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Mixture Selection

Optimization over distributions shows up everywhere in AGT.

Mixed strategies, lo�eries, beliefs.

Definition (Mixture Selection)

Parameter: A function g ∶ [0, 1]n → [0, 1].
Input: A matrix A ∈ [0, 1]n×m.

Goal: max
x∈∆m

g(Ax).
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Mixture Selection: An Example

Single buyer (with Bayesian prior) unit-demand pricing problem.

Design a single lo�ery to maximize revenue.

$ 1 $ 1/2 $ 1/3

$ 1/3 $ 1 $ 1/2

$ 1/2 $ 1/3 $ 1
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Mixture Selection: An Example

Single buyer (with Bayesian prior) unit-demand pricing problem.

Design a single lo�ery to maximize revenue.

$ 1 $ 1/2 $ 1/3

$ 1/3 $ 1 $ 1/2

$ 1/2 $ 1/3 $ 1

Aij : Type i’s value for item j.

x: Lo�ery to design.

g(Ax): Expected revenue of x with optimal price.
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Mixture Selection: An Example

Single buyer (with Bayesian prior) unit-demand pricing problem.

Design a single lo�ery to maximize revenue.

$ 1 $ 1/2 $ 1/3

$ 1/3 $ 1 $ 1/2

$ 1/2 $ 1/3 $ 1

x = (1, 0, 0) =

g(Ax) = 1/3 with optimal price p ∈ {$1, $1/2, $1/3}.
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Mixture Selection: An Example

Single buyer (with Bayesian prior) unit-demand pricing problem.

Design a single lo�ery to maximize revenue.

$ 1 $ 1/2 $ 1/3

$ 1/3 $ 1 $ 1/2

$ 1/2 $ 1/3 $ 1

x = (1/3, 1/3, 1/3) =

g(Ax) = p = ($1 + $1/2 + $1/3)/3 = 11/18.
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Motivation

max
x∈∆m

g(Ax)

Building block in a number of game-theoretic applications.

Mixture Selection problems naturally arise in mechanism design and

signaling.

Information Revelation (signaling): design information sharing policies,

so that the players arrive at “good” equilibria.

The beliefs of the agents are distributions.
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Our Results: Framework

Framework

Two “smoothness” parameters that tightly control the complexity of Mixture

Selection.

A polynomial-time approximation scheme (PTAS) when both parameters are

constants:

O(1)-Lipschitz in L∞ norm:

∣g(v1) − g(v2)∣ ≤ O(1) ⋅ ∥v1 − v2∥∞;

O(1)-Noise stable:

Controls the degree to which low-probability (possibly correlated) errors

in the inputs of g can impact its output.
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Our Results: Noise Stability

Definition (β-Noise Stable)

A function g is β-Noise Stable if whenever

a random process corrupts its input,

and the probability each entry gets corrupted is at most α,

The output of g decreases by no more than αβ in expectation.

Must hold for all inputs, even when the corruptions are arbitrarily correlated.
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Our Results: Applications

Game-theoretic problems in mechanism design and signaling.

Problem Algorithm Hardness

Unit-Demand Lo�ery Design

[Dughmi, Han, Nisan ’14]

PTAS No FPTAS

Signaling in Bayesian Auctions

[Emek et al. ’12] [Miltersen and She�et ’12]

PTAS No FPTAS

Signaling to Persuade Voters

[Alonso and Câmara ’14]

PTAS
1

No FPTAS

Signaling in Normal Form Games

[Dughmi ’14]

�asi-PTAS
2

No FPTAS
3

1

Bi-criteria.

2nO(log n) for all fixed ε. Bi-criteria.

3

Assume hardness of planted clique. Recently [Bhaskar, Cheng, Ko, Swamy ’16] rules out PTAS.
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Simple Algorithm for Mixture Selection

Inspired by ε-Nash algorithm in [Lipton, Markakis, Mehta ’03].

Support enumeration

Enumerate all s-uniform mixtures x̃ for s = O(log(n)/ε2).

Check the values of g(Ax̃) and return the best one.

Proof

Take the optimal solution x∗.

Draw s samples from x∗ and let x̃ be the empirical distribution.

Tail bound + union bound: Pr [∥Ax∗ −Ax̃∥∞ < ε] > 0.

Probabilistic method: there exists a s-uniform x̃ s.t. ∥Ax∗ −Ax̃∥∞ < ε.

If g is O(1)-Lipschitz in L∞, g(Ax̃) ≥ g(Ax∗) −O(ε).
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Simple Algorithm for Mixture Selection

Running Time: Evaluate g(⋅) on ms
inputs.

A �asi-PTAS for Mixture Selection when g is O(1)-Lipschitz in L∞.

Bypass the Union Bound

Sample s = O(�
��logn/ε2) times.

Each entry (Ax)i gets changed by at most ε, with probability (1 − ε).

Works if g is Noise Stable.

Summary

High probability “small errors” (Lipschitz Continuity).

Low probability “large errors” (Noise Stability).
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Our results: Main Theorem

Theorem (Approximate Mixture Selection)

If g is β-Stable and c-Lipschitz, there is an algorithm with
Runtime: mO(c2 log(β/ε)/ε2)

⋅ Tg ,
Approximation: OPT − ε.

When β, c = O(1), this gives a PTAS.

Problem c (Lipschitzness) β (Stablility) Runtime

Unit-Demand Lo�ery Design 1 1 PTAS

Signaling in Bayesian Auctions 1 2 PTAS

Signaling to Persuade Voters O(1) O(1) PTAS

Signaling in Normal Form Games 2 poly(n) �asi-PTAS
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Our results: Lo�ery Design

$ 1 $ 1/2 $ 1/3

$ 1/3 $ 1 $ 1/2

$ 1/2 $ 1/3 $ 1

Let v = Ax. vi is type i’s expected value for lo�ery x.

g(lo�ery)

(v) ∶= max
p

{p ⋅
∣{i ∶ vi ≥ p}∣

n
}.
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Let v = Ax. vi is type i’s expected value for lo�ery x.

g(lo�ery)

(v) ∶= max
p

{p ⋅
∣{i ∶ vi ≥ p}∣

n
}.

g(lo�ery)
is 1-Lipschitz

Lower the price by ε.
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Our results: Lo�ery Design

$ 1 $ 1/2 $ 1/3

$ 1/3 $ 1 $ 1/2

$ 1/2 $ 1/3 $ 1

Let v = Ax. vi is type i’s expected value for lo�ery x.

g(lo�ery)

(v) ∶= max
p

{p ⋅
∣{i ∶ vi ≥ p}∣

n
}.

g(lo�ery)
is 1-Stable

Buyer walks away with probability at most ε.
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Hardness Results

Neither Lipschitz Continuity nor Noise Stability su�ices by itself for a PTAS.

Absence of L∞-Lipschitz Continuity

NP-Hard (even when g is O(1)-Lipschitz in L1).
Reduction from Maximum Independent Set.
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Hardness Results

Neither Lipschitz Continuity nor Noise Stability su�ices by itself for a PTAS.

Absence of Noise Stability

As hard as Planted Clique.

max
x

g(Ax) = 1 max
x

g(Ax) < 0.8
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Hardness Results

FPTAS with Lipschitz Continuity and Noise Stability

NP-Hard.

Both assumptions together do not su�ice for an FPTAS.
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Conclusion

Our Contributions

Define Mixture Selection.

Simple meta algorithm.

PTAS when g is O(1)-Stable and O(1)-Lipschitz.

Applications to a number of game-theoretic problems.

Matching lower bounds.

Find more applications.

[Barman’15]: PTAS when A is sparse, and g is Lipschitz but not Stable.

Yu Cheng (USC) Mixture selection 14 / 14



Conclusion

Our Contributions

Define Mixture Selection.

Simple meta algorithm.

PTAS when g is O(1)-Stable and O(1)-Lipschitz.

Applications to a number of game-theoretic problems.

Matching lower bounds.

Find more applications.

[Barman’15]: PTAS when A is sparse, and g is Lipschitz but not Stable.

Yu Cheng (USC) Mixture selection 14 / 14


