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𝜇⋆

Mean Estimation

• Input: 𝑁 samples {𝑋!, … , 𝑋"} drawn from 𝒩(𝜇⋆, 𝐼) on ℝ$ .

• Goal: Learn 𝜇⋆.



Mean Estimation

• Input: 𝑁 samples {𝑋!, … , 𝑋"} drawn from 𝒩(𝜇⋆, 𝐼) on ℝ$ .

• Goal: Learn 𝜇⋆.

Empirical mean !𝜇 = !
"
∑!"#$ 𝑋! works:

-𝜇 − 𝜇⋆ % ≤ 𝜖 when 𝑁 = 𝛺(𝑑/𝜖%).
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Robust Mean Estimation
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𝜇⋆
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Robust Mean Estimation

𝜖-Corruption:
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Goal: Learn 𝜇⋆ given an 𝜖-corrupted set of 𝑁 samples.

specifies 𝑁.

draws 𝑁 samples from 𝒩(𝜇⋆, 𝐼).

replaces 𝜖𝑁 samples with arbitrary points.
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Previous Work

Algorithm Error Guarantee Poly-Time?

Coordinate-wise Median 𝑂(𝜖 𝑑) Yes

Geometric Median 𝑂(𝜖 𝑑) Yes
Tukey Median 𝑂(𝜖) No
Tournament 𝑂(𝜖) No

Pruning 𝑂(𝜖 𝑑) Yes
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Previous Work

Algorithm Error Guarantee Runtime

[Lai+ ’16] 𝑂(𝜖 log 𝑑)
Polynomial

[Diakonikolas+ ’16] 𝑂(𝜖 log(1/𝜖))
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Previous Work

Algorithm Error Guarantee Runtime

[Lai+ ’16] 𝑂(𝜖 log 𝑑)
Polynomial

[Diakonikolas+ ’16]

𝑂(𝜖 log(1/𝜖))[C Diakonikolas Ge ’19] 0𝑂(𝑁𝑑)/poly(𝜖)

[Dong Hopkins Li ’19] 0𝑂(𝑁𝑑)

8July 3, 2020 Yu Cheng (UIC)

These algorithms have near-optimal sample complexity.



Motivation

July 3, 2020 Yu Cheng (UIC) 9

Is it possible to solve robust estimation tasks 
by standard first-order methods?

Existing algorithms are fairly sophisticated (e.g., ellipsoid method,
iterative spectral methods, matrix multiplicative weight update)
and they are not parameter free.



Our Results
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• A natural non-convex formulation of  robust mean estimation.

• Any approximate stationary point of this non-convex
objective gives a good solution for mean estimation.

• Gradient descent converges to an approximate stationary
point in a polynomial number of iterations.



Non-Convex Formulation

𝜇" = ∑#𝑤#𝑋# and Σ" = ∑#𝑤# 𝑋# − 𝜇" 𝑋# − 𝜇" $

[Diakonikolas+ ’16]:

If Σ" has small spectral norm, then 𝜇" is close to the true mean.

minimize Σ! "

subject to 𝑤 ∈ Δ#,"%

Δ",$% = {𝑤 ∈ ℝ" ∶ 𝑤 & = 1 and 0 ≤ 𝑤' ≤ &
&($% " }
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Our Results

minimize Σ& %

subject to 𝑤 ∈ Δ",%(

Despite its non-convexity, we can show that any (approximate)
stationary point 𝑤 defines a 𝜇" that is 𝑂(𝜖 log(1/𝜖))-close to 𝜇⋆.
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Our Results

Σ& % may not be differentiable w.r.t. 𝑤.

• Sub-gradient: use )(+
!,"+)
).

where 𝑣 is any top eigenvector of Σ. .

• Softmax: minimize #
$ tr exp 𝜌Σ. , which is differentiable.

We prove structural and algorithmic results for both approaches.
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min Σ. $ s.t. 𝑤 ∈ Δ",$%



Our Algorithms

Start with any 𝑤% ∈ 𝒦 = Δ&,() .
For 𝑡 = 0… 𝑇 − 1

Let 𝑣 ∈ argmax * !+, 𝑣
$Σ"𝑣.

𝑤-., ← 𝒫𝒦 𝑤- − 𝜂
0(*"2#*)

0"
.

end for
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# of iterations: 𝑇 = 0𝑂 𝑁(𝑑4

…
For …

𝑤-., ← 𝒫𝒦 𝑤- − 𝜂
05678(2#)

0"
.

end for

𝑇 = 0𝑂 𝑁𝑑9/𝜖

Sub-gradient Softmax



MATLAB Implementation
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Projected Sub-gradient Descent



Our Results
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• A natural non-convex formulation of  robust mean estimation.

• Any approximate stationary point of our non-convex
objective gives a near-optimal solution for mean estimation.

• Gradient descent converges to an approximate stationary
point in a polynomial number of iterations.



Any Stationary Point Suffices
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𝑤 is a bad solution.

Þ 𝑣$Σ"𝑣 is much larger than it should be. 

Þ We can find 𝑖 and 𝑗 such that

• it is feasible to increase 𝑤# and decrease 𝑤: .

• 𝑣$Σ"𝑣 becomes smaller after the change.

Þ 𝑤 is not a first-order stationary point.



Any Stationary Point Suffices

𝑣)Σ&𝑣 = variance in the direction 𝑣.

*(,!-",)
*&

= the gradient of 𝑤 for the

one-dimensional problem with input 𝑋/)𝑣 /0!
"

.
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Any Stationary Point Suffices
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Simple case: 𝜇" = 0 and Σ" has a unique largest eigenvector 𝑣.

We have Σ" = ∑#𝑤#𝑋#𝑋#$ and 𝑣$Σ"𝑣 = ∑#𝑤# 𝑦#( where 𝑦# = 𝑋#$𝑣.

𝜕(𝑣$Σ"𝑣)
𝜕𝑤#

= 𝑦#(



Any Stationary Point Suffices
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Simple case: 𝜇" = 0 and Σ" has a unique largest eigenvector 𝑣.

We have Σ" = ∑#𝑤#𝑋#𝑋#$ and 𝑣$Σ"𝑣 = ∑#𝑤# 𝑦#( where 𝑦# = 𝑋#$𝑣.

𝜕(𝑣$Σ"𝑣)
𝜕𝑤#

= 𝑦#(

∑#∈<=>𝑤# 𝑦#( is very large ⟹ ∃𝑖 s.t. 𝑤# > 0 and 𝑦#( is large.



Algorithmic Result

Challenges in bounding # of iterations:

• 𝑤12! ← 𝒫𝒦 𝑤1 − 𝜂
*(,!-",)

*&
can make Σ& % larger. 

• Non-convex + Non-smooth + Constraints
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Our Contributions
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High-Dimensional
Robust Statistics

Non-Convex
Optimization+



Open Problems

• Faster convergence rate.

• More general robust estimation tasks:
• Covariance estimation.
• Sparse PCA.
• Robust regression.
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