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Mean Estimation

e Input: N samples {X, ..., Xy} drawn from N (u*,I) on R®.
* Goal: Learn u™.

: “u* ®
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Mean Estimation

e Input: N samples {X, ..., Xy} drawn from N (u*,I) on R®.
* Goal: Learn u™.

Empirical mean I = %Zlivzl X; works:

1Z = i*|l, < € when N = Q(d/e?).



Robust Mean Estimation
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Robust Mean Estimation

e-Corruption:
._ O\
S %3 specifies N.

® ey O
< A PO
draws N samples from N (u*,I). : .

qr replaces €N samples with arbitrary points.

Goal: Learn y” given an e-corrupted set of N samples.
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Previous Work

Algorithm Error Guarantee  Poly-Time?
Coordinate-wise Median O (E\/E) Yes
Geometric Median O (e\/(j) Yes
Tukey Median O(€) No
Tournament O(€) No
Pruning 0, (E\/C_l ) Yes
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Previous Work

Algorithm Error Guarantee Runtime

[Lai+ *16] 0(ey/log d)
[Diakonikolas+ *16] 0, (e\/ log(1/€))

Polynomial
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Previous Work

Algorithm Error Guarantee Runtime

[Lai+ *16] 0(ey/log d)

Polynomial

[Diakonikolas+ "10]
|C Diakonikolas Ge *19] O(E\/log(l/e)) O(Nd)/poly(e)
[Dong Hopkins Li *19] O(Nd)

These algorithms have near-optimal sample complexity.
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Motivation

Existing algorithms are fairly sophisticated (e.g., ellipsoid method,
iterative spectral methods, matrix multiplicative weight update)
and they are not parameter free.

Is it possible to solve robust estimation tasks

by standard first-order methods?
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Our Results

e A natural non-convex formulation of robust mean estimation.

* Any approximate stationary point of this non-convex

objective gives a good solution for mean estimation.

* Gradient descent converges to an approximate stationary

point in a polynomial number of iterations.



Non-Convex Formulation

Hw = ZiWiXi and X, = Ziwi(Xi — .uw)(Xi — .uw)T

|[Diakonikolas+ *16]:

If 2,, has small spectral norm, then y,, is close to the true mean.

minimize ||Z,, ||

SU.bjeCt to W € AN,ZE

Ayze={weRN:|wll; =1 and 0 <w; < ;-21)



Our Results

minimize ||, |5

subjectto W € Ay ,¢

Despite its non-convexity, we can show that any (approximate)

stationary point W defines a 4, that is O(E\/ log(1/€))-close to u*.
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Our Results min [[Zy]l, st.w € Ay,

|2, 1|2 may not be differentiable w.r.t. w.

o(wTz,v)
ow

* Sub-gradient: use where v 1s any top eigenvector of 2,,.

* Softmax: minimize %tr exp(pZ,,), which is differentiable.

We prove structural and algorithmic results for both approaches.



Our Algorithms

Sub-gradient Softmax

Start with any Wy e K = AN,ZE' ..
Fort=0..T—1 For ...
Let v € argmax||y|,=1 UTZWU.

6(UTZWv)) Wiy < Py (Wt — 1
ow '

6smax(2‘.w))
ow '

Wt+1‘_5pjc(Wt_77

end for end for

# of iterations: T = O(N?d*) T =0(Nd3/e)
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MATLAB Implementation

Projected Sub-gradient Descent

for itr = 1l:numltr
Sigma_w_fun = @(v) X' *x (w .*x (X % v)) = (X' *x w)™2 *x v;
[u, lambda] = eigs(Sigma_w_fun, d, 1);
nabla_f w = (X % u) . (X *x u) = 2 x (w' % (X % u)) x (X % u);
w = w — stepSize *x nabla_f_w / norm(nabla_f_w);
w = project_onto_capped_simplex(w, 1 / (N - epsN));

end
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Our Results

* Any approximate stationary point of our non-convex

objective gives a near-optimal solution for mean estimation.
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Any Stationary Point Suftices

W is a bad solution.

= v "X,V is much larger than it should be.

— We can find i and j such that
* it is feasible to increase W; and decrease w.
* V'Y,V becomes smaller after the change.

= W is not a first-order stationary point.



Any Stationary Point Suffices

'Y, v = variance in the direction v. @

CICADINED)
ow

the gradient of w for the

N
one-dimensional problem with input (X A v)i=1 .

@ @ @ .ﬁ.““ﬂ“..’“ ® 00 @ @
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Any Stationary Point Suftices

Simple case: y,, = 0 and 2, has a unique largest eigenvector v.

We have £, = ),; Wl-XiX-T and UTZWU = ). W; y-2 where y; = XTv.
l l l l l

ow'Z,v)

aWi B

i




Any Stationary Point Suftices

Simple case: y,, = 0 and 2, has a unique largest eigenvector v.

We have 2, = ZiWiXin-T and v'Z,v =Y w; yl-z where y; = Xl-TU.

o(v'Z,v) _ 2
aWi yl
O @ ® O 00 DO OD® @ ¢ 00 O O

Y chad Wi Y7 is very large = 3i st. w; > 0 and y7 is large.
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Algorithmic Result

Challenges in bounding # of iterations:

CICADINE)
ow

¢ Wt+1 — ?j{‘ (Wt — 77 ) can mﬂke HZWHZ 13rg€f.

e Non-convex + Non-smooth + Constraints



Our Contributions
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Open Problems

* Faster convergence rate.

* More general robust estimation tasks:

 Covarliance estimation.
* Sparse PCA.

* Robust regression.



