Hardness of Signaling in Bayesian Games

Yu Cheng University of Southern California

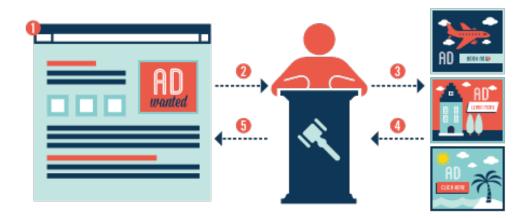
Joint work with

Umang BhaskarYoung Kun KoChaitanya SwamyTIFR IndiaPrincetonU Waterloo

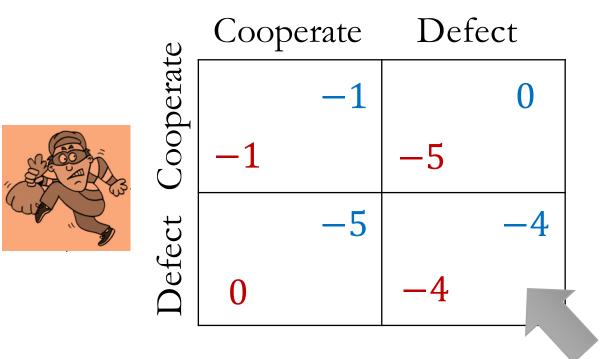
Motivation

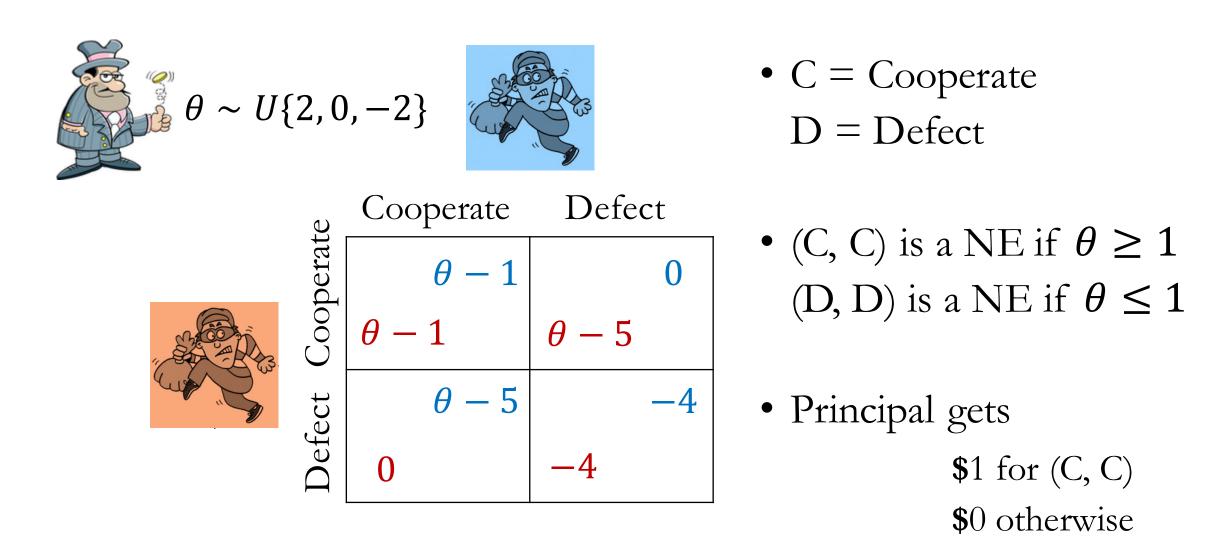
- Uncertainty in strategic interactions
- Information asymmetry
- Information revelation (Signaling):
 - The act of exploiting informational advantage to
 - Affect the decisions of others
 - Induce desirable equilibrium

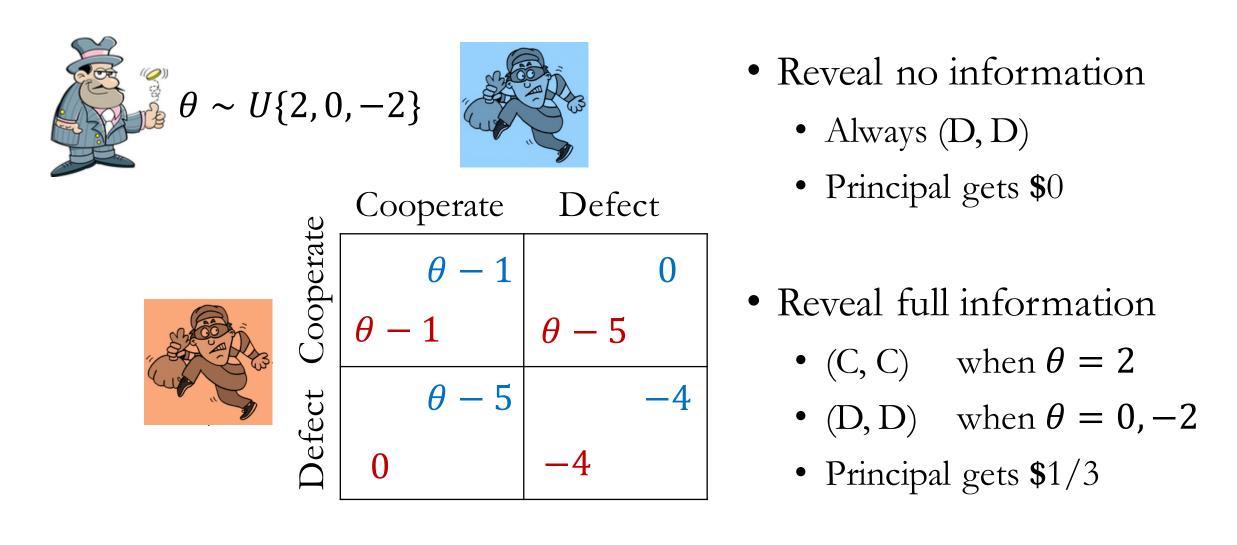
Signaling: Examples



Yu Cheng (USC)

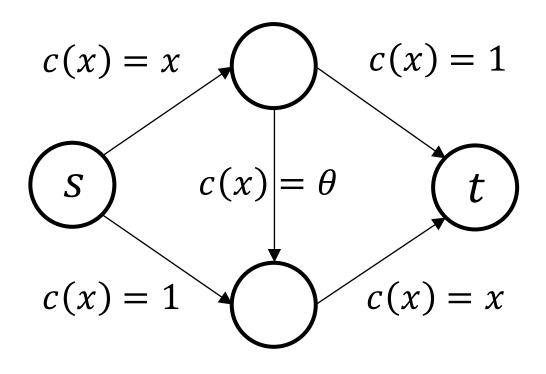


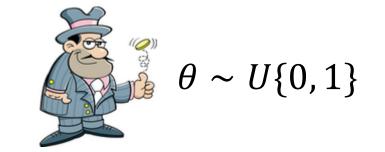




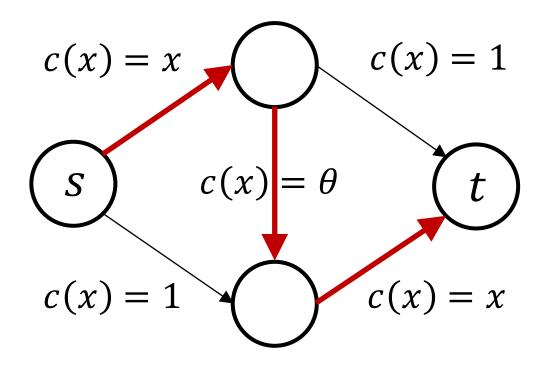
$i = \begin{cases} i \\ i \\ i \\ $	 Optimal signaling scheme High θ = 0,2 Low θ = -2
$\begin{array}{c c} \theta - 1 & 0 \\ \theta - 1 & \theta - 5 \\ \theta - 1 & \theta - 5 \\ \theta - 5 & -4 \\ 0 & -4 \end{array}$	 E[θ High] = 1 E[θ Low] = -2 Player play (C, C) when they receive High, so principal gets \$2/3

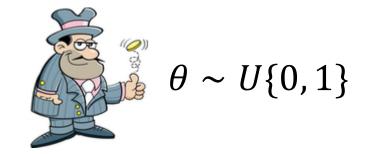
Braess's Paradox





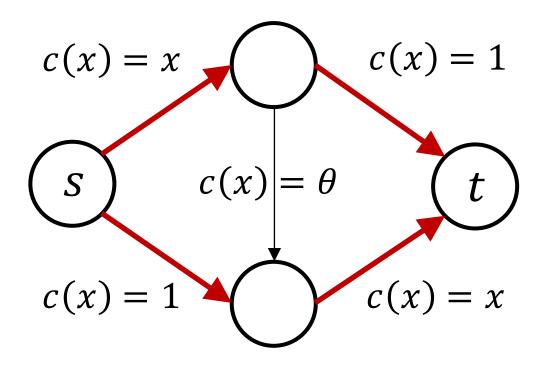
Braess's Paradox

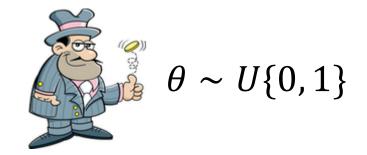




- When $\theta = 0$
 - Cost = 2

Braess's Paradox





- When $\theta = 0$
 - Cost = 2
- When $\theta \ge 0.5$
 - Cost = 1.5
- Optimal: reveal no information

How hard is it to reveal information optimally?

Previous Work

- Optimal information structure can be intricate
 - [Blackwell '51] [Akerlof '70] [Hirshleifer '71] [Spence '73]
 [Milgrom and Weber '82] [Lehrer et al. '10] [Abraham et al. '13]
 [Bergemann et al. '13] [Alonso and Câmara '14] ...

- Computational complexity of (approximate) optimal signaling
 - [Emek et al. '12] [Milterson and Sheffet '12] [Guo and Deligkas '13] [Dughmi '14] [Cheng et al. '15] ...

Signaling Problem

- Payoffs depend on state of nature Θ
- Players know a common prior λ of Θ
- An informed principal knows the realization of $\boldsymbol{\Theta}$
 - Public signals Σ
 - Commits to a signaling scheme $\varphi: \Theta \longrightarrow \Sigma$
- Players Bayes update based on the signal, and play a NE

Bayesian Games

- Two-player zero-sum games
 - Goal: maximize row player's utility
- Network routing games (non-atomic)
 - Goal: minimize latency of Nash flow

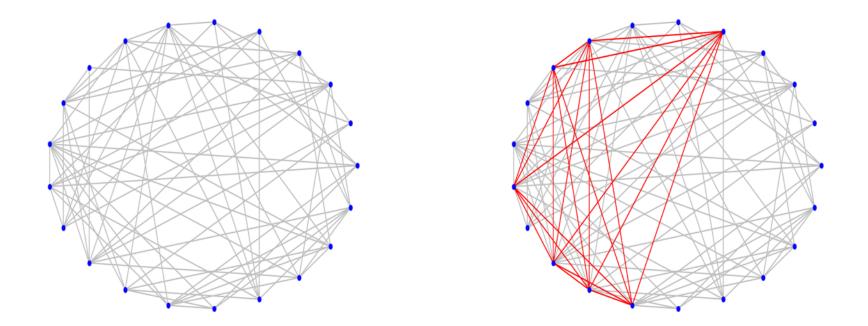
Both admit poly-time computable equilibria \Rightarrow can study the signaling problem bereft of equilibrium computation concerns

Previous Results

• Zero-sum games

FPTAS	PTAS	Quasi-PTAS
X		
[Dughmi '14]		
Planted-Clique hard		

Planted Clique Conjecture



• No poly-time algorithm that recovers a planted k-clique from G(n, 1/2) with constant success probability for $k = o(\sqrt{n})$ and $k = \omega(\log n)$

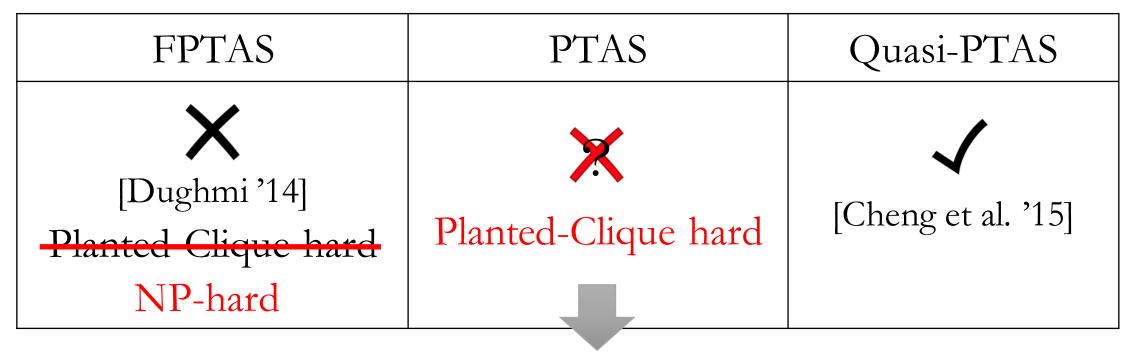
Previous Results

• Zero-sum games

FPTAS	PTAS	Quasi-PTAS
[Dughmi '14] Planted-Clique hard	?	[Cheng et al. '15]

Our Results

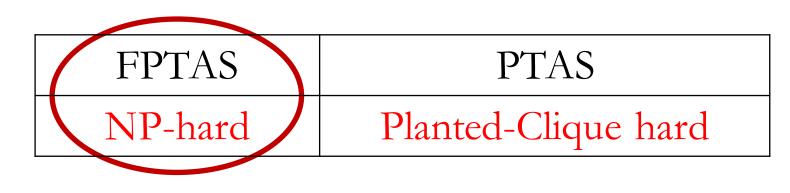
• Zero-sum games



[Rubinstein] proved ETH-hardness for PTAS (unlikely to be NP-hard)

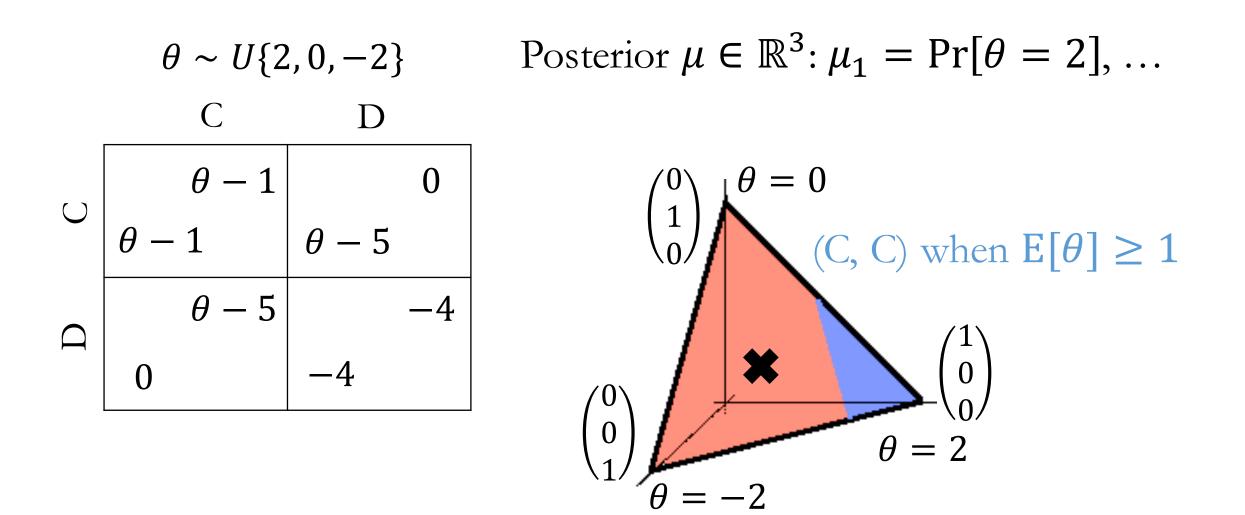
Our Results

• Zero-sum games

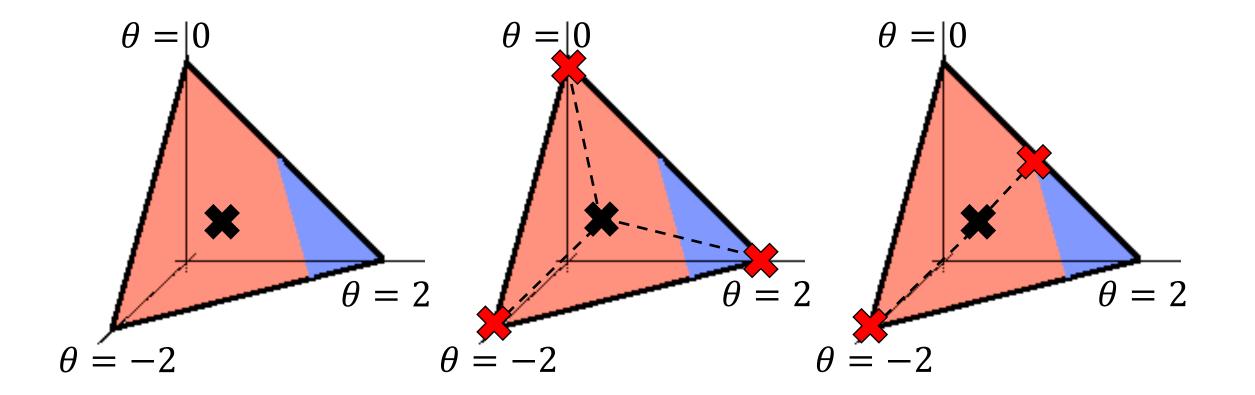


- Network routing games
 - NP-hard to get multiplicative approximation better than 4/3, even for single commodity and linear latencies
 - Full-revelation achieves approximation = price of anarchy, so 4/3 is tight for linear latencies

Prior Decomposition



Prior Decomposition



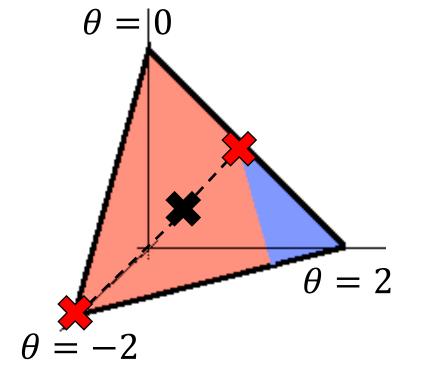
Prior Decomposition

$$\mu_{1} = \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix} \mu_{2} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad \lambda = \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix} = \frac{2}{3}\mu_{1} + \frac{1}{3}\mu_{2}$$
$$OPT = \frac{2}{3}f(\mu_{1}) + \frac{1}{3}f(\mu_{2}) = \frac{2}{3}$$

Signaling:

Best posterior:

$$\begin{array}{ll} \max & \sum p_i f(\mu_i) \\ s.t. & \sum p_i \mu_i = \lambda \\ \max & f(\mu) \end{array}$$



Zero-Sum Games: No FPTAS

- Algorithm for optimal signaling \Rightarrow best posterior
 - Hardness of best posterior \Rightarrow hardness of signaling

• Finding an ϵ -best posterior distribution is NP-hard when $\epsilon = poly(1/n)$ (much easier to show)

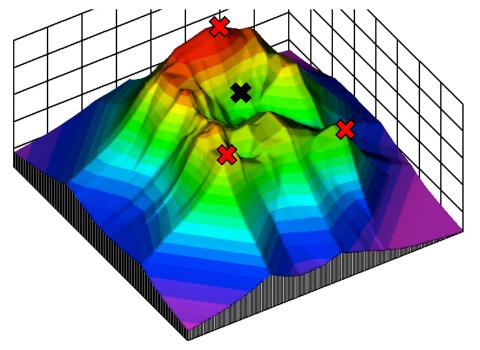
Optimization and Membership Oracle

- $f: \Delta_{\Theta} \rightarrow [0, 1]$ maps posterior to principal's utility
- Let f^+ be the minimum concave function such that $f^+ \ge f$

$$f^{+}(\lambda) = \max \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i}f(\mu_{i})$$

s.t.
$$\sum_{i=1}^{n} p_{i}\mu_{i} = \lambda$$

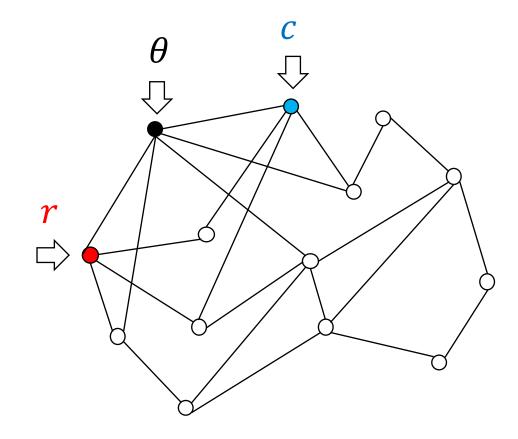
• Signaling \Leftrightarrow value oracle for f^+



Optimization and Membership Oracle

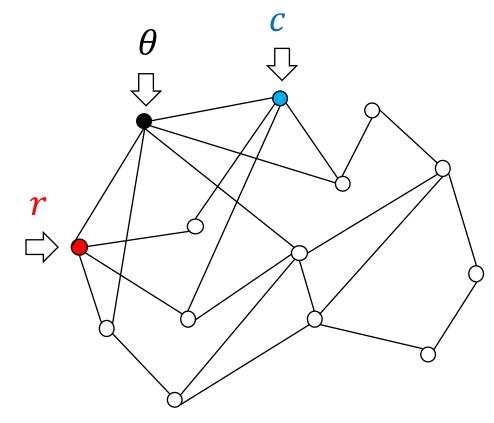
- Goal: best posterior $\max_{\mu} f(\mu) = \max_{\mu} f^+(\mu)$ Consider $K = \{(x, y): y \le f^+(x)\} = conv($

 - Signaling \Leftrightarrow value oracle for $f^+ \Leftrightarrow$ membership oracle for K
 - $\max_{\mu} f^+(\mu) = \max_{(x,y) \in K} y \Leftrightarrow \text{optimization over } K$
- Membership oracle \Rightarrow Separation oracle \Rightarrow Optimization
 - (ϵ/n) -hardness of best posterior $\Rightarrow \epsilon$ -hardness of signaling



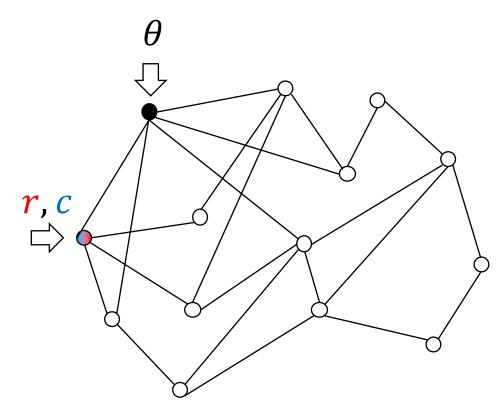
• Given
$$G = (V, E)$$

- State of nature $\theta \sim uni(V)$
- **Row** picks $r \in V$
- Col picks $c \in V$
- Objective (zero-sum):
 - **Row** wants to be adjacent to θ
 - Col wants to catch Row or θ



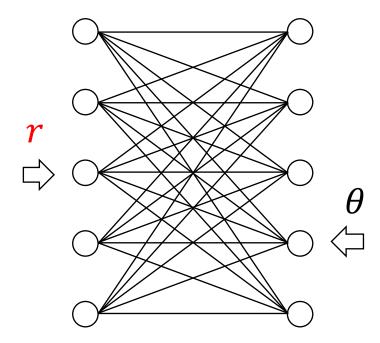
Row's payoff = 1

- Given G = (V, E)
- $\theta, r, c \in V$
- Row's payoff +1 if $(\theta, r) \in E$ -1 if $c = \theta$ -1 if c = a



Row's payoff = 1 - 1 = 0

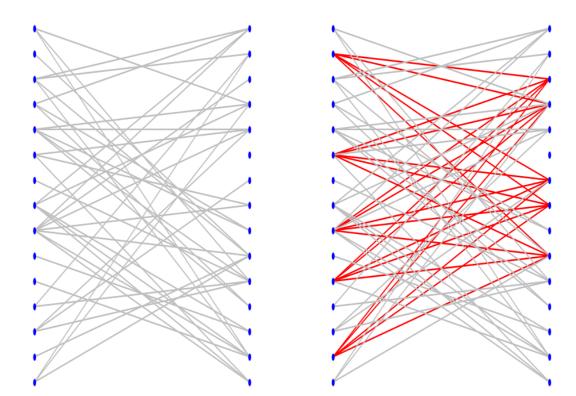
- Given G = (V, E)
- $\theta, r, c \in V$
- Row's payoff +1 if $(\theta, r) \in E$ -1 if $c = \theta$ -1 if c = a



- Asymmetry of payoffs
- Principal reveals $\theta \in L \text{ or } \theta \in R$
- **Row** chooses uniformly from the other side
 - Always have $(\theta, r) \in E$
 - Hard for **Col** to catch

Cliques are good for
 Principal and Row

• $\max_{\mu} f(\mu) \ge 1 - \frac{1}{k}$ iff G has a $k \times k$ bipartite clique • NP-hard



Zero-Sum Games: No FPTAS

- Membership oracle \Rightarrow Separation oracle \Rightarrow Optimization
 - Hardness of optmization ⇒ Hardness of testing membership
 - FPTAS version works as well (shallow cut ellipsoid)

- Powerful technique to prove hardness
 - Exploit the equivalence of separation and optimization

Open Problems

- PTAS for membership \Leftrightarrow PTAS for optimization?
 - We know FPTAS for membership \Leftrightarrow FPTAS for optimization
- Poly-time (additive) constant-approximations for signaling in zero-sum games
 - Currently, only quasi-PTAS is known [Cheng et al. '15]
- Private signals

Thanks!

Q & A