Of the People: Voting Is More Effective with Representative Candidates

Yu ChengShaddin DughmiDavid Kempe

University of Southern California

Is democracy more effective when the candidates for office are of the people?

• Drawn from the population, say uniformly at random.

Metric and Distortion

The candidates/voters are embedded within a common metric space [Black '48, Downs '57, Moulin '80, Barberà et al. '93, Merrill and Grofman '99].

Cost of a candidate $\stackrel{\text{def}}{=}$ average distance to the voters.

[Procaccia and Rosenschein '06, Caragiannis and Procaccia '11, Boutilier et al. '15, Anshelevich Bhardwaj Postl '15].

Distortion of an election $\stackrel{\text{def}}{=} \frac{\text{cost of the winner}}{\text{cost of the optimal candidate}}$.

Had we drawn two candidates from the population, the winner would always be the socially optimal choice.

Of the People \implies Smaller Distortion?

Does social welfare improve when candidates are i.i.d. from the population of voters?

Focus on:

- Two candidates.
- Majority rule.

We assume the candidates are drawn i.i.d from a distribution p supported on the metric space.

Given candidates drawn from p, we study the expected distortion.

- **p** is arbitrary [non-representative].
- **p** is uniform over the voters [representative].

	Representative	Non-Representative
Line Metric	$4 - 2\sqrt{2} \approx 1.1716$	2
General Metric	$[1.5, 2 - \frac{1}{652})$	2

	Representative	Non-Representative
Line Metric	$4 - 2\sqrt{2} \approx 1.1716$	2
General Metric	$[1.5, 2 - \frac{1}{652})$	2

Takeaway Message

Voting is more effective with representative candidates.

Exact improvement depends on the complexity of the metric space.

	Representative	Non-Representative
Line Metric	$4-2\sqrt{2}\approx 1.1716$	2
General Metric	$[1.5, 2 - \frac{1}{652})$	2

Takeaway Message

Voting is more effective with representative candidates.

Exact improvement depends on the complexity of the metric space.

Voting on the Line: Structural Results

The median voter *m*.

1) The candidate closer to the median m wins the election.

Voting on the Line: Structural Results y x m

The candidate closer to the median *m* wins the election.
For two candidates *x*, *y* on the same side of the median *m*, the one closer to *m* has smaller social cost.

Intuition: More than half of the population need to first get to x before they can get to y.

Voting on the Line: Structural Results y x m

The candidate closer to the median *m* wins the election.
For two candidates *x*, *y* on the same side of the median *m*, the one closer to *m* has smaller social cost.

(1) + (2) \implies If both candidates are on the same side of m, then majority voting elects the socially better candidate.

Voting on the Line (≈ 1.17)

Given any instance with support size larger than 3, we can reduce its support to 3 using a series of operations, without decreasing the distortion.

When shifting the probabilities, we use a global argument to show that the operation increases the distortion **on average**.

Voting on the Line (≈ 1.17)

Voting on the Line (≈ 1.17)

For support 3 distributions, we can optimize the locations and probabilities of these 3 points.

	Representative	Non-Representative
Line Metric	1.1716	2
General Metric	$[1.5, 2 - \frac{1}{652})$	2

Takeaway Message

Voting is more effective with representative candidates.

Exact improvement depends on the complexity of the metric space.

General Metric Space (≥ 1.5)

General Metric Space (≥ 1.5)

With probability 1/2, the distortion ≈ 2

 \Rightarrow Expected distortion \approx 1.5.

General Metric Space ($\leq 2 - \frac{1}{652}$)

• If the expected distortion is sufficiently close to 2, there is a pair of candidates whose distortion is close to 3; we show that then the instance must have special structure.

Yu Cheng (USC)

General Metric Space ($\leq 2 - \frac{1}{652}$)

• If the expected distortion is sufficiently close to 2, there is a pair of candidates whose distortion is close to 3; we show that then the instance must have special structure.

Yu Cheng (USC)

	Representative	Non-Representative
Line Metric	1.1716	2
General Metric	$[1.5, 2 - \frac{1}{652})$	2

Takeaway Message

Voting is more effective with representative candidates.

Exact improvement depends on the complexity of the metric space.

Non-Representative (≥ 2)

With probability 1/2, we get a distortion of ≈ 3 . So expected distortion $\approx (1/2) \cdot 3 + (1/2) \cdot 1 = 2$.

Non-Representative (≤ 2)

[Anshelevich et al.] Any election between a pair of candidates has distortion is at most 3.

If we draw two candidates whose social costs are within a factor of 3, we assume the worse candidate wins.

Ignore the metric space and treat the costs as arbitrary numbers, optimize the probability distribution over costs.

Conclusion

AND THAT GOVERNMENT OF THE PEOPLE, BY THE PEOPLE, FOR THE PEOPLE, SHALL NOT PERISH FROM THE EARTH. *Abraham Lincoln*

 For two candidates and a majority election:
Government by the people is better for the people if it is also of the people.

	Representative	Non-Representative
Line Metric	1.1716	2
General Metric	$[1.5, 2 - \frac{1}{652})$	2

Maximum expected distortion in general metric spaces.

	Representative	?	Non-Representative
Line Metric	1.1716		2
General Metric	$[1.5, 2 - \frac{1}{652})$		2

How gracefully does the distortion degrade as the voter and candidate distributions become more and more dissimilar?

	Representative	?	Non-Representative
Line Metric	1.1716		2
?			2
General Metric	$[1.5, 2 - \frac{1}{652})$		2

How does the distortion depend on the metric space?

More than two candidates.