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Robust Covariance Estimation
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Covariance Estimation

* Input: N samples {Xq, ..., Xy} drawn from N (0, X) on RZ.
e Goal: Learn 2.

¥ = %Zlivzl X; X" works!
| 2|, < €llZll; when N = Q(d?/€?).
Input size: Nd = 0(d3/€?).

Runtime: (d, N, d)-matrix multiplication time = 0(d>%°/€%).



Robust Covariance Estimation

e-Corruption:
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N samples are drawn from N (0, X).

Q replaces €N samples with arbitrary points.

Goal: Compute £ =~ ¥ given an e-corrupted set of N samples.
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Previous Work

[Diakonikolas+ ’10] HZ_l/z Y y-1/2 — I”F < O(E log%)

Lai+ 16] |I£ - 2|, < 0(/elogd) IIZ]l;
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Previous Work

[Diakonikolas+ *10] HZ_l/z X e/ — I”F < O(E log%) Q(d>)

[Lai+ ’16] 12— ZHF <0(Jelogd) lIZll,  Qd*"*)

Empirical covariance X O(d 32 6)
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Motivating Question

Can we design robust estimators that are

as efficient as their non-robust analogues?

|C Diakonikolas Ge ’19]:

Robust mean estimation in time O (Nd)/poly(e).
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Our Results

I5-1/255-1/2 — || < 0(elog) 2@ 10gK)
_ (d? Fo € poly(€)
N =1 (_2> = 1326
) s 0(d*?9)
S—3| <o(elogd) ||z

We also provide evidence that d>-%® runtime may be a bottleneck.
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Naive Approach
For X ~ N'(0,X), we have E[XX '] = X.
Robustly estimate the mean Z = X @ X € R

Runtime: Q(Nd?) = Q(d*) to write down all (Z;)/.



Challenges

1) Need to estimate the mean of X @ X without computing the

vectors explicitly.

2) Robust mean estimation requires assumptions on the covariance.

* cov[X & X] is related to the 4th-order moments of X ~ N(0, X).

* We made no assumptions on 2.
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Robust Mean Estimation [c Diakonikolas Ge *19)
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Find a direction y such that the variance along y 1s the
largest after throwing away the farthest eN samples.



Faster Positive SDP Solvers for Tensor Input

max 1Tx st Y % A4; < 1.

x=0

=7.7T d?xd?
m>1n tr(Y) st A;-Y =1, Vi A, =2,Z; eR 2
- Z; =X; ®X; e R?

We build on fast positive SDP solvers (e.g., [Peng+ *16]).

We exploit the structure of Z = X @ X to compute (1 £ €)-
approximate solutions in time O (d3-2® + N)/poly(¢).



Hardness Results

It 1s not known how to approximate the empirical covariance

matrix faster than (d, d?, d)-matrix multiplication time.

Let X € RV*% be the sample matrix.

We give a communication complexity lower bound: any oblivious

sketching matrix S must have Q(N) rows if XTSTSX =~ XTX.



Hardness Results (cont.)

Consider an easter task of finding good weights w; so that
N owX X =3

We give a reduction to show that this easier problem i1s still

at least as hard as some basic matrix computation question.



Open Problems

Can we design robust estimators that are

as efficient as their non-robust analogues?

* [C Diakonikolas Ge ’19] Mean estimation. J

* [This paper|: Covartance estimation. J
* Sparse mean

* Graphical models ?
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Open Problems
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Recently, the €-dependence in the running time was removed for
robust mean estimation [Depersin Lecué ’19] [Dong Hopkins L1 ’19].

|£ - 2|, < 0(elog?) IIZIl
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