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A Tale of Two Research Areas
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High-Dimensional
Robust Statistics

Non-Convex
Optimization

Q: What robust estimation tasks can be solved by gradient descent?
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𝜇

Sparse Mean Estimation

• Input: 𝑛 samples {𝑋!, … , 𝑋"} drawn from 𝒩(𝜇, 𝐼) where
𝜇 ∈ ℝ# is unknown and 𝑘-sparse.

• Goal: Learn 𝜇.

Without sparsity: 𝑛 ≈ 𝑂(𝑑).
With sparsity: 𝑛 ≈ 𝑂(𝑘$ log 𝑑).



Robust Sparse Mean Estimation
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𝜇
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The adversary can inspect
• the true distribution,
• the good samples, and
• the algorithm,
and then replaces 𝜖-fraction of
the samples with arbitrary points.

𝜖-corruption model:
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Robust Sparse Mean and Sparse PCA

Robust sparse mean estimation:
• Input: An 𝜖-corrupted set of 𝑛 samples drawn from 𝒩(𝜇, 𝐼)

where 𝜇 ∈ ℝ! is unknown and 𝑘-sparse.
• Goal: Learn 𝜇.

Robust sparse PCA (with spiked covariance):
• Input: An 𝜖-corrupted set of 𝑛 samples drawn from 𝒩(0, 𝐼 + 𝑣𝑣")

where 𝑣 ∈ ℝ! is unknown and 𝑘-sparse.
• Goal: Learn 𝑣.



Motivation
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Can we solve robust sparse estimation tasks 
using standard first-order methods?

[BDLS’17][DKKPS’19]: Poly-time algorithms for robust sparse estimation.
However, these algorithms are fairly sophisticated (e.g., ellipsoid method)
or are not parameter free (e.g., iterative filtering).

[CDGS’20][ZJS’22]: Robust mean estimation via gradient descent.



Our Results
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• We design new optimization formulations for robust sparse
mean estimation and robust sparse PCA.

• We show that any (approximate first-order) stationary point
provides a good solution for robust sparse estimation.
• Corollary: gradient descent can solve these problems.

• Our algorithms work for a wider family of distributions.



Our Non-Convex Formulations

min 𝑓 𝑤 = 𝛴! − 𝐼 ",$,$

𝜇! and Σ! are the weighted empirical mean and covariance matrix.

𝐴 ",$,$ is the maximum Frobenius norm of any 𝑘% entries of 𝐴,
where these entries are chosen from 𝑘 rows with 𝑘 entries in each row.

We can compute ∇𝑓 𝑤 using basic matrix-vector operations.
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Intuition for Choosing 𝑓 𝑤 = 𝛴! − 𝐼 ",$,$

Structural result from [BDLS’17]: If the variance in all sparse directions is
close to 1, then the empirical mean is close to the true mean.

Our choice of 𝑓 satisfies:
• 𝑓(𝑤) ≥ 𝑣&(Σ! − 𝐼)𝑣 for all 𝑘-sparse unit vector 𝑣.
• 𝑣!Σ"𝑣 is the sample variance in direction 𝑣 (weighted by 𝑤).

• We show that 𝑓 𝑤 ≤ 0𝑂(𝜖) if 𝑤 puts weight only on good samples.
These two conditions imply the global optimum of 𝑓 works.
We prove a stronger result: any local optimum of 𝑓 suffices!
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Our Landscape Results

min 𝑓 𝑤 = 𝛴! − 𝐼 ",$,$

We prove that 𝑓 has no bad first-order stationary points!

Theorem (this paper):

Let 𝛿 = 𝜖 log(1/𝜖) and let 𝛾 = 𝑂(𝑛!/$𝛿$𝜖&'/$). For any
𝛾-stationary point 𝑤 of 𝑓, we have top((𝜇)) − 𝜇 $ ≤ 𝑂(𝛿).
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Proof Sketch

min 𝑓 𝑤 = 𝛴! − 𝐼 ",$,$

Let 𝑤⋆ = putting uniform weight on the remaining good samples.
We prove that for any 𝑤 with 𝑓 𝑤 ≫ 𝜖, moving 𝑤 toward 𝑤⋆

decreases the value of 𝑓. Formally, for any 0 < 𝜂 < 1,

We show that the third term can essentially be ignored, so
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Future Directions

• Other robust estimation tasks solvable by gradient descent?
More practical robust estimation algorithms?

• Robust sparse mean estimation in B𝑂(𝑛𝑑) time?
• Input size= 𝑛𝑑: 𝑛 ≈ 𝑂(𝑘% log 𝑑) samples of 𝑑 dimensions.

• Can we compute the gradient of (a smoothed version of)
𝑓 𝑤 = 𝛴) − 𝐼 *,,,, without writing down 𝛴) explicitly?
• Writing down 𝛴! takes 𝑑% ≫ 𝑛𝑑 time.
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