Computational Aspects of Optimal Information Revelation

Yu Cheng May 8, 2017

How to reveal information optimally to other strategic players?

Examples

The Signaling Problem

- Strategic interactions with uncertainty.
- Choices of the agents depend on the information available to them.
- An informed principal must choose how to reveal partial information in order to induce a desirable outcome.

MechanismInformation Structure DesignDesign(Signaling, Persuasion)

A principal interested in the game's outcome

Design allocation and payment rules

Incentives

Choose what information to reveal

Beliefs

How hard is it (computationally) to find the optimal information structure?

This Talk

- Network Routing Games
- Normal Form Games
- Mixture Selection Framework

• Future Work

How to reveal information optimally? to minimize the latency of selfish routing?

Network 1: Two Parallel Links

Network 1: Two Parallel Links

Network 2: Braess's Paradox

$$\theta \sim U\{0,\infty\}$$

Network 2: Braess's Paradox

 $\theta \sim U\{0,\infty\}$

When θ = 0,
Cost = 2.

Network 2: Braess's Paradox

 $\theta \sim U\{0,\infty\}$

- When $\theta = 0$,
 - Cost = 2.
- When $\theta \ge 0.5$,
 - Cost = 1.5.
- Optimal: reveal no information.

Our Results [BCKS '16]

- NP-hard to get multiplicative $(4/3 \epsilon)$ approximation.
 - Even for single commodity and linear latencies.

- Full-revelation = price of anarchy.
 - 4/3 is tight for linear latencies.

• Exactly one of the link is broken with probability $\sum p_e = 1$.

• What is the optimal signaling scheme?

- Partition the links into two disjoint sets.
- Reveal which set
 contains the broken link.

- Partition the links into two disjoint sets.
- Reveal which set
 contains the broken link.

Optimal signaling is as hard as optimal network design.

• NP-hard [CDR '06].

This Talk

- Network Routing Games
- Normal Form Games
- Mixture Selection Framework

• Future Work

Prisoner's Dilemma

Prisoner's Dilemma [Dughmi'14]

 $\iint \theta \sim U\{2,0,-2\}$

 \frown

C = Cooperate,
 D = Defect.

Cooperate Defect

$$\theta - 1$$
 0
 $\theta - 1$ $\theta - 5$
 $\theta - 5$ -4
0 -4

Principal gets
\$1 for (C, C),
\$0 otherwise.

Prisoner's Dilemma [Dughmi'14]

 $\int \theta \sim U\{2,0,-2\}$

Cooperate Defect $\theta - 1$ 0 $\theta - 1$ $\theta - 5$ $\theta - 5$ -40 -4

- Reveal no information:
 - Agents always play (D, D).
 - Principal gets **\$**0.
- Reveal full information:
 - (C, C) when $\theta = 2$,
 - (D, D) when $\theta = 0, -2$.
 - Principal gets \$1/3.

Prisoner's Dilemma [Dughmi'14]

Our Results

- Bayesian Zero-Sum Games.
 |Θ| = #strategies = n.
 Principal's payoff = Row player's payoff.
- There is a Quasi-PTAS: We can compute an ϵ -optimal signaling scheme in time $n^{O(\log n/\epsilon^2)}$ [CCDEHT '15].

Prior Decomposition

Prior Decomposition

Prior Decomposition

$$\mu_1 = \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix} \mu_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad \lambda = \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix} = \frac{2}{3}\mu_1 + \frac{1}{3}\mu_2$$

$$OPT = \frac{2}{3}f(\mu_1) + \frac{1}{3}f(\mu_2) = \frac{2}{3}$$

$$OPT = f^{+}(\lambda) = \max \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i}f(\mu_{i})$$

s.t.
$$\sum_{i=1}^{n} p_{i}\mu_{i} = \lambda$$

Quasi-PTAS

- Optimize over all $O(\log n/\epsilon^2)$ -sparse signals.
- Given a signal / posterior distribution μ .

$$A_{\mu} = \mu_1 \quad A_1 + \mu_2 \quad A_1 + \dots + \mu_n \quad A_n$$

Quasi-PTAS

$$A_{\mu} = \mu_1 \begin{bmatrix} A_1 \end{bmatrix} + \mu_2 \begin{bmatrix} A_1 \end{bmatrix} + \dots + \mu_n \begin{bmatrix} A_n \end{bmatrix}$$

- $\tilde{\mu} = \text{sample } O(\log n/\epsilon^2) \text{ times from } \mu$.
- Standard tail bound + union bound

$$\Rightarrow \max_{i,j} |A_{\widetilde{\mu}} - A_{\mu}|_{i,j} \le \epsilon \text{ with probability } 1 - \epsilon.$$

• Value of $A_{\tilde{\mu}}$ is $O(\epsilon)$ -close to value of A_{μ} .

Our Results

- There is a Quasi-PTAS: We can compute an ϵ -optimal signaling scheme in time $n^{O(\log n/\epsilon^2)}$ [CCDEHT '15].
- Tight assuming the Planted Clique Conjecture [BCKS '16] or the Exponential Time Hypothesis [R '16][CK '16].

Planted Clique Conjecture

• No poly-time algorithm that recovers a planted k-clique from G(n, 1/2) with constant success probability for $k = o(\sqrt{n})$ and $k = \omega(\log n)$

- Given G = (V, E),
 - State of nature $\theta \sim uni(V)$,
 - Row picks $r \in V$,
 - Col picks $c \in V$.
- Objective (zero-sum):
 - **Row** wants to be adjacent to θ ,
 - **Col** wants to catch **Row** or θ .

Row's payoff = 1

Nature picks $\theta \in V$, **Row** and **Col** pick $r, c \in V$.

Row's payoff: +1 if $(\theta, r) \in E$, -1 if $c = \theta$, -1 if c = a.

Row's payoff = 1 - 1 = 0

Nature picks $\theta \in V$, **Row** and **Col** pick $r, c \in V$.

Row's payoff: +1 if $(\theta, r) \in E$, -1 if $c = \theta$, -1 if c = a.

- Asymmetry of payoffs.
- Principal reveals $\theta \in L \text{ or } \theta \in R.$
- **Row** chooses uniformly from the other side.
 - Always have $(\theta, r) \in E$.
 - Hard for **Col** to catch.

- Cliques are good for
 Principal and Row.
- Optimal Signaling ≈ partitions the graph into disjoint dense subgraphs.

This Talk

- Network Routing Games
- Normal Form Games
- Mixture Selection Framework

• Future Work

Second Price Auctions [EFGLT '12] [MS '12]

Second Price Auctions [EFGLT '12] [MS '12]

Mixture Selection [CCDEHT '15]

$$OPT = f^{+}(\lambda)$$

= max $\sum p_i f(\mu_i)$
s.t. $\sum p_i \mu_i = \lambda$

 $f_{\text{zerosum}}(\mu) = \max_{x} \min_{y} (x^T A^{\mu} y).$

$$f_{\text{auction}}(\mu) = \max_2(A\mu).$$

$$f_{\text{voting}}(\mu) = \cdots$$

- An optimization problem naturally arises in signaling.
- Optimal algorithm for all under one algorithmic framework.

Mixture Selection [CCDEHT '15]

• Parameter: A function $g: [0, 1]^n \rightarrow [0, 1]$.

• Input: A matrix $A \in [0, 1]^{n \times m}$.

• Goal: $\max_{x \in \Delta_m} g(Ax)$.

$$\max_{x \in \Delta_m} g(Ax)$$

Optimal Signaling

Mixture Selection

Mixture Selection Framework

Two "smoothness" parameters that tightly control the complexity of Mixture Selection and Optimal Signaling.

•
$$\alpha$$
-Lipschitz in L_{∞} : $|g(v_1) - g(v_2)| \le \alpha \cdot ||v_1 - v_2||_{\infty}$

• β -Noise stable: An adversary corrupts a random subset of v, g(v) changes by at most $\beta \epsilon$ if no individual coordinate is corrupted with marginal probability more than ϵ .

Our Results [CCDEHT '15]

• Main theorem: If g is α -Lipschitz and β -stable, then there is an algorithm for ϵ -optimal signaling with runtime $m^{O((\alpha/\epsilon)^2 \log(\beta/\epsilon))} \cdot T_{\alpha}$

Problem	α -Lipschitz	β -Stable	Runtime
Signaling in Normal Form Games	2	poly(n)	Quasi-PTAS
Signaling in Probabilistic Auctions	1	2	PTAS
Persuading Voters	0(1)	0(1)	PTAS

This Talk

- Network Routing Games
- Normal Form Games

• Mixture Selection Framework

Information Structure Design

- Public vs. private signaling schemes.
- Co-designing the information structure and the mechanism.
- Collecting and trading information.
- Real-world applications.

Private vs. Public

• What if the principal can send different signals to different agents?

• The principal can do better (in routing games)! [CDX '17]

Public vs. Private: Pigou's Example

Public vs. Private: Pigou's Example

Public vs. Private: Pigou's Example

Collaborators

Umang Bhaskar

Ho Yee Cheung

Li Han

Young Kun Ko

Chaitanya Swamy

Shang-Hua Teng

Ehsan Emamjomeh-Zadeh

Haifeng Xu

Yu Cheng (USC)

My Thesis

- Network Routing Games
- Normal Form Games
- Mixture Selection Framework
- Future Work

