Mixture Selection, Mechanism Design, and Signaling

Yu Cheng Ho Yee Cheung Shaddin Dughmi Ehsan Emamjomeh-Zadeh Li Han Shang-Hua Teng

University of Southern California

• Optimization over distributions shows up everywhere in AGT.

- Optimization over distributions shows up everywhere in AGT.
 - Mixed strategies, lotteries, beliefs.

- Optimization over distributions shows up everywhere in AGT.
 - Mixed strategies, lotteries, beliefs.

Definition (Mixture Selection)

- *Parameter:* A function $g:[0,1]^n \rightarrow [0,1]$.
- Input: A matrix $A \in [0, 1]^{n \times m}$.
- Goal: $\max_{x \in \Delta_m} g(Ax)$.

$$\max_{x \in \Delta_m} g(Ax)$$

3 / 14

$$\max_{x\in\Delta_m}g(Ax)$$

$$\max_{x\in\Delta_m}g(Ax)$$

3 / 14

- Single buyer (with Bayesian prior) unit-demand pricing problem.
- Design a single lottery to maximize revenue.

- Single buyer (with Bayesian prior) unit-demand pricing problem.
- Design a single lottery to maximize revenue.

\$ 1	\$ 1/2	\$ 1/3
\$ 1/3	\$ 1	\$ 1/2
\$ 1/2	\$ 1/3	\$ 1

- A_{ij} : Type i's value for item j.
- *x*: Lottery to design.
- g(Ax): Expected revenue of x with optimal price.

- Single buyer (with Bayesian prior) unit-demand pricing problem.
- Design a single lottery to maximize revenue.

$$x = (1,0,0) =$$

g(Ax) = 1/3 with optimal price $p \in \{\$1, \$1/2, \$1/3\}$.

- Single buyer (with Bayesian prior) unit-demand pricing problem.
- Design a single lottery to maximize revenue.

$$x = (1/3, 1/3, 1/3) =$$

$$g(Ax) = p = (\$1 + \$1/2 + \$1/3)/3 = 11/18.$$

Motivation

$$\max_{x\in\Delta_m}g(Ax)$$

- Building block in a number of game-theoretic applications.
- Mixture Selection problems naturally arise in mechanism design and signaling.

Motivation

$$\max_{x\in\Delta_m}g(Ax)$$

- Building block in a number of game-theoretic applications.
- Mixture Selection problems naturally arise in mechanism design and signaling.
- Information Revelation (signaling): design information sharing policies, so that the players arrive at "good" equilibria.
- The beliefs of the agents are distributions.

Our Results: Framework

Framework

Two "smoothness" parameters that tightly control the complexity of Mixture Selection.

A polynomial-time approximation scheme (PTAS) when both parameters are constants:

Our Results: Framework

Framework

Two "smoothness" parameters that tightly control the complexity of Mixture Selection.

A polynomial-time approximation scheme (PTAS) when both parameters are constants:

• O(1)-Lipschitz in L^{∞} norm:

$$|g(v_1)-g(v_2)| \leq O(1) \cdot ||v_1-v_2||_{\infty};$$

Our Results: Framework

Framework

Two "smoothness" parameters that tightly control the complexity of Mixture Selection.

A polynomial-time approximation scheme (PTAS) when both parameters are constants:

• O(1)-Lipschitz in L^{∞} norm:

$$|g(v_1) - g(v_2)| \le O(1) \cdot ||v_1 - v_2||_{\infty};$$

• O(1)-Noise stable:

Controls the degree to which low-probability (possibly correlated) errors in the inputs of g can impact its output.

Our Results: Noise Stability

Definition (β -Noise Stable)

A function g is β -Noise Stable if whenever

• a random process corrupts its input,

Our Results: Noise Stability

Definition (β -Noise Stable)

A function g is β -Noise Stable if whenever

- a random process corrupts its input,
- and the probability each entry gets corrupted is at most α ,

The output of g decreases by no more than $\alpha\beta$ in expectation.

Our Results: Noise Stability

Definition (β -Noise Stable)

A function g is β -Noise Stable if whenever

- a random process corrupts its input,
- and the probability each entry gets corrupted is at most α ,

The output of g decreases by no more than $\alpha\beta$ in expectation.

Must hold for all inputs, even when the corruptions are arbitrarily correlated.

Our Results: Applications

Game-theoretic problems in mechanism design and signaling.

Problem	Algorithm	Hardness
Unit-Demand Lottery Design [Dughmi, Han, Nisan '14]		
Signaling in Bayesian Auctions [Emek et al. '12] [Miltersen and Sheffet '12]		
Signaling to Persuade Voters [Alonso and Câmara '14]		
Signaling in Normal Form Games [Dughmi '14]		

Our Results: Applications

Game-theoretic problems in mechanism design and signaling.

Problem	Algorithm	Hardness
Unit-Demand Lottery Design [Dughmi, Han, Nisan '14]	PTAS	No FPTAS
Signaling in Bayesian Auctions [Emek et al. '12] [Miltersen and Sheffet '12]	PTAS	No FPTAS
Signaling to Persuade Voters [Alonso and Câmara '14]	PTAS ¹	No FPTAS
Signaling in Normal Form Games [Dughmi '14]	Quasi-PTAS ²	No FPTAS ³

¹Bi-criteria.

 $^{^{2}}n^{O(\log n)}$ for all fixed ϵ . Bi-criteria.

³Assume hardness of planted clique. Recently [Bhaskar, Cheng, Ko, Swamy '16] rules out PTAS.

Inspired by ϵ -Nash algorithm in [Lipton, Markakis, Mehta '03].

Support enumeration

- Enumerate all s-uniform mixtures \tilde{x} for $s = O(\log(n)/\epsilon^2)$.
- Check the values of $g(A\tilde{x})$ and return the best one.

Inspired by ϵ -Nash algorithm in [Lipton, Markakis, Mehta '03].

Support enumeration

- Enumerate all s-uniform mixtures \tilde{x} for $s = O(\log(n)/\epsilon^2)$.
- Check the values of $g(A\tilde{x})$ and return the best one.

Proof

- Take the optimal solution x*.
- Draw *s* samples from x^* and let \tilde{x} be the empirical distribution.

Inspired by ϵ -Nash algorithm in [Lipton, Markakis, Mehta '03].

Support enumeration

- Enumerate all s-uniform mixtures \tilde{x} for $s = O(\log(n)/\epsilon^2)$.
- Check the values of $g(A\tilde{x})$ and return the best one.

Proof

- Take the optimal solution x*.
- Draw s samples from x^* and let \tilde{x} be the empirical distribution.
- Tail bound + union bound: $\Pr[\|Ax^* A\tilde{x}\|_{\infty} < \epsilon] > 0$.
- Probabilistic method: there exists a s-uniform \tilde{x} s.t. $||Ax^* A\tilde{x}||_{\infty} < \epsilon$.
- If g is O(1)-Lipschitz in L_{∞} , $g(A\tilde{x}) \ge g(Ax^*) O(\epsilon)$.

- Running Time: Evaluate $g(\cdot)$ on m^s inputs.
- A Quasi-PTAS for Mixture Selection when g is O(1)-Lipschitz in L_{∞} .

- Running Time: Evaluate $g(\cdot)$ on m^s inputs.
- A Quasi-PTAS for Mixture Selection when g is O(1)-Lipschitz in L_{∞} .

Bypass the Union Bound

Sample $s = O(\log n/\epsilon^2)$ times.

- Running Time: Evaluate $g(\cdot)$ on m^s inputs.
- A Quasi-PTAS for Mixture Selection when g is O(1)-Lipschitz in L_{∞} .

Bypass the Union Bound

Sample $s = O(\log n/\epsilon^2)$ times.

Each entry $(Ax)_i$ gets changed by at most ϵ , with probability $(1 - \epsilon)$.

Works if g is Noise Stable.

- Running Time: Evaluate $g(\cdot)$ on m^s inputs.
- A Quasi-PTAS for Mixture Selection when g is O(1)-Lipschitz in L_{∞} .

Bypass the Union Bound

Sample $s = O(\log n/\epsilon^2)$ times.

Each entry $(Ax)_i$ gets changed by at most ϵ , with probability $(1 - \epsilon)$.

Works if g is Noise Stable.

Summary

- High probability "small errors" (Lipschitz Continuity).
- Low probability "large errors" (Noise Stability).

Our results: Main Theorem

Theorem (Approximate Mixture Selection)

If g is β -Stable and c-Lipschitz, there is an algorithm with

Runtime: $m^{O(c^2 \log(\beta/\epsilon)/\epsilon^2)} \cdot T_g$,

Approximation: $OPT - \epsilon$.

When β , c = O(1), this gives a PTAS.

Our results: Main Theorem

Theorem (Approximate Mixture Selection)

If g is β -Stable and c-Lipschitz, there is an algorithm with

Runtime: $m^{O(c^2 \log(\beta/\epsilon)/\epsilon^2)} \cdot T_g$,

Approximation: $OPT - \epsilon$.

When β , c = O(1), this gives a PTAS.

Problem	\mathcal{C} (Lipschitzness)	eta (Stablility)	Runtime
Unit-Demand Lottery Design	1	1	PTAS
Signaling in Bayesian Auctions	1	2	PTAS
Signaling to Persuade Voters	O(1)	O(1)	PTAS
Signaling in Normal Form Games	2	poly(n)	Quasi-PTAS

Our results: Main Theorem

Theorem (Approximate Mixture Selection)

If g is β -Stable and c-Lipschitz, there is an algorithm with

Runtime: $m^{O(c^2 \log(\beta/\epsilon)/\epsilon^2)} \cdot T_g$,

Approximation: $OPT - \epsilon$.

When β , c = O(1), this gives a PTAS.

Problem	\mathcal{C} (Lipschitzness)	eta (Stablility)	Runtime
Unit-Demand Lottery Design	1	1	PTAS
Signaling in Bayesian Auctions	1	2	PTAS
Signaling to Persuade Voters	O(1)	O(1)	PTAS
Signaling in Normal Form Games	2	poly(n)	Quasi-PTAS

Our results: Lottery Design

Let
$$v = Ax$$
. v_i is type i 's expected value for lottery x . $g^{(\text{lottery})}(v) := \max_{p} \left\{ p \cdot \frac{|\{i : v_i \ge p\}|}{n} \right\}$.

Our results: Lottery Design

Let
$$v = Ax$$
. v_i is type i 's expected value for lottery x . $g^{(\text{lottery})}(v) := \max_{p} \left\{ p \cdot \frac{|\{i : v_i \ge p\}|}{n} \right\}$.

g^(lottery) is 1-Lipschitz

Lower the price by ϵ .

Our results: Lottery Design

Let
$$v = Ax$$
. v_i is type i 's expected value for lottery x . $g^{(\text{lottery})}(v) \coloneqq \max_{p} \left\{ p \cdot \frac{|\{i : v_i \ge p\}|}{n} \right\}$.

g^(lottery) is 1-Stable

Buyer walks away with probability at most ϵ .

Hardness Results

Neither Lipschitz Continuity nor Noise Stability suffices by itself for a PTAS.

Absence of L_{∞} -Lipschitz Continuity

NP-Hard (even when g is O(1)-Lipschitz in L_1). Reduction from Maximum Independent Set.

Hardness Results

Neither Lipschitz Continuity nor Noise Stability suffices by itself for a PTAS.

Absence of Noise Stability

As hard as Planted Clique.

$$\max g(Ax) = 1$$

 $\max_{x} g(Ax) < 0.8$

Hardness Results

FPTAS with Lipschitz Continuity and Noise Stability

NP-Hard.

Both assumptions together do not suffice for an FPTAS.

Conclusion

Our Contributions

- Define Mixture Selection.
- Simple meta algorithm.
- PTAS when g is O(1)-Stable and O(1)-Lipschitz.
- Applications to a number of game-theoretic problems.
- Matching lower bounds.

Conclusion

Our Contributions

- Define Mixture Selection.
- Simple meta algorithm.
- PTAS when g is O(1)-Stable and O(1)-Lipschitz.
- Applications to a number of game-theoretic problems.
- Matching lower bounds.
- Find more applications.
- [Barman'15]: PTAS when A is sparse, and g is Lipschitz but not Stable.