Playing Anonymous Games Using Simple Strategies

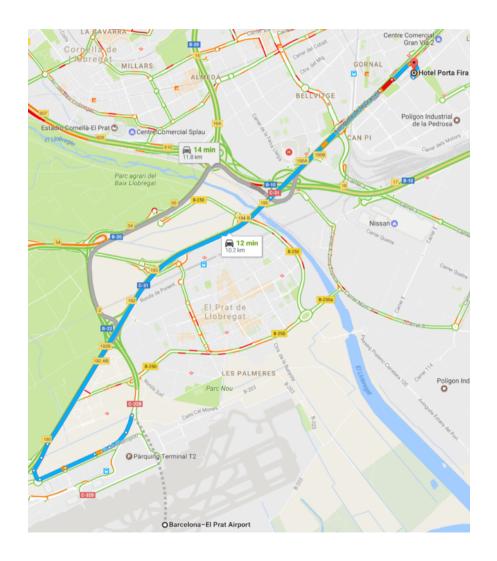
Yu Cheng Ilias Diakonikolas Alistair Stewart University of Southern California

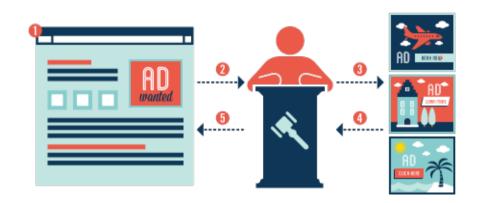
Anonymous Games

•
$$n$$
 players, $k = O(1)$ strategies

- Payoff of each player depends on
 - Her identity and strategy
 - The number of other players who play each of the strategy
 - **NOT** the identity of other players

Anonymous Games

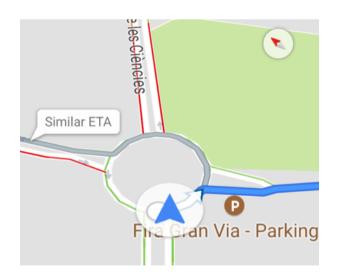


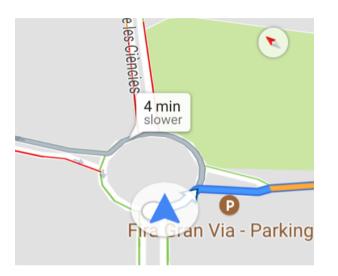


Nash Equilibrium

• Players have no incentive to deviate

• ϵ -Approximate Nash Equilibrium (ϵ -ANE): Players can gain at most ϵ by deviation





Previous Work

ε-ANE of *n*-player *k*-strategy anonymous games:

- [DP'08]: First PTAS $n^{(k/\epsilon)^{O(k^3)}}$
- [CDO'14]: PPAD-Complete when $\epsilon = 2^{-n^c}$ and k = 5

How small can ϵ be so that an ϵ -ANE can be computed in polynomial time?

	Running time	ϵ	# of strategies
[DP'08a]	$n^{(k/\epsilon)^{O(k^3)}}$		<i>k</i> > 2
[CDO'14]	PPAD Complete	$\epsilon = 2^{-n^c}$	<i>k</i> = 5
[DP'08b]	$\operatorname{poly}(n) \cdot (1/\epsilon)^{O(\log^2(1/\epsilon))}$		k = 2
[GT'15]	poly(n)	$\epsilon = n^{-1/4}$	k = 2
[DKS'16a]	$\operatorname{poly}(n) \cdot (1/\epsilon)^{O(\log{(1/\epsilon)})}$		k = 2
[DKS'16b] [DDKT'16]	$n^{\mathrm{poly}(k)} \cdot (1/\epsilon)^{k \log(1/\epsilon)^{O(k)}}$		<i>k</i> > 2

Our Results

Fix any $k > 2, \delta > 0$

• First poly-time algorithm when $\epsilon = \frac{1}{n^{1-\delta}}$

• A poly-time algorithm for
$$\epsilon = \frac{1}{n^{1+\delta}} \implies \text{FPTAS}$$

$$\epsilon = 1 \qquad \epsilon = 0.01 \qquad \epsilon = 1/n^{1/4} \qquad \epsilon = 1/2^{n^c}$$

1
$$\epsilon = 1/n$$
 $\epsilon = 1/n^c$ $\epsilon = 1/2^{n^c}$

 $\epsilon =$

Our Results

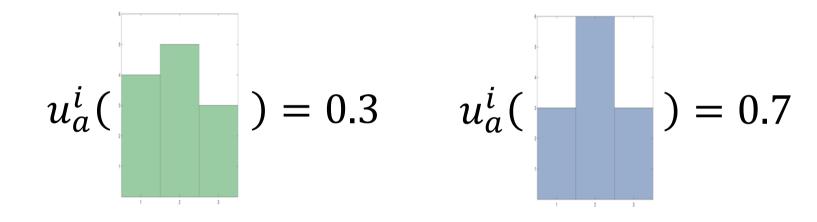
Fix any $k > 2, \delta > 0$

- First poly-time algorithm when $\epsilon = \frac{1}{n^{1-\delta}}$
- A poly-time algorithm for $\epsilon = \frac{1}{n^{1+\delta}} \implies \text{FPTAS}$

• A faster algorithm that computes an $\epsilon \approx \frac{1}{n^{1/3}}$ equilibrium

Anonymous Games

• Player i's payoff when she plays strategy a



• $u_a^i \colon \Pi_{n-1}^k \to [0,1]$

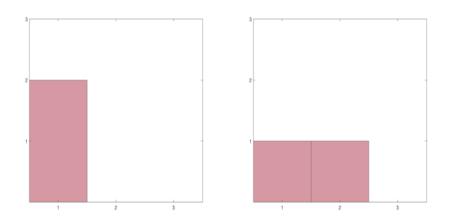
•
$$\Pi_{n-1}^k = \{(x_1, \dots, x_k) \mid \sum_i x_i = n-1\}$$

Poisson Multinomial Distributions

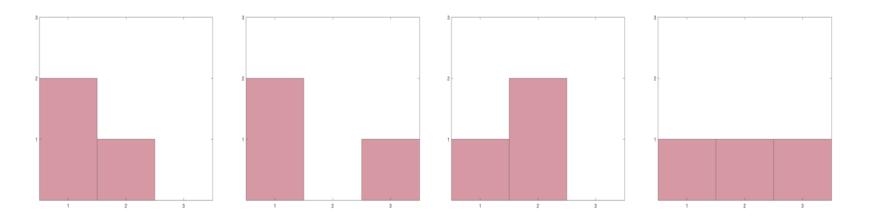
• *k*-Categorical Random Variable (*k*-CRV) X_i is a vector random variable $\in \{k$ -dimensional basis vectors}

• An (n, k)-Poisson Multinomial Distribution (PMD) is the sum of n independent k-CRVs $X = \sum X_i$ Player 1 plays strategy 1

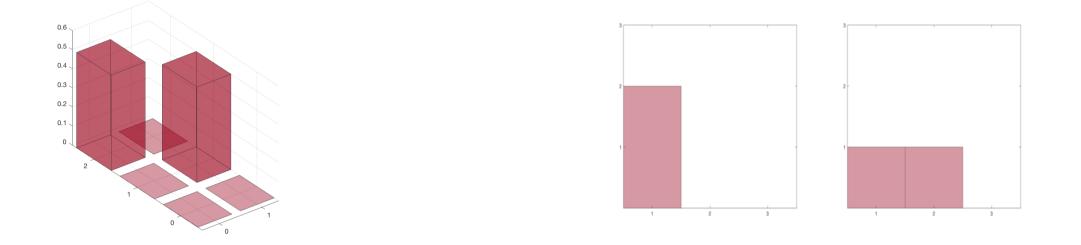
Player 2 plays strategy 1 or 2

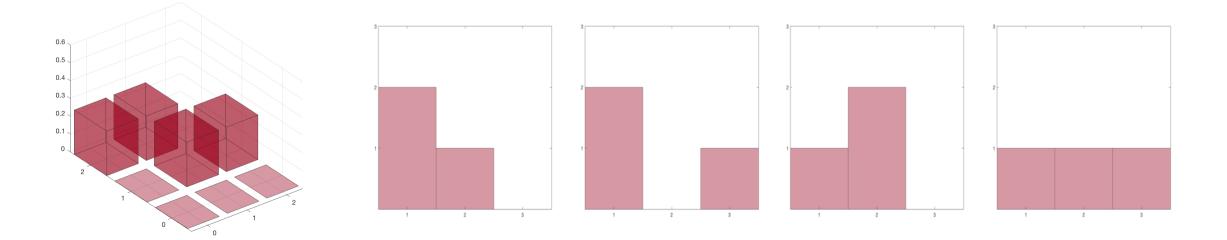


Player 3 plays strategy 2 or 3



Poisson Multinomial Distributions



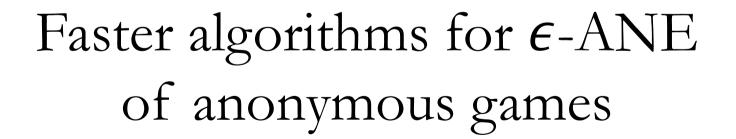


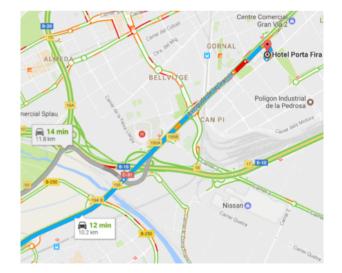
Poisson Multinomial Distributions (PMDs)

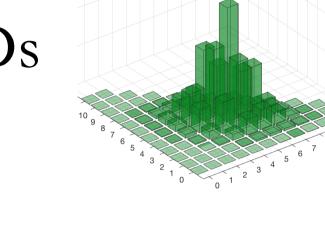
Sum of independent random (basis) vectors =

Mixed strategy profiles of anonymous games

Better understanding of PMDs







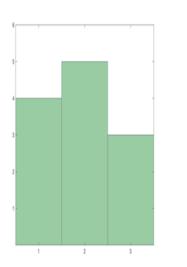
Our Results

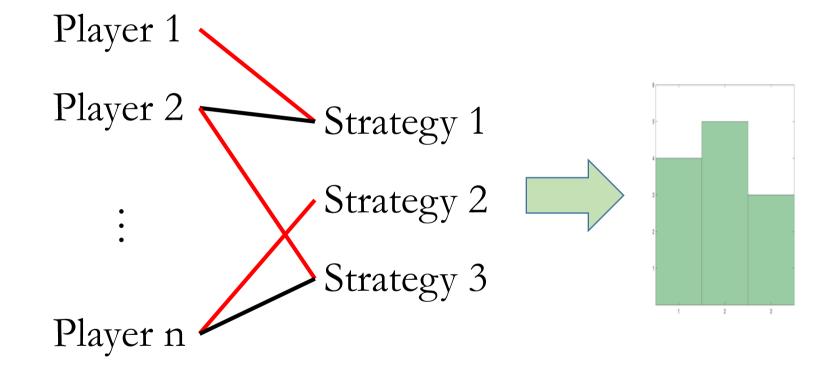
Fix any $k > 2, \delta > 0$

- First poly-time algorithm when $\epsilon = \frac{1}{n^{1-\delta}}$
- A poly-time algorithm for $\epsilon = \frac{1}{n^{1+\delta}} \implies \text{FPTAS}$

• A faster algorithm that computes an $\epsilon \approx \frac{1}{n^{1/3}}$ equilibrium

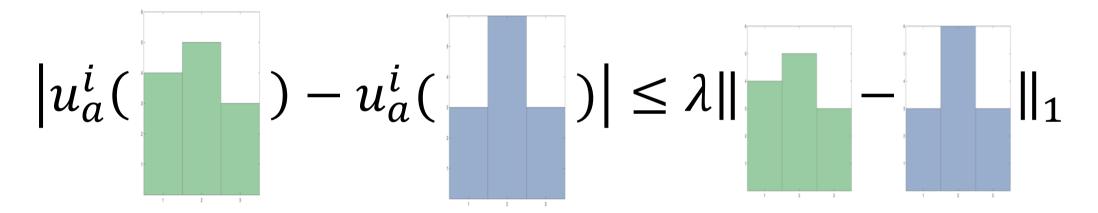
Pure Nash Equilibrium





Lipschitz Games

• An anonymous game is λ -Lipschitz if

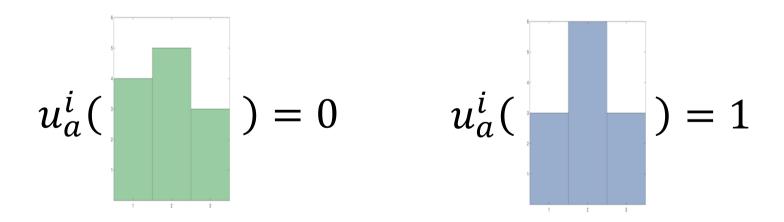


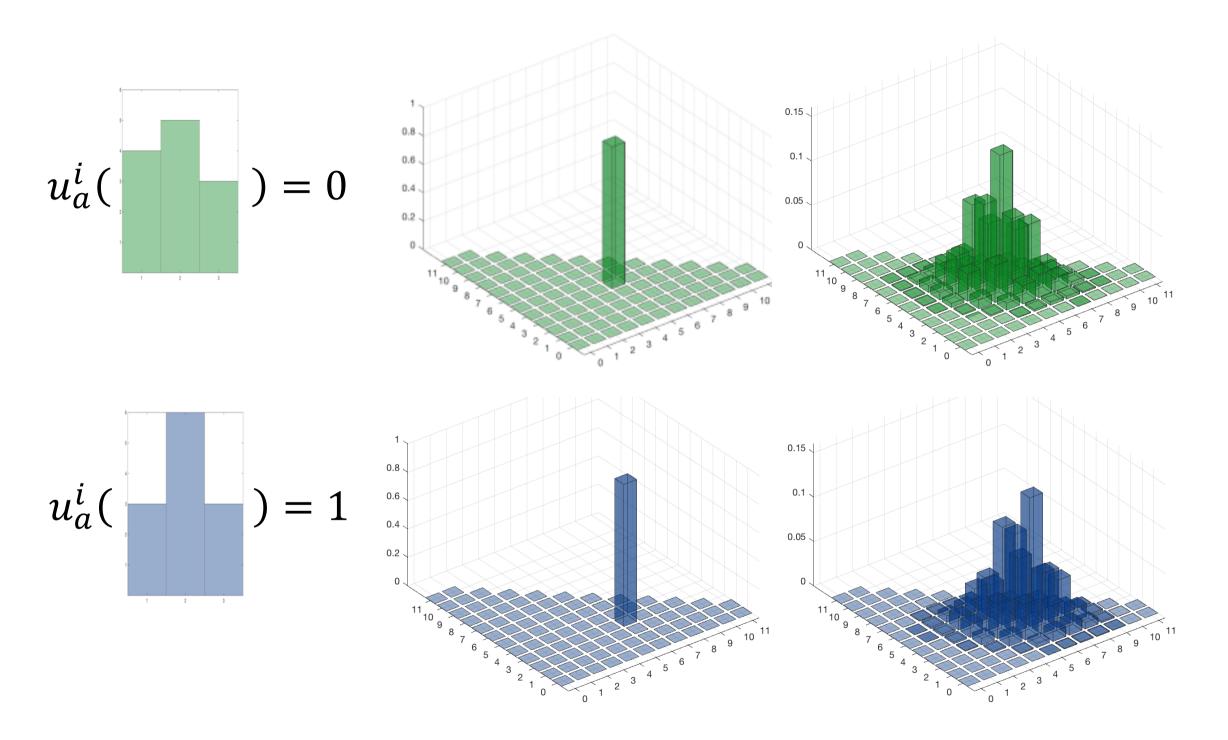
• [DP'15, AS'13] Every λ -Lipschitz k-strategy anonymous game admits a ($2k\lambda$)-approximate pure equilibrium

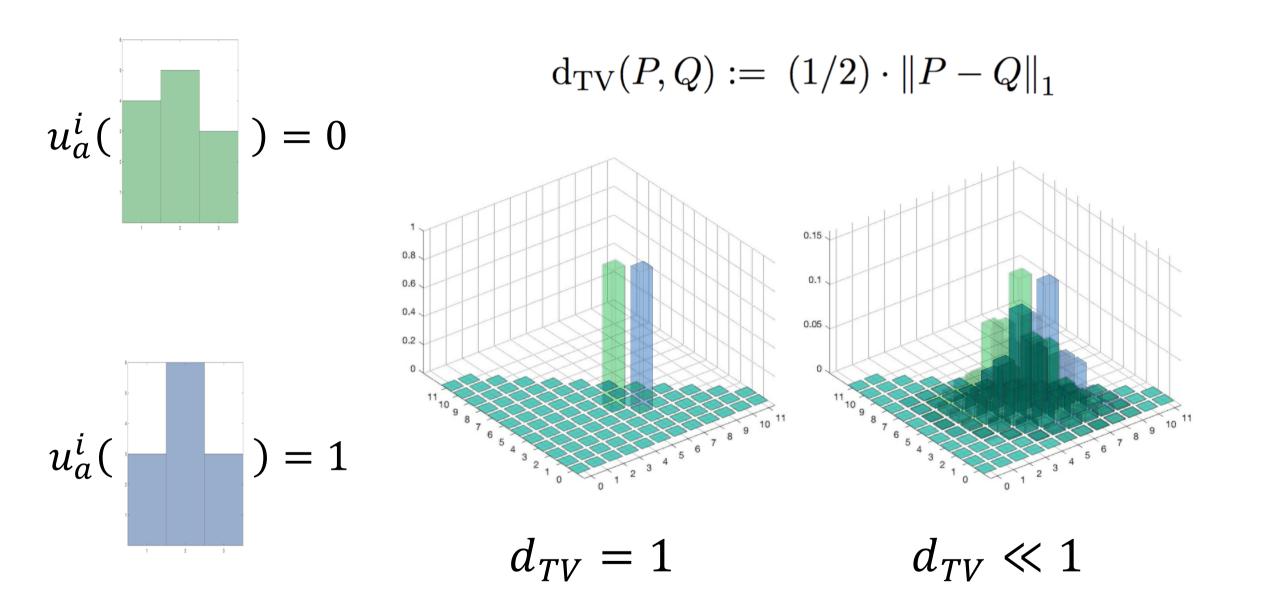
Lipschitz Games

• $(2k\lambda)$ -approximate pure equilibrium

Bad case: $\lambda = 1$

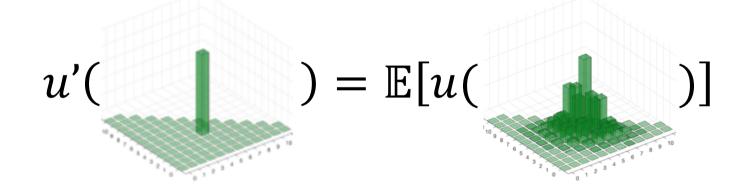






Smoothed Game [GT'15]

• Given a game G, construct a new game G_{δ}



• G_{δ} is $\tilde{O}\left(\frac{1}{\sqrt{n\delta}}\right)$ -Lipschitz

$\tilde{O}(1/n^{1/3})$ -ANE in Polynomial Time

- A $(2k\lambda)$ -ANE of G_{δ} is a $(2k\lambda + \delta)$ -equilibrium of G
 - Gain at most $2k\lambda$ by switching to $\left(1-\delta, \frac{\delta}{k-1}, \dots, \frac{\delta}{k-1}\right)$
 - Gain at most $(2k\lambda + \delta)$ by switching to $(1, 0 \dots 0)$

•
$$\lambda = \tilde{O}\left(\frac{1}{\sqrt{n\delta}}\right) \implies \epsilon = \tilde{O}\left(\frac{1}{\sqrt{n\delta}}\right) + \delta = \tilde{O}\left(\frac{1}{n^{1/3}}\right)$$



- Size-free multivariate Central Limit Theorem [DKS'16]: an (n, k)-PMD is $poly(k/\sigma)$ close to discrete Gaussians
- Two Gaussians with similar mean and variance are close

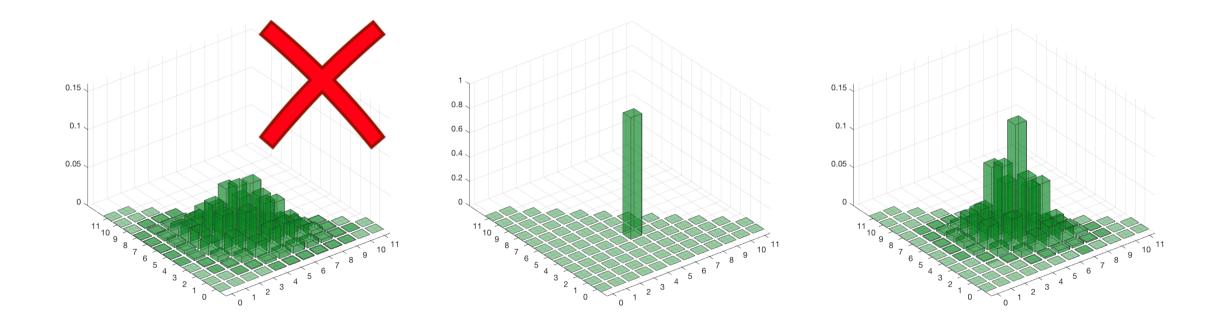
Our Results

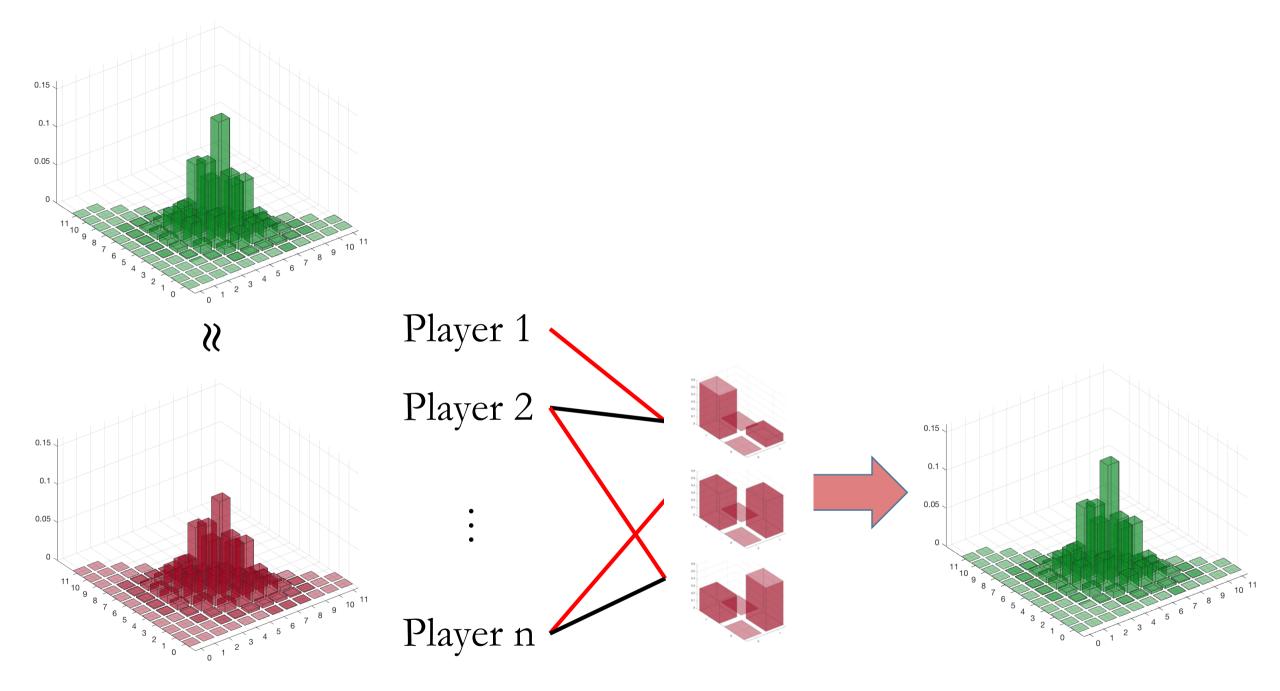
Fix any $k > 2, \delta > 0$

- First poly-time algorithm when $\epsilon = \frac{1}{n^{1-\delta}}$
- A poly-time algorithm for $\epsilon = \frac{1}{n^{1+\delta}} \implies \text{FPTAS}$

• A faster algorithm that computes an $\epsilon \approx \frac{1}{n^{1/3}}$ equilibrium

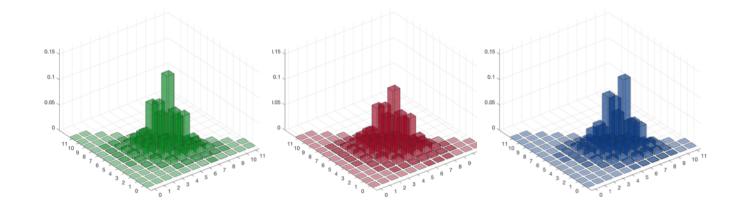
 $0(1/n^{0.99})$ -ANE



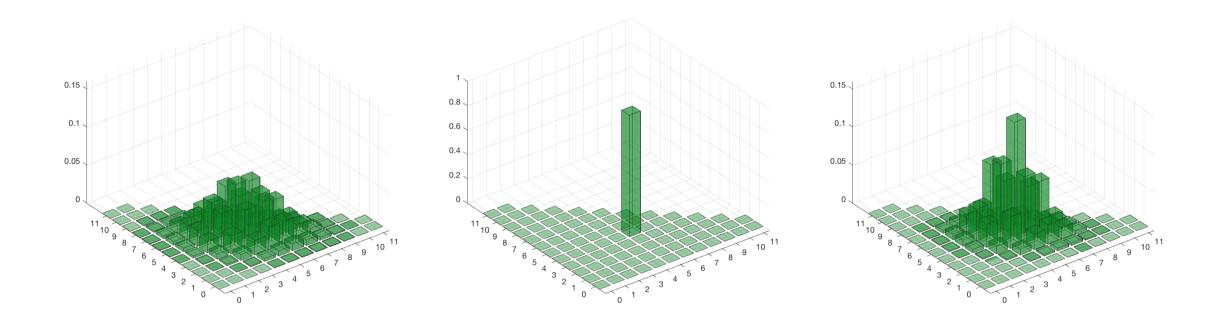


Quasi-PTAS when $\epsilon = 0(1/n^{c})$

• Small $d_{TV} \implies$ Similar payoffs



- Limitation:
 - Cover-size lower bound [DKS'16]: even when k = 2Any proper ϵ -cover S must have $|S| \ge n (1/\epsilon)^{\Omega(\log(1/\epsilon))}$



$$\epsilon = 1/n^{1/3}$$

Two moments

 $log(1/\epsilon)$ moments

 $\epsilon = 1/n^{0.99}$ O(1) moments

Moment Matching Lemma

• For two PMDs to be ϵ -close in d_{TV} [DP'08, DKS'16] need first log(1/ ϵ) moments to match

- We provide quantitative tradeoff between
 - The number of moments we need to match
 - The size of the variance

Moment Matching Lemma

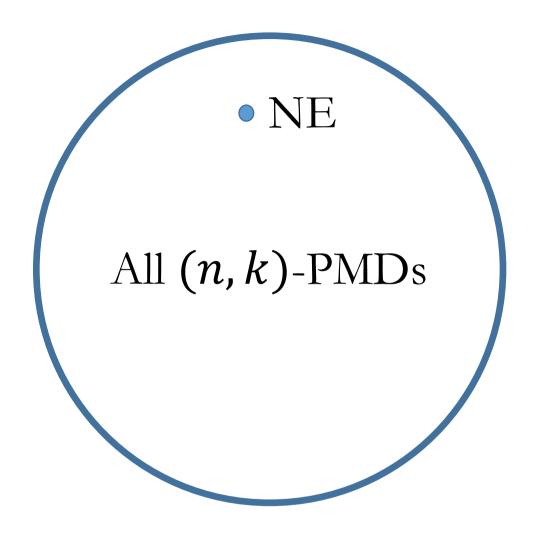
- Multidimensional Fourier transform
 - Exploit the sparsity of the Fourier transform

- Taylor approximations of the log Fourier transform
 - Large variance \implies Truncate with fewer terms

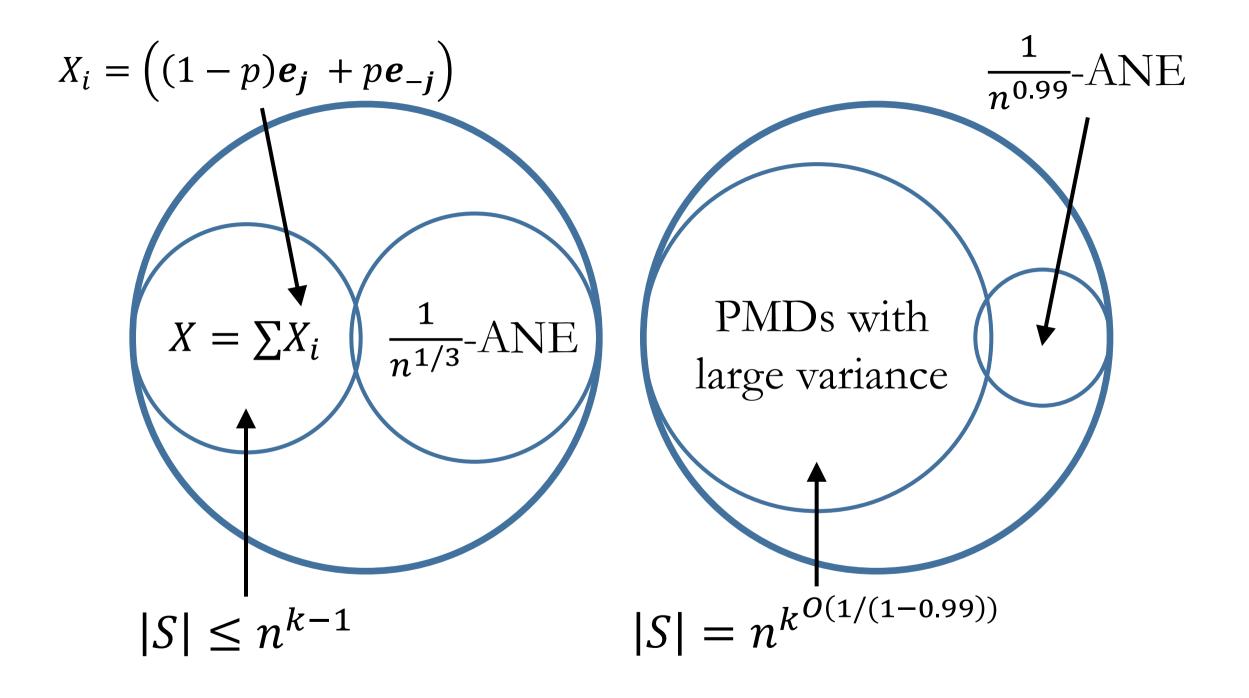
$O(1/n^{0.99})$ -ANE in Polynomial Time

• There always exists an equilibrium with variance $\epsilon n = n^{-0.99} \cdot n = n^{0.01}$

- Construct a poly-size ϵ -cover of large variance PMDs
 - Polynomial-size: Match only degree O(1) moments



 $|S| \ge n (1/\epsilon)^{\Omega(\log(1/\epsilon))}$



Conclusion

Computing ϵ -ANE of n-player anonymous games

- First poly-time algorithm when $\epsilon = \frac{1}{n^{1-\delta}}$
 - New moment-matching lemma for PMDs
- A poly-time algorithm for $\epsilon = \frac{1}{n^{1+\delta}} \implies \text{FPTAS}$

 $\epsilon = 1 \qquad \epsilon = 1/n^{c} \qquad \epsilon = 1/2^{n^{c}}$

