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Mixture Selection

@ Optimization over distributions shows up everywhere in AGT.
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Mixture Selection

@ Optimization over distributions shows up everywhere in AGT.

e Mixed strategies, lotteries, beliefs.

Definition (Mixture Selection)

@ Parameter: A function g: [0,1]" — [0, 1].
@ Input: A matrix A € [0,1]™"™.

@ Goal: max g(Ax).
x€Ap,
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Mixture Selection

x g(Ax)
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Mixture Selection: An Example

@ Single buyer (with Bayesian prior) unit-demand pricing problem.

@ Design a single lottery to maximize revenue.

$1 $1/2 $1/3
$1/3 $1 $1/2
$12  $1/3 $1

e
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Mixture Selection: An Example

@ Single buyer (with Bayesian prior) unit-demand pricing problem.

@ Design a single lottery to maximize revenue.

g $1 $1/2 $1/3
9 $1/3 $1 $1/2
& $1/2 $1/3 $1

@ Aj: Type i’s value for item j.
@ x: Lottery to design.

@ g(Ax): Expected revenue of x with optimal price.
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Mixture Selection: An Example

@ Single buyer (with Bayesian prior) unit-demand pricing problem.

@ Design a single lottery to maximize revenue.

g $1 $1/2 $1/3

8|sus 31 s

& $1/2 $1/3 $1
)

x:(l,0,0): e,,Jt

g(Ax) = 1/3 with optimal price p € {$1,$1/2,$1/3}.
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Mixture Selection: An Example

@ Single buyer (with Bayesian prior) unit-demand pricing problem.

@ Design a single lottery to maximize revenue.

g $1 $1/2 $1/3
9 $1/3 $1 $1/2
3 $1/2 $1/3 $1

x=(1/3,1/3,1/3) - Qa8
g(Ax) = p=($1+$1/2 +$1/3)/3 = 11/18.
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Motivation

max g(Ax)

xeAp,

@ Building block in a number of game-theoretic applications.

@ Mixture Selection problems naturally arise in mechanism design and
signaling.
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Motivation

max g(Ax)

xeAp,

@ Building block in a number of game-theoretic applications.

@ Mixture Selection problems naturally arise in mechanism design and
signaling.

@ Information Revelation (signaling): design information sharing policies,

so that the players arrive at “good” equilibria.

@ The beliefs of the agents are distributions.
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Our Results: Framework

Framework
Two “smoothness” parameters that tightly control the complexity of Mixture

Selection.

A polynomial-time approximation scheme (PTAS) when both parameters are
constants:

Yu Cheng (USC) MIXTURE SELECTION 6/14



Our Results: Framework

Framework

Two “smoothness” parameters that tightly control the complexity of Mixture

Selection.

A polynomial-time approximation scheme (PTAS) when both parameters are
constants:

@ O(1)-Lipschitz in L* norm:
g(v1) = g(v2)| < O(1) - w1 = vz oo;
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Our Results: Framework

Framework

Two “smoothness” parameters that tightly control the complexity of Mixture

Selection.

A polynomial-time approximation scheme (PTAS) when both parameters are
constants:

@ O(1)-Lipschitz in L* norm:
|g(v1) = g(v2) < O(1) - [t = v2 o3
@ O(1)-Noise stable:
Controls the degree to which low-probability (possibly correlated) errors
in the inputs of g can impact its output.
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Our Results: Noise Stability

Definition (3-Noise Stable)

A function g is S-Noise Stable if whenever

@ a random process corrupts its input,
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Our Results: Noise Stability

Definition (3-Noise Stable)

A function g is S-Noise Stable if whenever

@ a random process corrupts its input,
@ and the probability each entry gets corrupted is at most «,

The output of g decreases by no more than a3 in expectation.
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Our Results: Noise Stability

Definition (3-Noise Stable)

A function g is S-Noise Stable if whenever
@ a random process corrupts its input,
@ and the probability each entry gets corrupted is at most «,

The output of g decreases by no more than a3 in expectation.

Must hold for all inputs, even when the corruptions are arbitrarily correlated.
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Our Results: Applications

Game-theoretic problems in mechanism design and signaling.

Problem Algorithm Hardness

Unit-Demand Lottery Design
[Dughmi, Han, Nisan *14]

Signaling in Bayesian Auctions
[Emek et al. *12] [Miltersen and Sheffet *12]

Signaling to Persuade Voters

[Alonso and Camara ’14]

Signaling in Normal Form Games
[Dughmi *14]
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Our Results: Applications

Game-theoretic problems in mechanism design and signaling.

Problem Algorithm Hardness

Unit-Demand Lottery Design

PTAS No FPTAS
[Dughmi, Han, Nisan *14]
Signaling in Bayesian Auctions PTAS No FPTAS
[Emek et al. *12] [Miltersen and Sheffet *12]
Signaling to Persuade Voters PTAS! No FPTAS

[Alonso and Camara ’14]

Signaling in Normal Form Games

Quasi-PTAS? | No FPTAS?
[Dughmi *14]

'Bi-criteria.
220008m) 41 all fixed €. Bi-criteria.

*Assume hardness of planted clique. Recently [Bhaskar, Cheng, Ko, Swamy 16] rules out PTAS.
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Simple Algorithm for Mixture Selection

Inspired by e-Nash algorithm in [Lipton, Markakis, Mehta ’03].

Support enumeration

@ Enumerate all s-uniform mixtures x for s = O(log(n)/€?).

@ Check the values of g(Ax) and return the best one.
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@ Take the optimal solution x*.

@ Draw s samples from x* and let x be the empirical distribution.
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Simple Algorithm for Mixture Selection

Inspired by e-Nash algorithm in [Lipton, Markakis, Mehta ’03].

Support enumeration

@ Enumerate all s-uniform mixtures x for s = O(log(n)/€?).

@ Check the values of g(Ax) and return the best one.

Proof

@ Take the optimal solution x*.

@ Draw s samples from x* and let x be the empirical distribution.

@ Tail bound + union bound: Pr[||Ax™ — AX[ e < €] > 0.

@ Probabilistic method: there exists a s-uniform x s.t. || Ax* — AX| o < €.
@ If gis O(1)-Lipschitz in Ly, g(AX) > g(Ax*) — O(e).

Yu Cheng (USC) MIXTURE SELECTION 9/14



Simple Algorithm for Mixture Selection

@ Running Time: Evaluate g(-) on m® inputs.
@ A Quasi-PTAS for Mixture Selection when g is O(1)-Lipschitz in L.
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Sample s = O(log7/€?) times.
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Simple Algorithm for Mixture Selection

@ Running Time: Evaluate g(-) on m® inputs.
@ A Quasi-PTAS for Mixture Selection when g is O(1)-Lipschitz in Lo.

Bypass the Union Bound
Sample s = O(log7/€?) times.

Each entry (Ax); gets changed by at most ¢, with probability (1 - €).

Works if g is Noise Stable.
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Simple Algorithm for Mixture Selection
@ Running Time: Evaluate g(-) on m® inputs.
@ A Quasi-PTAS for Mixture Selection when g is O(1)-Lipschitz in Le.

Bypass the Union Bound
Sample s = O(log7/€?) times.

Each entry (Ax); gets changed by at most ¢, with probability (1 - €).

Works if g is Noise Stable.

v
Summary

@ High probability “small errors” (Lipschitz Continuity).

@ Low probability “large errors” (Noise Stability).

A\
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Our results: Main Theorem

Theorem (Approximate Mixture Selection)

If g is B-Stable and c-Lipschitz, there is an algorithm with
Runtime: mO(¢log(B/e)/e*) . T,,
Approximation: OPT — e.

When (3, ¢ = O(1), this gives a PTAS.
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Our results: Main Theorem

Theorem (Approximate Mixture Selection)

If g is B-Stable and c-Lipschitz, there is an algorithm with
Runtime: mO(’ log(B/e)/€?) T,

Approximation: OPT — e.
When 3, ¢ = O(1), this gives a PTAS.

Problem ‘ C (Lipschitzness) /8 (Stablility) ‘ RU ntime
Unit-Demand Lottery Design 1 1 PTAS
Signaling in Bayesian Auctions 1 2 PTAS
Signaling to Persuade Voters 0o(1) o(1) PTAS
Signaling in Normal Form Games 2 poly(n) | Quasi-PTAS
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Our results: Lottery Design

& &

g $1. %12 $1/3
g $1/3 $1 $1/2
8 $1/2 $1/3 $1

Let v = Ax. v; is type i’s expected value for lottery x.
g(lottery)(v) ‘= max {P . |{i5 Vi 2 P}l }
p n
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Our results: Lottery Design

& &

g $1. %12 $1/3
g $1/3 $1 $1/2
8 $1/2 $1/3 $1

Let v = Ax. v; is type i’s expected value for lottery x.
g(lottery)(v) ‘= max {P . |{i5 Vi 2 P}l }
p n

glotery) js 1-Lipschitz
Lower the price by e.
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Our results: Lottery Design

& &

g $1. %12 $1/3
g $1/3 $1 $1/2
8 $1/2 $1/3 $1

Let v = Ax. v; is type i’s expected value for lottery x.
g(lottery)(v) ‘= max {P . |{i5 Vi 2 P}l }
p n

glottery) js 1-Stable
Buyer walks away with probability at most e.
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Hardness Results

Neither Lipschitz Continuity nor Noise Stability suffices by itself for a PTAS.

Absence of L., -Lipschitz Continuity

NP-Hard (even when g is O(1)-Lipschitz in L;).
Reduction from Maximum Independent Set.
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Hardness Results

Neither Lipschitz Continuity nor Noise Stability suffices by itself for a PTAS.

Absence of Noise Stability
As hard as Planted Clique.

.:\\ MY

max g(Ax) =1 max g(Ax) < 0.8
X X
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Hardness Results

FPTAS with Lipschitz Continuity and Noise Stability

NP-Hard.
Both assumptions together do not suffice for an FPTAS.
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Conclusion

Our Contributions

Define Mixture Selection.

Simple meta algorithm.
PTAS when g is O(1)-Stable and O(1)-Lipschitz.

°
°
@ Applications to a number of game-theoretic problems.
°

Matching lower bounds.
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Conclusion

Our Contributions

Define Mixture Selection.

Simple meta algorithm.
PTAS when g is O(1)-Stable and O(1)-Lipschitz.

°
°
@ Applications to a number of game-theoretic problems.
°

Matching lower bounds.

@ Find more applications.

@ [Barman’15]: PTAS when A is sparse, and g is Lipschitz but not Stable.
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