Scalable and Provably Robust Algorithms for Machine Learning

Yu Cheng

University of Illinois at Chicago

Motivation

The Washington Post Democracy Dies in Darkness

WorldViews

Syrian hackers claim AP hack that tipped stock market by \$136 billion.

By **Max Fisher** April 23, 2013

Can we design algorithms that are robust when a small fraction of the data is adversarially corrupted?

Motivation

TECHNOLOGY

Researchers Develop Glasses Frames That Fool Facial Recognition Technology

November 5, 2016 · 8:27 AM ET Heard on Weekend Edition Saturday

Yu Cheng

4 Aug 2017 | 18:00 GMT

Slight Street Sign Modifications Can Completely Fool Machine Learning Algorithms

Minor changes to street sign graphics can fool machine learning algorithms into thinking the signs say something completely different

[Eykholt+ '18]

Can we make non-convex optimization robust?

Motivation

Vex

recode

Artificial intelligence will help determine if you get your next job

Al is being used to attract applicants and to predict a candidate's fit for a position. But is it up to the task? By Rebecca Heilweil | Dec 12, 2019, 8:00am EST Technology | Future Finance

Sweet-Talking CEOs Are Starting to Outsmart the Robot Analysts

Bloomberg

Study finds companies alter words to cater to listening algos
 Emphasis on positivity as negative phrases get ditched

By <u>Gregor Stuart Hunter</u> +Follow October 20, 2020, 8:03 AM EDT

Can we design ML systems that work well when the data is provided by self-interested agents?

Ξ

Subscribe

Challenges

What are challenges in developing robust ML algorithms?

Challenges

What are challenges in developing robust ML algorithms?

Yu Cheng

Challenges

What are challenges in developing robust ML algorithms?

• Adversarial attacks.

Challenges

What are challenges in developing robust ML algorithms?

- Adversarial attacks.
- Model misspecification/Strong assumptions.

Challenges

What are challenges in developing robust ML algorithms?

- Adversarial attacks.
- Model misspecification/Strong assumptions.
- Strategic behaviors.

Challenges

What are challenges in developing robust ML algorithms?

- Adversarial attacks.
- Model misspecification/Strong assumptions.
- Strategic behaviors.

Design fast and provably robust algorithms for ML.

- Focus on basic problems that are well-understood w/o corruption.
- Bring together ideas from ML, optimization, and game theory.

Mechanism Design and Equilibrium Computation [CGMW WINE'18 Best Paper] [CDS SODA'17] [CCT ITCS'17]

> Graph Sparsification [CCPS ICALP'21] [CCLPT COLT'15]

Information Structure Design [BCKS EC'16] [CCDEHT FOCS'15]

Fairness and Social Choice [KJWCM AISTATS'21] **[C**]MW EC'19] [ZCC AAAI'19] [CDK AAAI'18] [CDK EC'17]

Planning in MDPs with Agents [ZCC AAAI'22] [ZCC AAAI'21]

Outline

Part I: Introduction

• Motivation/Challenges

Part II: Robust Algorithms for ML

- High-Dimensional Statistics
- Non-Convex Optimization
- Learning with Strategic Agents

Part III: Future Directions

Mean Estimation

- Input: *n* samples $\{X_1, \dots, X_n\}$ drawn from $\mathcal{N}(\mu^*, I)$ on \mathbb{R}^d .
- Goal: Learn μ^* .

Empirical mean
$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 works:
 $\|\widehat{\mu} - \mu^*\|_2 \le \epsilon$ when $n = \Omega(d/\epsilon^2)$.

Robust Mean Estimation

ϵ -Corruption Model

Goal: given an ϵ -corrupted set of n samples, learn μ^* .

Classical Estimators and Why They Fail

- Empirical mean
- Empirical median
 - Coordinate-wise median: can be $\Theta(\epsilon \sqrt{d})$ far from the true mean.
 - Tukey median: O(ε) error but is
 NP-Hard to compute.

Robust Mean Estimation

Algorithm	Error Guarantee	Runtime					
Coordinate-wise median	$O(\epsilon \sqrt{d})$	0(nd)					
Tukey median	$O(\epsilon)$	NP-Hard					

Robust Mean Estimation

Algorithm	Error Guarantee	Runtime						
Coordinate-wise median	$O(\epsilon \sqrt{d})$	0(nd)						
Tukey median	$O(\epsilon)$	NP-Hard						
[Lai+ '16]	$O(\epsilon \sqrt{\log d})$	D 1 1						
[Diakonikolas+ '16]	$O(\epsilon \sqrt{\log(1/\epsilon)})$	Polynomial						

There has been a flurry of research that obtained polynomial-time robust algorithms for a wide range of high-dimensional learning tasks.

High-Dimensional Robust Statistics

When a small fraction of the input is corrupted:

[Tukey '60, Huber '64]: provably robust statistical estimators.

High-Dimensional Robust Statistics

When a small fraction of the input is corrupted:

[Tukey '60, Huber '64]: provably robust statistical estimators.

[Diakonikolas+ '16, Lai+ '16]: provably robust statistical estimators that can be computed in **polynomial-time**.

Polynomial-time ≠ Scalable!

These algorithms are often much slower than the fastest non-robust ones.

High-Dimensional Robust Statistics

When a small fraction of the input is corrupted:

[Tukey '60, Huber '64]: provably robust statistical estimators.

[Diakonikolas+ '16, Lai+ '16]: provably robust statistical estimators that can be computed in **polynomial-time**.

[C Diakonikolas Ge '19]: provably robust statistical estimators that are **as efficient as** their non-robust counterparts.

Robust Mean Estimation

Algorithm	Error Guarantee	Runtime					
Coordinate-wise median	$O(\epsilon \sqrt{d})$	<i>O</i> (<i>nd</i>)					
Tukey median	$O(\epsilon)$	NP-Hard					
[Lai+ '16]	$O(\epsilon \sqrt{\log d})$	Dolumomial					
[Diakonikolas+ '16]	$O(\epsilon \sqrt{\log(1/\epsilon)})$	Polynomiai					

Robust Mean Estimation

Algorithm	Error Guarantee	Runtime						
Coordinate-wise median	$O(\epsilon \sqrt{d})$	0(nd)						
Tukey median	$O(\epsilon)$	NP-Hard						
[Lai+ '16]	$O(\epsilon \sqrt{\log d})$	$O(md^2)$						
[Diakonikolas+ '16]	$O(\epsilon \sqrt{\log(1/\epsilon)})$	<u>sz(nu</u>)						

Robust mean estimation in nearly-linear time?

Robust Mean Estimation in Nearly Linear Time [C Diakonikolas Ge '19]

Algorithm	Error Guarantee	Runtime						
Coordinate-wise median	$O(\epsilon \sqrt{d})$	<i>O</i> (<i>nd</i>)						
Tukey median	$O(\epsilon)$	NP-Hard						
[Lai+ '16]	$O(\epsilon \sqrt{\log d})$	$O(md^2)$						
[Diakonikolas+ '16]	$O(\epsilon \sqrt{\log(1/\epsilon)})$	$SZ(na^{-})$						
[C Diakonikolas Ge '19]	$O(\epsilon \sqrt{\log(1/\epsilon)})$	$ ilde{O}(nd)/ ext{poly}(\epsilon)$						

For constant ϵ , our algorithm has the best-possible error guarantee, sample complexity, and running time (up to log factors).

Robust Mean Estimation in Nearly Linear Time [C Diakonikolas Ge '19]

With corruption, the top eigenvector of M can be an arbitrary vector y'!

Robust Mean Estimation in Nearly Linear Time [C Diakonikolas Ge '19]

Robust Mean Estimation in Nearly Linear Time [C Diakonikolas Ge '19]

Yu Cheng

Robust Mean Estimation in Nearly Linear Time [C Diakonikolas Ge '19]

- Start with coordinate-wise median that is $O(\sqrt{d})$ far from μ^* .
- The distance to μ^* decreases by half in each iteration.
 - Each iteration takes nearly-linear time (mostly solving a packing SDP).

Beyond Mean Estimation

provably robust statistical estimators that are **as efficient as** their non-robust counterparts.

[**C**DG'19]:

[DL'19][DHL'19]:

[**C**DGW'19][LY'20]:

[C+'20]:

[C+'20][D+'20]:

[**C**L'21]:

[DKKLSS'19]:

mean estimation in time $\tilde{O}(nd)/\text{poly}(\epsilon)$. $\tilde{O}(nd)$ time, heavy-tail mean estimation.

covariance estimation.

linear regression.

list-decodable mean estimation.

learning fixed-structure Bayesian networks.

robust gradient descent.

Beyond Mean Estimation

Outline

- Part I: Introduction
 - Motivation/Challenges
- Part II: Robust Algorithms for ML
 - High-Dimensional Statistics
 - Non-Convex Optimization
 - Learning with Strategic Agents

Part III: Future Directions

Non-Convex Optimization

Extremely successful in practice.

Non-Convex Optimization

Extremely successful in practice.

- In theory: NP-Hard.
- In practice: can be solved via (stochastic) gradient descent.

Why does non-convex optimization work?

- One possible explanation: all local optima are globally optimal.
- How robust are such landscape results?

Matrix Completion

An unknown *n* by *n* matrix M^* with rank $r \ll n$. Input: M_{ij}^* for a set of observed entries $(i, j) \in \Omega$. Goal: Recover M^* .

Matrix Completion

Application: recommendation systems (e.g., [Fiat et al. '01, Rennie and Srebro '05, Koren '09]):

Matrix Completion

Application: recommendation systems

(e.g., [Fiat et al. '01, Rennie and Srebro '05, Koren '09]):

n users	0	-2 1	-2 0	-2 2	2-2	-2 1	-2 0	0	0	-2 1		1 0	0	-1 1	1	-1 -1	0	-1 1	-1 0	<i>r</i> features		
	1	0	-1	1	-1	0	-1	-1	1	0	L											
	2	0	-2	2	-2	0	-2	-2	 2	0												
	2	2	0	4	-4	2	0	-2	 2	2		We hope to recover M^{\star}										
	-1	1	2	0	0	1	2	1	-1	1	$\tilde{O}(nr)$ charactic											
	1	1	0	2	-2	1	0	-1	1	1	given $O(nr)$ obs								servations.			
	-2	2	4	0	0	2	4	2	-2	2												

n movies
Previous Work

• Convex Relaxation (e.g., [Candès and Tao '10] [Recht '11])

• min
$$||M||_{\star}$$
 s.t. $M_{ij} = M_{ij}^{\star}$

• Runtime: $O(n^4)$.

In practice, people use non-convex approaches.

Previous Work

• Non-Convex Approaches $\min \|XX^{\top} - M^{\star}\|_{F}^{2}$ • min $f(X) = \sum_{(i,j)\in\Omega} \left((XX^{T})_{ij} - M_{ij}^{\star} \right)^{2}$ for $X \in \mathbb{R}^{n \times r}$.

If $\widetilde{\Omega}(nr^6)$ entries are observed **uniformly at random**, any local optima X of f has $XX^{\top} = M^*$ [Ge Lee Ma '16].

What if the observations are **not** uniformly at random?

Semi-Random Adversary

Robust Matrix Completion [C Ge '18]

Does not hurt **convex** approaches: min $||M||_{\star}$ s.t. $M_{ij} = M_{ij}^{\star}$

However, existing **non-convex** algorithms **are not robust** against such a semi-random adversary.

Counter Examples [C Ge '18]

$$f(X) = \sum_{(i,j)\in\Omega} \left(M_{ij}^{\star} - (XX^{\top})_{ij} \right)^2$$
 has bad local optima.

-1

-1

1	1	1	1	-1	-1	-1	-1
1	1	1	1	-1	-1	-1	-1
1	1	1	1	-1	-1	-1	-1
1	1	1	1	-1	-1	-1	-1
-1	-1	-1	-1	1	1	1	1
-1	-1	-1	-1	1	1	1	1
-1	-1	-1	-1	1	1	1	1
-1	-1	-1	-1	1	1	1	1

Counter Examples [C Ge '18]

$$\begin{array}{ccc} 1 & & \begin{pmatrix} 1 \\ -1 \end{pmatrix} \rightarrow X = \begin{pmatrix} 1 \\ -(1-\epsilon) \end{pmatrix} \rightarrow \cdots \rightarrow \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ & & & \\ \end{array}$$

$$\begin{array}{ccc} \bullet & & \\ -1 & & & \\ \end{array}$$

$$\begin{array}{ccc} X X^{\mathsf{T}} \approx \begin{pmatrix} 1 & -1+\epsilon \\ -1+\epsilon & 1-2\epsilon \end{pmatrix} \end{array}$$

$$f(X) = \sum_{(i,j)\in\Omega} \left((XX^T)_{ij} - M^{\star}_{ij} \right)^2 \approx \|XX^T - M^{\star}\|_F^2$$

Robust Matrix Completion [C Ge '18]

• Against a semi-random adversary:

Existing non-convex algorithms are not robust against such a semi-random adversary.

We can fix the non-convex approaches while preserving their efficiency.

Robust Matrix Completion [C Ge '18]

If we know the adversary is changing the input like this ...

Preprocessing step: reweight the samples so that the input is "similar" to a random input.

$$f_{W}(X) = \sum_{(i,j)\in\Omega} W_{ij} (M_{ij}^{\star} - (XX^{\top})_{ij})^{2}$$

The graph formulation:

The graph formulation:

• Input: H = G(n, n, p) + extra edges

The graph formulation:

- Input: H = G(n, n, p) + extra edges
- Goal: Recover G

Recover a graph (spectrally) similar to G.

We show this can be solved in time: $\tilde{O}(m \operatorname{poly}(1/\epsilon))$.

 $(m = |E_H|, H' \approx_{\epsilon} G)$

Adapt algorithmic techniques developed for Graph Sparsification [Batson Spielman Srivastava '12, Lee and Sun '17].

Robust Matrix Completion [C Ge '18]

Robust Non-Convex Optimization

A meta framework for making non-convex approaches robust while preserving their efficiency.

Outline

Part I: Introduction

• Motivation/Challenges

Part II: Robust Algorithms for ML

- High-Dimensional Statistics
- Non-Convex Optimization
- Learning with Strategic Agents

Part III: Future Directions

Learning with Strategic Agents

- Data often come from agents, but traditionally we ignore the agents' incentives and consider learning problems in isolation.
- When the algorithms are used to make important decisions about the agents, agents may want to strategically provide data.
- Goal: design optimal algorithms or policies that take the agents' strategic behavior into consideration.

Motivating examples:

• Hiring committee

Motivating examples:

• Hiring committee

Motivating examples:

- Hiring committee
- College scout

The principal does not have direct access to the samples and relies on a strategic agent to provide samples.

What is the optimal policy?

Two types of agents: good

- Principal wants to accept the good type and reject the bad type.
- Agent wants to get accepted.

Principal has time to read m paper.

Each agent has *n* papers.

• Agent generates n samples from a publicly-known distribution based on his/her type, then choose which $m \leq n$ samples to report.

$Example \ 1 \ [Zhang \ \textbf{C} \ Conitzer \ '19]$

n = 50, m = 1. (b): top conference (b): average conference

0.05	0.95
0.005	0.995

Optimal policy: accept iff agent submits { ()

- is accepted with prob. $1 0.95^{50} \approx 0.92$.
- is accepted with prob. $1 0.995^{50} \approx 0.22$.

Example 2 [Zhang C Conitzer '19]

n = 3, m = 2.

Accept
$$\{ \mathcal{B} \mathcal{B} \}$$
 and $\{ \mathcal{B} \mathcal{B} \}!$

Not monotone in the likelihood ratio!

0.2

0.1

0.8

0.1

Yu Cheng

0

0.8

Automated Mechanism Design

We study the structure and computation of the optimal policy.

- [Zhang C Conitzer '19]: Agents can withhold samples.
- [Zhang **C** Conitzer '19]:

Agents can transform the samples in limited ways.

Automated Mechanism Design

We study the structure and computation of the optimal policy.

- [Zhang C Conitzer '19]: Agents can withhold samples.
- [Zhang **C** Conitzer '19]:

Agents can transform the samples in limited ways.

• [Zhang C Conitzer '21]:

Agents may have different preferences over outcomes. Generalization to more outcomes than accept/reject.

Outline

- Part I: Introduction
 - Motivation/Challenges
- Part II: Robust Algorithms for ML
 - High-Dimensional Statistics
 - Non-Convex Optimization
 - Learning with Strategic Agents

Part III: Future Directions

0	-2	-2	-2	2	-2	-2	0
1	1	0	2	-2	1	0	-1
1	0	-1	1	-1	0	-1	-1
2	0	-2	2	-2	0	-2	-2
2	2	0	4	-4	2	0	-2
-1	1	2	0	0	1	2	1
1	1	0	2	-2	1	0	-1
-2	2	4	0	0	2	4	2

0	-2	-2	-2	2	-2	-2	0
1	1	0	2	-2	1	0	-1
1	0	-1	1	-1	0	-1	-1
2	0	-2	2	-2	0	-2	-2
2	2	0	4	-4	2	0	-2
-1	1	2	0	0	1	2	1
1	1	0	2	-2	1	0	-1
-2	2	4	0	0	2	4	2

Yu Cheng

Future Direction I: Simple Algorithms

This talk:

- Polynomial time. X
- Fastest possible asymptotic runtime. \checkmark

Future work: speed up the technology transfer into practice.

- Beyond fast asymptotic runtime.
- Leverage modern ML architectures (GPUs, DL packages).

Future Direction I: Simple Algorithms

When a small fraction of the input is corrupted:

[Tukey '60, Huber '64]: provably robust statistical estimators.

[Diakonikolas+'16, Lai+'16]: polynomial-time robust statistical estimators.

[**C** Diakonikolas Ge '19]: provably robust estimators that are **as efficient as** their non-robust counterparts. Fast asymptotic runtime ≠ Practical Many algorithms are very sophisticated (e.g., ellipsoid method, SoS, JL lemma, matrix multiplication weight update) or require parameters that need careful tuning.

High-Dimensional Robust Statistics

When a small fraction of the input is corrupted:

[Tukey '60, Huber '64]: provably robust statistical estimators.

[Diakonikolas+'16, Lai+'16]: polynomial-time robust statistical estimators.

[**C** Diakonikolas Ge '19]: provably robust estimators that are **as efficient as** their non-robust counterparts.

[**C** Diakonikolas Ge Soltanolkotabi '20]: provably robust estimators that can be computed using **standard first-order methods**. Robust Mean Estimation via Gradient Descent [C Diakonikolas Ge Soltanolkotabi '20]

- We consider non-convex formulations of robust mean estimation:
- Despite its non-convexity, we show that any (approximate) stationary point works!


```
for itr = 1:numItr
   Sigma_w_fun = @(v) X' * (w .* (X * v)) - (X' * w)^2 * v;
   [u, lambda] = eigs(Sigma_w_fun, d, 1);
   nabla_f_w = (X * u) .* (X * u) - 2 * (w' * (X * u)) * (X * u);
   w = w - stepSize * nabla_f_w / norm(nabla_f_w);
   w = project_onto_capped_simplex(w, 1 / (N - epsN));
end
```

Robust estimators that are **as efficient as** their non-robust counterparts.

[**C**DG'19]:

mean estimation in time $\tilde{O}(nd)/\text{poly}(\epsilon)$.

[DL'19][DHL'19]:

 $\tilde{O}(nd)$ time, heavy-tail mean estimation.

[CDGW'19][LY'20]: covariance estimation.

[C+'20]: linear regression. Span

Sparse mean?

[C+'20][D+'20]: list-decodable mean estimation.

[CL'21]: learning Bayesian networks. Robust estimators that can be computed using **standard first-order methods**.

[CDGS'20]: mean estimation via gradient descent. [HLZ'20]: heavy-tailed mean estimation. improved # of iterations via mirror descent. [Zhu+'21]: covariance estimation, linear regression. [CDKGGS'22, ongoing]: sparse mean estimation and sparse PCA.

Fast and simple?

Future Direction II: Robust Deep Learning

This talk:

• Design and analysis of robust non-convex algorithms for problems that we understand very well w/o corruption.

Future work: robustness in deep learning.

- Expand the success of robust non-convex optimization.
- Develop heuristics based on theoretical analysis.

Future Direction II: Robust Deep Learning

[CGZ, ongoing]: one-bit and noisy matrix completion.[CDG, ongoing]: matrix sensing and phase retrieval.
Future Direction II: Non-Convex Optimization

Robustness of neural networks:

- Under what assumptions can neural nets still converge to good parameters if 1% of the data is corrupted?
- If we want to throw away 1% of the training data, which 1% should we throw away?

Future Directions III: General Theory of Robustness

- Systematic exploration of robustness.
 - Explore different adversarial models and examine whether commonly used algorithms are robust in these models.
 - Develop faster/simpler robust algorithms.
 - Translate the success of robust algorithm design to broader areas.
- Bridge the gap between the growing need for robust algorithms and the lack of general theory of robustness.

Ν

А

S

FΟ

U N I V E R S I T Y

1000

0.

IS ON

SC

Part I: Introduction

• Motivation/Challenges

Part II: Robust Algorithms for ML

- High-Dimensional Statistics
- Non-Convex Optimization
- Learning with Strategic Agents

Part III: Future Directions

