Faster Algorithms for High-Dimensional Robust Covariance Estimation

Yu Cheng
Duke \rightarrow UIC

Ilias Diakonikolas USC

Rong Ge Duke

David Woodruff CMU

Robust Covariance Estimation

Covariance Estimation

- Input: \mathbb{N} samples $\{X_1, \dots, X_N\}$ drawn from $\mathcal{N}(0, \Sigma)$ on \mathbb{R}^d .
- Goal: Learn Σ .

$$\begin{split} \widehat{\Sigma} &= \frac{1}{N} \sum_{i=1}^{N} X_i X_i^{\mathsf{T}} \text{ works!} \\ & \left\| \widehat{\Sigma} - \Sigma \right\|_F \leq \epsilon \| \Sigma \|_2 \text{ when } N = \Omega(d^2/\epsilon^2). \\ & \text{Input size: } Nd = O(d^3/\epsilon^2). \\ & \text{Runtime: } (d, N, d) \text{-matrix multiplication time} = O(d^{3.26}/\epsilon^2). \end{split}$$

Robust Covariance Estimation

Goal: Compute $\hat{\Sigma} \approx \Sigma$ given an ϵ -corrupted set of N samples.

Previous Work

Algorithm	Error Guarantee
[Diakonikolas+'16]	$\left\ \Sigma^{-1/2} \widehat{\Sigma} \Sigma^{-1/2} - I \right\ _F \le O\left(\epsilon \log \frac{1}{\epsilon}\right)$
[Lai+'16]	$\left\ \widehat{\Sigma} - \Sigma\right\ _{F} \le O\left(\sqrt{\epsilon \log d}\right) \ \Sigma\ _{2}$

Previous Work

Algorithm	Error Guarantee	Runtime
[Diakonikolas+'16]	$\left\ \Sigma^{-1/2} \widehat{\Sigma} \Sigma^{-1/2} - I \right\ _F \le O\left(\epsilon \log \frac{1}{\epsilon}\right)$	$\Omega(d^5)$
[Lai+'16]	$\left\ \widehat{\Sigma} - \Sigma\right\ _{F} \le O\left(\sqrt{\epsilon \log d}\right) \ \Sigma\ _{2}$	$\Omega(d^{4.74})$

Previous Work

Algorithm	Error Guarantee	Runtime
[Diakonikolas+'16]	$\left\ \Sigma^{-1/2} \widehat{\Sigma} \Sigma^{-1/2} - I \right\ _F \le O\left(\epsilon \log \frac{1}{\epsilon}\right)$	$\Omega(d^5)$
[Lai+'16]	$\left\ \widehat{\Sigma} - \Sigma \right\ _{F} \le O\left(\sqrt{\epsilon \log d} \right) \ \Sigma \ _{2}$	$\Omega(d^{4.74})$
Empirical covariance	X	$O(d^{3.26})$

Motivating Question

Can we design robust estimators that are as efficient as their non-robust analogues?

[C Diakonikolas Ge '19]:

Robust mean estimation in time $\tilde{O}(Nd)/\text{poly}(\epsilon)$.

Our Results

# of Samples	Error Guarantee	Runtime
$N = \widetilde{\Omega}\left(\frac{d^2}{\epsilon^2}\right)$	$\left\ \Sigma^{-1/2} \widehat{\Sigma} \Sigma^{-1/2} - I \right\ _{F} \le O\left(\epsilon \log \frac{1}{\epsilon}\right)$	$\frac{\tilde{O}(d^{3.26}\log \kappa)}{\operatorname{poly}(\epsilon)}$
	$\left\ \widehat{\Sigma} - \Sigma\right\ _{F} \le O\left(\epsilon \log \frac{1}{\epsilon}\right) \ \Sigma\ _{2}$	$\frac{\tilde{O}(d^{3.26})}{\text{poly}(\epsilon)}$

We also provide evidence that $d^{3.26}$ runtime may be a bottleneck.

Naïve Approach

For $X \sim \mathcal{N}(0, \Sigma)$, we have $\mathbb{E}[XX^{\top}] = \Sigma$.

Robustly estimate the mean $Z = X \otimes X \in \mathbb{R}^{d^2}$.

Runtime: $\Omega(Nd^2) = \Omega(d^4)$ to write down all $(Z_i)_{i=1}^N$.

Challenges

- 1) Need to estimate the mean of $X \otimes X$ without computing the vectors explicitly.
- 2) Robust mean estimation requires assumptions on the covariance.
 - $\operatorname{cov}[X \otimes X]$ is related to the 4th-order moments of $X \sim \mathcal{N}(0, \Sigma)$.
 - We made no assumptions on Σ .

Challenges

- 1) Need to estimate the mean of $X \otimes X$ without computing the vectors explicitly.
- 2) Robust mean estimation requires assumptions on the covariance.
 - $\operatorname{cov}[X \otimes X]$ is related to the 4th-order moments of $X \sim \mathcal{N}(0, \Sigma)$.
 - We made no assumptions on Σ .

Robust Mean Estimation [C Diakonikolas Ge '19]

Find a direction y such that the variance along y is the largest after throwing away the farthest ϵN samples.

Faster Positive SDP Solvers for Tensor Input

$$\max_{\substack{x \ge 0}} 1^{\top} x \quad \text{s.t. } \sum_{i=1}^{N} x_i A_i \leq I.$$

$$\min_{\substack{Y \ge 0}} \text{tr}(Y) \quad \text{s.t. } A_i \cdot Y \ge 1, \ \forall i.$$

$$A_i = Z_i Z_i^{\top} \in \mathbb{R}^{d^2 \times d^2}$$

$$Z_i = X_i \bigotimes X_i \in \mathbb{R}^{d^2}$$

We build on fast positive SDP solvers (e.g., [Peng+'16]). We exploit the structure of $Z = X \otimes X$ to compute $(1 \pm \epsilon)$ -approximate solutions in time $\tilde{O}(d^{3.26} + N)/\text{poly}(\epsilon)$.

Hardness Results

It is not known how to approximate the empirical covariance matrix faster than (d, d^2, d) -matrix multiplication time.

Let $X \in \mathbb{R}^{N \times d}$ be the sample matrix.

We give a communication complexity lower bound: any oblivious sketching matrix S must have $\widetilde{\Omega}(N)$ rows if $X^{\top}S^{\top}S X \approx X^{\top}X$.

Hardness Results (cont.)

Consider an easier task of finding good weights w_i so that $\sum_{i=1}^{N} w_i X_i X_i^{\mathsf{T}} \approx \Sigma$.

We give a reduction to show that this easier problem is still at least as hard as some basic matrix computation question.

Open Problems

Can we design robust estimators that are as efficient as their non-robust analogues?

- [C Diakonikolas Ge '19] Mean estimation.
- [This paper]: Covariance estimation.
- Sparse mean
- Graphical models

Open Problems

Recently, the ϵ -dependence in the running time was removed for robust mean estimation [Depensin Lecué '19] [Dong Hopkins Li '19].