ. There exists a polynomial p(n) such that for

any ǫ ≥ p(n)δ, we can use the shallow-cut ellipsoid method to find x∗ ∈ X
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such that h(x∗) ≥ maxx∈X h(x) − 2ǫ (or determine X = ∅) in time T =

poly
(
n, L, log(K

ǫ
)
)

and using at most T queries to the value oracle for h.
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Chapter 3

Signaling in Network Routing

Games

Navigation services (e.g. Google Maps) on smartphones have changed people’s

lives during the past few years. While using Google Maps is as easy as typing in your

destination and following its navigation, there are three key aspects of this real-life

scenario that are relevant to the design of information structures: (1) Driving to work

is a game with incomplete information. Traffic has uncertainty, and the congestion

of every road is different each day. (2) The principal (Google Maps) knows more

about the real-time traffic than the drivers. One of the main reasons why drivers use

Google Maps is to learn more about real-time traffic conditions so they can choose

a better route. (3) Drivers are selfish and prefer to take the shortest paths to their

destination. It is well known that efficiency of network routing degrades due to the

selfish behavior of the drivers (see, e.g., [85]). These three aspects motivate us to

study signaling in routing games. At a high level, we view the traffic conditions

learned by Google Maps as an informational advantage, and we ask if (and how)

Google Maps can utilize this advantage to help selfish drivers.

In this chapter, we consider information revelation in (non-atomic, selfish)

Bayesian network routing games. We are interested in the most natural setting in

which the principal seeks to minimize the average latency experienced by a driver in

the system, knowing that the players would act selfishly after learning more about
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the traffic. Is it possible for the principal to carefully reveal information to reduce

the latency of equilibrium flow? And if so, how much can information revelation

help selfish routing?

We show that the answer to this question is two-fold.

(i) There are scenarios where the principal can improve selfish routing. Sometimes

through the careful provision of information, the principal can achieve the

best-coordinated outcome.

(ii) Optimal information revelation is hard in routing games in the worst case:

Assuming P 6= NP, there is no polynomial-time algorithm that does better

than full revelation.

More specifically, we show that full revelation obtains the price of anarchy (defined

in Section 2.1.4) of the routing game as its approximation ratio (Theorem 3.1),

which is 4
3

for linear latency functions [85]. We then settle the approximability of

the problem by showing that it is NP-hard to obtain a multiplicative approximation

better than 4
3
, even with linear latency functions (Theorem 3.2).

The results in this chapter appeared in [15], and my coauthors Umang Bhaskar

and Chaitanya Swamy did most of the work.

3.1 Informational Braess’ Paradox Revisited

We use a slight variation of the informational Braess’ paradox (Example 1.1) to

illustrate the problem we are trying to solve, and show that sometimes the principal

must reveal some but not all information to minimize the latency of selfish routing.

In Example 3.1, the states of nature θ1, θ2 are independent random variables, and
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s u t

w

ℓ(x) = θ1

ℓ(x) = 1 − θ1

ℓ(x
) =

x

ℓ(x) =
1

ℓ(x) = θ2

ℓ(x) =
1

ℓ(x
) =

x

Figure 3.1: A Bayesian network routing game adapted from Example 1.1.

both are drawn uniformly from the set {0, 1}. There are two edges from s to u, and

exactly one of these two edges is going to have latency 0, while the other edge has

latency 1. The edge v → w has latency 0 half of the time, and latency 1 otherwise.

In the optimal signaling scheme, the principal reveals the realization of θ1, but hides

the value of θ2. This is because the drivers have no externality from s to u, so they

can all take the shorter edge. But for driving from u to t, the drivers are better off

not learning the value of θ2, otherwise when θ2 = 0 all of them deviate to the zig-zag

path and experience a longer travel time.

In the example above, by revealing no information about the edge v → w, it

is as if the principal can remove the edge from the graph. It turns out that this

intuition is the key to showing hardness for this problem. We show that the optimal

signaling problem in routing games is as hard as the network design problem studied

by Cole et al. [31], where the principal puts taxes on the edges to minimize the total

drivers’ disutility (latency + tax). It was shown in [31] that the problem is equivalent

to deciding which edges to remove to minimize the latency of the Nash flow, so we

call it the network design problem. Our reduction constructs a Bayesian routing

game from an instance of the network design problem, in which we can translate

principal’s signaling scheme back to a set of taxes on the edges — the principal puts

more taxes on an edge if he reveals less information about it (and vice versa).
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3.2 Full Revelation Is a (4/3)-Approximation

In this section, we prove that full revelation is a 4
3
-approximation for signaling

in Bayesian network routing games with linear latency functions. Recall that the

price of anarchy (PoA) for a class of latency functions is the maximum ratio, over

all instances involving these latency functions, of the latencies of the Nash flow and

optimal flow. For linear latency functions, the PoA is 4
3

[85].

Intuitively, the result follows because full revelation is the best signaling scheme

if one seeks to minimize the expected latency of the optimal flow, and the multi-

plicative error that results from this change in objective (from the latency of the

Nash flow to that of the optimal flow) cannot exceed the price of anarchy. Our result

directly generalizes to arbitrary latency functions and multi-commodities, and the

approximation ratio of full revelation is bounded by the PoA of the set of allowable

latency functions.

Theorem 3.1. In Bayesian routing games, the full revelation signaling scheme has

the price of anarchy for the underlying latency functions as its approximation ratio.

In particular, for linear latencies, full revelation achieves a 4
3
-approximation.

Proof. Given a state of nature θ ∈ Θ, we use xθ
NE and xθ

OPT to denote the Nash flow

and the optimal flow with respect to the latency functions {ℓθ
e} respectively. Let

ρ be the price of anarchy for the collection {ℓθ
e}e∈E,θ∈Θ of latency functions, so we

have L(ℓθ, xθ
OPT) ≥ L(ℓθ, xθ

NE)/ρ) for all θ ∈ Θ.

The full revelation signaling scheme has latency L
def
=
∑

θ∈Θ λθL(ℓθ, xθ
NE). We

show that the average latency of any signaling scheme {pµ} is at least (L/ρ).
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∑

µ∈∆M

pµf(µ) =
∑

µ∈∆M

pµL(ℓµ, xµ
NE)

=
∑

µ∈∆M

pµ

∑

θ∈Θ

µ(θ)L(ℓθ, xµ
NE)

≥
∑

µ∈∆M

pµ

∑

θ∈Θ

µ(θ)L(ℓθ, xθ
OPT)

=
∑

θ∈Θ

λθL(ℓθ, xθ
OPT)

≥
∑

θ

λθL(ℓθ, xθ
NE)/ρ.

3.3 NP-hard to Approximate Better Than 4/3

We now prove matching hardness result to show that Theorem 3.1 is tight.

The proof of Theorem 3.2 is a direct reduction from the problem of computing edge

tolls that minimize the total (latency + toll)-cost of the resulting equilibrium flow.

Theorem 3.2. For any ǫ > 0, obtaining a (4
3

− ǫ)-approximation for the signaling

problem in Bayesian routing games is NP-hard, even in single-commodity games

with linear latency functions.

Let
(
G, s, t, d

)
be a single-commodity routing game. By scaling latency func-

tions suitably, we may assume that d = 1 and omit it from now on. We reduce

from the problem of determining edge tolls τ ∈ RE
+ that minimize L(ℓ+ τ, xℓ+τ

NE ),

where ℓ+ τ denotes the collection of latency functions {ℓe(x) + τe}e, and xℓ+τ
NE is the

Nash flow for ℓ + τ . Note that L(ℓ + τ, x) =
∑

e xe(ℓe(xe) + τe) takes into account

the contribution from tolls; we refer to this as the total cost of x. The problem of

computing optimal tolls that minimizes (latency + toll) is inapproximable within a

factor of 4
3
.
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Theorem 3.3 ([31]). There are optimal tolls where the toll on every edge is 0 or

∞. For every ǫ > 0, there is no
(

4
3

− ǫ
)
-approximation algorithm for the problem of

computing optimal tolls in networks with linear latency functions, unless P = NP.

Let
(
G = (V,E), ℓ, s, t

)
be an instance of a network design problem with linear

latencies. Let m = |E| ≥ 5. Let L0 = L(ℓ, xℓ
NE) be the latency of the Nash flow for

the original graph ℓ. Let τ ∗ be optimal {0,∞}-tolls, L∗ = L(ℓ + τ ∗, xℓ+τ∗

NE ) be the

optimal cost, and B∗ def
= {e ∈ E : τ ∗

e = ∞}. We can view τ ∗ as removing the edges

in B∗.

We create a Bayesian routing game as follows. Let
(
G1 = (V1, E1), s1, t1

)
and

(
G2 = (V2, E2), s2, t2

)
be two copies of (G, ℓ, s, t). Add vertices s, t, and edges

(s, s1), (s, s2) and (t1, t), (t2, t). Call the graph thus created H . For e ∈ E1 ∪ E2

with corresponding edge e′ ∈ E, we set the latency function in the new graph to be

he(x) = ℓe′(x), and we set he(x) = 0 for e ∈ {(s, s1), (s, s2), (t1, t), (t2, t)}.

Next, we introduce uncertainty to this game by randomly removing one edge

in H . Each state of nature θ corresponds to an edge e in H (i.e., Θ = EH), which

is going to be effectively removed from the graph. Formally, we set:

λθ =





1
m2 if θ ∈ E1 ∪ E2,

1
2

− 1
m

if e = (s, s1) or (s, s2),

0 if e = (t1, t) or (t2, t).

hθ
e(x) =





he(x) + m2L0 if θ = e,

he(x) otherwise.

Our Bayesian routing game is
(
(H, {hθ

e}θ,e, s, t), λ
)
.

The idea is that state θ encodes the removal of edge θ: specifically, if µ(θ) ≥ 1
m2

for a posterior µ, then hµ simulates the edge θ breaking down due to the large

constant term m2L0. Let B1, B2 be the edge-sets corresponding to B∗ in G1 and G2
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respectively. The prior λ is set up to satisfy two important properties: (1) it admits

a convex decomposition into posteriors µ1 and µ2, where µ1 simulates that G1 \B1

is connected to s and G2 is disconnected from s (similarly for µ2); and (2) any

reasonable signaling scheme must put most of the probability mass into posteriors

µ, where hµ connects only one of Gi to s, so that {µem
2L0}e∈Ei

yields tolls τ for

edges in the network design problem with L(ℓ+ τ, xℓ+τ
NE ) ≤ f(µ). Lemma 3.4 and 3.5

make the statements in (1) and (2) precise, and Theorem 3.2 follows immediately

from Lemmas 3.4, 3.5 and Theorem 3.3.

Lemma 3.4. Let L∗ be the cost of optimal tolls for a network design instance

(G, ℓ, s, t). There is a signaling scheme for the above Bayesian routing game
(
(H, {hθ

e}θ,e, s, t), λ
)

with expected latency L∗.

Proof. We partition the edges of H into two sets: B1 ∪(E2 \B2)∪{(s, s2)} as one set,

and the remaining edges as the other. We claim the signaling scheme that reveals

which set contains the broken edge θ has expected latency L∗.

Formally, define posterior µ1 ∈ ∆EH
as:

µ1(θ) =





2
m2 if θ ∈ B1 or θ ∈ (E2 \B2),

1 − 2
m

if θ = (s, s2),

0 otherwise.

We can define µ2 symmetrically and check that λ = (µ1 + µ2)/2. We will show that

f(µ1) = f(µ2) = L∗, proving the lemma.

Consider distribution µ1. The argument for µ2 is symmetrical. The idea is

that an edge e with µ1(e) > 0 has hµ1
e (x) ≥ 2L0, which effectively deletes e from H ;

other edges have hµ1
e (x) = he(x). So µ1 retains edges in G1 \ B1, and disconnects
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G2 from s. The remaining graph corresponds to the optimal solution of the network

design problem on G1, removing the bad edges B1 and adding two extra edges (s, s1)

and (t1, t) both with latency 0. Therefore, the latency of the Nash flow under µ1 is

exactly L∗.

Lemma 3.5. Given a signaling scheme {pµ}µ∈∆M
for the Bayesian routing game

(
(H, {hθ

e}θ,e, s, t), λ
)

with expected latency L, one can obtain tolls τ such that the

routing game (G, ℓ+ τ, s, t) has Nash latency at most L
1−3/m

.

Proof. Assume L < L0, otherwise τ = 0 suffices. By Markov’s inequality, at least
(
1− 2

m−1

)
of the probability mass of p must be on posteriors µ with µ(s,s1) +µ(s,s2) ≥

1/m. There must exist such a posterior µ with f(µ) ≤ L
1−2/(m−1)

≤ L
1−3/m

.

Fix such a posterior µ. Without loss of generality, we assume µ(s,s1) ≥ 1
2m

.

Let x = xµ
NE be the Nash flow for latency functions hµ. Since m ≥ 5 and L < L0,

we have hµ
(s,s1) ≥ mL0/2 > L

1−3/m
≥ f(µ), so we must have x(s,s1) = 0, i.e., x is

supported on G2.

For e ∈ E2, we also use e to denote the corresponding edge in E. For every

e ∈ E2, we have hµ
e (x) = ℓe(x) + µem

2L0. Thus, defining τe = µem
2L0 for all e ∈ E,

we obtain that x restricted to E2 (with s2 corresponding to s) is a Nash flow for

(G, ℓ+ τ, s, t). The latency of the restricted flow is equal to f(µ), because under the

posterior µ, every s-t path in G corresponds to an s2-t2 path in H with the same

latency.
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Chapter 4

Signaling in Normal Form Games

In the previous chapter, we studied how information revelation can help selfish

routing, and we showed that the principal must solve NP-hard problems to do even

slightly better than full revelation. In this chapter, we examine the complexity of

optimal signaling in one of the most fundamental classes of games: normal form

games. As we will see, the problem of (approximately) optimal signaling in normal

form games is computationally easier than optimal signaling in routing games — the

principal can obtain an ǫ-additive optimal signaling scheme in quasipolynomial time

for any constant ǫ > 0. and this cannot be improved to polynomial time assuming

the planted clique conjecture.

Recall that in Bayesian normal form games, we have a principal and a game

whose payoff entries depend on the state of nature θ. Players only know the common

prior distribution of θ, while the principal knows the realization of θ and seeks to

reveal partial information about θ to induce a desirable equilibrium. For the formal

definition of signaling in Bayesian normal form games, see Section 2.1.2.

4.1 Two Examples

4.1.1 Bayesian Prisoner’s Dilemma Revisited

We start with a variation of the Prisoner’s dilemma given in Example 1.2.
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Cooperate Defect

Cooperate −2,−2 −5, 0

Defect 0,−5 −4,−4

(a) Payoff when θ = 1.

Cooperate Defect

Cooperate 1, 1 −5, 0

Defect 0,−5 −4,−4

(b) Payoff when θ = 2.

Figure 4.1: A Bayesian normal form game adapted from the Prisoner’s dilemma.

In Figure 4.1, the payoff of the game depends on the state of nature θ, which

is drawn from {1, 2} uniformly by nature. We are given two normal form games as

input, one for each possible state of nature. In each cell, the first number repre-

sents the payoff of the row player, and the second number represents the payoff of

the column player. The principal is interested in maximizing the (expected) social

welfare. If the principal reveals full information, the players defect when θ = 1 and

cooperate when θ = 2. The expected social welfare is (−8 + 2)/2 = −3.

Consider a signal σ and the corresponding posterior belief µ over θ. Let µ(1) =

Pr[θ = 1] and µ(2) = Pr[θ = 2]. The expected payoff for both players to cooperate

is Pr[θ = 1] · (−2) + Pr[θ = 2] · 1 = µ(2) − 2µ(1) = 1 − 3µ(1). When µ(1) ≤ 1/3, the

payoff is enough to incentivize risk neutral players to cooperate.

The optimal signaling scheme uses two signals, σ1 (the “defect” signal) and

σ2 (the “cooperate” signal). The principal announces σ2 whenever θ = 2. When

θ = 1, the principal announces σ2 with probability 1/2 and announces σ1 otherwise.

Conditioned on the signal being σ2, we have Pr[θ = 1] = 1/3. Based on the analysis

above, players will cooperate under σ2 and the expected social welfare of the optimal

signaling scheme is

2
(
Pr[θ = 1, σ1] · (−4) + Pr[θ = 1, σ2] · (−2) + Pr[θ = 2] · 1

)

= 2
(

1

4
· (−4) +

1

4
· (−2) +

1

2
· 1
)

= −2.
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Example 3.1 is similar to the informational Braess’ paradox (Example 1.1), in

which the principal tries to help the players fight their selfishness through careful

provision of information. This is merely one of the many facets of optimal informa-

tion revelation, and we will see a different perspective in the next example.

4.1.2 Helping a Friend in a Poker Game

Fold Call

Check 1 1

Bet 1 2

(a) Row’s payoff when θ = 1.

Fold Call

Check −1 −1

Bet 1 −2

(b) Row’s payoff when θ = 2.

Figure 4.2: A Bayesian poker game.

Consider a Bayesian zero-sum game given in Figure 4.2 1. We use Row and

Col to denote the row and column players respectively. The game proceeds as

follows:

1. Each player puts $1 on the table, then gets a card. Players do not get to see

the cards (including their own).

2. Row goes first, and she can choose to bet another $1 (Bet) or not (Check).

3. If Row bets, Col can choose to put in $1 as well (Call) or to give up (Fold).

If Row bets and Col folds, Row wins automatically. Otherwise both cards are

revealed, and the player with the higher card wins and takes all the money. Note

that in this game, Col does not have the option to bet if Row checks.

1 This example is inspired by Will Ma’s talk on Poker at Google NYC in summer 2013.
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To simplify the problem, we assume nature flips a coin to decide who has the

higher card. If θ = 1 then Row has a higher card, and if θ = 2 then Col has a

higher card. This game can be represented in normal form as in Figure 4.2. When

Row bets and Col folds, the value of the cards are irrelevant; Row takes the money,

winning $1 from Col. In all other cases, the cards are revealed and the player with

higher card wins and gets either $1 or $2 from her opponent.

If Row and Col play this game without extra information about θ, the value

of the game is 0, because Col will never fold and neither player has an advantage.

Now suppose there is a principal who knows the exact value of θ and wants to help

Row in this game by sending a signal to both players. If the principal reveals full

information, then Row wins $1 when θ = 1 and loses $1 when θ = 2, so the expected

payoff of Row is again 0.

Consider a signal σ and the corresponding posterior belief µ. Let µ(1) denote

the probability that θ = 1.

• If µ(1) < 1/2, then Col has a higher chance of winning if the cards are revealed,

so Col always calls and Row has no incentive to bet. The equilibrium of the

game is (Check, Call), and Row’s expected payoff is

Pr[θ = 1] − Pr[θ = 2] = µ(1) − (1 − µ(1)) = 2µ(1) − 1.

• For 1/2 ≤ µ(1) < 3/4, Row has a higher chance of winning if the cards are

revealed, so she prefers to bet. If Col folds, she loses $1 for sure. If Col calls,

her expected payoff is

2 (Pr[θ = 2] − Pr[θ = 1]) = 2 − 4µ(1) > −1,
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so the equilibrium of the game is (Bet, Call), and Row’s expected payoff is

4µ(1) − 2.

• When µ(1) ≥ 3/4, the analysis in similar to that in the previous case, except

that the probability of Row winning the showdown (θ = 1) is large enough

that it is better for Col to fold. The equilibrium of the game is (Bet, Fold),

and Row’s payoff is 1.

Recall that f(µ) is the principal’s objective (in this case, Row’s expected

payoff) under the posterior µ. We can plot out f(µ) as a function of µ(1) (Figure 4.3).

The optimal signaling scheme (shown in decomposition form in Figure 4.3) uses two

signals, one revealing Row has the lower card (µ(1) = 0, Row loses $1), and one just

enough to force Col to fold when Row bets (µ(1) = 3/4, Row wins $1). The first

signal appears with probability 1/3, and the second signal appears with probability

2/3, so Row and the principal’s expected utility is 1/3.

1

−1

0.25 0.50 0.75 1.00
µ(1)

f(µ) = Row’s expected payoff

×

×

×

Figure 4.3: Row’s expected payoff as a function of µ(1) = Pr[θ = 1]. The dashed
line represents the optimal signaling scheme in the prior decomposition form.

In the poker game, depending on the posterior beliefs, there are three different

outcomes of the game. This can be observed in the three sections of the piecewise
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linear function in Figure 4.3. In order to decompose the prior optimally, there is

no need for more than one signal per outcome, due to the fact that the function is

linear in each section. This observation is crucial for our algorithm in Section 4.3.

We hope that these two examples illustrate the importance and complexity of

optimal signaling in normal form games. We will now proceed to state our algorith-

mic and hardness results.

4.2 Summary of Results

In this chapter, we investigate the computational complexity of optimal sig-

naling in Bayesian zero-sum games.

In Section 4.3, we develop the first (bi-criteria) quasipolynomial time approx-

imation scheme (QPTAS) for signaling in normal form games. In other words, for

every constant ǫ > 0, we can in quasipolynomial time compute a near-optimal sig-

naling scheme, losing an additive ǫ in the objective as well as in the equilibrium

constraints (Theorem 4.1).

In Section 4.4, we first show that the relaxation in players’ incentive constraints

is necessary, otherwise the problem becomes NP-hard (Theorem 4.5). We then settle

the complexity of the signaling problem with respect to NP-hardness by showing that

it is NP-hard to obtain an additive FPTAS (Theorem 4.7). Finally, we show that

assuming the planted clique conjecture (Conjecture 2.6), the QPTAS in Section 4.3

is essentially optimal (Theorem 4.10).

It is worth noting that our algorithm applies to general sum normal form

games with any constant number of players, and an abstract class of objectives

which includes the social welfare and weighted combinations of player utilities as
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a special case; while all of our hardness results hold for Bayesian two-player zero-

sum games. Zero-sum games admit a canonical and tractable notion of equilibrium,

which allows us to study the complexity of optimal signaling without equilibrium

computation concerns.

The work presented in this section appeared previously as research papers. The

algorithm in Section 4.3 appeared in [27], and the hardness results in Section 4.4

appeared in [15].

Previous and Recent Work

Dughmi [46] initiated the computational study of signaling in Bayesian zero-

sum games, and obtained various hardness results. Specifically, it was shown that

no FPTAS is possible for the signaling problem for zero sum games, assuming the

planted clique conjecture. In Section 4.4.2, we strengthen the result of [46] by ruling

out an FPTAS assuming P 6= NP, and ruling out a PTAS based on the planted

clique conjecture.

Recently, Rubinstein [86] showed that our QPTAS in Theorem 4.3 is essentially

tight assuming the Exponential Time Hypothesis (ETH). Compared to our hardness

results in Section 4.4.3, [86] replaced our average-case assumption of planted clique

hardness with a more conventional worst-case assumption (ETH).
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4.3 QPTAS for Signaling in Normal Form Games

In this section, we consider signaling in normal form games when the adopted

solution concept is the ǫ-well-supported Nash equilibrium (ǫ-WSNE)2, and give the

first QPTAS for this problem. Our approach consists of two main steps.

1. Construct a Small Dictionary of Equilibria: This is a discrete family of objects

which indexes the potential equilibria of a signaling scheme, with the property

that they form an ǫ-cover of the space of all equilibria with respect to the

space of signaling schemes and the design objective.

2. Construct a near-optimal Signaling Scheme: We then compute a near-optimal

signaling scheme which induces subgames with equilibria from our dictio-

nary. This involves solving a nontrivial optimization problem which optimally

decomposes the prior distribution into posterior beliefs inducing equilibria in

our dictionary.

Our dictionary is based on the work of Lipton et al. [74]. Specifically, [74]

shows the existence of a quasipolynomial-size family of mixed strategy profiles which,

simultaneously for all games and equilibria of those games, includes a profile which

approximates the payoffs of the equilibrium to within an additive ǫ, and itself forms

an ǫ-equilibrium. To combine these approximate equilibria into a signaling scheme,

we make two observations: First, the space of posterior beliefs which induce a par-

ticular equilibrium forms a convex polytope; second, the optimization problem of

optimally partitioning the prior belief into a quasipolynomial number of posterior

2 Since every ǫ-WSNE is also an ǫ-approximate Nash equilibrium (ǫ-NE), our results apply to
ǫ-NE as well.
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beliefs, one in each polytope corresponding to an equilibrium, can be formulated via

a linear program after an appropriate change of variables.

Formally, we prove the following bi-criteria result. Recall that F (ϕ,X ) is the

principal’s objective value for the signaling scheme ϕ and associated (approximate)

equilibria X ; and OPT(A, λ) is the maximum reward for the principal over all

possible signaling schemes and (exact) equilibria.

Theorem 4.1. Fix ǫ > 0. Given as input an explicitly-described Bayesian nor-

mal form game (A, λ) with k = O(1) players, n actions, and M states of nature,

and an objective A0 : [M ] × [n]k → [−1, 1], there is an algorithm with runtime

poly(M,nlog n/ǫ2
) which outputs a signaling scheme ϕ and corresponding Bayesian

ǫ-well-supported Nash equilibria X satisfying F (ϕ,X ) ≥ OPT(A, λ) − ǫ.

The proof of Theorem 4.1 hinges on three main lemmas. The first lemma

(Lemma 4.2) allows us to restrict attention to equilibria with small support, which

follows easily from the results of [74]3. The second lemma (Lemma 4.3) states

that the posterior beliefs implementing a particular approximate equilibrium form

a simple polytope, in doing so reducing the signaling problem to optimization over

convex decompositions of λ into a family of posteriors, each belonging to a given

polytope. The third lemma (Lemma 4.4) shows that optimization over such convex

decompositions reduces to a linear program.

Lemma 4.2. Let tensors A1, . . . , Ak : [n]k → [−1, 1] describe a k-player game of

complete information with n pure strategies per player, and let A0 : [n]k → [−1, 1]

3 Babichenko et al. [8] later improved the parameters of [74]. For a normal form game with
k players and n strategies and for any constant ǫ > 0, [8] proves there exists an ǫ-cover of Nash
equilibria in which each player randomizes uniformly among a set of size O(log k+log n); in contrast
[74] requires a set of size O(k2(log k + log n)). Since we are interested in the setting where the
number of players k = O(1), the two results are asymptotically the same for us.
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be a tensor describing an objective function on pure strategy profiles. For each

ǫ > 0, there exists an integer s = s(ǫ) = O(k2 log(kn)/ǫ), such that for every mixed

strategy profile x = (x1, . . . , xk), there is a profile x̃ = (x̃1, . . . , x̃k) of s-uniform

mixed strategies such that |Ai(x) −Ai(x̃)| ≤ ǫ for all players i, |A0(x) −A0(x̃)| ≤ ǫ,

and if x is a Nash equilibrium of A = {A1, . . . , Ak} then x̃ is an ǫ-WSNE of A.

Lemma 4.3. Fix a normal form game of incomplete information {Aθ
i ∈ [−1, 1]n

k
:

i ∈ [k], θ ∈ [M ]} with k players, n actions, and M states of nature. Consider a mixed

strategy profile x = (x1, . . . , xk) with xi ∈ ∆n. For each ǫ ≥ 0, the set of posterior

beliefs inducing x as an ǫ-WSNE is a convex polytope described by L = poly(k, n)

linear inequalities.

Lemma 4.4. Given a family of non-empty polytopes P1, . . . ,Pt ⊆ ∆M described by

L inequalities each, a point λ ∈ ∆M , and linear objectives w1, . . . , wt ∈ R
M , the

non-linear optimization problem (4.1) can be solved in poly(t, L,M) time.

maximize
∑t

σ=1 pσwσ · µσ

subject to
∑t

σ=1 pσ = 1
∑t

σ=1 pσµσ = λ

µσ ∈ Pσ, for σ = 1, . . . , t.

(4.1)

Before proving each of these lemmas, we first elaborate on how they imply

Theorem 4.1.
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Proof of Theorem 4.1. Given a signaling scheme ϕ with decomposition form (p, µ),

and an (approximate) equilibrium xσ for each subgame corresponding to σ, the

principal’s objective value is

F (ϕ, x) =
∑

σ∈Σ

pσA0(µσ, x
σ)

where A0(µ, x) denotes Eθ∼µ[Es∼x[A0(θ, s)]].

Let Nn,ǫ ⊆ ∆n denote the set of all s-uniform mixed strategies. Lemma 4.2

implies that, in order to complete the proof of Theorem 4.1, it suffices to show how to

exactly optimize, in the claimed time, over signaling schemes in which xσ ∈ (Nn,ǫ)
k

for each signal σ ∈ Σ. We may restrict attention to signaling scheme/equilibrium

combinations for which each mixed strategy profile x ∈ (Nn,ǫ)
k is selected for at

most one subgame: when x is the equilibrium for both the subgames Aσ1 and Aσ2 ,

we can “merge” the two signals σ1 and σ2 into a signal (σ1, σ2), giving rise to a

new subgame A(σ1,σ2) with posterior belief µ(σ1,σ2) = pσ1

pσ1+pσ2
µσ1 + pσ2

pσ1+pσ2
µσ2 and

probability p(σ1,σ2) = pσ1 +pσ2 . Lemma 4.3 implies that x remains an (approximate)

equilibrium of the merged subgame. Moreover, the objective is unchanged because

A0(µ, x) is linear in its first argument.

We first discard strategy profiles in (Nn,ǫ)
k which cannot be induced as equilib-

ria of any posterior belief. This can be done in polynomial time, by checking whether

the corresponding polytope (as given by Lemma 4.3) is empty. Let N ⊆ (Nn,ǫ)
k

denote the set of s-uniform ǫ-equilibria that can be induced by some posterior belief.

For notational convenience we assume that each x ∈ N is induced as an equilibrium

of exactly one subgame, by allowing signals which occur with probability 0. Since

the number of players k is a constant, we can index N ⊆ (Nn,ǫ)
k as {x1, . . . , xt} for

t = |N | ≤ |Nn,ǫ|k = nO(log n/ǫ2), and we can write our optimization task as follows.
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maximize
∑t

σ=1 pσA0(µσ, x
σ)

subject to
∑t

σ=1 pσ = 1
∑t

σ=1 pσµσ = λ

xσ is an equilibrium of Aµσ , for σ = 1, . . . , t.

(4.2)

Lemma 4.3, and the linearity of A0(µ, x) in its first argument, imply that opti-

mization problem (4.2) is of the form given in (4.1) with L = poly(k, n) constraints.

Lemma 4.4, and our assumption that k = O(1), imply that (4.2) can be solved in

time poly(M,nlog n/ǫ2
). This completes the proof of Theorem 4.1.

We now prove Lemmas 4.2, 4.3, and 4.4.

Proof of Lemma 4.2

We can think of the objective tensor Aµ
0 : [n]k → [−1, 1] as describing the

utility of an additional player (the principal) in the game with a trivial strategy set.

The rest follows from [74, Theorem 2].

Proof of Lemma 4.3

For x to be an ǫ-WSNE of Aµ =
∑M

θ=1 µ(θ)Aθ, the following set of inequalities

must hold for µ ∈ ∆M :

∑M
θ=1 µ(θ)Aθ

i (j, x−i) ≥ ∑M
θ=1 µ(θ)Aθ

i (k, x−i) − ǫ, for i ∈ [k], j ∈ supp(xi), k ∈ [n].

Since x is fixed, we have a system of poly(k, n) linear inequalities in µ.
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Proof of Lemma 4.4

We write an equivalent linear program via a change of variables. Specifically,

we let νσ = pσµσ. Observe that after this change (4.1) becomes:

maximize
∑t

σ=1 wσ · νσ

subject to
∑t

σ=1 pσ = 1
∑t

σ=1 νσ = λ

νσ

pσ
∈ Pσ, for σ = 1, . . . , t.

(4.3)

(4.3) is not yet a linear program. However, since Pσ is described by an explicit

set of inequalities Cσy � bσ, the non-linear inequalities Cσνσ/pσ � bσ can be re-

written as Cσνσ � pσb
σ. Moreover, note that νσ/pσ ∈ Pσ ⊆ ∆M , so pσ =

∑
θ νσ(θ)

holds for every feasible solution. This results in an equivalent linear program with

variables ν1, . . . , νt ∈ RM
+ , from which pσ =

∑
θ νσ(θ) and µσ = νσ/pσ can be recov-

ered efficiently.

Remarks

Zero-sum games When applied to two-player zero-sum games with the objec-

tive to maximize the row-player’s payoff, our signaling scheme provides a stronger

guarantee. In such settings, both players retain the same payoff in any exact Nash

equilibrium. Also, any ǫ-equilibria give a payoff that is ǫ-close to the payoff of

any exact equilibrium. Thus, the signaling scheme provided in Theorem 4.1 can be

directly compared with the quality of the optimal signaling scheme without worrying

about equilibrium selection, instead of a bi-criteria guarantee.
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Reducing the number of signals Although the signaling scheme provided in

Theorem 4.1 might use a quasipolynomial number of signals, we can reduce the

number of signals to M + 1. Let fλ be the objective value of the signaling scheme,

and consider the set of t signals used {µ1, . . . , µt} and their corresponding objective

values {f1, . . . , ft}. Observe that the (M + 1)-dimensional point (fλ, λ) is a convex

combination of the set of points P = {(w1, µ1), . . . , (wt, µt)}. Since fλ is the objec-

tive value of the best signaling scheme that uses only the posteriors {µ1, . . . , µt},

(fλ, λ) belongs to some facet of the convex hull of P . Hence by Carathéodory’s

theorem, (fλ, λ) can be written as a convex combination of M + 1 points from P ,

and such a decomposition can be computed in time polynomial in the size of P .

This decomposition gives a valid signaling scheme with the same objective value,

using only M + 1 signals.

Extending the bicriteria guarantee Our algorithm can extend beyond exact

Nash equilibria. For every 0 ≤ δ < ǫ, we can compute a signaling scheme with

ǫ-equilibria that are competitive with the optimal signaling scheme that uses δ-

equilibria. Formally, let OPTδ(A, λ) denote the maximum reward for the principal

over all possible signaling schemes and δ-equilibria. We can compute a signaling

scheme ϕ and corresponding Bayesian (ǫ+ δ)-equilibria X in time poly(M,nlog n/ǫ2
),

and the value of the signaling scheme satisfies F (ϕ,X ) ≥ OPTδ(A, λ) − ǫ. Theo-

rem 4.1 is a special case of this result with δ = 0.

Stackelberg games Our result can be extended to Stackelberg games which often

arise in security games. Recall that in a Stackelberg game [91], one player (the

leader) first commits to a (mixed) strategy, and then all other players (followers)

simultaneously play their strategies upon learning the leader’s strategy. Our result
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can be readily extended to Bayesian Stackelberg games when the objective of the

signaling scheme is to maximize the leader’s payoff. In this case, we can simply

drop the constraints regarding the leader in the polytopes defined in Lemma 4.3,

and only require the followers to play an approximate equilibrium in our algorithm

presented in Theorem 4.1.

Equilibrium selection rules Our algorithm computes a signaling scheme as well

as the associated (approximate) equilibria for the subgames. We assume that the

principal can implement any equilibrium (i.e., the best equilibrium she can compute)

in each subgame. It remains open whether one can find a near-optimal signaling

scheme independent of equilibrium selection. For example, when the (real) players

always choose the worst equilibrium for the principal after a signal is revealed.

4.4 Hardness Results for Signaling in Normal

Form Games

In this section, we prove hardness results for approximately optimal signaling

in normal form games.

In Section 4.4.1, we show that relaxing the incentive constraints is necessary

if the principal’s objective can be a tensor over the state of play (Theorem 4.5).

In Section 4.4.2, we show that it is NP-hard to obtain an additive FPTAS (The-

orem 4.7). In Section 4.4.3, we show that assuming the planted clique conjecture

(Conjecture 2.6), there is no PTAS for signaling in zero-sum games (Theorem 4.10).
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4.4.1 NP-hardness of Signaling with Exact Equilibria

Our bicriteria QPTAS in Theorem 4.1 allows the principal’s payoff to depend

on the specific strategies the players take. We show that the relaxation in play-

ers’ incentive constraints is necessary if we want general objective functions, even

for signaling in zero-sum games. More specifically, we show that it is NP-hard to

distinguish whether the optimal signaling scheme has value 0 or at least 1/2.

Theorem 4.5. Given a Bayesian zero-sum game
(
Θ, {Aθ}θ∈Θ, λ

)
and a principal

objective tensor A0, it is NP-hard to distinguish whether the optimal signaling scheme

has value 0 or at least 1
2
.

The NP-hardness proof uses a reduction from the balanced vertex cover (BVC)

problem proposed by Conitzer and Sandholm [32]. In BVC, we are given a graph

G = (V,E), and we want to know if G has a vertex cover of size |V |
2

. Given an

instance of BVC with n nodes, we construct the following Bayesian zero-sum game

where the states of nature correspond to nodes of G (i.e., Θ = V ) and the prior is

uniform, i.e., λ = 1n/n.

We use Row and Col to denote the row player and the column player respec-

tively. Row’s pure strategies correspond to picking a node u ∈ V , and Col’s

strategies correspond to either picking a vertex v, an edge e, or a special strategy s.

The payoff of Col when she plays

v is





n
n−2

if v /∈ {θ, u},

0 otherwise.
e is





n
n−2

if e is not incident with θ,

0 otherwise.
s is 1.

The principal is only interested in getting Col to play the strategy s, that is,

Aθ
0(v, s) = 1 for all θ, v ∈ V ; all other entries of A0 are 0.
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The idea behind our construction is the following: nature and Row pick two

nodes θ, u ∈ V to “protect”, but only nature “protects” all the edges incident to θ.

Col can choose to “attack” either a node v, an edge e, or to “give up” and play the

strategy s. The principal wants Col to give up, so he has to coordinate the state

of nature and Row’s strategy to protect different nodes. Because we do not relax

the incentive constraints, the principal must find a vertex cover of size n/2. which

becomes NP-hard.

Lemma 4.6. The Bayesian zero-sum game defined above has a signaling scheme of

value at least 1
2

if and only if G has a vertex cover of size n
2
.

Proof. First, suppose G has a vertex cover C with |C| = n
2
. The principal simply

signals if θ ∈ C or not. That is, λ is decomposed as (µ1 + µ2)/2, where µ1(v) = 2
n

for all v ∈ C (and 0 otherwise), and µ2(v) = 2
n

for all v /∈ C. For posterior µ1, there

is a Nash equilibrium where Row picks u ∈ V \ C uniformly at random and Col

chooses strategy s; thus, the principal gets a value of 1. This is because every node

is protected with probability 2
n
, and every edge is protected with probability at least

2
n
; so the payoff of Col for a pure strategy v or e is at most n

n−2

(
1 − 2

n

)
= 1. Since

µ1 is announced with probability 1
2
, this signaling scheme achieves value at least 1

2
.

On the other hand, we show that if µ is a posterior with f(µ) > 0, then

G has a BVC solution. Recall that f(µ) is the principal’s objective value under

the posterior µ. Let (x, y) be a Nash equilibrium that attains value f(µ), that is,

f(µ) = xT
(∑

θ µ(θ)Aθ
0

)
y. Since f(µ) > 0, we must have ys > 0, so every node in V

must be protected with probability at least 2
n
. This requires nature and Row to be

perfectly negatively correlated and never protect the same node.

Formally, we must have n
n−2

(1 − x(u))(1 − µ(u)) ≤ 1 for all u ∈ V , and

summing up over all nodes we have
∑

u(1 − x(u))(1 − µ(u)) ≤ n− 2, which implies
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∑
u x(u)µ(u) ≤ 0. So it must be that for all u ∈ V , exactly one of µ(u) and x(u) is

equal to 2
n
, and this induces a natural bisection of the graph. Let C = {v : µv > 0};

we know |C| = n
2
. The payoff of Col for an edge e = (s, t) is n

n−2
(1 −µs −µt), which

must be at most 1, so we have µs + µt ≥ 2
n

for all edges (s, t). It follows that C is a

vertex cover of G.

In light of the hardness result with general objective functions (Theorem 4.5),

for the rest of this chapter, we focus on signaling in two-player zero-sum games and

the simplest principal’s objective function — maximizing the row player’s expected

payoff at equilibrium.

In zero-sum games, both players retain the same payoff in any exact Nash

equilibrium, and any ǫ-equilibrium gives a payoff that is ǫ-close to the playoff of

any exact equilibrium. Thus, for signaling in zero-sum games with the objective to

maximize the row-player’s payoff, we can absorb the loss in the incentive constraints

into the loss in objectives. Signaling schemes with bicriteria guarantees (e.g., our

QPTAS in Section 4.3) can be directly compared with the quality of the optimal

signaling scheme. In this setting, we can study the complexity of optimal signaling

without worrying about equilibrium selection or bicriteria/single-criteria guarantees.

4.4.2 NP-hardness of an FPTAS

In this section, we prove signaling in normal form games does not admit an

FPTAS unless P = NP (Theorem 4.7).

Theorem 4.7. There is no FPTAS for the signaling problem, even for network

security games, unless P = NP.
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Theorem 4.7 follows by considering the signaling problem from a dual perspec-

tive. The signaling problem can be written as a mathematical program (P) with

linear objective and constraints, but an infinite number of variables. Ignoring this

issue, we can consider the dual problem (D). Motivated by the separation problem

for the dual, we consider the posterior selection problem (Definition 2.5).

Our key insight is that the posterior selection problem is a useful tool for

deriving hardness results. This usefulness stems from the equivalence of separation

and optimization [61], which shows that an algorithm for the separation problem

can be used to solve the optimization problem and vice versa. We exploit and build

upon this equivalence. We prove that this equivalence holds despite the infinite-

dimensionality of (P), and furthermore, is approximation preserving: an FPTAS for

signaling yields an FPTAS for the posterior selection problem (Theorem 4.8).

Whereas, typically, an (approximate) separation or membership oracle is used

to (approximately) solve the optimization problem, we exploit this equivalence in an

unorthodox fashion by leveraging the hardness of the optimization problem to prove

hardness results for the membership problem. We show that it is NP-hard to obtain

an FPTAS for the posterior selection problem in normal form games (Lemma 4.9),

and thus it is NP-hard to obtain an FPTAS for optimal signaling in normal form

games. It is worth noting that we obtain our NP-hardness result with minimal effort,

a fact that underscores the benefits of moving to the posterior selection problem.

Theorem 4.7 follows immediately from Theorem 4.8 and Lemma 4.9.

Theorem 4.8. An FPTAS for the signaling problem yields an FPTAS for the

posterior selection problem.
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Proof. Recall that f : ∆M → [−1, 1] maps a posterior distribution to the principal’s

objective value, and f+ is the concave envelope of f (Definition 2.1). Observe that

f is decided by the Bayesian game, and does not depend on the prior distribution

λ. The optimal signaling scheme has value f+(λ) for a given prior λ.

Consider the hypograph P ⊆ R
M+1 of f+. An algorithm B for (approxi-

mately) optimal signaling gives a membership oracle for P: a point (µ, η) ∈ RM+1

belongs to P if and only if η ≤ f+(µ). For the posterior selection problem we

want to compute maxµ f(µ) = maxµ f
+(µ). Let w = (0, . . . , 0, 1) ∈ RM+1. The

posterior selection problem can be viewed as maximizing a linear function over P:

max(µ,η)∈P η = maxx∈P w
Tx. At a high level, the theorem statement can be inter-

preted as membership oracle is sufficient for optimization [61, 81], and we need to

quantify to what extent it is approximation preserving.

Formally, we show that if we have a polynomial time ǫ
poly(M)

-approximation

algorithm B for optimal signaling, then we can convert it into a polynomial time

ǫ-approximation algorithm for the posterior selection problem. Given a posterior

selection instance and a precision parameter ǫ > 0, we invoke part (ii) of Lemma 2.8

with X = ∆M , h(·) = f+(·), K = 2, and B as the imperfect value oracle with

precision δ = ǫ
2p(M)

. Note that p(·) is the polynomial given in Lemma 2.8, and f+ is

concave as needed. Lemma 2.8 will return a point x∗ ∈ ∆M in polynomial time with

f+(x∗) ≥ maxµ∈∆M
f+(µ) − 2p(M)δ = maxµ∈∆M

f(µ) − ǫ, an ǫ-optimal solution for

the posterior selection problem.

Lemma 4.9. There is no FPTAS for the posterior selection problem, even for net-

work security games, unless P = NP.

Proof. The proof follows via a reduction from the balanced complete bipartite sub-

graph (BCBS) problem. In BCBS, given as input a bipartite graph G = (V ∪W,E)
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and an integer r ≥ 0, we want to determine if G contains an r × r biclique. Garey

and Johnson [58] showed that the BCBS problem is NP-complete.

Given a BCBS instance, we set ǫ = 1
n8 where n = |V | + |W |. We create a

Bayesian network security game on G (defined in Section 2.1.2) and set ρ = 2rnǫ.

This means that states of nature correspond to nodes of G (Θ = V ∪ W ) and the

payoff matrix for a distribution µ ∈ ∆Θ is given by Equation (2.1) where B is the

adjacency matrix of G and A = DT = −ρIn×n. Intuitively, the principal and the

row player want to be adjacent to each other, while at the same time they are forced

to randomize because of the large penalty term ρ if the column player catches either

of them. We show that solving this posterior selection instance to precision ǫ would

decide the BCBS-instance.

We first show that if G has a r× r biclique V ′ ×W ′, then there exists some µ

with f(µ) ≥ 1 − 2nǫ. Set µ(v) = 1/r for all v ∈ V ′ and x(v) = 1/r for all v ∈ W ′.

Then, by Equation (2.2), we have f(µ) ≥ xTBµ− ρ‖µ+ x‖∞ = 1 − ρ/r = 1 − 2nǫ,

where xTBµ = 1 because V ′, W ′ form a biclique.

On the other hand, if there exists µ ∈ ∆M with f(µ) ≥ 1 − (2n + 2)ǫ, then G

contains an r× r biclique. Let x be the row player’s mixed strategy at equilibrium,

so f(µ) = xTBµ−ρ‖µ+x‖∞. Let V ′ def
= {v ∈ V ∪W : µ(v) ≥ 1/n3} and W ′ def

= {v ∈
V ∪W : x(v) ≥ 1/n3}. Every vertex in V ′ must be adjacent to every vertex in W ′,

otherwise xTBµ ≤ 1 − 1/n6 < 1 − (2n+ 2)ǫ. Thus, V ′ and W ′ must be in different

partitions and form a biclique. It remains to show that |V ′| ≥ r and |W ′| ≥ r.

By the definition of V ′ we have
∑

v∈V ′ µ(v) = 1 − ∑
v 6∈V ′ µ(v) > 1 − 1/n2. Since

‖µ + x‖∞ = xT Bµ−f(µ)
ρ

≤ (2n+2)ǫ
ρ

= 1+1/n
r

, |V ′| ≥
∑

v∈V ′ µ(v)

(1+1/n)/r
> r 1−1/n2

(1+1/n)
= r(1 − 1/n).

Hence |V ′| ≥ r, and similarly |W ′| ≥ r.
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To our best knowledge, it remains open whether Theorem 4.8 can be strength-

ened to show that an ǫ-approximation for signaling yields an O(ǫ)-approximation

for posterior selection, so that a PTAS for signaling yields a PTAS for posterior

selection. We leave this as an intriguing open question (Problem 7.2). Below, we

rule out a PTAS for signaling under an orthogonal hardness assumption.

4.4.3 Planted-Clique Hardness of a PTAS

In this section, we rule out a PTAS for signaling in normal form games

assuming the planted-clique conjecture.

Theorem 4.10. There is a constant ǫ0 > 0 such that, assuming the planted-clique

conjecture (Conjecture 2.6), there is no ǫ0-approximation for the signaling problem

in Bayesian zero-sum games.

We follow the intuition behind the proof of Lemma 4.9 and construct a game

where the principal needs to identify dense subgraphs. The main differences are: (1)

the error parameter ǫ0 in this section is a constant, which is too large for detecting

a few missing edges in a clique; and (2) Theorem 4.8 does not hold for translating

PTAS hardness results. We resolve (1) by reducing from gap/promise problems

(planted clique), where the densest large subgraphs either have density 1 or close

to 1/2; and we handle (2) by using a “direct” reduction from the planted clique

cover problem (Definition 2.7). Intuitively, a clique corresponds to a good poste-

rior distribution; and optimal signaling decomposes the prior distribution into good

posteriors, which corresponds to partitioning an input graph into dense subgraphs.

The proof of Theorem 4.10 combines and strengthens techniques from [6, 46].

The idea is to set up a Bayesian zero-sum game where both the principal and the
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row player must randomize over Ω(logn)-size high-density node sets for the signaling

scheme to achieve large value; recovering these large-density sets from a near-optimal

signaling scheme allows one to solve the planted-clique cover problem. Dughmi [46]

used payoffs of magnitude Ω(log2 n) to enforce the above property, which is insuffi-

cient to rule out a PTAS. We instead leverage a device by Althöfer [6] to ensure the

above “large-spreading” property. This device is used to show planted-clique hard-

ness for computing the ǫ-best Nash equilibrium by Hazan and Krauthgamer [63];

and also used to show that ǫ-approximate equilibrium requires Ω(log n) support size

by Feder et al. [54] (both results are for constant ǫ).

One crucial technical issue is that we need to strengthen the planted-clique

recovery result in [46]. To recover a specific planted clique S of size k = ω(log2 n)

with high probability (in the presence of other such planted cliques), [46] requires

a set R ⊆ S with |R| = ω(log2 n), whereas we only require a set R ⊆ S with

|R| = Ω(log n) (which is asymptotically tight). This is important because we can

only ensure that spreading takes place over Ω(log n)-size sets.

We reduce from the planted clique cover problem with k = k(n) such that

k = ω(logn) and k = o(
√
n), and r = 5n

k
, which we omit for the rest of the section.

We use G− and G+ to denote the background edges and the clique edges added in

steps (1) and (2) of Definition 2.7 respectively. Note that G− and G+ may contain

the same edges. We use bi-densityG(S, T ) to denote the density of the bipartite

graph S × T in G:

bi-densityG(S, T )
def
=

|{(u, v) ∈ S × T : {u, v} ∈ E}|
|S||T | .

We require the planted clique instance to satisfy Lemma 4.11.
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Lemma 4.11. A graph G ∼ G
(
n, 1

2
, k, r

)
with planted cliques {S1, . . . , Sr} satisfies

the following properties with high probability (for sufficiently large n),

(i) All large bipartite subgraphs have density about 1
2

before planting the cliques:

For all S, T ⊆ V with |S|, |T | ≥ c2 logn, bi-densityG−(S, T ) ≤ 1
2

+ 1
20

.

(ii) Almost all nodes are in some clique: Let S
def
= V \⋃i Si. We have |S| ≤ e−4.9n.

(iii) All cliques are robustly recoverable: For every planted clique Si and every

subset R ⊆ Si with |R| = c3 log n, there is a polynomial time algorithm that

recovers Si from G given R.

Theorem 4.10 follows immediately from Lemmas 4.11 and 4.12.

Lemma 4.12. Let G ∼ G
(
n, 1

2
, k, r

)
be a planted clique cover instance that satisfies

Lemma 4.11. There is a polynomial-time randomized reduction that takes the graph

G as input and outputs a Bayesian zero-sum game such that the following hold with

high probability.

(Completeness) There is a signaling scheme of value at least 0.99.

(Soundness) Given a signaling scheme of value at least 0.97, one can recover

a constant fraction of the cliques planted in G.

It is worth pointing out that the Bayesian zero-sum game we construct always

admits a signaling scheme of large value; however finding a near-optimal signaling

scheme in polynomial time would refute the planted-clique conjecture.

In the rest of this section, we prove Lemma 4.12. We use the following param-

eters.

ǫ = 0.03, Z = 20, c3 = 103, c2 = 105, c1 = c2 log(4Z/3) + 2, N = nc1.
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To keep the presentation simple, we give a construction where Aθ
i,j ∈ [−Z,Z]

(as opposed to [−1, 1]). Let AG denote the (n× n) adjacency matrix of G = (V,E),

and let A−
G and A+

G denote the adjacency matrices of G− and G+ respectively. We

use Row and Col to denote the row and column players respectively. The states of

nature and Row’s strategies correspond to the nodes of G. The prior λ is 1n/n, i.e.,

each state of nature (each vertex) is equally likely to occur. For every θ ∈ Θ = V ,

the payoff matrix Aθ ∈ [−Z,Z]n×(2N+1) is given by [aθ B 1n(dθ)T ], which are

defined as follows:

(1) aθ is the θ-th column of the adjacency matrix AG, so aθ
i = 1 if (i, θ) ∈ E and

is 0 otherwise.

(2) B is an n × N matrix where each Bi,j is set independently to 2 − Z with

probability 3
4Z

, and 2 otherwise.

(3) dθ ∈ [−Z,Z]N is the θ-th row of B. Equivalently, if we use D to denote the

n×N matrix having rows (dθ)T for θ ∈ Θ, we have D = B.

To gain some intuition, observe that for a posterior µ and Row’s mixed strat-

egy x, the row vector xTAµ yielding Col’s payoffs is [xTAGµ xTB µTD]. Thus,

if Col plays action 1 (with probability 1), the expected payoff of Row is equal

to xTAGµ. If µ and x are uniform over S, T ⊆ V , the expected payoff is exactly

bi-densityG(S, T ). The remaining 2N pure strategies of Col are used to force the

principal and Row to choose a posterior µ and mixed strategy x respectively that

are “well spread out”.

The average of the entries in any column of B and D is 5
4
> maxi a

θ
i . Exploiting

this, part (i) of Lemma 4.13 implies that if x and µ both randomize uniformly

over a large set of vertices, Col plays column 1. The completeness proof follows
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from (roughly speaking) choosing posteriors and Row’s strategies that randomize

uniformly over the planted cliques. For the completeness proof, if Row’s strategy x

(in some subgame) has support of size at most c2 log n, then part (ii) of Lemma 4.13

implies that there exists a column of B that Col can play to make f(µ) negative.

Similarly, for a posterior µ with small support, Col can play some column of D to

make f(µ) negative. Thus, in order to obtain value close to 1, both µ and Row have

to randomize over Ω(log n)-size sets of nodes. Using this, one can carefully extract

a collection of node-sets which can then be used to recover the planted cliques.

Intuitively, B is used to force Row (x) to randomize over a large set, and D

is used to force Nature (µ) to randomize. Formally, we prove the following lemma

about the matrix B (and D).

Lemma 4.13. For the n×N matrix Bi,j where each Bi,j is independently set to 2−Z
with probability 3

4Z
and set to 2 otherwise, the following hold with high probability.

(i) Randomizing over a large set is good: For a fixed set R ⊆ V with |R| =

ω(logn), we have 1
|R|
∑

i∈R Bi,j > 1 for every j ∈ [N ].

(ii) Any distribution supported on a small set is bad: For every R ⊆ V with

|R| ≤ c2 log n, there exists some j ∈ [N ] such that Bi,j = 2 − Z for all i ∈ R.

Proof. We first prove (i). The proof is a standard application of Chernoff bounds.

Fix a column j ∈ [N ]. We have E

[∑
i∈R

Bi,j

|R|

]
= 5

4
, where the expectation is over the

random construction of B. Since |R| = ω(logn), the size of R is large enough so

that Chernoff bounds imply that Pr
[∑

i∈R
Bi,j

|R| < 9
8

]
≤ 1

2N poly(n)
. The union bound

over all N columns yields the claim.
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We now prove (ii). It is sufficient to show the claim for all R ⊆ V with

|R| = c2 log n. Fix some R with |R| = c2 logn. For a given j ∈ [N ], we have

Pr[∃i ∈ R s.t. Bi,j 6= 2 − Z] = 1 −
(

3
4Z

)|R|
. So

Pr [∀j ∈ [N ], ∃i ∈ R s.t. Bi,j 6= 2 − Z] =
[
1 −

( 3

4Z

)|R|]N

≤ exp
(

−N
( 3

4Z

)|R|)
= exp(−n2).

In other words, the probability that B fails to “catch” a small set R is exponentially

small. Taking the union bound over all R ⊆ V with |R| = c2 log n, we obtain

Pr
[
∃R ⊆ V with |R| = c2 logn s.t. no j ∈ [N ] satisfies Bi,j = 2 − Z for all i ∈ R

]

≤
(

n

c2 log n

)
exp(−n2) ≤ exp

(
c2 log2 n − n2

)
≤ 1

exp(n)
.

Therefore, the probability that there exists a j ∈ [N ] to “catch” every R with

|R| = c2 logn is at least 1 − 1
exp(n)

as claimed.

Completeness proof in Lemma 4.12

We use a deterministic signaling scheme that groups together states of nature

in the same planted clique. We first partition the graph into disjoint large cliques

and a small number of remaining nodes. Let S ′
i = Si \ ⋃1≤j<i Sj for i ∈ [r] be the

set of vertices in Si that do not appear in earlier cliques. Define S
def
= V \ ⋃j Sj as

the remaining vertices. Finally, let S ′
0

def
= S ∪

{
v ∈ S ′

i : |S ′
i| < k

104

}
.

Our signaling scheme is (Σ, p, µ) where the set of signals is Σ = {0} ∪
{
i ∈

[r] : |S ′
i| ≥ k

104

}
. For each signal σ, pσ = |S′

σ|
n

and µσ is the uniform distribution

over S ′
σ. For posterior µσ, where σ 6= 0, consider the strategy xσ where Row plays
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the uniform distribution on S ′
σ. Part (i) of Lemma 4.13 implies that Col’s best

response to xσ is to play column 1, with high probability over the randomness in B.

Therefore, f(µσ) ≥ bi-density(S ′
σ, S

′
σ) = 1 − 1

|S′
σ| ≥ 1 − 104

k
.

Recall that G is a good planted clique instance, thus part (ii) of Lemma 4.11

guarantees that |S| ≤ e−4.9n. With r = 5n
k

, we have |S ′
0| ≤ |S| + 5n

k
· k

104 ≤ e−4.7n.

So the signaling scheme has value at least

∑

σ∈(Σ∩[r])

pσf(µσ) ≥
∑

σ∈(Σ∩[r])

pσ

(
1 − 104

k

)
≥ (1 − e−4.7)

(
1 − 104

k

)
≥ 0.99.

Soundness proof in Lemma 4.12

For a signal σ ∈ Σ with corresponding posterior µσ, let xσ denote Row’s

equilibrium strategy for Aµσ . We first filter out the set of “useful” signals with

relatively high values. Let Σ1 = {σ ∈ Σ : f(µσ) ≥ 1 − √
ǫ}. The value of the

signaling scheme is
∑

σ∈Σ pσf(µσ) ≥ 1 − ǫ. Noting that f(µ) ≤ 1 for all µ, by a

simple counting argument, we have pΣ1 ≥ 1 − √
ǫ. We show that for all σ ∈ Σ1,

µσ and xσ place a significant mass over a large set of nodes, and use this insight to

extract clusters.

Recall that ǫ = 0.03 and Z = 20. For every signal σ ∈ Σ1, define Tσ =
{
i : eT

i AGµσ ≥ 1 − Z
√

ǫ
Z−2

}
, and let x̃σ be the uniform distribution on Tσ. Intuitively,

Tσ is the set of good strategies for Row under the signal σ. Let T = {Tσ : σ ∈ Σ1}
denote the collection of these node-sets. As we shall see, T is going to play an

important role for recovering a constant fraction of the planted cliques.

Fix σ ∈ Σ1 with 1 − √
ǫ ≤ f(µσ) ≤ 1. We first show that Tσ cannot be too

small. Otherwise, Col can punish Row for concentrating on a few strategies. By
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the definition of Tσ, f(µσ) ≥ 1 − √
ǫ and a simple counting argument, we have

xσ(Tσ) ≥ 2
Z

. It follows that |Tσ| > c2 logn, because every R ⊆ V with |R| ≤ c2 logn

must satisfy xσ(R) < 2
Z

. Otherwise, suppose xσ(R) ≥ 2
Z

, then by part (ii) of

Lemma 4.13, there exists a column j of B having Bi,j = 2 − Z for all i ∈ R. We

have
∑

i∈[n](xσ(i))Bi,j ≤ (2 − Z)xσ(R) + 2
(
1 − xσ(R)

)
≤ 0, which implies that

f(µσ) ≤ 0, a contradiction.

We now switch from xσ to x̃σ in order to relate the value of the signaling

scheme to bi-density. As before, G− are the background edges and G+ are the

clique edges, and A−
G and A+

G are the corresponding adjacency matrices. Let Ai
G be

the adjacency matrix of the clique Si. Note that AG ≤ A−
G + A+

G ≤ A−
G +

∑r
i=1 A

i
G

(since the planted cliques contain existing edges of G− and may overlap).

Let R denote the c2 log n largest entries in x̃T
σA

−
G, and let µ̃σ be the uniform

distribution on R. Recall that G is a good planted clique instance that satisfies

Lemma 4.11. Since both Tσ and R have size at least c2 log n, and µ̃σ and x̃σ are

uniform distributions over them, part (i) of Lemma 4.11 guarantees that x̃T
σA

−
Gµ̃σ =

bi-density(Tσ, R) ≤ 11
20

. Moreover, we have µσ(R) < 2
Z

= 1
10

because otherwise Col

can choose a strategy in D to punish the concentration in µσ. Since the maximum

entry of x̃T
σA

−
G outside of R is at most the average entry in R, we have x̃T

σA
−
Gµσ ≤

1
10

+ 9
10

· x̃T
σA

−
Gµ̃σ ≤ 1

10
+ 9

10
· 11

20
< 3

5
. This tells us that the background density does

not contribute enough to make f(µσ) close to 1. Therefore, the reason behind the

high value of µσ must be that Tσ × R overlaps with some of the planted cliques.
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Because
∑

σ∈Σ1
pσ(x̃T

σAGµσ) ≥ (1 − √
ǫ)
(
1 − Z

√
ǫ

Z−2

)
> 2

3
(substituting in our

choice of ǫ = 0.03 and Z = 20), we have

1

15
=

2

3
− 3

5
<
∑

σ∈Σ1

pσ(x̃T
σAGµσ) − max

σ∈Σ1

x̃T
σA

−
Gµσ

≤
∑

σ∈Σ1

pσx̃
T
σ (AG −A−

G)µσ

≤
∑

σ∈Σ1

pσ

r∑

i=1

x̃T
σA

i
Gµσ

=
r∑

i=1

∑

σ∈Σ1

pσµσ(Si)
|Tσ ∩ Si|

|Tσ|

≤
r∑

i=1

( ∑

σ∈Σ1

pσµσ(Si)
)(

max
T ∈T

|T ∩ Si|
|T |

)

(∗)

≤
r∑

i=1

|Si|
n

(
max
T ∈T

|T ∩ Si|
|T |

)

=
5

r

r∑

i=1

(
max
T ∈T

|T ∩ Si|
|T |

)
.

Inequality (∗) follows since for every v ∈ Θ, we have
∑

σ∈Σ1
pσ(µσ)v is at most

∑
σ∈Σ pσ(µσ)v = λv = 1

n
.

We have 1
r

∑r
i=1

(
maxT ∈T

|T ∩Si|
|T |

)
≥ 1

75
. By a simple counting argument, at

least a 1
297

-fraction of S1, . . . , Sr satisfy maxT ∈T
|T ∩Si|

|T | ≥ 1
100

. Therefore, to recover a

constant fraction of the cliques, it is sufficient to show that we can recover any S = Si

from a set T with |T | ≥ c2 log n and |S ∩ T | ≥ |T |
100

≥ c3 log n. Observe that we can

assume without loss of generality that |T | ≤ 2c2 log n. Otherwise we can partition T

into disjoint subsets of size between c2 log n and 2c2 logn, and one of these subsets

T ′ would have |S∩T ′|
|T ′| ≥ |S∩T |

|T | . Part (iii) of Lemma 4.11 states that we can, in

polynomial time, recover any planted clique Si given an arbitrary subset R ⊆ Si

with size |R| ≥ c3 logn. With |T | ≤ 2c2 logn and |S ∩ T | ≥ c3 log n, we can simply

enumerate all subsets R ⊆ T of size c3 log n and run the clique recovery algorithm in
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Lemma 4.11. Moreover, the enumeration can be done in time
(

2c2 log n
c3 log n

)
= poly(n).

So by iterating through every T ∈ T , partitioning and running the clique recovery

algorithm, we can recover all the Si’s that satisfy maxT ∈T
|T ∩Si|

|T | ≥ 1
100

, which is at

least a constant fraction of all the planted cliques. This concludes the soundness

proof.

A Tighter Amplification Lemma for Planted Clique

The rest of this chapter is devoted to prove Lemma 4.11. Lemma 4.11 gives

three properties that a planted clique cover instance G ∼ G(n, 1
2
, k, r) should satisfy

with high probability. Recall that k = k(n) satisfies k = ω(logn) and k = o(
√
n),

r = Θ(n/k), and c3 = 103. As before, we use G− to denote the background edges

and G+ to denote the clique edges (see Definition 2.7).

For part (i), we need to show that, with high probability, all large bipartite

subgraphs have density close to 1
2

in G− ∼ G(n, 1
2
). This is a direct corollary of

Lemma 4.14 with c = c2 = 105 and ǫ = 0.1. Lemma 4.14 follows from a standard

application of the Chernoff bound and the union bound.

Lemma 4.14 (Proposition B.2 in [46] quantified). Let 0 < ǫ < 1 and c ≥ 50 · 1+ǫ
ǫ2 .

For all n ≥ 2, we have

Pr
[
∃S, T ⊆ V with |S|, |T | ≥ c lnn, bi-densityG−(S, T ) >

1 + ǫ

2

]
≤ 1

n4
.

Part (ii) claims that all except a small constant fraction of the nodes are

covered by some clique. Recall that r = 5n
k

, and S
def
= V \ ⋃j Sj is the set of

uncovered nodes. We have E

[
|S|
]

= n · Pr
[
v ∈ S

]
= n(1 − k

n
)r ≤ e−5n, and |S| ≤
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e0.1 · E[|S|] ≤ e−4.9n with high probability due to standard Chernoff bounds (since

the events {v ∈ |S|}v∈V are negatively correlated).

Our main technical contribution in Lemma 4.11 is part (iii). The claim is

the following: For G ∼ G(n, p, k, r) with planted cliques {S1, . . . , Sr}, with high

probabiltiy over the randomness in G, every planted clique Si can be recovered in

polynomial time given an arbitrary subset R ⊆ Si with |R| ≥ c3 ln n.

It is well known that for a planted clique instance G ∼ G(n, 1
2
, k), with high

probability over the randomness inG, one can recover the planted clique S given R ⊆
S with |R| ≥ c3 ln n. We generalize this result and show that, despite the presence

of Θ(n
k
) other planted cliques, every clique Si can still be recovered from c3 lnn

nodes.4 It is important that our recovery algorithm works for any R ⊆ S (rather

than with high probability for a fixed R). This is because the set R is obtained

from a near-optimal signaling scheme ϕ. Since ϕ is produced by an algorithm after

examining the planted clique cover instance G, the choice of R can depend on the

realization of G.

Fix some i ∈ [r] and let S = Si. We use the following algorithm to recover S:

(1) Let S ′ be all the common neighbors of R.

(2) Let Ŝ be the vertices in S ′ with at least k − 1 neighbors in S ′.

Part (iii) follows immediately from Lemmas 4.15 and 4.16, and a union bound

over all i ∈ [r]. We use E, E− and E+ to denote the edges of G, G− and G+

respectively.

4 We tighten the recovery algorithm in [46], which requires |R| = ω(log2 n) nodes from the
planted clique. The difference in the magnitude of |R| poses certain challenges and necessitates
some key changes to the analysis in [46].
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Lemma 4.15. With high probability, we have |S ′| ≤ |S| + c3 ln n.

Lemma 4.16. With high probability, for all v /∈ S we have |E(v, S)| ≤ 0.7|S|.

We first elaborate how they imply part (iii) of Lemma 4.11. Observe that all

the nodes in S will survive Step (1) and (2), so S ⊆ Ŝ. We show that, with high

probability, no other vertices survive Step (1) and (2). Lemma 4.15 states that at

most c3 ln n nodes outside of S survive Step (1). Lemma 4.16, together with the

assumption that |S| = ω(logn), implies that E(v, S ′) ≤ E(v, S) + (|S ′| − |S|) ≤
0.7|S| + c3 lnn < 0.71|S| < k − 1 for all v ∈ S ′ \ S (and for sufficiently large n).

Therefore, all nodes in S ′ \S gets filtered in Step (2), and we have Ŝ = S as claimed.

Before we continue to prove Lemmas 4.15 and 4.16, we state the following

lemma which is crucial for our analysis. Lemma 4.17 is the main reason why our

clique recovery result is asymptotically tight and better than that of [46].

Lemma 4.17. With high probability, we have |E+(v, S)| ≤ 12 lnn for all v /∈ S.

Proof of Lemma 4.15

We first look at bad vertices in S ′ that is due to the background edges. Let

A = {v /∈ R : |E−(v, R)| ≥ 0.8|R|}. Then, bi-densityG−(R,A) ≥ 0.8. Because this

density is much higher than 1
2
, it cannot be the case that both A and R are large.

Formally, Lemma 4.14 holds for c = c3 = 103 and ǫ = 0.6 with high probability.

Since |R| ≥ c3 ln n, we have |A| < c3 lnn.
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We next show that the clique edges do not introduce extra vertices to S ′.

By Claim 4.17, for every v /∈ S, the clique edges will not increase E(v, S) too much.

For all but at most c3 lnn nodes v /∈ S, we have

|E(v, R)| = |E−(v, R)|+|E+(v, R)| ≤ 0.8|R|+|E+(v, S)| ≤ 0.8|R|+12 lnn ≤ 0.82|R|.

Hence, with high probability, at most c3 lnn nodes outside of S survive Step (1).

Proof of Lemma 4.16

We prove the claim for a fixed v /∈ S and then take a union bound over all

v /∈ S. We upper bound |E(v, S)| by inspecting the edges in E− and E+ separately.

With high probability, we have |E−(v, S)| ≤ 0.6|S| for all v /∈ S. This is a standard

application of the Chernoff bound and the union bound, since |S| = ω(logn).

For edges in E+(v, S) we use Lemma 4.17. With high probability, for all v /∈ S,

we have |E+(v, S)| ≤ 12 lnn = o(|S|), and therefore for all v /∈ S,

|E(v, S)| = |E−(v, S)| + |E+(v, S)| ≤ 0.6|S| + o(|S|) ≤ 0.7|S|.

Proof of Lemma 4.17

Lemma 4.17 bounds the number of edges between a set S (of size k) and

a vertex v /∈ S, when the graph is exactly the union of Θ(n
k
) random k-cliques.

The expected number of times v gets covered by these cliques is Θ(1), so with high

probability, v is covered O(logn) times. On the other hand, the expected size of the

overlap between some clique Si and S is k2

n
= o(1), so with high probability, every
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Si overlaps with S on O(logn) vertices. If we simply combined these two bounds

(as in [46]), we get a weaker version of Lemma 4.17 with E+(v, S) ≤ O(log2 n).

The key observation (by David Kempe) is that we can use the principle of

deferred decisions to improve this analysis. We ask all the cliques first to decide

whether to include v or not, and defer their choices on other nodes. Roughly

speaking, there are O(logn) cliques that include v, and they contain O(k logn)

random vertices; The expected total size of the overlap between these cliques and

S is at most O(k log n · k
n
) = o(1), so tail bounds and the union bound imply that

E+(v, S) ≤ O(logn).

The following lemma will be useful in proving Lemma 4.17. Intuitively it says

that, to upper bound E+(v, S), we can pretend the O(k log n) vertices (from the

O(logn) cliques that contain v) are chosen independently and uniformly at random.

Lemma 4.18 (see Ex. 1.13 in [45], Lemma 1.19 in [44]). Let X1, . . . , Xn be arbitrary

binary random variables. Suppose for every i, and every x1, . . . , xi−1 ∈ {0, 1}, we

have Pr[Xi = 1 |X1 = x1, X2 = x2, . . . , Xi−1 = xi−1] ≤ pi. Let Y1, . . . , Yn be

independent binary random variables with Pr[Yi = 1] = pi for all i ∈ [n]. Then, for

any M , we can upper bound Pr[
∑n

i=1 Xi > M ] using the upper-tail Chernoff bound

for Pr[
∑n

i=1 Yi > M ].

In particular, for any ǫ ∈ (0, 1) and µ ≥ ∑n
i=1 pi, we have Pr[

∑n
i=1 Xi >

(1 + ǫ)µ] ≤ e−ǫ2µ/3.

Proof of Lemma 4.17. Fix v /∈ S, and let X denote the random variable |E+(v, S)|.
Let S1, . . . , Sr−1 be the planted cliques other than S. Let I be the random index-set

of cliques that contain v; that is, I ⊆ [r − 1] is such that v ∈ Si for all i ∈ I, and
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v /∈ Si for all i /∈ I. Notice that the events {i ∈ I} for i ∈ [r − 1] are independent

Bernoulli trials with probability k
n
. So we have Pr[|I| > 6 logn] ≤ 1

n2 .

Fix an index set J ⊆ [r − 1] with |J | ≤ 6 logn and consider Pr[X >

12 logn | I = J ]. We use Pr′ to denote probabilities conditioned on the event I = J .

Conditioned on I = J , we have X ≤ ∑
i∈J,u∈S Yi,u, where Yi,u is the random variable

indicating if u ∈ Si. Fix an ordering of the Yi,u random variables. If we consider

the random variable Yi,u, and any realization σ of the random variables appear-

ing before Yi,u, we have Pr′[Yi,u = 1 | realization σ of the variables before Yi,u] ≤ k
n
.

Since |J |k2

n
< 6 logn, we can now use Lemma 4.18 and infer that Pr′[X > 12 logn] ≤

e− 6 log n
3 .

Finally, we have

Pr[X > 12 log n] =
∑

J⊆[r−1]

Pr[I = J ] · Pr[X > 12 logn | I = J ]

≤
∑

J⊆[r−1]:
|J |>6 log n

Pr[I = J ] +
∑

J⊆[r−1]:
|J |≤6 log n

Pr[I = J ] · Pr[X > 12 logn | I = J ]

≤ Pr[|I| > 6 logn] +
∑

J⊆[r−1]:
|J |≤6 log n

Pr[I = J ] · 1

n2
≤ 2

n2
.
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Chapter 5

Mixture Selection: An

Algorithmic Framework

In Chapter 3 and Chapter 4, we settled the computational complexity of opti-

mal signaling in Bayesian network routing games and normal form games. The best

approximation algorithm we had for these two classes of games are fairly different. In

network routing games we simply reveal full information; and in normal form games

we use one signal for each approximate equilibrium and solve a quasipolynomial

size linear program. There are many other interesting game-theoretic applications

that involves the design of information structures. Do we need to come up with a

different approximation algorithm for every new class of game we encounter, or is

there a building block that many of these signaling problems have in common?

In this chapter, we identify two parameters that seem to dictate the complexity

of optimal signaling, and present an algorithmic framework that (approximately)

solves the optimal signaling problem in a number of different Bayesian games. We

pose and study a fundamental algorithmic problem which we term mixture selection,

a problem that arises naturally in the design of optimal information structures:

Definition 5.1 (Mixture Selection). For a function g : [−1, 1]n → [−1, 1] and a

positive integer M , M-dimensional mixture selection for g is the following opti-

mization problem: Given an n × M matrix A with entries in [−1, 1], find x in the

M-dimensional simplex ∆M maximizing f(x)
def
= g(Ax).
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The mixture selection problem is closely related to the posterior selection prob-

lem (Definition 2.5) and the optimal signaling problem. At a high level, mixture

selection and posterior selection ask for the best posterior distribution for the prin-

cipal’s objective, while the optimal signaling problem asks for the optimal way to

decompose a prior into “good” posteriors that maximizes the principal’s expected

objective value.

Recall that f(µ) denotes the principal’s objective value under the posterior µ.

To connect mixture selection to the posterior selection problem, we consider signal-

ing problems where f(µ) can be written as g(Aµ) for a function g : [−1, 1]n → [−1, 1]

and a matrix A ∈ [−1, 1]n×M . The mixture selection problem is more general, and

it captures the posterior selection problem with a fixed g and arbitrary A. Mix-

ture selection focuses on how the complexity of g affects the complexity of posterior

selection. In Section 4.4.2, we have already seen that the posterior selection problem

can be useful when proving hardness results of signaling. In this chapter, we present

a meta-algorithm that works for both signaling and posterior selection, where the

running time of our algorithm depends only on the “complexity” of g.

The work presented in this chapter appeared in [26].

5.1 Summary of Results

We investigate how the complexity of mixture selection (and optimal signal-

ing) depends on the complexity of the function g. We identify two “smoothness”

parameters of the function g which tightly control the complexity of mixture selec-

tion. The first smoothness quantity is a familiar one, namely Lipschitz continuity

in the L∞ metric. The second quantity, which we define and term noise stability
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(Definition 5.3), borrows ideas from related definitions of stability in other contexts

(e.g., [68, 79]), though it is importantly different. Informally, noise stability con-

trols the degree to which low-probability — and possibly correlated — errors in the

inputs of g can impact its output.

The approximation guarantee of our algorithm degrades gracefully as a func-

tion of the Lipschitz continuity and noise stability of g (Theorem 5.6). Moreover,

the same conditions — noise stability and Lipschitz continuity — on the function g

also lead to a similar approximation scheme for the corresponding signaling problem

(Theorem 5.10). In particular, when g is both O(1)-Lipschitz continuous and O(1)-

stable, we obtain an (additive) polynomial-time approximation scheme (PTAS) for

mixture selection and optimal signaling. We also show that neither assumption

suffices by itself for an additive PTAS (Theorems 5.18 and 5.19).

Our results for mixture selection can be viewed as generalizing the main

insights of Lipton et al. [74]. First, we show that when g is noise stable and Lipschitz

continuous, and x ∈ ∆M is arbitrary, there is a sparse vector x̃ for which g(Ax̃) is

not much smaller than g(Ax). The proof of this fact proceeds by sampling from

x and letting x̃ be the empirical distribution, as in [74]. However, when g is suffi-

ciently noise stable and Lipschitz continuous, we obtain a better tradeoff between

the number of samples required and the error introduced into the objective than

does [74], and this is crucial for our applications. Our analysis bounds the expected

difference between g(Ax) and g(Ax̃) as the sum of two terms: The first term rep-

resents the error in the output of g caused by the low-probability “large errors” in

its n inputs, and the second term represents the error in the output of g introduced

by the higher-probability “small errors” in its n inputs. The first term is bounded

using noise stability, and the second is bounded using Lipschitz continuity.
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Second, we instantiate the above insight algorithmically, as does [74]. Specif-

ically, our algorithm enumerates vectors x̃ of the desired sparsity in order to find

an approximately optimal solution to our mixture selection problem. We note that

our guarantees are all parametrized by the Lipschitz continuity c and the noise sta-

bility β of the function g. Most notably, we obtain an additive polynomial-time

approximation scheme (PTAS) whenever both β and c are constants.

Despite the simplicity of our framework, we find that it has powerful impli-

cations for optimal signaling in games. Notably, we find that we resolve or make

progress on a number of known open problems, and some new ones, using one unified

algorithmic framework.

1. Optimal signaling in Bayesian normal form games (defined in Sec-

tion 2.1.2): In Section 5.3.1, we derive a new QPTAS for this problem using

the mixture selection framework. We use the fact that every function is O(n)-

stable, and the fact that the function measuring the quality of equilibria sat-

isfies a bi-criteria notion of Lipschitz continuity which we define.

2. Revenue-maximizing signaling in probabilistic second-price auctions

(defined in Section 2.1.5): A PTAS for this problem follows easily from

our framework. We use the fact that the function max2(·), the second largest

entry of a vector, is Lipschitz continuous and noise stable.

3. Persuasion in voting (defined in Section 2.1.6): We design a multi-

criteria PTAS for this problem using our framework, using the fact that the

function g(vote-sum)(t) = 1
n
| {i : ti ≥ 0} | is noise stable and Lipschitz continuous

in a bi-criteria sense.
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We present the results for auctions and voting together in the next chapter

(Chapter 6), where we systematically explore optimal signaling in anonymous games.

5.2 Noise Stability and Lipschitz Continuity

In this section, we present our notion of noise stability, and derive approxima-

tion algorithms for this problem when the function g is simultaneously noise stable

and Lipschitz continuous with respect to the L∞ metric.

Our approximation guarantees will be additive — i.e., an ǫ-approximation

algorithm for mixture selection outputs x ∈ ∆M with f(x) ≥ maxy∈∆M
f(y) − ǫ. To

illustrate our techniques, we use the following function g(mid) : [−1, 1]n → [−1, 1],

which averages all but the top and bottom quartiles of its inputs, as a running

example.

g(mid)(t) =
1

⌈3n/4⌉ − ⌊n/4⌋
⌈3n/4⌉∑

i=⌊n/4⌋+1

t[i],

where t[i] denotes the ith largest entry of t. Throughout this chapter, we use ti to

denote the ith entry of t, and use t[i] to denote the ith largest entry of t.

Though we present our framework for functions g : [−1, 1]n → [−1, 1], we

define mixture selection similarly for functions g : [0, 1]n → [0, 1]. The two defini-

tions are equivalent up to normalization, and it is easy to verify that all our results

and bounds for mixture selection carry through unchanged to either definition.

Our main result applies to functions g which are both noise stable and Lipschitz

continuous with respect to the L∞ metric. We now formalize these two conditions.
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Lipschitz Continuity

A function g : [−1, 1]n → [−1, 1] is c-Lipschitz continuous in L∞ — or

c-Lipschitz for short — if and only if for all t, t′ in the domain of g, |g(t) − g(t′)| ≤
c||t− t′||∞. To illustrate, our example function g(mid) is 1-Lipschitz. We note that

Lipschitz continuity in L∞ is a stronger assumption than in any other Lp norm.

Noise Stability

Our notion of noise stability captures the following desirable property of a

function g : [−1, 1]n → [−1, 1]: if a random process corrupts (i.e., modifies arbitrar-

ily) some of the inputs to g, with no individual input disproportionately likely to

be corrupted, then the output of g does not decrease by much in expectation. Such

random corruption patterns are captured by our notion of a light distribution over

subsets of [n], defined below.

Definition 5.2 (Light Distribution). Let D be a distribution supported on subsets

of [n]. For α ∈ (0, 1], we say D is α-light if and only if PrR∼D[i ∈ R] ≤ α for all

i ∈ [n].

In other words, a light distribution bounds the marginal probability of any

individual element of [n]. When corrupted inputs follow a light distribution, no

individual input is too likely to be corrupted. However, we note that our notion

of light distribution allows arbitrary correlations between the corruption events of

various inputs. We define a noise stable function as one which is robust, in an average

sense, to corrupting a subset R of its n inputs when R follows a light distribution D.

Our notion of robustness is one-sided: we only require that our function’s output

not decrease substantially in expectation. This one-sided guarantee suffices for all
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our applications, and is necessitated by some. We note that the light distribution

D, as well as the (corrupted) inputs, are chosen adversarially. We make use of the

following notation in our definition: Given vectors t, t′ ∈ [−1, 1]n and a set R ⊆ [n],

we say t′ ≈
R
t if ti = t′i for all i 6∈ R. In other words, if t′ ≈

R
t, then t′ is a result of

corrupting only the entries of t corresponding to R.

Definition 5.3 (Noise Stability). Given a function g : [−1, 1]n → [−1, 1] and a

real number β ≥ 0, we say g is β-stable if and only if the following holds for all

t ∈ [−1, 1]n, α ∈ (0, 1], and α-light distributions D over subsets of [n]:

E
R∼D

[
min{g(t′) : t′ ≈

R
t}
]

≥ g(t) − αβ.

To illustrate this definition, we show that our example function g(mid) is

4-stable. To see this, observe that changing k entries of the input to g(mid) can

decrease its output by at most 4k
n

. This is because each of the k entries can go from

1 to −1 in the worst case, causing a change of 2k, and then we normalize by n/2.

When R is drawn from an α-light distribution and t is an arbitrary input, 4-stability

therefore follows from the linearity of expectations:

E
R∼D

[
min{g(mid)(t′) : t′ ≈

R
t}
]

≥ E
R∼D

[
g(mid)(t) − 4|R|

n

]
≥ g(mid)(t) − 4α.

We note that every function g : [−1, 1]n → [−1, 1] is 2n-stable, which follows from

the union bound.

As a useful building block for proving some of our functions stable, we show

that stable functions can be combined to yield other stable functions if composed

with a convex, nondecreasing, and Lipschitz continuous function.
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Proposition 5.4. Fix β, c ≥ 0, and let g1, g2, . . . , gk : [−1, 1]n → [−1, 1] be β-stable

functions. For every convex function h : [−1, 1]k → [−1, 1] which is nondecreasing

in each of its arguments and c-Lipschitz continuous in L∞, the function g(t)
def
=

h(g1(t), . . . , gk(t)) is (βc)-stable.

Proof. For all t ∈ [−1, 1]n and all α-light distributions D,

E
R∼D


min

t′≈
R

t
g(t′)




= E
R∼D


min

t′≈
R

t
h(g1(t

′), . . . , gk(t′))




≥ E
R∼D


h(min

t′≈
R

t
g1(t

′), . . . ,min
t′≈

R
t
gk(t′))


 (Since h is nondecreasing)

≥ h( E
R∼D


min

t′≈
R

t
g1(t

′)


 , . . . , E

R∼D


min

t′≈
R

t
gk(t′)


) (Jensen’s inequality)

≥ h(g1(t) − αβ, . . . , gk(t) − αβ) (Stability of each gi)

≥ h(g1(t), . . . , gk(t)) − αβc (Lipschitz continuity of h)

= g(t) − αβc.

As a consequence of the above proposition, a convex combination of β-stable

functions is β-stable, and the point-wise maximum of β-stable functions is β-stable.

5.2.1 Consequences of Stability and Continuity

We now state the two main results of our framework. Both results apply to

functions g : [−1, 1]n → [−1, 1] which are simultaneously Lipschitz continuous and

noise stable, and n×M matrices A with entries in [−1, 1]. Given a vector x ∈ ∆M
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and integer s > 0, we view x as a probability distribution over [M ], and use the

random variable x̃ ∈ ∆M to denote the empirical distribution of s i.i.d. samples from

x. Formally, x̃ = 1
s

∑s
i=1 eki

, where k1, . . . , ks ∈ [M ] are drawn i.i.d. according to x.

Our first result shows that when the number of samples s is chosen as a suitable

function of the Lipschitz continuity and noise stability parameters, g(Ax̃) is not much

smaller than g(Ax) in expectation over x̃. At a high level, we bound this difference

as a sum of two error terms: one accounts for the effect of low-probability large errors

in the inputs t̃ = Ax̃ to g, and the other accounts for effect of higher-probability

small errors in the inputs t̃. The former error term is bounded using noise stability,

and the latter error term is bounded using Lipschitz continuity.

Theorem 5.5. Let g : [−1, 1]n → [−1, 1] be β-stable and c-Lipschitz in L∞, let A

be an n×M matrix with entries in [−1, 1], let α, δ > 0, and let s ≥ 2 ln( 2
α
)/δ2 be an

integer. Fix a vector x ∈ ∆M , and let the random variable x̃ denote the empirical

distribution of s i.i.d. samples from the probability distribution x. The following

then holds: E[g(Ax̃))] ≥ g(Ax) − αβ − cδ.

Proof. Denote t = Ax and t̃ = Ax̃. Note that t̃ is a random variable. Also note

that ti and t̃i can be viewed as the mean and empirical mean, respectively, of a

distribution supported on Ai,1, . . . , Ai,M ∈ [−1, 1]. We say the ith entry of t is

approximately preserved if |ti − t̃i| ≤ δ, and we say it is corrupted otherwise. Let

R ⊆ [n] denote the set of corrupted entries. Hoeffding’s inequality, and our choice

of the number of samples s, imply that R follows an α-light distribution.

Let t′ be such that (1) t′i = t̃i for i ∈ R, and (2) t′i = ti otherwise. Observe

that t′ ≈
R
t, and ||t′ − t̃||∞ ≤ δ. We can now bound the expected difference between

g(t) and g(t̃) as a sum of the error introduced by corrupted entries and the error

introduced by the approximately preserved entries of t:
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g(t) − E

[
g(t̃)

]
= E[g(t) − g(t′)] + E

[
g(t′) − g(t̃)

]
≤ αβ + cδ.

Notice that if we fix the desired approximation error ǫ, the minimum required

number of samples s in Theorem 5.5 to guarantee that E[g(Ax̃))] ≥ g(Ax) − ǫ is

obtained by minimizing ⌈2 ln( 2
α

)/δ2⌉ over α, δ > 0 satisfying αβ + δc ≤ ǫ. There-

fore, the required number of samples depends only on the error term ǫ, the noise

stability parameter β, and the Lipschitz continuity parameter c; in particular, it is

independent of n and M .

As a corollary of Theorem 5.5, we derive the following algorithmic result.

Theorem 5.6. Let g : [−1, 1]n → [−1, 1] be β-stable and c-Lipschitz, and let M > 0

be an integer. For every δ, α > 0, the M-dimensional mixture selection problem for

g admits an (αβ + cδ)-approximation algorithm in the additive sense, with runtime

n · MO(δ−2 log(1/α)) · T , where T denotes the time needed to evaluate g on a single

input.

Proof. Let s ≥ 2 ln(2/α)/δ2 be an integer. Our algorithm simply enumerates all

s-uniform distributions, and outputs the one maximizing g(Ax). This takes time

n · MO(s) · T . The approximation guarantee follows from Theorem 5.5 and the

probabilistic method.

As a consequence of Theorem 5.6, the mixture selection problem for g(mid)

admits a polynomial-time approximation scheme (PTAS) in the additive sense. The

same holds for every function g which is O(1)-stable and O(1)-Lipschitz continuous.

Specifically, by setting α = ǫ
2β

and δ = ǫ
2c

, an ǫ-approximation algorithm runs in time

n · mO(c2 log(β/ǫ)/ǫ2) · T . Interestingly, neither noise stability nor Lipschitz continuity

alone suffices for such a PTAS, as we argue in Section 5.4.
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5.2.1.1 A Bi-criteria Extension of the Framework

Motivated by two of our applications, namely Optimal signaling in normal

form games and Persuasion in voting, we extend our framework to the design of

approximation algorithms for mixture selection with a bi-criteria guarantee when

the function in question is stable but not Lipschitz continuous. We first define a

(δ, ρ)-relaxation of a function.

Definition 5.7. Given two functions g, h : [−1, 1]n → [−1, 1] and parameters δ, ρ ≥
0, we say h is a (δ, ρ)-relaxation of g if for all t1, t2 ∈ [−1, 1]n with ||t1 − t2||∞ ≤ δ,

h(t2) ≥ g(t1) − ρ.

Note that Lipschitz continuous functions are their own relaxations. In lieu

of the Lipschitz continuity condition, we prove our bounds for a relaxation of the

function.

Theorem 5.8. Let g : [−1, 1]n → [−1, 1] be β-stable, let A be an n×M matrix with

entries in [−1, 1], let α > 0 and δ, ρ ≥ 0, and let s ≥ 2 ln( 2
α

)/δ2 be an integer. Fix

a vector x ∈ ∆M , and let the random variable x̃ denote the empirical distribution

of s i.i.d. samples from probability distribution x. The following then holds for any

(δ, ρ)-relaxation h of g,

E[h(Ax̃))] ≥ g(Ax) − αβ − ρ.

Proof. Because the proof is almost identical to the proof of Theorem 5.5, we just

mention the necessary modifications. Again, let t = Ax, let t̃ = Ax̃, let R ⊆ [n]

denote the set of corrupted inputs, and let t′ be such that t′i = t̃i for i ∈ R and

t′i = ti otherwise. Then
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g(t) − E

[
h(t̃)

]
= E[g(t) − g(t′)] + E

[
g(t′) − h(t̃)

]

≤ αβ + E

[
g(t′) − h(t̃)

]

≤ αβ + ρ,

where the first inequality follows by noise stability of g, and the last inequality

follows from the fact that h is a (δ, ρ)-relaxation of g.

Having replaced Theorem 5.5 by Theorem 5.8, a similar computational result

as Theorem 5.6 can be inferred in the bi-criteria sense.

5.3 A Meta-Algorithm for Signaling

In this section, we use our framework to define an abstract signaling problem

and characterize its approximation complexity. This abstract problem captures all

of the signaling problems considered in this thesis.

To connect to our mixture selection framework, we consider signaling problems

in which the principal’s utility f(µ) from a posterior distribution µ ∈ ∆M can be

written as g(Aµ) for a function g : [−1, 1]n → [−1, 1] and a matrix A ∈ [−1, 1]n×M .

As described in Section 2.1.1, a signaling scheme ϕ with signals Σ corresponds

to a family of probability-posterior pairs {(pσ, µσ)}σ∈Σ decomposing the prior λ ∈
∆M into a convex combination of posterior distributions (one per signal): λ =
∑

σ∈Σ pσµσ. The objective of our signaling problem is then

F (ϕ) =
∑

σ∈Σ

pσf(µσ) =
∑

σ∈Σ

pσg(Aµσ).

89



We note that this signaling problem can alternatively be written as an (infinite-

dimensional) linear program which searches over probability measures supported on

∆M with expectation λ. The separation oracle for the dual of this linear program is

a mixture selection problem. Whereas we do not use this infinite-dimensional for-

mulation or its dual directly, we nevertheless show that the same conditions — noise

stability and Lipschitz continuity — on the function g which lead to an approxima-

tion scheme for mixture selection also lead to a similar approximation scheme for

our signaling problem with f(µ) = g(Aµ).

Lemma 5.9. If g is β-stable and c-Lipschitz, then for any constants α, δ > 0, and

for any integer s ≥ 2δ−2 ln(2/α), there exists a signaling scheme ϕ̃ for which every

posterior distribution is s-uniform, and F (ϕ̃) ≥ OPT−(αβ+cδ) where OPT denotes

the value of the optimal signaling scheme.

Proof. Let s ≥ 2δ−2 ln(2/α), and let τ ∈ [Ms] index all s-uniform posteriors,

with µ̃τ denoting the τ ’th such posterior. For an arbitrary signaling scheme

ϕ = (Σ, {(pσ, µσ)}σ∈Σ), we show that each posterior µσ can be decomposed into

s-uniform posteriors without degrading the objective by more than αβ + cδ:

1. µσ can be expressed as a convex combination of s-uniform posteriors as follows.

µσ =
∑

τ∈[Ms]

p̃σ,τ µ̃τ with p̃σ ∈ ∆Ms. (5.1)

2. The value of objective function, i.e., g(Aµσ), is decreased by no more than

αβ + cδ through this decomposition,

∑

τ∈[Ms]

p̃σ,τ · g(Aµ̃τ ) ≥ g(Aµσ) − (αβ + cδ). (5.2)
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The existence of such a decomposition follows from Theorem 5.5: Fix σ, and let µ̃ ∈
∆M be the empirical distribution of s i.i.d. samples from distribution µσ ∈ ∆M . The

vector µ̃ is itself a random variable supported on s-uniform posteriors, its expectation

is µσ, and by Theorem 5.5 we have E[g(Aµ̃)] ≥ g(Aµσ) − (αβ + cδ). Therefore, by

taking p̃σ,τ = Pr[µ̃ = µ̃τ ] for each τ ∈ [Ms] we get the desired decomposition of µσ.

The lemma follows by composing the decomposition ϕ with the decomposi-

tions of the posterior beliefs µσ to yield a signaling scheme ϕ̃ with only s-uniform

posteriors and F (ϕ̃) ≥ F (ϕ) − (αβ+ cδ). Specifically, the signals of ϕ̃ are Σ × [Ms],

where signal (σ, τ) has probability pσ · p̃σ,τ and induces the posterior µ̃τ .1 Using

Equations (5.1) and (5.2), it is easy to verify that this describes a valid signaling

scheme with F (ϕ̃) ≥ F (ϕ) − (αβ + cδ).

Lemma 5.9 permits us to restrict attention to s-uniform posteriors without

much loss in our objective. Since there are only Ms such posteriors, a simple linear

program with Ms variables computes an approximately optimal signaling scheme.

Theorem 5.10 (Polynomial-Time Signaling). If g is β-stable and c-Lipschitz, then

for any constant α, δ > 0, there exists a deterministic algorithm that constructs

a signaling scheme with objective value at least OPT − (αβ + cδ), where OPT is

the value of the optimal signaling scheme. Moreover, the algorithm runs in time

poly(M δ−2 ln(1/α)) · n · T , where T is the time needed to evaluate g on a single input.

Proof. Let s be an integer with s ≥ (2δ−2 ln(2/α)), and let τ ∈ [Ms] index all s-

uniform posteriors. Lemma 5.9 shows that restricting to s-uniform posteriors only

introduces an αβ+ cδ additive loss in the objective. Thus it suffices to compute the

1Note, however, that we can also “merge” all signals with the same posterior µ̃τ without loss.
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optimal signaling scheme supported only on s-uniform posteriors. This can be done

using the following linear program:

maximize
∑

τ∈[M ] pτ · g(Aµτ )

subject to
∑

τ∈[M ] pτµτ = λ

p ∈ ∆M

(5.3)

Note µτ is the τ ’th s-uniform posterior — the only variables in this LP are

p1, . . . , pMs.

Our proofs can be adapted to obtain a bi-criteria guarantee in the absence of

Lipschitz continuity, as in Section 5.2. The following theorem follows easily, and we

omit the details.

Theorem 5.11 (Polynomial-Time Signaling (Bi-criteria)). Let g, h : [−1, 1]n →
[−1, 1] be such that g is β-stable and h is a (δ, ρ)-relaxation of g, and let α > 0

be a parameter. There exists a deterministic algorithm which, when given as input

a matrix A ∈ [−1, 1]n×m and a prior distribution λ ∈ ∆M , constructs a signaling

scheme ϕ = {(pσ, µσ)}σ∈Σ such that

∑

σ∈Σ

pσh(Aµσ) ≥ OPT − αβ − ρ,

where OPT is the maximum value of F (ϕ∗) =
∑

σ∈Σ∗ p∗
σg(Aµ∗

σ) over signal-

ing schemes ϕ∗ = {(p∗
σ, µ

∗
σ)}σ∈Σ∗ . Moreover, the algorithm runs in time

poly(M δ−2 ln(1/α)) · n · T , where T denotes the time needed to evaluate h on a single

input.
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Remarks We note that our proof suggests an extension of the result in Theorem

5.10 to cases in which f is given by a “black box” oracle, so long as we are promised

that it is of the form f(µ) = g(Aµ). In this model the runtime of our algorithm does

not depend on n, but instead depends on the cost of querying f . We also point out

that even though we precompute the quality of all Ms posteriors, we can guarantee

that our output signaling scheme uses at most M + 1 signals; this is because LP

(5.3) has only M + 1 constraints, and therefore admits an optimal solution where

at most M + 1 variables are non-zero.

5.3.1 A New QPTAS for Signaling in Normal Form Games

In this section, we present an approach different from the one in Section 4.3,

which also gives a quasipolynomial-time approximation scheme for the problem of

optimal signaling in Bayesian normal form games. We prove the following bi-criteria

result.

Theorem 5.12. Let ǫ > 0 denote an approximation parameter, let (A, λ) be a

Bayesian normal form game with k = O(1) players, n actions, and M states

of nature, and let A0 : [M ] × [n]k → [−1, 1] be an objective function given

as a tensor. There is an algorithm with runtime poly(M
ln(n/ǫ)

ǫ2 , n
ln n
ǫ2 ) which out-

puts a signaling scheme ϕ and corresponding Bayesian ǫ-equilibria X satisfying

F (ϕ,X ) ≥ OPT (A, λ, A0) − ǫ. This holds for both approximate NE and approx-

imate WSNE.

In other words, when the number of players is a constant we can in quasipoly-

nomial time approximate the optimal reward from signaling while losing an additive

ǫ in the objective as well as in the incentive constraints. Compared to our result
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in Section 4.3, the running time is slightly worse for general sum games, but not

directly comparable for zero-sum games (depending on which one of n and M is

larger). More specifically, for zero-sum games and constant ǫ > 0, the QPTAS in

Section 4.3 builds an ǫ-cover over Nash equilibria and runs in time nO(log n), while

the QPTAS in this section builds an ǫ-cover over posterior beliefs and runs in time

MO(log n).

Fix ǫ > 0. To prove this theorem, we define functions g and gǫ which each

take as input a k-player n-action game of complete information B, given as payoff

tensors B1 . . . , Bk : [n]k → [−1, 1], and an objective tensor B0 : [n]k → [−1, 1],

and output a number in [−1, 1]. Specifically, g(B,B0) = max{B0(x) : x ∈ EQ(B)}
and gǫ(B,B0) = max{B0(x) : x ∈ EQǫ(B)}, where EQ(B) denotes the set of Nash

equilibria of the game B, and EQǫ(B) denotes the (non-empty) set of ⌈s(ǫ/4)⌉-

uniform ǫ-Nash equilibria (or ǫ-WSNE) for s as given in Lemma 4.2. Recall that

B0(x) denotes evaluating the multilinear map described by tensor B0 at the mixed

strategy profile x ∈ ∆k
n.

Now suppose we fix a Bayesian game (A, λ) and objective tensor A0 as in the

statement of Theorem 5.12. For a subgame with a posterior distribution µ ∈ ∆M

over states of nature, the principal’s expected utility at the “best” Nash equi-

librium of this subgame can be written as g(Aµ, Aµ
0 ). Similarly, the principal’s

expected utility at the “best” ⌈s(ǫ/4)⌉-uniform ǫ-NE (or ǫ-WSNE) can be written

as gǫ(Aµ, Aµ
0 ). Observe that the input to both g and gǫ is a linear function of

µ, as needed to apply the results in Section 5.3. For a signaling scheme ϕ corre-

sponding to a decomposition λ =
∑

σ∈Σ pσµσ of the prior distribution λ into poste-

rior distributions (see Section 2.1.1), we can write the principal’s expected utility

as F (ϕ) =
∑

σ∈Σ pσg(F µσ , Aµσ) assuming that the players reach the “best” Nash
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equilibrium in each subgame, and Fǫ(ϕ) =
∑

σ∈Σ pσgǫ(F µσ , Aµσ) assuming that the

players reach the “best” ⌈s(ǫ/4)⌉-uniform ǫ-equilibria. We use OPT to denote the

maximum value of F over all signaling schemes.

We prove Theorem 5.12 by exhibiting an algorithm for computing a signaling

scheme ϕ such that Fǫ(ϕ) ≥ OPT − ǫ. The proof hinges on two main lemmas.

Lemma 5.13. The function g is 2(k + 1)nk-stable.

Proof. As noted in Section 5.2, any function mapping a hypercube [−1, 1]N to the

interval [−1, 1] is 2N stable. The function g is such a function with N = (k +

1)nk.

Lemma 5.14. The function gǫ is an (ǫ/4, ǫ/2)-relaxation of g.

Proof. Consider tensors B0, B̃0 : [n]k → [−1, 1] with |B0(s) − B̃0(s)| ≤ ǫ/4 for all

s ∈ [n]k, and two k-player n-action games B = (B1, . . . , Bk) and B̃ = (B̃1, . . . , B̃k)

with |Bi(s) − B̃i(s)| ≤ ǫ/4 for all s ∈ [n]k. It suffices to show that gǫ(B̃, B̃0) ≥
g(B,B0) − ǫ/2. Let x ∈ ∆k

n be the Bayesian equilibrium of B for which B0(x) =

g(B,B0). By Lemma 4.2, there is a profile x̃ of ⌈s(ǫ/4)⌉-uniform mixed strategies

such that x̃ is an ǫ/4-equilibrium of B, and B0(x̃) ≥ B0(x) − ǫ/4. Since B̃ differs

from B by at most ǫ/4 everywhere, it follows that x̃ is an ǫ-equilibrium of B̃, i.e.,

x̃ ∈ EQǫ(B̃). Similarly, since B̃0 differs from B0 by at most ǫ/4 everywhere, it

follows that B̃0(x̃) ≥ B0(x̃) − ǫ/4 ≥ B0(x) − ǫ/2. We conclude that gǫ(B̃, B̃0) ≥
B̃0(x̃) ≥ g(B,B0) − ǫ/2.

We now complete the proof of Theorem 5.12 by instantiating Theorem 5.11

with g, h = gǫ, and α = ǫ
4(k+1)nk . The runtime is poly(M

ln(1/α)

ǫ2 , (k+1)nk, T ), where T

is the time needed to evaluate gǫ (and compute the corresponding ⌈s(ǫ/4)⌉-uniform
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ǫ-equilibrium) on a given input. Recall that k = O(1) and α = ǫ
poly(n)

. Moreover,

using brute-force enumeration of all ⌈s(ǫ/4)⌉-uniform mixed strategy profiles we

conclude that T is bounded by a polynomial in n
ln n
ǫ2 . Therefore our total runtime is

poly(M
ln(n/ǫ)

ǫ2 , n
ln n
ǫ2 ), as needed.

Remarks Similar to our results in Section 4.3, in the special case of two-player

zero-sum games and a principal interested in maximizing one player’s utility, our

techniques lead to a more efficient approximation scheme and a uni-criteria guaran-

tee. This is because the principal’s payoff tensor B0 equals the payoff tensor B of one

of the players (say, player 1), and consequently the function g(B,B0) = g(B,B) =

maxx miny x
TBy is n2-stable and 2-Lipschitz. Its Lipschitz continuity follows from

the fact that an ǫ-equilibrium of a zero-sum game leads to utilities within ǫ of the

equilibrium utilities. Moreover, evaluating g now takes time T = poly(M,n). Theo-

rem 5.10 instantiated with α = ǫ
4n2 and δ = ǫ/4, leads to an algorithm with runtime

poly(M
ln(n/ǫ)

ǫ2 , n), which outputs a signaling scheme ϕ and corresponding Bayesian

(exact) Nash-equilibria X satisfying F (ϕ,X ) ≥ OPT(A, λ, A0) − ǫ.

5.4 Hardness Results for Mixture Selection

We now present evidence that both our assumptions — Noise stability and

Lipschitz continuity — appear necessary for general positive results along the lines

of those in Theorem 5.6.

Noise stability alone is not sufficient for a PTAS. In Section 5.4.1, we

define a function g(slope) : [0, 1]n → [0, 1] which is 1-stable. Furthermore, g(slope)

is O(1)-Lipschitz with respect to the L1 metric, which is a weaker property than
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Lipschitz continuity with respect to L∞. We show in Theorem 5.18 that there is a

polynomial-time reduction from the maximum independent set problem on n-node

graphs to the n-dimensional mixture selection for g(slope). The reduction precludes

a polynomial-time (additive) ǫ-approximation algorithm for some constant ǫ > 0.

Lipschitz continuity alone is not sufficient for a PTAS. One might hope

to prove NP-hardness of mixture selection in the absence of stability. However,

since every function g : [−1, 1]n → [−1, 1] is 2n-stable, Theorem 5.6 implies a

quasipolynomial-time approximation scheme in the additive sense whenever g is

O(1)-Lipschitz. Nevertheless, we prove hardness of approximation assuming the

planted clique conjecture ([66] and [72]). More specifically, in Section 5.4.2, we

exhibit a reduction from the planted k-clique problem to mixture selection for

the 3-Lipschitz function g
(clique)
k (t) = t[k] − t[k+1] + t[n]. When k = ω(log2 n)

and A is the adjacency matrix of an n-node undirected graph G, we show that

maxx g
(clique)
k (Ax) ≈ 1

2
with high probability if G ∼ G(n, 1

2
), and maxx g

(clique)
k (Ax) ≈

1 with high probability if G ∼ G(n, 1
2
, k) (defined in Section 2.3).

5.4.1 NP-hardness in the Absence of Lipschitz Continuity

We now show that stability alone does not suffice for an additive PTAS for

mixture selection, in general. First, we show that mixture selection for a 1-stable

function g(vote-sum)(t) does not admit a (uni-criteria) additive PTAS unless P =

NP. g(vote-sum) is motivated by the application of persuading voters presented in

Section 6.2, and simply returns the fraction of nonnegative entries of t = Ax, i.e.,

g(vote-sum)(t)
def
=
∑

i∈[n]

1

n
I[ti ≥ 0].
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In addition, since g(vote-sum) is not continuous in any metric, we exhibit a “smoothed”

function g(slope) which is 1-stable and O(1)-Lipschitz with respect to L1, but not

O(1)-Lipschitz with respect to L∞, and show that mixture selection for g(slope) still

does not admit an additive PTAS unless P = NP.

Both NP-hardness results share a similar reduction from the maximum inde-

pendent set problem. We use a consequence of the result by [71], namely that there

exists a constant ǫ such that it is NP-hard to approximate maximum independent

set to within an additive error of ǫn, where n denotes the number of vertices.

Given an n-node undirected graph G, let OPTIS = OPTIS(G) be the size of

its largest independent set. We define the n× n matrix A = A(G) as follows:

• Diagonal entries of A are all 1
2

(Ai,i = 1
2

for all 1 ≤ i ≤ n).

• When vertices i and j share an edge in G, both Ai,j and Aj,i are −1.

• All other entries of A, namely Ai,j for non-adjacent distinct vertices i and j,

are − 1
4n

.

We relate OPTIS to convex combinations of the columns of A as follows.

Observation 5.15. Let I be an independent set of G with |I| = k. There exists

x ∈ ∆n such that k entries of Ax are at least 1
4n

, and all remaining entries are

strictly negative.

Proof. Let x ∈ ∆n be the normalized indicator vector of I — i.e., xi = 1
k

if i ∈ I
and xi = 0 otherwise. By construction (Ax)i = 1

k
(1

2
− (k − 1) 1

4n
) ≥ 1

4n
whenever

i ∈ I, and (Ax)i ≤ − 1
4n

otherwise.
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Observation 5.16. For any x ∈ ∆n, nonnegative entries of Ax correspond to

an independent set of G. Consequently, Ax can have at most OPTIS nonnegative

entries.

Proof. Let t = Ax. Consider an edge {i, j} of graph G. We have ti ≤ xi

2
− xj −

1
4n

(1 − xi − xj) and a similar inequality for tj , so

ti + tj ≤ −xi + xj

2
− 1 − xi − xj

2n
< 0.

Therefore, ti and tj cannot be both nonnegative. We conclude that the nonnegative

coordinates of t correspond to an independent set of G.

Observations 5.15 and 5.16 imply that maxx∈∆n g
(vote-sum)(Ax) = OPTIS

n
. Com-

bined with the fact that obtaining an additive PTAS for the maximum independent

set problem is NP-hard, we get the following theorem.

Theorem 5.17. Mixture selection for the 1-stable function g(vote-sum) admits no

additive PTAS unless P = NP.

Noting that g(vote-sum) is a discontinuous function, for emphasis we exhibit a

function g(slope) which is Lipschitz continuous in L1 (but not in L∞) and 1-noise

stable, but for which the same impossibility result holds by an identical reduction.

Informally, g(slope) “smoothes” the threshold behavior of g(vote-sum) as follows: each

input ti contributes 0 to g(slope)(t) when ti ≤ 0, contributes 1
n

when ti ≥ 1
4n

, and

the contribution is a linear function of ti increasing from 0 to 1
n

for ti ∈ [0, 1
4n

].

Formally, we define g(slope)(t) =
∑n

i=1 min
{

4 max {0, ti} , 1
n

}
. Since each entry of

t contributes at most 1
n

to g(slope)(t), it is easy to verify that g(slope) is 1-stable.

Moreover, since the partial derivatives of g(slope)(t) are upper-bounded by 4, it is
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4-Lipschitz continuous with respect to the L1 metric. Observations 5.15 and 5.16

imply that maxx∈∆n g
(slope)(Ax) = OPTIS

n
, ruling out an additive PTAS for mixture

selection for g(slope).

Theorem 5.18. The function g(slope) is 1-stable and O(1)-Lipschitz with respect to

L1, and yet mixture selection for g(slope) admits no additive PTAS unless P = NP.

5.4.2 Planted Clique Hardness in the Absence of Stability

We now present evidence that Lipschitz continuity alone does not suffice for

a PTAS for mixture selection. Recalling that a quasipolynomial time algorithm

follows from our framework whenever a function is O(1)-Lipschitz, we reduce from

the planted clique problem—for which a quasipolynomial time algorithm exists, and

yet a polynomial-time algorithm is conjectured not to exist—rather than from an

NP-hard problem.

We let k = k(n) be as in Conjecture 2.6, and consider mixture selection for

the function g
(clique)
k : [0, 1]n → [0, 1] with g

(clique)
k (t) = t[k] − t[k+1] + t[n], where t[i]

denotes the i’th largest entry of the vector t. It is easy to verify that g(clique)
k is

3-Lipschitz with respect to the L∞ metric, yet is not O(1)-stable. We prove the

following theorem.

Theorem 5.19. Conjecture 2.6 implies that there is no additive PTAS for mixture

selection for g
(clique)
k .

To prove Theorem 5.19, we show that maxx∈∆n g
(clique)
k (Ax) is arbitrarily close

to 1 with high probability when A is the adjacency matrix of G ∼ G(n, 1
2
, k), and

is bounded away from 1 with high probability when A is the adjacency matrix of

G ∼ G(n, 1
2
). For convenience, and without loss of generality, we assume that both
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random graphs include each self-loop with probability 1
2

— i.e., diagonal entries of

the adjacency matrix A are independent uniform draws from {0, 1} in both cases.

Our argument is captured by the following two lemmas.

Lemma 5.20. Fix a constant ǫ > 0. Let G ∼ G(n, 1
2
, k), and let A be its adjacency

matrix. With probability 1 − o(1), there exists an x ∈ ∆n such that g
(clique)
k (Ax) ≥

1 − ǫ.

Proof. Let C denote the vertices of the planted k-clique. We set xi = 1
k

if i ∈ C and 0

otherwise. Let t = Ax. For i ∈ C, ti ≥ 1 − 1
k
. On the other hand, all other entries of

t concentrate around 1
2

with high probability. For i /∈ C, ti is simply the average of k

independent Bernoulli random variables by definition of G(n, 1
2
, k); using Hoeffding’s

inequality, we bound the probability that ti deviates from its expectation by more

than a constant δ > 0, to be chosen later:

Pr
[∣∣∣∣ti − 1

2

∣∣∣∣ > δ
]

≤ 2e−2δ2k.

By the union bound, ti ∈ [ 1
2

− δ, 1
2

+ δ] simultaneously for all i /∈ C with

probability at least 1 − n2−Ω(k) = 1 − o(1). Thus t[k+1] − t[n] ≤ 2δ and g
(clique)
k (t) =

t[k] − (t[k+1] − t[n]) ≥ 1 − 1
k

− 2δ with probability 1 − o(1). Choosing δ = ǫ/3, we

conclude that g(clique)
k (t) ≥ 1 − ǫ with probability 1 − o(1).

Lemma 5.21. Fix a constant ǫ > 0. Let G ∼ G(n, 1
2
), and let A be its adjacency

matrix. With probability 1 − o(1), g(clique)
k (Ax) ≤ 3

4
+ ǫ for all x ∈ ∆n.

Proof. Recall that g(clique)
k is O(1)-Lipschitz and — like any other function from

the hypercube to the bounded interval — O(n)-stable. If there exists x∗ such that

g
(clique)
k (Ax∗) ≥ 3

4
+ ǫ, then Theorem 5.5 implies that there is an integer s = O(logn)
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and an s-uniform vector x̃ such that g(clique)
k (Ax̃) > 3

4
. There are ns such vec-

tors. We next show that for an arbitrary fixed vector x ∈ ∆n the probability that

g
(clique)
k (Ax) > 3

4
is at most 2−Ω(k). This will complete the proof by the union bound,

since 1 − ns · 2−Ω(k) = 1 − o(1).

Fix x ∈ ∆n, and let t = Ax. Define D as the distribution supported on [0, 1]

which is sampled as follows: draw a uniformly from {0, 1}n, and output a · x. Since

A is the adjacency matrix of G ∼ G(n, 1
2
), each entry ti of t can be viewed as an

independent draw from D. We exploit a key property of D in our proof, namely the

fact that D is symmetric about 1
2
. Formally we mean that PrD[r] = PrD[1 − r] for

all r ∈ [0, 1], and this follows easily from the definition of D.

Symmetry of D implies that Prr∼D[r ≥ 1
2
] = Prr∼D[r ≤ 1

2
] ≥ 1

2
. Recalling that

k = o(n) and that entries of t are independent draws from D, the Chernoff bound

implies that the following holds with probability at least 1 − 2−Ω(n):

t[n] ≤ 1

2
≤ t[k+1]. (5.4)

If g(clique)
k (t) > 3

4
, then the following two conditions must hold:

1. t[k] >
3
4
, and

2. t[k+1] − t[n] <
1
4
.

Condition 1 implies that the k largest entries of t are all at least 3
4
. Furthermore,

unless Inequality (5.4) is violated — which happens with probability 2−Ω(n) — Con-

dition 2 implies that the remaining entries of t are all strictly between 1
4

and 3
4
. Let p

denote Prr∼D[r ≤ 1
4
], also equal to Prr∼D[r ≥ 3

4
] by symmetry of D. The probability

that k entries of t are at least 3
4

and all remaining entries are in (1
4
, 3

4
) is given by
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(
n
k

)
pk(1−2p)n−k, which is maximized at p = k

2n
, with maximum value 2−Ω(k). In sum-

mary, the probability that g(clique)
k (Ax) > 3

4
is at most 2−Ω(k) + 2−Ω(n) = 2−Ω(k).

ETH-Hardness in the Absence of Stability

For mixture selection in the absence of noise stability, we can also show that a

QPTAS is the best-possible approximation scheme, assuming the Exponential Time

Hypothesis (ETH) [15]. Our proof follows from a clean reduction from the best-

Nash problem, for which Braverman et al. [20] showed that a QPTAS is essentially

optimal. We choose to present the planted clique hardness result in this thesis

because it is more elementary, and gives a simple function g
(clique)
k .
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Chapter 6

Signaling in Anonymous Games

Anonymous games are multiplayer games in which the utility of each player

depends on her own strategy, as well as the number (as opposed to the identity)

of other players who play each of the strategies. Anonymous games comprise an

important class of succinct games — well-studied in the economics literature (see,

e.g., [17, 18, 76]) — capturing a wide range of phenomena that frequently arise in

practice, including auctions, voting systems, and congestion games.

In this chapter, we study the complexity of optimal signaling in anonymous

games. We start with two special cases: probabilistic second price auctions, and

majority voting with uncertainty. We give the first polynomial time approximation

schemes (PTAS) for both problems (Theorem 6.2 and 6.5), which follow from the

powerful mixture selection framework presented in Chapter 5.

We then take a slight detour to present the currently (asymptotically) best

algorithm for computing Nash equilibria in anonymous games (Theorem 6.6); and

we also present some evidence suggesting our algorithm might be essentially tight

(Theorem 6.7). Anonymous games have a unique property compared to all other

games we study in this thesis (e.g., network routing games, normal form games, sec-

ond price auctions and majority voting); the computational complexity of (approx-

imate) Nash equilibria in complete-information anonymous games is still open.

The work presented in this chapter appeared in [26] and [28].
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6.1 Signaling in Second-Price Auctions

In this section, we examine signaling in probabilistic second-price auctions as

defined in Section 2.1.5. Recall that in this setting, a probabilistic item is being

auctioned, and the instantiation of the item is known to the auctioneer but not

to the bidders. This is particularly relevant in advertising auctions, where items

are impressions associated with demographics that are a priori unknown to the

advertisers bidding in the auction.

We consider the algorithmic problem faced by an auctioneer, who seeks to

reveal partial information to maximize the expected revenue before subsequently

running a second-price auction. It was shown in [21, 52] that polynomial-time algo-

rithms exist for several special cases of this problem. However, the general problem

was shown to be NP-hard even with 3 bidders — specifically, no additive FPTAS

exists unless P = NP. In this section, we resolve the approximation complexity of

this basic signaling problem by giving an additive PTAS. We note that variations of

this problem were considered in [59, 62], with different constraints on the signaling

scheme — the results in these works are not directly relevant to our model.

6.1.1 PTAS from Mixture Selection: Revenue is Stable

Given a probabilistic auction with valuation distribution D, and a signaling

scheme ϕ expressed as a decomposition {pσ, µσ}σ∈Σ of the prior distribution λ, we

can express the auctioneer’s expected revenue as

∑

σ∈Σ

pσ E
V ∼D

[max2(V µσ)] ,
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where the function max2 returns the second largest entry of a given vector. To apply

our main theorem, we need to show that the revenue in a subgame with posterior

distribution µ ∈ ∆M — namely EV ∼D[max2(V µ)] — can be written in the form

g(Wµ) for a matrix W . To facilitate our discussion we assume that the valuation

distribution D has finite support size C, though this is without loss of generality.

Imagine we form a large matrix W by stacking matrices in the support of D on top

of each other. Formally, W = [V T
1 , V

T
2 , . . . , V

T
C ]T where Vi is the ith matrix in the

support of D. When matrix Vi is drawn from D, we take the second-highest bid from

the rows of W corresponding to Vi (rows (i−1) ·n+1 to i ·n, where n is the number

players). For S ⊆ [nC] and t ∈ [0, 1]nC, let max2S(t) denote the second-highest

value among entries of t indexed by S. Then we can write the auctioneer’s expected

revenue as

g(rev)(Wµ) = E
V ∼D

[
max2S(V )(Wµ)

]

where S(V ) is the set of rows in W corresponding to V .

Lemma 6.1 (Smooth and Stable Revenue). The function g(rev)(t) =

EV ∼D
[
max2S(V )(t)

]
is 1-Lipschitz and 2-stable.

Proof. Because max2S is 1-Lipschitz for a fixed set of indices S, it follows that g(rev),

which is a convex combination of these 1-Lipschitz functions, is also 1-Lipschitz.

To show that g(rev) is stable, we first show that the function max2 : [0, 1]n →
[0, 1] is stable. Given t ∈ [0, 1]n and a random set R ⊆ [n] drawn from an α-light

distribution D, the union bound implies that R includes neither of the two largest

entries of t with probability at least 1 − 2α. In this case, the value of max2 is not

affected by corruption of the entries indexed by R. Hence
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E
R∼D

[
min{max2(t′) : t′ ≈

R
t}
]

≥ (1 − 2α) · max2(t) + 2α · 0 ≥ max2(t) − 2α.

Therefore max2 is 2-stable, which implies that max2S : [0, 1]nC → [0, 1] is also 2-

stable for any fixed set of indices S. The function g(rev) is a convex combination of

functions of the form max2S, and is therefore also 2-stable by Proposition 5.4.

Theorem 6.2. The revenue-maximizing signaling problem in second-price auctions

admits an additive PTAS when the valuation distribution is given explicitly, and an

additive PRAS when the valuation distribution is given by a sampling oracle.

Proof. Lemma 6.1 shows that the function g(rev) is 2-stable and 1-Lipschitz. If

the valuation distribution D is explicitly given with support size C, the function

g(rev) can be evaluated in poly(n,M,C) time. Then for any ǫ > 0, it follows from

Theorem 5.10 by setting α = ǫ/4 and δ = ǫ/2 that there is a deterministic algo-

rithm that computes a signaling scheme with expected revenue (OPT − ǫ), in time

poly(n,M ǫ−2 ln(1/ǫ), C).

If D is given via a sampling oracle, standard tail bounds and the union bound

imply that C = Θ((s logm + log(γ−1))/ǫ2) samples from D suffice to estimate to

within O(ǫ) the revenue associated with every s-uniform posterior in ∆M , with suc-

cess probability 1 − γ. Since revenue is O(1)-stable and O(1)-Lipschitz, Lemma 5.9

implies that we can restrict attention to signaling schemes with s-uniform posteriors

for s = poly(1
ǫ
). Proceeding as in Theorem 5.10, using the revenue estimates from

Monte-Carlo sampling in lieu of exact values, we can construct a signaling scheme

with revenue (OPT − ǫ) in time poly(n,M ǫ−2 ln(1/ǫ), log( 1
γ
)), with success probability

1 − γ.
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6.1.2 NP-hardness of an Additive FPTAS

Emek et al. [52] proved that revenue-maximizing signaling in probabilistic sec-

ond price auctions is NP-hard, via a reduction from MAX-CUT. More specifically,

given a graph G with n nodes and m edges, they can construct a Bayesian sec-

ond price auction such that the value of the optimal signaling scheme is roughly

m+C∗

poly(n)
, where C∗ is the size of the maximum cut of G. Since MAX-CUT is APX-

hard and their reduction is gap preserving up to a multiplicative factor of poly(n),

Emek et al. [52] implicitly ruled out an additive FPTAS for this problem.

6.2 Persuasion in Voting

In this section, we study persuasion problem in voting as defined in Sec-

tion 2.1.6. Recall that we have an election with two possible outcomes. Each voter

casts a ‘Yes’/‘No’ vote, and the ballot measure is passed if the fraction of ‘Yes’ votes

exceeds a certain pre-specified threshold. As in [5], we focus on the scenario in which

voters have uncertainty regarding their utilities for the two possible outcomes. We

consider a principal looking to influence the outcome of the election by signaling,

who wants to maximize the probability of the measure passing.

For our approximation algorithms, we also allow implementation in approxi-

mately dominant strategies — i.e., we sometimes assume a voter votes ‘Yes’ if his

utility u(i, µ) is at least −δ for a small parameter δ.1 We assume that the state of

nature θ ∈ Θ is drawn from a common prior λ ∈ ∆M , and a principal with access to

θ reveals a public signal σ prior to voters casting their votes. As usual, we adopt the

1 Such relaxations seem necessary for our results. Moreover, depending on the context, modes
of intervention for shifting the votes of voters who are close to being indifferent may be realistic.
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perspective of a principal looking to commit to a public signaling scheme ϕ : Θ → Σ,

for some set of signals Σ.

Alonso and Câmara [5] consider a principal interested in maximizing the prob-

ability that at least 50% (or some given threshold) of the voters vote ‘Yes’, in

expectation over states of nature. Theirs is the natural objective when the elec-

tion employs a majority (or threshold) voting rule, and the principal is interested in

influencing the outcome of the vote. Approximating this objective requires nontrivial

modifications to our framework, and therefore we begin this section by examining a

different, yet also natural, objective: the expected number of ‘Yes’ votes. We design

a bi-criteria approximation scheme for this objective, then describe the necessary

modifications for the threshold function objective of [5].

6.2.1 Maximizing Expected Number of Votes

We now examine bi-criteria approximation algorithms for maximizing the

expected number of ‘Yes’ votes. For our benchmark, we use the function

g(vote-sum)(t)
def
=
∑

i∈[n]
1
n
I[ti ≥ 0], where I[E ] denotes the indicator function for event

E . Assuming voters vote ‘Yes’ precisely when their posterior expected utility for a

‘Yes’ outcome is nonnegative, the number of ‘Yes’ votes when voters have prefer-

ences U ∈ [−1, 1]n×m and posterior belief µ ∈ ∆M equals g(vote-sum)(Uµ). When the

state of nature is distributed according to a common prior λ, and voters are informed

according to a signaling scheme ϕ = {µσ, pσ}σ∈Σ, the expected number of ‘Yes’ votes

equals F (vote-sum)(ϕ, U, λ)
def
=
∑

σ∈Σ pσg
(vote-sum)(Uµσ). We use OPT(vote-sum)(U, λ) to

denote the maximum value of F (vote-sum)(ϕ, U, λ) over public signaling schemes ϕ.

As the first step to apply our framework, we prove that g(vote-sum) is stable.
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Lemma 6.3. The function g(vote-sum) is 1-stable.

Proof. For each voter i ∈ [n], let gi : [−1, 1]n → {0, 1} be the function indicating

whether voter i prefers the ‘Yes’ outcome, i.e., gi(t) = I[ti ≥ 0]. Each individual

gi is 1-stable, because as long as the i’th input ti is not corrupted the output of gi

does not change. Therefore g(vote-sum)(t) = 1
n

n∑
i=1

gi(t), being a convex combination

of 1-stable functions, is 1-stable by Proposition 5.4.

Unfortunately, g(vote-sum) is not O(1)-Lipschitz. We therefore employ the bi-

criteria extension to our framework from Definition 5.7. Specifically, for a param-

eter δ > 0, we assume a voter votes ‘Yes’ as long as his expected utility from

a ‘Yes’ outcome is at least −δ. Correspondingly, we define the relaxed function

g
(vote-sum)
δ (t)

def
=
∑

i∈[n]
1
n
I[ti ≥ −δ]; the expected number of ‘Yes’ votes from a sig-

naling scheme ϕ = {µσ, pσ}σ∈Σ can analogously be written as F (vote-sum)
δ (ϕ, U, λ)

def
=

∑
σ∈Σ pσg

(vote-sum)
δ (Uµσ).

We can verify that g(vote-sum)
δ is a (δ, 0)-relaxation of g(vote-sum); combining this

fact with Theorem 5.11 yields a bi-criteria approximation scheme for the problem

of maximizing the expected number of ‘Yes’ votes.

Theorem 6.4. Let ǫ, δ > 0 be parameters, let U ∈ [−1, 1]n×M describe the pref-

erences of n voters in M states of nature, and let λ ∈ ∆M be the prior of states

of nature. There is an algorithm with runtime poly(M δ−2 ln(1/ǫ), n) for computing a

signaling scheme ϕ such that F
(vote-sum)
δ (ϕ, U, λ) ≥ OPT(vote-sum)(U, λ) − ǫ.
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6.2.2 Maximizing the Probability of a Majority Vote

We now sketch the necessary modifications when the principal is interested in

maximizing the probability of a ‘Yes’ outcome, assuming a majority voting rule. We

make two relaxations: we assume a voter votes ‘Yes’ as long as his expected utility

from a ‘Yes’ outcome is at least −δ, and assume that the ‘Yes’ outcome is attained

when at least a (0.5 − δ) fraction of voters vote ‘Yes’. Our benchmark will be the

maximum probability of a ‘Yes’ outcome in the absence of these two relaxations.

We note that [5] do not require these relaxations. They focus on character-

izing the structures of the optimal signaling scheme, and fall short at providing an

algorithm for (approximately) optimal signaling. In their analysis for persuading

multiple voters, they make use of (the convex hull of) the set of posteriors that

induce more than 50% of the voters to vote ‘Yes’; this set is in general non-convex

and may have exponentially many disconnected regions, making it difficult to con-

vert their insights into efficient algorithms.

We define our benchmark using the function g(vote-thresh)(t) = I[g(vote-sum)(t) ≥
0.5] which evaluates to 1 if at least half of its n inputs are nonnegative, and to 0 other-

wise. This function is not O(1)-stable, so we work with a more stringent benchmark

which is. Specifically, for a parameter δ > 0, we use the function g
(vote-smooth-thresh)
δ

which is pointwise greater than or equal to g(vote-thresh), defined as follows:

g
(vote-smooth-thresh)
δ (t) =





1
δ

(
g(vote-sum)(t) − 0.5 + δ

)
if g(vote-sum)(t) ∈ [0.5 − δ, 0.5]

g(vote-thresh)(t) otherwise.
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Observe that g(vote-smooth-thresh)
δ applies a continuous piecewise-linear function to the

output of g(vote-sum); it is easy to verify that g(vote-smooth-thresh)
δ is 1

δ
-stable, and upper

bounds g(vote-thresh).

Finally, to measure the quality of our output we define the relaxed function

g
(vote-thresh)
δ : [−1, 1]n → {0, 1}, which outputs 1 if at least a (0.5 − δ) fraction of

its inputs exceed −δ, and outputs 0 otherwise. By Definition 5.7, g(vote-thresh)
δ is a

(δ, 0)-relaxation of g(vote-smooth-thresh)
δ (and, consequently, also of g(vote-thresh)).

Let F (vote-thresh)(ϕ, U, λ) and F
(vote-thresh)
δ (ϕ, U, λ) denote the functions which

evaluate the quality of a signaling scheme ϕ using g(vote-thresh) and g
(vote-thresh)
δ ,

respectively. Moreover, let OPT(vote-thresh)(U, λ) be the maximum value of

F (vote-thresh)(ϕ, U, λ) over signaling schemes ϕ. We apply Theorem 5.11 to g(vote-thresh)
δ

and g(vote-smooth-thresh), setting α = ǫδ, and use the fact that g(vote-smooth-thresh) upper-

bounds our true benchmark g(vote-thresh), to conclude the following.

Theorem 6.5. Let ǫ, δ > 0 be parameters, let U ∈ [−1, 1]n×M describe the prefer-

ences of n voters in M states of nature, and let λ ∈ ∆M be the prior of states of

nature. There is an algorithm with runtime poly(n,M δ−2 ln(1/ǫδ)) for computing a

signaling scheme ϕ such that F
(vote-thresh)
δ (ϕ, U, λ) ≥ OPT(vote-thresh)(U, λ) − ǫ.

Connection to Maximum Feasible Subsystem of Linear Inequalities

Turning our attention away from signaling, we note that g(vote-sum)(Ax) simply

counts the number of satisfied inequalities in the system Ax � 0. Mixture selec-

tion for g(vote-sum) is therefore the problem of maximizing the number of satisfied

inequalities over the simplex. Using our framework from Section 5.2, we obtain a

bi-criteria PTAS for this problem. Moreover, using Monte-Carlo sampling, our bi-

criteria PTAS extends to the model in which A is given implicitly; specifically, the
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rows of A correspond to the sample space of a distribution D over [−1, 1]m, and are

weighted accordingly. In this implicit model, we can think of mixture selection for

g(vote-sum) as the problem of finding x ∈ ∆M which maximizes the probability that

a · x ≥ 0 for a ∼ D.

6.2.3 Hardness Results for Persuading Voters

In Section 5.4.1, we showed that the posterior selection problem for g(vote-sum)

does not admit a (uni-criteria) additive PTAS unless P = NP. Inspired by our

reduction, Dughmi and Xu [51] ruled out a (uni-criteria) PTAS for the problem of

signaling to maximize the expected number of votes. Both reductions construct a

Bayesian voting instance I from a graph G. At a high level, we showed that a

good posterior of I corresponds to a large independent set of G; and [51] showed

that a near-optimal signaling scheme of I corresponds to covering G using large

independent sets. Conceptually, the idea of switching from maximum independent

set to graph-coloring is equivalent to moving from planted clique to planted clique

cover.

6.3 Computing Equilibria in Anonymous Games

The complexity and efficient approximation of Nash equilibria have been stud-

ied intensively during the past decade, and much progress has been made (e.g.,

see [1, 9, 10, 11, 12, 23, 24, 25, 33, 35, 39, 53, 70, 74, 75, 87, 88, 89]). Despite much

effort, the computational complexity of approximate Nash equilibria in anonymous

games remains open.
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In recent years, equilibrium computation in anonymous games has attracted

significant attention in TCS [25, 33, 36, 37, 38, 39, 41, 60]. Consider the family

of anonymous games where the number of players, n, is large and the number of

strategies, k, is bounded. It was recently shown by Chen et al. [25] that computing

an ǫ-approximate Nash equilibrium of such games is PPAD-complete when ǫ is

exponentially small, even for anonymous games with 5 strategies2.

On the algorithmic side, Daskalakis and Papadimitriou [36, 37] presented the

first polynomial-time approximation scheme (PTAS) for this problem with running

time n(1/ǫ)Ω(k)
. For the case of 2-strategies, this bound was improved [34, 38, 39]

to poly(n) · (1/ǫ)O(log2(1/ǫ)), and subsequently sharpened to poly(n) · (1/ǫ)O(log(1/ǫ))

in [42].

In recent work, Daskalakis et al. [33] and Diakonikolas et al. [41] generalized

the aforementioned results [39, 42] to any fixed number k of strategies, obtaining

algorithms for computing ǫ-well-supported Nash equilibria (see Definition 2.3) with

runtime of the form npoly(k) · (1/ǫ)k log(1/ǫ)O(k)
. That is, the problem of computing

approximate Nash equilibria in anonymous games with a fixed number of strate-

gies admits an efficient polynomial-time approximation scheme (EPTAS). Moreover,

the dependence of the running time on the parameter 1/ǫ is quasipolynomial — as

opposed to exponential.

We note that all the aforementioned algorithmic results are obtained by

exploiting a connection between Nash equilibria in anonymous games and Pois-

son multinomial distributions (PMDs). This connection — formalized in [36, 37]

— translates constructive upper bounds on ǫ-covers for PMDs to upper bounds on

2 [25] showed that computing an equilibrium of 7-strategy anonymous games is PPAD-complete,
but 3 of the 7 strategies in their construction can be merged, resulting in a 5-strategy anonymous
game.
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computing ǫ-Nash equilibria in anonymous games (see Section 2.1.7 for formal def-

initions). Unfortunately, as shown in [33, 41], this “cover-based” approach cannot

lead to qualitatively faster algorithms, due to a matching existential lower bound

on the size of the corresponding ǫ-covers. In related algorithmic work, Goldberg

and Turchetta [60] studied two-strategy anonymous games (k = 2) and designed

a polynomial-time algorithm that computes an ǫ-approximate Nash equilibrium for

ǫ = Ω(n−1/4).

The aforementioned discussion prompts the following natural question: What

is the precise approximability of computing Nash equilibria in anonymous games?

In this chapter, we make progress on this question by establishing the following

result: For any δ > 0, and any n-player anonymous game with a constant number of

strategies, there exists a polyδ(n) time algorithm that computes an ǫ-approximate

Nash equilibrium of the game, for ǫ = 1/n1−δ.3 Moreover, we show that the exis-

tence of a polynomial-time algorithm that computes an ǫ-approximate Nash equi-

librium for ǫ = 1/n1+δ, for any small constant δ > 0 — i.e., slightly better than

the approximation guarantee of our algorithm — would imply the existence of a

fully polynomial-time approximation scheme (FPTAS) for the problem. That is, we

essentially show that the value ǫ = 1/n is the threshold for the polynomial-time

approximability of Nash equilibria in anonymous games, unless there is an FPTAS.

In the following subsection, we describe our results in detail and provide an overview

of our techniques.

3 The runtime of our algorithm depends exponentially on 1/δ. We remind the reader that the
algorithms of [33, 41] run in quasipolynomial time for any value of ǫ inverse polynomial in n.
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6.3.1 Summary of Results and Techniques

We study the following question:

For n-player k-strategy anonymous games, how small can ǫ be (as a func-

tion of n), so that an ǫ-approximate Nash equilibrium can be computed

in polynomial time?

Upper Bounds. We present a polynomial time algorithm that computes ǫ-

approximate equilibria in anonymous games for an inverse polynomial ǫ above a

certain threshold.

Theorem 6.6. For any δ > 0, and any n-player k-strategy anonymous game, there

is a polyδ,k(n) time algorithm that computes a (1/n1−δ)-approximate equilibrium of

the game.

This is the first polynomial time ǫ-approximation for some k > 2 strategies

and some inverse polynomial ǫ.

Overview of Techniques. The high-level idea of our approach is this: If the

desired accuracy ǫ is above a certain threshold, we do not need to enumerate over

an ǫ-cover for the set of all PMDs. Our approach is in part inspired by [60], who

design an algorithm (for k = 2 and ǫ = Ω(n−1/4)) in which all players use one

of the two pre-selected mixed strategies. The [60] algorithm can be equivalently

interpreted as guessing a PBD from an appropriately small set. One reason this

idea succeeds is the following: If every player randomizes, then the variance of the

resulting PBD must be relatively high, and (as a result) the corresponding subset

of PBDs has a smaller cover.
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Our quantitative improvement for the k = 2 case is obtained as follows: Instead

of forcing players to selected specific mixed strategies — as in [60] — we show that

there always exists an ǫ-approximate equilibrium where the associated PBD has

variance at least Θ(nǫ). When ǫ = n−c for some c < 1, the variance is polynomial in

n. We then construct a polynomial-size ǫ-cover for the subset of PBDs with variance

at least this much, which leads to a polynomial-time algorithm for computing ǫ-

approximate equilibria in 2-strategy anonymous games.

The idea for the general case of k > 2 is similar, but the details are more

elaborate, since the structure of PMDs is more complicated for k > 2. We proceed

as follows: we start by showing that there is an ǫ-approximate equilibrium whose

corresponding PMD has large variance in each direction. Our main structural result

is a robust moment-matching lemma (Lemma 6.11), which states that the close-

ness in low-degree moments of two PMDs, with large variance in each direction,

implies their closeness in total variation distance. The proof of this lemma uses

Fourier analytic techniques, building on and strengthening previous work [41]. As

a consequence of our moment-matching lemma, we can construct a polynomial-size

(ǫ/5)-cover for PMDs with such large variance. We then iterate through this cover to

find an ǫ-approximate equilibrium, using a dynamic programming approach similar

to the one in [39].

We now provide a brief intuition of our moment-matching lemma. Intuitively,

if the two PMDs in question are both very close to discrete Gaussians, then closeness

in the first two moments is sufficient. Lemma 6.11 can be viewed as a generalization

of this intuition, which gives a quantitative tradeoff between the number of moments

we need to approximately match and the size of the variance. The proof of Lemma

6.11 exploits the sparsity of the Fourier transform of our PMDs, and the fact that
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higher variance allows us to take fewer terms in the Taylor expansion when we use

moments to approximate the logarithmic Fourier transform. This completes the

proof sketch of Theorem 6.6.

Lower Bounds. When ǫ = 1/n, we can show that there is an ǫ-approximate

equilibrium where the associated PMD has a variance at least 1/k in every direction.

Unfortunately, the PMDs in the explicit quasipolynomial-size lower bounds given in

[33, 41] satisfy this property. Thus, we need a different approach to get a polynomial-

time algorithm for ǫ = 1/n or smaller.

In fact, we prove the following result, which states that even a slight improve-

ment of our upper bound in Theorem 6.6 would imply an FPTAS for computing

Nash equilibria in anonymous games. It is important to note that Theorem 6.7

applies to all algorithms, not only the ones that leverage the structure of PMDs.

Theorem 6.7. For n-player k-strategy anonymous games with k = O(1), if we can

compute an O(n−c)-approximate equilibrium in polynomial time for some constant

c > 1, then there is an FPTAS for computing (well-supported) Nash equilibria of

k-strategy anonymous games.

Remark. As observed in [33], because there is a quasipolynomial time algorithm

for computing an (n−c)-approximate equilibrium in anonymous games, the problem

cannot be PPAD-complete unless PPAD ⊆ Quasi-PTIME. On the other hand, we

do not know how to improve the quasipolynomial-time upper bounds of [33, 41]

when ǫ < 1/n.

Recall that computing an ǫ-approximate equilibrium of a two-player general-

sum n× n game (2-NASH) for constant ǫ also admits a quasipolynomial-time algo-

rithm [74]. Very recently, Rubinstein [88] showed that, assuming the exponential
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time hypothesis (ETH) for PPAD, for some sufficiently small universal constant

ǫ > 0, quasipolynomial-time is necessary to compute an ǫ-approximate equilibrium

of 2-NASH. It is a plausible conjecture that quasipolynomial-time is also required

for ǫ-Nash equilibria in anonymous games, when ǫ = n−c for some constant c > 1.

In particular, this would imply that there is no FPTAS for computing approxi-

mate Nash equilibria in anonymous games, and consequently the upper bound of

Theorem 6.6 is essentially tight.

6.3.2 Searching Fewer Moments

In this section, we present a polynomial-time algorithm that, for n-player

anonymous games with a bounded number of strategies, computes an ǫ-approximate

equilibrium with ǫ = n−c for any constant c < 1 (Theorem 6.6). Theorem 6.6 applies

to general k-strategy anonymous games for any constant k ≥ 2. As a warm-up, we

start by describing the simpler setting of two-strategy anonymous games (k = 2).

Lemma 6.8. For an n-player k-strategy anonymous game, there always exists an

ǫ-approximate equilibrium where every player plays each strategy with probability at

least ǫ
k−1

.

Proof. Given an anonymous game G = (n, k, {ui
a}i∈[n],a∈[k]), we smooth players’

utility functions by requiring every player to randomize. Fix ǫ > 0. We define an

ǫ-perturbed game Gǫ as follows. When a player plays some pure strategy a ∈ [k] in

Gǫ, we map it back to the original game as if she played strategy j with probability

1 − ǫ, and played some other strategy a′ 6= a uniformly at random (i.e., she plays a′

with probability ǫ
k−1

). Her payoff in Gǫ also accounts for such perturbation, and is
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defined to be her expected payoff given that all the players (including herself) would

deviate to other strategies uniformly at random with probability ǫ.

Formally, let Xǫ(ej) denote the k-CRV that takes value ej with probability

1 − ǫ, and takes value ej′ with probability ǫ
k−1

for each j′ 6= j. The payoff structure

of Gǫ is given by

u′i
a(x)

def
= (1−ǫ)E

[
ui

a(Mǫ(x))
]
+

ǫ

k − 1

∑

a′ 6=a

E

[
ui

a′(Mǫ(x))
]
, ∀i ∈ [n], a ∈ [k], x ∈ Πk

n−1,

where Mǫ(x) =
∑

j∈[k] xjXǫ(ej) is an (n − 1, k)-PMD that corresponds to the per-

turbed outcome of the partition x ∈ Πk
n−1 of all other players.

Let s′ = (s′
1, . . . , s

′
n) denote any exact Nash equilibrium ofGǫ. We can interpret

this mixed strategy profile in G equivalently as s = (s1, . . . , sn), where si = (1 −
kǫ

k−1
)s′

i + ǫ
k−1

1, where 1 = (1, . . . , 1). We know that under s each player has no

incentive to deviate to the mixed strategies Xǫ(ej) for all j ∈ [k], therefore a player

can gain at most ǫ by deviating to pure strategies in G, so s is an ǫ-approximate

equilibrium with si(j) ≥ ǫ
k−1

for all i ∈ [n], j ∈ [k].

Warm-up: The Case of k = 2 Strategies. For two-strategy anonymous games

(k = 2), if all the players put at least ǫ probability mass on both strategies, the

resulting PBD is going to have variance at least nǫ(1 − ǫ). When ǫ = n−c for some

constant c < 1, the variance is at least Θ(n1−c) = nΘ(1). We can now use the

following lemma from [43], which states that if two PBDs P and Q are close in the

first few moments, then P and Q are ǫ-close in total variation distance. Note that

without any assumption on the variance of the PBDs, we would need to check the

first O(log(1/ǫ)) moments, but when the variance is nΩ(1), which is the case in our

application, we only need the first constant number of moments to match.
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Recall that an n-PBD is the sum of n independent Bernoulli random variables.

An n-PBD P can be represented by its n parameters p1, . . . , pn, where pi is the

probability of the i-th Bernoulli takes the value of 1. In the following lemma,

for technical reasons, these parameters are partitioned into two sets with s and s′

elements (s+ s′ = n), depending on whether they are greater than 1/2 or not.

Lemma 6.9 ([43]). Let ǫ > 0. Let P and Q be n-PBDs with P having parameters

p1, . . . , ps ≤ 1/2 and p′
1, . . . , p

′
s′ > 1/2, and Q having parameters q1, . . . , qs ≤ 1/2

and q′
1, . . . , q

′
s′ > 1/2. Suppose that V = Var[P ] + 1 = Θ(Var[Q] + 1) and let C > 0

be a sufficiently large constant. Suppose furthermore that the following holds for

A = C
√

log(1/ǫ)/V and for all positive integers ℓ,

Aℓ



∣∣∣∣∣

s∑

i=1

pℓ
i −

s∑

i=1

qℓ
i

∣∣∣∣∣+

∣∣∣∣∣∣

s′∑

i=1

(1 − p′
i)

ℓ −
s′∑

i=1

(1 − q′
i)

ℓ

∣∣∣∣∣∣


 <

ǫ

C log(1/ǫ)
(6.1)

Then dTV(P,Q) < ǫ.

Let ǫ = n−c. For Lemma 6.9 we have V ≥ nǫ(1 − ǫ) and A =

Θ
(√

log(1/ǫ)/V
)

= O
(√

log n
n1−c

)
. The difference in the moments of parameters of

P and Q in Equation (6.1) is bounded from above by n, so whenever ℓ > 2+2c
1−c

, the

condition in Lemma 6.9 is automatically satisfied for sufficiently large n because

Aℓn = O

(
logℓ/2 n

n(1−c)ℓ/2
n

)
<

1

C · nc · c logn
=

ǫ

C log(1/ǫ)
.

So it is enough to search over the first ℓ = Θ
(

1
1−c

)
moments when each player puts

probability at least Ω(n−c) on both strategies. The algorithm for finding such an

ǫ-approximate equilibrium uses moment search and dynamic programming, and is

given for the case of general k in the remainder of this section.
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The General Case: k Strategies. We now present our algorithm for n-player

anonymous games with k > 2 strategies and prove Theorem 6.6. The intuition of

the k = 2 case carries over to the general case, but the details are more elaborate.

First, we show (Claim 6.10) that there exists an ǫ-approximate equilibrium whose

corresponding PMD has variance (nǫ/k) in all directions orthogonal to the vector

1 = (1, . . . , 1). Then, we prove (Lemma 6.11) that when two PMDs have such

high variances, the closeness in their constant-degree parameter moments trans-

lates to their closeness in total variation distance. This structural result allows us

to construct a polynomial-size (ǫ/5)-cover for set subset of all PMDs with large

variance. We then iterate through this cover to find an ǫ-approximate equilibrium

(Algorithm 6.2).

We first prove that when all players put probability at least ǫ
k−1

on each strat-

egy, the covariance matrix of the resulting PMD has relatively large eigenvalues,

except the zero eigenvalue associated with the all-one eigenvector. The all-one eigen-

vector has eigenvalue zero because the coordinates of X always sum to n.

Claim 6.10. Let X =
∑n

i=1 Xi be an (n, k)-PMD and let Σ be the covariance matrix

of X. If pi,j = Pr[Xi = ej] ≥ ǫ
k−1

for all i ∈ [n] and j ∈ [k], then all eigenvalues of

Σ but one are at least nǫ
k−1

.
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Proof. Fix any unit vector v ∈ Rk that is orthogonal to the all-one vector 1, i.e.,
∑

j vj = 0 and
∑

j v
2
j = 1. Together with the assumption that pi,j ≥ ǫ

k−1
, we have

Var[vTXi] = E

[(
vTXi − E

[
(vTXi)

])2
]

=
n∑

j=1

pi,j


vj −

n∑

j′=1

pi,j′vj′




2

≥ min
j

{pi,j} ·
n∑

j=1


v2

j +




n∑

j′=1

pi,j′vj′




2

− 2vj




n∑

j′=1

pi,j′vj′







= min
j

{pi,j} ·


1 + n




n∑

j′=1

pi,j′vj′




2



≥ ǫ

k − 1
.

Therefore,

vT Σv = Var[vTX] =
n∑

i=1

Var[vTXi] ≥ nǫ

k − 1
.

So, for all eigenvectors v orthogonal to 1, we have vT Σv = λvTv = λ ≥ nǫ
k−1

as

claimed.

We recall some of the notations for readability before we describe the construc-

tion of our ǫ-cover of high-variance PMDs. We use X to denote a generic (ℓ, k)-PMD

for some ℓ ∈ [n], and we denote pi,j = Pr[Xi = ej ]. We use At ⊆ [ℓ] to denote the

set of t-maximal CRVs in X, where a k-CRV is t-maximal if et is its most likely

outcome, and we use X t =
∑

i∈At
Xi to denote the t-maximal component PMD of

X. For a vector m = (m1, . . . , mk) ∈ Zk
+, we define mth parameter moment of X t to

be Mm(X t) =
∑

i∈At

∏k
j=1 p

mj

i,j . We refer to ‖m‖1 =
∑k

j=1mj as the degree of Mm(X).

We use S to denote the set of all k-CRVs whose probabilities are multiples of ǫ
20kn

.
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The following robust moment-matching lemma provides a bound on how close

degree-ℓ moments need to be so that two (n, k)-PMDs are ǫ-close to each other,

under the assumption that n ≫ k (the anonymous game has many players and few

strategies) and pi,j ≥ ǫ
k−1

(every player randomizes). Lemma 6.11 allows us to build

a polynomial-size (ǫ/5)-cover for PMDs with high variance, and since we know that

there is an ǫ-approximate equilibrium with a high variance, we are guaranteed to

find one in our cover.

Lemma 6.11. Fix 0 < c < 1 and let ǫ = n−c. Assume that n ≥ kΘ(k) for some suffi-

ciently large constant in the exponent. Let X, Y be (n, k)-PMDs with X =
∑k

i=1 X
i,

Y =
∑k

i=1 Y
i where each X i, Y i is an i-maximal PMD. Let ΣX and ΣY denote

the covariance matrices of X and Y respectively. Suppose all non-zero eigenvalues

of ΣX ,ΣY are at least ǫn/k, and all the parameter moments m of degree ℓ ≤ 2+2c
1−c

satisfy that
∣∣∣Mm(X i) −Mm(Y i)

∣∣∣ ≤ ǫ.

Then, we have that dTV(X, Y ) ≤ ǫ.

Lemma 6.11 follows from Proposition 6.12.

Proposition 6.12. Let ǫ > 0. Let X, Y be (n, k)-PMDs with X =
∑k

i=1 X
i,

Y =
∑k

i=1 Y
i where each X i, Y i is an i-maximal PMD. Let ΣX and ΣY denote the

covariance matrices of X and Y respectively, where all eigenvalues of ΣX and ΣY

but one are at least σ2, where σ ≥ poly(k log(1/ǫ)). Suppose that for 1 ≤ i ≤ k,

ℓ ≥ 1, for all moments m of degree ℓ with mi = 0, we have that

∣∣∣Mm(X i) −Mm(Y i)
∣∣∣ ≤ ǫ · σℓ

C ′k+ℓ · k3ℓ/2+1 · logk+ℓ/2(1/ǫ)

for a sufficiently large constant C ′. Then dTV(X, Y ) ≤ ǫ.
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The proof of Proposition 6.12 exploits the sparsity of the continuous Fourier

transform of our PMDs, as well as careful Taylor approximations of the logarithm

of the Fourier transform. We defer the proof of Proposition 6.12 to the next section.

Proof of Lemma 6.11 from Proposition 6.12. To guarantee that dTV(X, Y ) ≤ ǫ,

Proposition 6.12 requires the following condition to hold for a sufficiently large

constant C ′:

∣∣∣Mm(X i) −Mm(Y i)
∣∣∣ ≤ ǫ

k(C ′ log(1/ǫ))k
·



√
ǫn/k

C ′k3/2 log1/2(1/ǫ)




ℓ

, ∀i ∈ [k], ℓ ≥ 1.

(6.2)

To prove the lemma, we use the fact that n ≫ k and essentially ignore all the terms

except polynomials of n. Formally, we first need to show that

ǫ ≤ ǫ

k(C ′ log(1/ǫ))k
·



√
ǫn/k

C ′k3/2 log1/2(1/ǫ)




ℓ

, ∀ℓ ≥ 1,

under the assumption that c < 1, ǫ = n−c and n ≥ kO(k/(1−c)). After substituting

ǫ = n−c, observe that n1−c ≥ C ′2k4 log n, so the term inside the ℓ-th power is greater

than 1. Thus, we only need to check this inequality for ℓ = 1, which simplifies to

n1−c ≥ C ′2k+2k6(logn)2k and holds true.

In addition, we need to show that condition (6.2) holds automatically for

ℓ > 2+2c
1−c

. This follows from the fact that the difference in parameter moments is at

most n and n ≫ k,

∣∣∣Mm(X i) −Mm(Y i)
∣∣∣ ≤ n ≤ ǫ

k(C ′ log(1/ǫ))k
·



√
ǫn/k

C ′k3/2 log1/2(1/ǫ)




ℓ

, ∀ℓ > 2 + 2c

1 − c
.
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Lemma 6.11 states that the high-degree parameter moments match automat-

ically, which allows us to impose an appropriate grid on the low-degree moments to

cover the set of high-variance PMDs. The size of this cover can be bounded by a

simple counting argument: We have at most kO( 1
1−c

) moments with degree at most

O( 1
1−c

), and we need to approximate these moments for each t-maximal component

PMDs, so there are at most k · kO( 1
1−c

) = kO( 1
1−c

) moments Mm(X t) that we care

about. We approximate these moments to precision ǫ = n−c, and the moments have

value at most n, so the size of the cover is
(

n
n−c

)k
O( 1

1−c
)

= nkO(1/1−c)
.

We define this grid on low-degree moments formally in the following lemma.

For every (ℓ, k)-PMD X with ℓ ∈ [n], we associate some data D(X) with X, which

is a vector of the approximate values of the low-degree moments Mm(X t) of X.

Lemma 6.13. Fix 0 < c < 1 and let ǫ = n−c. Assume that n ≥ kΘ(k) for some

sufficiently large constant in the exponent. We define the data D(W ) of a k-CRV

W as follows:

D(W )m,t =





Mm(W ) rounded to the nearest if W is t-maximal.

integer multiple of ǫn,

0, otherwise.

For ℓ ∈ [n], we define the data of an (ℓ, k)-PMD X =
∑ℓ

i=1 Xi to be the sum of the

data of its k-CRVs: D(X) =
∑ℓ

i=1 D(Xi). The data D(X) satisfies two properties:

1. (Representative) If D(X) = D(Y ) for two (n, k)-PMDs (or two (n − 1, k)-

PMDs) X and Y , then dTV(X, Y ) ≤ ǫ.

2. (Extensible) For independent PMDs X and Y , we have that D(X + Y ) =

D(X) +D(Y ).
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Proof. The “extensible” property follows directly from the definition of D(X). To

see the “representative” property, note that we round Mm(W ) to the nearest integer

multiple of ǫn, so the error in the moments of W is at most ǫn/2. When we add

up the data of an (n, k)-PMD or (n− 1, k)-PMD, the error in the moments of each

t-maximal component PMDs is at most ǫ/2. So if two PMDs X and Y have the

same data, their low-degree moments differ by at most ǫ, and then by Lemma 6.11

we have dTV(X, Y ) ≤ ǫ.

Algorithm 6.1: GenerateData

Input : {Si}n
i=1, ǫ > 0.

Output: The set of all possible data D of (n, k)-PMDs X =
∑n

i=1 Xi where
Xi ∈ Si.

1 D0 = {};
2 for ℓ = 1 . . . n do
3 forall the D ∈ Dℓ−1 do
4 forall the W ∈ Sℓ do
5 Add D +D(W ) to Dℓ if it is not in Dℓ already;
6 Keep track of an (ℓ, k)-PMD whose data is D +D(W );

7 return D = Dn;

Our algorithm (Algorithm 6.2) for computing approximate equilibria is similar

to the approach used in [39] and [41]. We start by constructing a polynomial-size

(ǫ/5)-cover of high-variance PMDs (Algorithm 6.1), and then iterate over this cover.

For each element in the cover, we compute the set of (3ǫ/5)-best-responses for each

player, and then run the cover construction algorithm again, but this time we only

allow each player to choose from her (3ǫ/5)-best-responses. If we can reconstruct

a PMD whose moments are close enough to the one we started with, then we have

found an ǫ-approximate Nash equilibrium.
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Algorithm 6.2: Moment Search

Input : An n-player k-strategy anonymous game G, ǫ = n−c for some c < 1.
Output: An ǫ-approximate Nash equilibrium of G.

1 S = {all k-CRVs whose probabilities are multiples of ǫ
20kn

};
2 Dn = GenerateData({Si = S}n

i=1, ǫ/5);
3 Dn−1 = GenerateData({Si = S}n−1

i=1 , ǫ/5);
4 forall the D ∈ Dn do
5 Set Si = ∅ for all i;
6 forall the Xi ∈ S do
7 Let D−i = D −D(Xi);
8 if ∃YD−i

∈ Dn−1 with D(YD−i
) = D−i and Xi is a (3ǫ/5)-best response

to YD−i
then

9 Add Xi to Si;

10 D′
n = GenerateData({Si}n

i=1, ǫ/5);
11 if D ∈ D′

n then
12 return (X1, . . . , Xn) in D′

n with D (
∑n

i=1 Xi) = D

Recall that a mixed strategy profile for a k-strategy anonymous game can be

represented as a list of k-CRVs (X1, . . . , Xn), where Xi describes the mixed strategy

of player i. Recall that (X1, . . . , Xn) is an ǫ-approximate Nash equilibrium if for each

player i we have E

[
ui

Xi
(X−i)

]
≥ E[ui

a(X−i)] − ǫ for all a ∈ [k], where X−i =
∑

j 6=iXj

is the distribution of the sum of other players strategies.

Lemma 6.14. Fix an anonymous game G = (n, k, {ui
a}i∈[n],a∈[k]) with payoffs nor-

malized to [0, 1]. Let (X1, . . . , Xn) and (Y1, . . . , Yn) be two lists of k-CRVs. If Xi

is a δ-best response to X−i, and dTV(X−i, Y−i) ≤ ǫ, then Xi is a (δ + 2ǫ)-best

response to Y−i. Moreover, if (X1, . . . , Xn) is a δ-approximate equilibrium, and

dTV(Xi, Yi) + dTV(X−i, Y−i) ≤ ǫ for all i ∈ [n], then (Y1, . . . , Yn) is a (δ + 2ǫ)-

approximate equilibrium.
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Proof. Since ui
a(x) ∈ [0, 1] for all a ∈ [k] and x ∈ Πk

n−1, we have that

∣∣∣E
[
ui

a(X−i)
]

− E

[
ui

a(Y−i)
]∣∣∣ ≤ dTV(X−i, Y−i), ∀i ∈ [n], a ∈ [k].

Therefore, if dTV(X−i, Y−i) ≤ ǫ, and player i cannot deviate and gain more than δ

when other players play X−i, then she cannot gain more than (δ + 2ǫ) when other

players play Y−i instead of X−i. The second claim combines the inequality above

with the fact that, if player i plays Yi instead of Xi and the mixed strategies of other

players remain the same, her payoff changes by at most dTV(Xi, Yi). Formally,

∣∣∣E
[
ui

Xi
(Z−i)

]
− E

[
ui

Yi
(Z−i)

]∣∣∣ ≤ dTV(Xi, Yi), ∀k-CRV Xi, Yi, ∀(n− 1, k)-PMD Z−i.

The next lemma states that there exists an (ǫ/5)-approximate equilibrium

whose probabilities are all integer multiples of ǫ
20kn

.

Claim 6.15. There is an (ǫ/5)-approximate Nash equilibrium (X1, . . . , Xn), such

that for all i ∈ [n] and j ∈ [k], the probabilities pi,j = Pr[Xi = ej ] are multiples of

ǫ
20kn

, and also pi,j ≥ ǫ
10k

.

Proof. We start with an (ǫ/10)-approximate Nash equilibrium (Y1, . . . , Yn) from

Lemma 6.8 with pi,j ≥ ǫ
10k

, and then round the probabilities to integer mul-

tiples of ǫ
10kn

. We construct Xi from Yi as follows: for every j < k, we set

Pr[Xi = ej ] to be Pr[Yi = ej] rounded down to a multiple of ǫ
20kn

and we set

Pr[Xi = ek] = 1 − ∑
j<k Pr[Xi = ej] so the probabilities sum to 1. By triangle

inequality of total variation distance, for every i we have dTV(Xi, Yi) ≤ ǫ
20n

and

dTV(X−i, Y−i) ≤ ǫ(n−1)
20n

. An application of Lemma 6.14 shows that (X1, . . . , Xn) is

an (ǫ/5)-approximate equilibrium.
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We are now ready to prove Theorem 6.6.

Proof of Theorem 6.6. We show that for any n-player k-strategy anonymous game,

if both c > 0 and k are constants, then there is a poly(n) time algorithm that

computes an ǫ-approximate equilibrium for ǫ = 1/n1−c. If n = kO(k) = O(1), we

use the algorithm in [36] which runs in time n(1/ǫ)Ω(k)
= O(1). So for the rest of the

proof, we assume that n ≥ kΘ(k) as required in Lemma 6.11 and 6.13, and prove

that Algorithm 6.2 always outputs an ǫ-approximate Nash equilibrium, and bound

the running time.

We first show that the output (X1, . . . , Xn) is an ǫ-approximate equilibrium.

Recall that S is the set of all k-CRVs whose probabilities are multiples of ǫ
20kn

,

and Si ⊆ S is the set of approximate best-responses of player i. When we put Xi

in Si, we checked that Xi is a (3ǫ/5)-best response to YD−i
. Note that D(YD−i

) =

D−D(Xi) = D(X−i), so by Lemma 6.13 dTV

(
X−i, YD−i

)
≤ ǫ/5 for all i. By Lemma

6.14, Xi is indeed an ǫ-best response to X−i for all i.

Next we show the algorithm must always output something. By Claim 6.15

there exists an (ǫ/5)-approximate equilibrium X ′
i with each X ′

i ∈ S. If the algorithm

does not terminate successfully first, it eventually considers D(X ′). Because X ′
−i

is an (n − 1, k)-PMD, the algorithm can find some YD−i
with D(YD−i

) = D(X ′) −
D(X ′

i) = D(X ′
−i), and by Lemma 6.13 we have dTV

(
X ′

−i, YD−i

)
≤ ǫ/5 for all i.

Since X ′
i is an (ǫ/5)-best response to X ′

−i, Lemma 6.14 yields that X ′
i is a (3ǫ/5)-

best response to YD−i
, so we would add each X ′

i to Si. Then our cover construction

algorithm is guaranteed to generate a set of data that includes D(X ′), and Algorithm

6.2 would produce an output.
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Finally, we bound the running time of Algorithm 6.2. Let N = O
(
nkO(1/1−c)

)

denote the size of the (ǫ/5)-cover for the high-variance PMDs. The cover can be

constructed in time O(n ·N · |S|) as we try to add one k-CRV from S in each step.

We iterate through the cover, and for each element in the cover, we need to find

the subset Si ⊆ S of (3ǫ/5)-best responses for player i, and then run the cover

construction algorithm again using only the best responses {Si}n
i=1. So the overall

running time of the algorithm is O(nN |S|) ·
(
poly(nk)|S| +O(nN |S|)

)
= nkO(1/1−c)

.

When both 0 < c < 1 and k are constants, the running time is polynomial in n.

6.3.3 A New Moment Matching Lemma

This subsection is devoted to the proof of Proposition 6.12. For two (n, k)-

PMDs with variance at least σ2 in each direction, Proposition 6.12 gives a quantita-

tive bound on how close degree-ℓ moments need to be (as a function of ǫ, σ, k and

ℓ, but independent of n), in order for the two PMDs to be ǫ-close in total variation

distance.

The proof of Proposition 6.12 exploits the sparsity of the continuous Fourier

transforms of our PMDs, as well as careful Taylor approximations of the logarithm

of the Fourier transform. The fact that our PMDs have large variance enables us

to take fewer low-degree terms in the Taylor approximation. For technical reasons,

we split our PMD as the sum of k independent component PMDs, X =
∑k

i=1X
i,

where all the k-CRVs in the component PMD X i are i-maximal. Because the Fourier

transform of X is the product of the Fourier transforms of X i, we can just bound

the pointwise difference between the logarithms of the Fourier transforms of each

component PMD. One technicality is that since we have no assumption on the

variances of the component PMDs X i, their Fourier transforms may not be sparse,
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so it is crucial that we bound this difference only on the effective support of the

Fourier transform of the entire PMD.

We start by considering a set S that includes the effective support of X (and

Y when we show that the means are close):

Lemma 6.16 (Essentially Corollary 5.3 of [41]). Let X be an (n, k)-PMD with mean

µ and covariance matrix Σ, such that all the non-zero eigenvalues of Σ are at least

σ2 where σ ≥ poly(1/ǫ). Let S be the set of points x ∈ Zk where (x− µ)T
1 = 0 and

(x− µ)T (Σ + I)−1(x− µ) ≤ (Ck log(1/ǫ)) ,

for some sufficiently large constant C. Then, X ∈ S with probability at least 1− ǫ/2,

and

|S| =
√

det(Σ + I) ·O(log(1/ǫ))k/2.

Proof. Applying Lemma 5.2 of [41], we have that (X − µ)T (Σ + I)−1(X − µ) =

O(k log(k/ǫ)) with probability at least 1 − ǫ. The set of integer coordinate

points in this ellipsoid is the set S. Note that |S| is equal to the volume of

S ′ =
{
y ∈ Rk : ∃x ∈ S with ‖y − x‖∞ ≤ 1/2

}
, because S ′ is the disjoint union

of cubes of volume 1, one for each integer point. But S ′ is again contained in

an ellipsoid with (y − µ)T (Σ + I)−1(y − µ) = O(k log(k/ǫ)), so |S| = Vol(S ′) =
√

det(Σ + I) ·O(log(1/ǫ))k/2.

Next we show that X̂, the Fourier transform of X, has a relatively small

effective support. We fold the effective support onto [0, 1]k to obtain the set T .

We use [x] to denote the additive distance of x ∈ R to the closest integer, i.e.,

[x] = minx′∈Z |x− x′|.
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Lemma 6.17. Let X be an (n, k)-PMD with mean µ and covariance matrix

Σ, such that all the non-zero eigenvalues of Σ are at least σ2 where σ ≥
poly(k log(1/ǫ)). Let S be as above. Let X̂ be the Fourier transform of X. Let

T
def
=
{
ξ ∈ [0, 1]k : ∃ξ′ ∈ ξ + Zk with ξ′T Σξ′ ≤ Ck log(1/ǫ)

}
, for some sufficiently

large constant C. Then, we have that

(i) For ξ ∈ T , and for all 1 ≤ i, j ≤ k, [ξi − ξj] ≤ 2
√
Ck log(1/ǫ)/σ.

(ii) Vol(T )|S| = O(C log(1/ǫ))k.

(iii)
∫

[0,1]k\T

∣∣∣X̂(ξ)
∣∣∣ dξ ≤ ǫ/(2|S|).

Lemma 6.17 is a technical generalization of Lemma 5.5 of [41]. This lemma

establishes that the contribution to the Fourier transform X̂ coming from points

outside of T is negligibly small. We then use the sparsity of the Fourier transform

to show that, if two PMDs have Fourier transforms that are pointwise sufficiently

close within the effective support T , then the two PMDs are close in total variation

distance.

Lemma 6.18. Let X, Y , S, T be as above. If
∣∣∣X̂(ξ) − Ŷ (ξ)

∣∣∣ ≤ ǫ(C ′ log(1/ǫ))−k for

all ξ ∈ T and a sufficiently large constant C ′, then dTV(X, Y ) ≤ ǫ.
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Proof. For any x ∈ Zk, taking the inverse Fourier transform, we have that Pr[X =

x] =
∫

ξ∈[0,1]k e(−ξ · x)X̂(ξ)dξ and similarly Pr[Y = x] =
∫

ξ∈[0,1]k e(−ξ · x)Ŷ (ξ)dξ.

Thus,

|Pr[X = x] − Pr[Y = x]| =

∣∣∣∣∣

∫

ξ∈[0,1]k
e(−ξ · x)

(
X̂(ξ) − Ŷ (ξ)

)
dξ

∣∣∣∣∣

≤
∫

ξ∈[0,1]k

∣∣∣X̂(ξ) − Ŷ (ξ)
∣∣∣ dξ

=
∫

ξ∈T

∣∣∣X̂(ξ) − Ŷ (ξ)
∣∣∣ dξ +

∫

ξ∈[0,1]k\T

∣∣∣X̂(ξ) − Ŷ (ξ)
∣∣∣ dξ

≤ Vol(T ) · ǫ(C ′ log(1/ǫ))−k +
ǫ

2|S|

≤ O(C log(1/ǫ))k

|S| · ǫ(C ′ log(1/ǫ))−k +
ǫ

2|S|
≤ ǫ

|S| .

Since X and Y are outside of S each with probability less than ǫ/2, we have that

dTV(X, Y ) ≤ ǫ/2 + 1
2

∑
x∈S |Pr[X = x] − Pr[Y = x]| ≤ ǫ.

We now have all the ingredients to prove Proposition 6.12. For two PMDs

X and Y that are close in their low-degree moments, we show that their Fourier

transforms X̂ and Ŷ are pointwise close on T , and then by Lemma 6.18, X and Y

are close in total variation distance.

Proof of Proposition 6.12. Let X, Y , S, T be as above. Given Lemma 6.18, we only

need to show that ∀ξ ∈ T ,
∣∣∣X̂(ξ) − Ŷ (ξ)

∣∣∣ ≤ ǫ(C ′ log(1/ǫ))−k.
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Fix ξ ∈ T . We first examine, without loss of generality, the Fourier transform

X̂k of the k-maximal component PMD. Let Ak ⊆ [n] denote the set of k-maximal

CRVs.

X̂k(ξ) =
∏

i∈Ak

k∑

j=1

e(ξj)pi,j

= e(|Ak|ξk)
∏

i∈Ak


1 −

k−1∑

j=1

(1 − e(ξj − ξk))pi,j)




= e(|Ak|ξk) exp


∑

i∈Ak

log


1 −

k−1∑

j=1

(1 − e(ξj − ξk))pi,j)






= e(|Ak|ξk) exp


−

∑

i∈Ak

∞∑

ℓ=1

1

ℓ




k−1∑

j=1

(1 − e(ξj − ξk))pi,j)






= e(|Ak|ξk) exp


−

∑

m∈Z
k−1
+

(
‖m‖1

m

)
1

‖m‖1

Mm(Xk)
k−1∏

j=1

(1 − e(ξj − ξk))mj




(6.3)

For notational convenience, we use Ψk
X to denote the expression inside exp(·) in

Equation (6.3). A similar formula holds for the Fourier transforms X̂ i and Ŷ i

of other i-maximal PMDs, and we use Ψi
X and Ψi

Y to denote the corresponding

expressions inside exp(·). Since the Fourier transform of a PMD is the product of

the Fourier transform of its component PMDs, we have

∣∣∣X̂(ξ) − Ŷ (ξ)
∣∣∣ =

∣∣∣∣∣
k∏

t=1

X̂ t(ξ) −
k∏

t=1

Ŷ t(ξ)

∣∣∣∣∣

=

∣∣∣∣∣e
(

k∑

t=1

|At|ξt

)
k∏

t=1

(
exp

(
Ψt

X

)
− exp

(
Ψt

Y

))∣∣∣∣∣

≤ 2π
k∑

t=1

∣∣∣Ψt
X − Ψt

Y

∣∣∣ ,
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where the last inequality is due to e(
∑k

t=1 |At|ξt) = 1, and |exp(a) − exp(b)| ≤ |a− b|
if the real parts of a and b satisfy Re(a),Re(b) ≤ 0.

So to prove that X̂(ξ) and Ŷ (ξ) are pointwise close for all ξ ∈ T , it is enough

to bound from above 2π
∑k

t=1 |Ψt
X − Ψt

Y |. We use the fact that |1 − e(ξj − ξk)| =

O([ξj − ξk]), and recall that [ξi − ξj] ≤ 2
√
Ck log(1/ǫ)/σ by Lemma 6.17. We also

use the multinomial identity
∑

m∈Z
k−1
+ ,‖m‖1=ℓ

(
ℓ
m

)
= (k−1)ℓ. When C ′ is a sufficiently

large constant, we have

∣∣∣X̂(ξ) − Ŷ (ξ)
∣∣∣

≤ 2π
k∑

t=1

∣∣∣Ψt
X − Ψt

Y

∣∣∣

= 2π
k∑

t=1

∑

m∈Z
k−1
+

(
‖m‖1

m

)
1

‖m‖1

∣∣∣Mm(X t) −Mm(Y t)
∣∣∣

k−1∏

j=1

(1 − e(ξj − ξk))mj

≤ 2π
∞∑

ℓ=1

(k − 1)ℓ

ℓ


O




√
k log(1/ǫ)

σ






ℓ
k∑

t=1

max
m∈Z

k−1
+ ,‖m‖1=ℓ

∣∣∣Mm(X t) −Mm(Y t)
∣∣∣

≤
∞∑

ℓ=1

kℓ


C

′
√
k log(1/ǫ)

2σ




ℓ

k · ǫσℓ

C ′k+ℓ · k3ℓ/2+1 · logk+ℓ/2(1/ǫ)

=
∞∑

ℓ=1

2−ℓǫ(C ′ log(1/ǫ))−k

= ǫ(C ′ log(1/ǫ))−k.

6.3.4 Slight Improvement Gives FPTAS

In this section, we show that even a slight improvement of our upper bound

would imply an FPTAS for computing (well-supported) Nash equilibria in anony-

mous games (Theorem 6.7). It is a plausible conjecture that assuming the ETH for
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PPAD, there is no such FPTAS, in which case our upper bound (Theorem 6.6) is

essentially tight.

Theorem 6.7 follows directly from the following two lemmas. Lemma 6.19 con-

verts an ǫ2

4n
-approximate Nash equilibrium into an ǫ-well-supported Nash equilibrium

(see Definition 2.3), by reallocating each player’s probabilities on strategies with low

expected payoffs to the best-response strategy (first observed in [35]). Lemma 6.20

then uses a padding argument to show that, for ǫ-well-supported Nash equilibria, the

question of whether there is a polynomial-time algorithm for ǫ = n−c is equivalent

for all constants c > 0.

Lemma 6.19. For any n-player game whose payoffs are normalized to be between

[0, 1], if we have an oracle for computing players’ payoffs, we can efficiently convert

an ǫ2

4n
-approximate equilibrium into an ǫ-well-supported equilibrium.

Proof. Take an ǫ2

4n
-approximate equilibrium of the game. We call a strategy “good”

for a player if the strategy is an ǫ
2
-best response for the player, and we call it “bad”

otherwise. A player can put at most probability ǫ
2n

on the “bad” strategies without

violating the ǫ2

4n
-approximate equilibrium condition. We move all the probabilities

on “bad” strategies for all players to (any one of) their best responses simultaneously.

After moving the probabilities, every player assigns non-zero probabilities only to

the “good” strategies. Since the total probability we moved is at most ǫ
2

and the

payoffs are in [0, 1], the previously “good” strategies ( ǫ
2
-best responses) are now

ǫ-best responses.

Lemma 6.20. For n-player k-strategy anonymous games with k = O(1), if an 1
nγ -

well-supported equilibrium can be computed in time O(nd) for constants γ, d > 0,

then there is an FPTAS for computing approximate-well-supported Nash equilibria

in anonymous games.
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Proof. Let ǫ be the desired quality of the well-supported equilibrium. If 1
nγ ≤ ǫ

we are done, so we assume n is smaller. We set n′ = (1/ǫ)1/γ , so that 1
n′γ = ǫ.

Given an n-player anonymous game G, we build an n′-player anonymous game G′

as follows: we add n′ − n dummy players, and give the dummy players utility 1 on

strategy 1, and 0 on any other strategies so in any ǫ-well-supported equilibria, the

dummy player must all play strategy 1 with probability 1. (Note that this is only

true for ǫ-well-supported Nash equilibrium; in an ǫ-approximate Nash equilibrium,

the dummy players can put ǫ probability elsewhere.) We shift the utility function of

the actual players to ignore the dummy players on strategy 1. Formally, the payoff

structure of G′ is given by:

• For each i > n,

u′i
a(x) =





1 if a = 1

0 otherwise

• For each i ≤ n, we subtract the number of players on strategy 1 by n′ − n

and then apply the original utility function. We define φ : Zk → Zk as

φ(x1, . . . , xk) = (x1 − (n′ − n), x2, . . . , xk),

u′i
a(x) =





ui
a(φ(x)) if x1 ≥ n′ − n

0 otherwise

Since ǫ = 1
n′γ , by assumption we can compute an ǫ-well-supported equilibrium of

G′ in time O(n′d), and we can simply remove the dummy players to obtain an ǫ-

equilibrium of the original game G. The running time is O(n′d) = poly(n, 1/ǫ) when

γ = Θ(1).
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Proof of Theorem 6.7. Assume that we can compute an O(n−c)-approximate equi-

librium in polynomial time for some constant c > 1. Let γ = c−1, so we can compute

an O
(

1
n1+γ

)
-approximate equilibrium in polynomial time. By Lemma 6.19, we can

convert it into an O
(

1
nγ/2

)
-well-supported equilibrium. Lemma 6.20 then states that

any polynomial-time algorithm that computes a well-supported Nash equilibrium of

an inverse polynomial precision gives an FPTAS for computing well-supported Nash

equilibria in anonymous games.
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Chapter 7

Conclusion and Open Questions

Algorithmic game theory is rife with strategic interactions with uncertainty

and information asymmetry. In this thesis, we examined the following question

through a computational lens:

What is the best way to reveal information to other strategic players, and

how hard is it to find the optimal information structure?

We studied the design of information structures — a principal who is privy

to private information must choose how to reveal information to induce a better

outcome. We developed algorithms and proved matching hardness results for sig-

naling in many important classes of games: normal form games, and succinct games

including network routing games, second price auctions and majority voting.

We saw the role of information revelation changes from chapter to chapter.

In informational variants of Braess’ paradox and prisoner’s dilemma, a principal

tries to hide information to help the players fight their selfishness. In normal form

games, a principal who wants to help his friend must identify which portion of the

information helps one of the players but not the other; which may require her to

identify dense subgraphs in a given graph. In second price auctions, a principal who

seeks to maximize her revenue must reveal some but not all information to induce

the right amount of competition in the market.
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The computational complexity of optimal signaling also changes, and becomes

easier from chapter to chapter. For network routing games, in the worst case, the

principal has to solve NP-hard problems to do better than revealing full information.

In normal form games, the principal can compute a near-optimal signaling scheme in

quasipolynomial time. As we move to anonymous games like second price auctions

and voting, the principal can signal approximately optimally in polynomial time.

By settling the computational complexity of these signaling problems, we improved

our understanding of information asymmetry in games, as well as the power and

limitations of strategic information revelation.

The investigation of optimal information revelation has also led to powerful

algorithmic frameworks. Driven by the desire for fundamental insights, we identified

the mixture selection problem — an algorithmic problem that arises naturally in the

design of optimal information structures. We presented two complexity measures

that seem to dictate the complexity of mixture selection and optimal signaling, and

solved a number of signaling problems near-optimally under the mixture selection

framework.

The design of information structures is emerging as a new area in algorithmic

game theory, an area that is still largely unexplored. This thesis addresses the

optimal signaling in several basic families of Bayesian games, and there are many

exciting problems to be discovered and solved. We list a few open questions below.

Open Questions

Problem 7.1 (Private signaling). How does the computational complexity change

if the principal is allowed to reveal different information to different players?
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In this thesis, we study public signaling schemes, where the principal must

reveal the same information to all players. Does private communication make the

principal more powerful, and how does the complexity of optimal signaling change?

Dughmi and Xu [51] showed that, for multi-player games with n players, the gap

between the value of the optimal public and private signaling schemes is at least

Θ(n). They also settle the complexity of public and private signaling when there

are no externalities1. It remains an interesting open question how to signal efficiently

in games with externalities, and whether the interaction between the players makes

the signaling problem harder or not.

Problem 7.2 (Equivalence of optimization and separation). For a polytope P con-

tained in the simplex, if we are given a PTAS for the separation (or membership)

oracle of P — an oracle that runs in polynomial time for any constant ǫ > 0 and

has ǫ-additive error — can we obtain a PTAS for optimization over P?

In other words, do we need a much more precise membership oracle to be able

to optimize approximately? In Section 4.4, we ruled out an FPTAS for optimal

signaling using FPTAS hardness of posterior selection. Recall that the posterior

selection problem asks for the best posterior distribution, while the signaling prob-

lem asks for the best decomposition (of the prior distribution) into posteriors. It

is often easier to show the posterior selection problem is hard, and then use the

same intuition to derive a direct reduction for the hardness of signaling. For exam-

ple, finding a planted clique in a random graph is hard, and for similar reasons

finding a constant fraction of a planted clique cover (i.e., decomposing into dense

subgraphs) is also hard; approximating the size of the maximum independent set is

1 In games with no externalities, each player’s payoff depends only on his own action (and also
on the state of nature for Bayesian games), but not on the actions of other players.
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hard; similarly approximating the chromatic number (i.e., decomposing into inde-

pendent sets) is also hard. These ideas are used implicitly in [15, 29, 46, 51] to

show PTAS hardness results for different signaling problems, and these results can

be unified if Problem 7.2 can be resolved in the positive.

Problem 7.3 (Nash equilibria in anonymous games). Is there an FPTAS for com-

puting Nash equilibria in anonymous games?

Almost all the algorithmic results for equilibrium computation in anonymous

games can be viewed as first guessing the outcome of the game, and then trying

to reconstruct this outcome using only the best response of each player. New ideas

seem to be needed for qualitatively faster algorithms. On the other hand, for ruling

out an FPTAS, it is unlikely that the approach in [25] can work directly. This is

because 1/ poly(n) precision is only enough to de-anonymize O(logn) players, but

O(logn)-player O(1)-strategy games can be solved in time nO(log log n) (rather than

quasipolynomial time) due to the existence theory of the reals.

Problem 7.4 (Routing games with non-linear latencies). Is there a better signaling

scheme than full revelation for Bayesian routing games with non-linear latencies?

We showed that no polynomial time algorithm can do better than 4/3 in the

worst case for signaling in network routing games. The best signaling algorithm

we know of, which simply reveals full information, is a multiplicative approximation

with the ratio equal to the price of anarchy. It remains open what is the best possible

ratio we can obtain in polynomial time for non-linear latency functions.

Problem 7.5 (Planted clique conjecture). Is there a formal connection between

planted clique and widely used worst-case hardness assumptions, e.g., the Exponen-

tial Time Hypothesis (ETH)?
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It was shown that computing ǫ-best Nash equilibrium in two-player normal

form games requires quasipolynomial time for a small enough constant ǫ > 0, assum-

ing either the planted clique conjecture [63] or the ETH [20]. Two of the hardness

results in this thesis, optimal signaling in normal form games, and mixture selec-

tion in the absence of noise stability, can both be obtained by assuming either the

planted clique conjecture [15] or the ETH [86]. Is there a formal connection between

the planted clique conjecture and the ETH?
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