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How to reveal information 
optimally to other strategic players?
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Examples



The Signaling Problem

• Strategic interactions with uncertainty.

• Choices of the agents depend on the information
available to them.

• An informed principal must choose how to reveal partial
information in order to induce a desirable outcome.
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Mechanism
Design
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Design allocation and
payment rules

Incentives

Choose what information to reveal

Beliefs

Information Structure Design
(Signaling, Persuasion)

A principal interested in the game’s outcome



How hard is it
(computationally) to find the
optimal information structure?
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This Talk

•Network Routing Games

•Normal Form Games

•Mixture Selection Framework

• Future Work
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How to reveal information optimally?
to minimize the latency 
of selfish routing?



Network 1: Two Parallel Links

𝑐 𝑥 = 0

𝑐 𝑥 = 1

𝑠 𝑡

𝑐 𝑥 = 1

𝑐 𝑥 = 0

𝑠 𝑡
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Network 2: Braess’s Paradox

𝑐 𝑥 = 𝑥

𝑐 𝑥 = 𝑥

𝑐 𝑥 = 1

𝑐 𝑥 = 1

𝑐 𝑥 = 𝜃𝑠 𝑡

𝜃 ∼ 𝑈{0,∞}
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𝑐 𝑥 = 𝑥

𝑐 𝑥 = 𝑥

𝑐 𝑥 = 1

𝑐 𝑥 = 1

𝑐 𝑥 = 𝜃𝑠 𝑡
• When 𝜃 = 0,
• Cost = 2.

𝜃 ∼ 𝑈{0,∞}
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𝑐 𝑥 = 𝑥

𝑐 𝑥 = 𝑥

𝑐 𝑥 = 1

𝑐 𝑥 = 1

𝑐 𝑥 = 𝜃𝑠 𝑡
• When 𝜃 = 0,
• Cost = 2.

• When 𝜃 ≥ 0.5,
• Cost = 1.5.

• Optimal:
reveal no information.

𝜃 ∼ 𝑈{0,∞}

Network 2: Braess’s Paradox
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Our Results [BCKS ’16]

• NP-hard to get multiplicative (4/3 − 𝜖) approximation.
• Even for single commodity and linear latencies.

• Full-revelation = price of  anarchy.
• 4/3 is tight for linear latencies.

Yu Cheng (USC)May	8,	2017



Proof Outline

𝑠9 𝑡9

𝑠: 𝑡:

𝑠 𝑡

• Exactly one of  the 
link is broken with 
probability ∑𝑝= = 1.

• What is the optimal 
signaling scheme?
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Proof Outline

𝑠9 𝑡9

𝑠: 𝑡:

𝑠 𝑡

• Partition the links 
into two disjoint sets.

• Reveal which set 
contains the broken link.
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• Partition the links 
into two disjoint sets.

• Reveal which set 
contains the broken link.



Proof Outline

𝑠9 𝑡9

𝑠: 𝑡:

𝑠 𝑡

Yu Cheng (USC)May	8,	2017

• Optimal signaling is 
as hard as optimal 
network design.

• NP-hard [CDR ’06].



This Talk

•Network Routing Games

•Normal Form Games

•Mixture Selection Framework

• Future Work
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Prisoner’s Dilemma
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Prisoner’s Dilemma [Dughmi’14]

𝜃 − 1 0

0 −4

−4𝜃 − 5

𝜃 − 5𝜃 − 1

𝜃 ∼ 𝑈{2, 0, −2}
• C = Cooperate,

D = Defect.

• (C, C) is a NE if 𝜃 ≥ 1,
(D, D) is a NE if 𝜃 ≤ 1.

• Principal gets
$1 for (C, C),
$0 otherwise.
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Prisoner’s Dilemma [Dughmi’14]

𝜃 − 1 0

0 −4

−4𝜃 − 5

𝜃 − 5𝜃 − 1

𝜃 ∼ 𝑈{2, 0, −2}
• Reveal no information:
• Agents always play (D, D).
• Principal gets $0.

• Reveal full information:
• (C, C) when 𝜃 = 2,
• (D, D) when 𝜃 = 0,−2.
• Principal gets $1/3.

Cooperate Defect
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Prisoner’s Dilemma [Dughmi’14]

𝜃 − 1 0

0 −4

−4𝜃 − 5

𝜃 − 5𝜃 − 1

𝜃 ∼ 𝑈{2, 0, −2}
• Optimal signaling scheme:
• High 𝜃 = 0, 2,
• Low 𝜃 = −2.

• 𝐸 𝜃	 	High = 1,
𝐸 𝜃	 	Low = −2.

• Agents play (C, C) when 
they receive High, so
principal gets $2/3.
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Our Results

• Bayesian Zero-Sum Games.
	 Θ = #strategies = 𝑛.

Principal’s payoff = Row player’s payoff.

• There is a Quasi-PTAS: We can compute an 𝜖-optimal
signaling scheme in time 𝑛E FGH I JK⁄ [CCDEHT ’15].
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𝜃 − 1 0

0 −4

−4𝜃 − 5

𝜃 − 5𝜃 − 1 (C, C) when E[𝜃] ≥ 1

C D

C
D

𝜃 ∼ 𝑈{2, 0, −2} Posterior 𝜇 ∈ ℝS: 𝜇9 = Pr 𝜃 = 2 , …

0
0
1

1
0
0

0
1
0

𝜃 = 0

𝜃 = −2
𝜃 = 2

Prior Decomposition



Prior Decomposition
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𝜃 = 0

𝜃 = −2

𝜃 = 2

𝜃 = 0

𝜃 = −2

𝜃 = 2

𝜃 = 0

𝜃 = −2

𝜃 = 2



Prior Decomposition
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𝜇9 =
1/2
1/2
0

𝜇: =
0
0
1

𝑂𝑃𝑇 =
2
3𝑓 𝜇9 +

1
3𝑓 𝜇: =

2
3

max ∑𝑝^𝑓 𝜇^
𝑠. 𝑡. 		∑𝑝^𝜇^ = 𝜆

𝜆 =
1/3
1/3
1/3

=
2
3𝜇9 +

1
3𝜇:

𝑂𝑃𝑇 = 𝑓`(𝜆) =	

𝜃 = 0

𝜃 = −2

𝜃 = 2



Quasi-PTAS

• Optimize over all 𝑂(log	𝑛/𝜖:)-sparse signals.

• Given a signal / posterior distribution 𝜇.
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𝐴9 𝐴9 𝐴I𝐴e = 𝜇9 																+ 𝜇: 															+ 	…	+ 𝜇I



Quasi-PTAS

• 𝜇g = sample 𝑂(log	𝑛/𝜖:) times from 𝜇.
• Standard tail bound + union bound

⟹ max
^,i

𝐴ej − 𝐴e ^,i
≤ 𝜖 with probability 1 − 𝜖.

• Value of  𝐴ej is 𝑂(𝜖)-close to value of  𝐴e .
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𝐴9 𝐴9 𝐴I𝐴e = 𝜇9 																+ 𝜇: 															+ 	…	+ 𝜇I



Our Results

• There is a Quasi-PTAS: We can compute an 𝜖-optimal
signaling scheme in time 𝑛E FGH I JK⁄ [CCDEHT ’15].

• Tight assuming the Planted Clique Conjecture [BCKS ’16]

or the Exponential Time Hypothesis [R ’16][CK ’16].
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Planted Clique Conjecture

July	27,	2016 Yu Cheng (USC)

• No poly-time algorithm that recovers a planted 𝑘-clique from 𝐺(𝑛, 1/2)
with constant success probability for 𝑘 = 𝑜 𝑛� and 𝑘 = 𝜔 log	𝑛



Security Games on Graphs [Dughmi’14]

• Given 𝐺 = 𝑉, 𝐸 ,
• State of nature 𝜃 ∼ 𝑢𝑛𝑖(𝑉),
• Row picks 𝑟 ∈ 𝑉,
• Col picks 𝑐 ∈ 𝑉.

• Objective (zero-sum):
• Row wants to be adjacent to 𝜃,
• Col wants to catch Row or 𝜃.

𝜃

𝑟

𝑐
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Security Games on Graphs [Dughmi’14]

Nature picks 𝜃 ∈ 𝑉,
Row and Col pick 𝑟, 𝑐 ∈ 𝑉 .

Row’s payoff:
+1 if  𝜃, 𝑟 ∈ 𝐸,
−1 if  c = 𝜃,
−1 if  c = a.

𝜃

𝑟

𝑐

Row’s payoff  = 1
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Security Games on Graphs [Dughmi’14]

𝜃

𝑟, 𝑐

Row’s payoff  = 1 – 1 = 0
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Nature picks 𝜃 ∈ 𝑉,
Row and Col pick 𝑟, 𝑐 ∈ 𝑉 .

Row’s payoff:
+1 if  𝜃, 𝑟 ∈ 𝐸,
−1 if  c = 𝜃,
−1 if  c = a.



Security Games on Graphs [Dughmi’14]

• Asymmetry of payoffs.

• Principal reveals
𝜃 ∈ 𝐿 or 𝜃 ∈ 𝑅.

• Row chooses uniformly
from the other side.
• Always have 𝜃, 𝑟 ∈ 𝐸.
• Hard for Col to catch.

𝜃

𝑟
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Security Games on Graphs [Dughmi’14]

• Cliques are good for
Principal and Row.

• Optimal Signaling ≈
partitions the graph into
disjoint dense subgraphs.
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This Talk

•Network Routing Games

•Normal Form Games

•Mixture Selection Framework

• Future Work
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Second Price Auctions [EFGLT ’12] [MS ’12]
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1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

• Full information:
One buyer bids 1,
revenue = 0.

• No information:
Everyone bids 1/4,
revenue = 1/4.

• Optimal: revenue = 1/2.



Second Price Auctions [EFGLT ’12] [MS ’12]
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1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

𝑓

1/4
1/4
1/4
1/4

= 1/4

𝑓

1/2
1/2
0
0

= 1/2

𝐴 =



Mixture Selection [CCDEHT ’15]

• An optimization problem naturally arises in signaling.
• Optimal algorithm for all under one algorithmic framework.
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max ∑𝑝^𝑓 𝜇^
𝑠. 𝑡. 		∑𝑝^𝜇^ = 𝜆

𝑂𝑃𝑇 = 𝑓`(𝜆)	
=

𝑓xyzG{|} 𝜇 = max
~
min
�
(𝑥�𝐴e𝑦) .

𝑓�|���G� 𝜇 = max:(𝐴𝜇).

𝑓�G���H 𝜇 = ⋯



Mixture Selection [CCDEHT ’15]

• Parameter: A function 𝑔: 0, 1 I → 	 [0, 1].

• Input: A matrix 𝐴 ∈ 0, 1 I×�.

• Goal: max
~∈��

𝑔(𝐴𝑥).
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max
~∈��

𝑔(𝐴𝑥)
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Optimal Signaling
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Mixture Selection

max ∑𝑝^𝑔 𝐴𝜇^
𝑠. 𝑡. 		∑𝑝^𝜇^ = 𝜆

max 𝑔 𝐴𝑥



Mixture Selection Framework

Two “smoothness” parameters that tightly control the
complexity of Mixture Selection and Optimal Signaling.

• 𝛼-Lipschitz in 𝐿�: 𝑔 𝑣9 − 𝑔 𝑣: ≤ 𝛼 ⋅ 𝑣9 − 𝑣: �

• 𝛽-Noise stable: An adversary corrupts a random subset of 𝑣,
𝑔(𝑣) changes by at most 𝛽𝜖 if no individual coordinate is
corrupted with marginal probability more than 𝜖.
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Our Results [CCDEHT ’15]

• Main theorem: If g is 𝛼-Lipschitz and 𝛽-stable, then
there is an algorithm for 𝜖-optimal signaling with runtime

𝑚E � J⁄ K FGH � J⁄ ⋅ 𝑇�
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Problem 𝛼-Lipschitz 𝛽-Stable Runtime

Signaling in Normal Form Games 2 poly(𝑛) Quasi-PTAS

Signaling in Probabilistic Auctions 1 2 PTAS

Persuading Voters 𝑂(1) 𝑂(1) PTAS



This Talk

•Network Routing Games

•Normal Form Games

•Mixture Selection Framework

• Future Work
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Information Structure Design

• Public vs. private signaling schemes.

• Co-designing the information structure and the mechanism.

• Collecting and trading information.

• Real-world applications.
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Private vs. Public

• What if  the principal can send different signals to 
different agents?

• The principal can do better (in routing games)! [CDX ’17]
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Public vs. Private: Pigou’s Example
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Public vs. Private: Pigou’s Example
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Public vs. Private: Pigou’s Example
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