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Non-Convex Optimization

Why non-convex optimization works well in practice?
• Are all local optima (approximately) globally optimal?
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Spectral Graph Theory
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Discrete / Combinatorial

Graphs Paths Trees Flows Cuts …

Continuous / Numerical

Matrices Eigenvalues
Iterative Methods …



This Talk

Apr 19, 2018 Yu Cheng

Non-Convex SpectralMatrix
Completion



Matrix Completion
An unknown 𝑛 × 𝑛 rank 𝑟 matrix 𝑀⋆ = 𝑍𝑍( (𝑍 ∈ ℝ,×-).

Input: 𝑀/0
⋆ for a set of  observed entries 𝑖, 𝑗 ∈ Ω.

Goal: Recover 𝑀⋆.
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Matrix Completion
A basic machine learning problem with applications to
recommendation systems and collaborative filtering:
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Incoherence
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SVD: 𝑀⋆ = 𝑋𝐷𝑌( , the rows of 𝑋 and 𝑌 have similar norms.



Previous Work

• Convex Relaxation (e.g., [Candès and Tao ’10] [Recht ’11])

• min 𝑀 ⋆ s.t. 𝑀/0 = 𝑀/0
⋆

(minimizing sum of the singular values of 𝑀).

• Can be solved using SDP in time 𝑂(𝑛9).
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min 𝑟𝑎𝑛𝑘(𝑀) s.t. 𝑀/0 = 𝑀/0
⋆



Previous Work

• Convex Relaxation (e.g., [Candès and Tao ’10] [Recht ’11])

• min 𝑀 ⋆ s.t. 𝑀/0 = 𝑀/0
⋆

• Non-Convex Approaches

• min 𝑓 𝑋 = ∑ /,0 ∈> 𝑀/0
⋆ – 𝑋𝑋( /0

@
for 𝑋 ∈ ℝ,×- .
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Non-Convex Approaches

• With careful initialization (typically via SVD)
[Jain et al. ’13, Hardt and Wootters ’14, Chen and Wainwright ’15]

• Strong convexity near ground-truth
[Sun and Luo ’15, Zhao et al. ’15, Zheng and Lafferty ’16, Tu et al. ’15]

• Without requiring initialization: The non-convex objective
(with regularization) has no bad local optima.
[Sa et al. ‘15, Ge et al. ’16, Park et al. ‘16, Ge et al. ’17]
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Previous Work

• Convex Relaxation (e.g., [Candès and Tao ’10] [Recht ’11])

• Non-Convex Approaches (e.g. [Jain et al. ’13, Hardt and Wootters ’14, 
Chen and Wainwright ’15, Sun and Luo ’15, Zhao et al. ’15, Zheng and Lafferty ’16, 
Tu et al. ’15, Sa et al. ‘15, Ge et al. ’16, Park et al. ‘16, Ge et al. ’17])

All of  these works require uniformly random observations!

𝑝/0 = Pr[ 𝑖, 𝑗 ∈ Ω] = 𝑝 (independently)

Apr 19, 2018 Yu Cheng



Motivating Questions [Cheng Ge ’18]
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• What happens if 𝑝/0 ≥ 𝑝?
• Semi-random adversary.

Are the non-convex approaches robust
in this semi-random model?

If  not, is there a way to fix the non-convex 
algorithms while preserving their efficiency?



Our Results

• Counter-examples

• Preprocessing step

• No bad local optima
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Counter Examples

𝑓 𝑋 = ∑ /,0 ∈> 𝑀/0
⋆ – 𝑋𝑋( /0

@
has bad local optimum.

𝑀⋆ = 1 1
1 1 , 𝑃 = 9𝑝 𝑝

𝑝 9𝑝 ,
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𝑋 = 0.8 ≈ 0.89
−0.89



Counter Examples

𝑀⋆ = 1 1
1 1 , 𝑃 = 9𝑝 𝑝

𝑝 9𝑝 , 𝑥 = 0.89
−0.89

1
𝑝 𝔼 𝑀⋆ Ω] = 9 1

1 9

Can verify that 𝛻𝑓 𝑥 = 0, 𝛻@𝑓 𝑥 ≽ 0.

Intuition: 𝑥 is the eigenvector of 𝑀⋆ ∘ 𝑃.
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Counter Examples

𝑓 𝑋 = ∑ /,0 ∈> 𝑀/0
⋆ – 𝑋𝑋( /0

@
has bad local optimum.

Another example: SVD cannot find the right subspace:
• span 𝑀⋆ ⊥ span(𝑀⋆ ∘ 𝑃).

There are bad local optima and SVD does not give good initialization!
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Our Results

• Counter-examples

• Preprocessing step

• No bad local optima
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Preprocessing

What went wrong in the counter-example?
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Preprocessing
If we know the adversary is changing the probabilities this way…

Key Idea: Re-weight the samples so that the input is
“similar” to a random input.
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Preprocessing

𝑓 𝑋 = ∑ /,0 ∈> 𝑾𝒊𝒋 𝑀/0
⋆ – 𝑋𝑋( /0

@

Apr 19, 2018 Yu Cheng



Preprocessing

The graph formulation:
• Input: a graph 𝐺 that contains a subgraph similar to 𝐻.
• Goal: Reweight 𝐺 so that 𝐺 ≈ 𝐻.

For matrix completion, 𝐻 = complete graph / expander.
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Preprocessing

Graph Sparsification [Spielman and Teng ’11]
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Preprocessing

Graph Sparsification:

• 𝜖-spectral sparsifier with _𝑂( ⁄𝑛 𝜖@) edges. [Spielman and Teng ’11]

• 𝜖-spectral sparsifier with 𝑂( ⁄𝑛 𝜖@) edges.
• Runtime: 𝑂(𝑛a𝑚) [Batson Spielman Srivastava ’12].

• Runtime: _𝑂(𝑚 𝑝𝑜𝑙𝑦 ⁄1 𝜖 ) [Lee and Sun ’17].
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(𝑛 = 𝑉 ,𝑚 = 𝐸 ).
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Preprocessing



Linear-Sized Graph Sparsification
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• Maintain current sum of rank-one matrices 𝐴i = ∑/ 𝑤/i𝑣/𝑣/(,
and upper/lower barrier values 𝑢i, 𝑙i such that 𝑙i 𝐼 ≺ 𝐴 ≺ 𝑢i 𝐼.

• Add edges iteratively and deterministically.

• A good edge always exists because on average the edges are good.



Preprocessing

• Conceptual contributions:
• BBS is powerful because they pick edge deterministically.
• Useful for semi-random settings.

• Technical contributions:
• Hidden good subset 𝑆. (Random sampling no longer works!)
• ∑/∈p 𝑣/𝑣/( ≈ 𝐼 instead of ∑/ 𝑣/𝑣/( = 𝐼.

(Upper/lower barriers move at different rates.)
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Preprocessing

Implication to matrix completion:
• If 𝑝 ≥ ⋯, then there exists a set of good weights.
• 𝑊/0 = 1 for the entries revealed by nature.
• 𝑊/0 = 0 for the entries added by adversary.

• Preprocessing can recover s𝑊 supported on Ω such that
𝑊 − 𝐽 @ ≤ 𝑂(𝜖𝑛) in time _𝑂(𝑚 poly(1/𝜖)).

We will show this is enough to remove bad local optima.
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Our Results

• Counter-examples

• Preprocessing step

• No bad local optima
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Non-Convex Matrix Completion
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𝑓 𝑋 = ∑ /,0 ∈z 𝑊/0 𝑀/0
⋆ – 𝑋𝑋( /0

@

𝑓 𝑋 = 𝑋𝑋( − 𝑍𝑍(, 𝑋𝑋( − 𝑍𝑍( {

𝛻𝑓 𝑋 , Δ = 2 𝑋Δ( + Δ(𝑋, 𝑋𝑋( − 𝑍𝑍( { = 0
1
2
𝛻@𝑓 𝑋 , ΔΔ� = 𝑋Δ( + Δ(𝑋, 𝑋Δ( + Δ(𝑋 {

+ 2 ΔΔ(, 𝑋𝑋( − 𝑍𝑍( { ≥ 0

[Ge Jin Zheng ’17]: Sufficient to focus on the direction of 𝛥 = 𝑋 − 𝑍.



Non-Convex Matrix Completion
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𝑋Δ( + Δ(𝑋, 𝑋𝑋( − 𝑍𝑍( { = 0
𝑋Δ( + Δ(𝑋, 𝑋Δ( + Δ(𝑋 { + 2 ΔΔ(, 𝑋𝑋( − 𝑍𝑍( { ≥ 0

𝛥 = 𝑋 − 𝑍 Let 𝐴 = 𝑋Δ( + Δ(𝑋
𝐵 = 𝑋𝑋� − 𝑍𝑍( = 𝑋Δ( + Δ(𝑋 − ΔΔ(

𝐴, 𝐵 { = 0
𝐴, 𝐴 {+ 2 𝐴 − 𝐵, 𝐵 { = 𝐴, 𝐴 { − 2 𝐵, 𝐵 {

= 𝐴 − 𝐵, 𝐴 − 𝐵 { − 3 𝐵, 𝐵 {
= ΔΔ(, ΔΔ( { − 3 𝐵, 𝐵 {≥ 0.



Non-Convex Matrix Completion
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ΔΔ(, ΔΔ( { − 3 𝑀⋆ − 𝑋𝑋(,𝑀⋆ − 𝑋𝑋( {≥ 0

• Need to show: for specific low rank matrices the 
weighted norm is similar to the Frobenius norm.

[Ge Lee Ma ’16, Ge Jin Zheng ’17]:
ΔΔ(, ΔΔ( ≤ 2 𝑀⋆ − 𝑋𝑋(,𝑀⋆ − 𝑋𝑋(



Non-Convex Matrix Completion

• Need to show: for specific low rank matrices the 
weighted norm is similar to the Frobenius norm.

This is clear under (uniformly) random sampling as we 
can rely on concentration bounds.

Now we need to replace matrix concentration bounds 
with deterministic conditions.
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Non-Convex Matrix Completion

After preprocessing,
any local optima of 𝑓(𝑋) satisfies that

𝑀⋆ − 𝑋𝑋( �
@ ≤ 𝜖 𝑀⋆

�
@
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Our Contributions
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• Preprocessing step
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Our Contributions

• Study non-convex matrix completion when 𝑝/0 ≥ 𝑝.
Existing non-convex approaches do not work.

• Efficient preprocessing step that reweights the samples.

• After the reweighting, the non-convex objective has no
bad local optima.
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Our Contributions

Lightweight convex optimization + Non-convex
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Open Problems

• Technical open problem: Exact Recovery?
• Can the adversary create bad local optima by revealing

just a few entries?

• More applications of BSS (or packing SDP solvers in
general) in semi-random settings.

Apr 19, 2018 Yu Cheng



Thanks!
Questions?
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