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Can we design algorithms that are robust when a small fraction 
of  the data is adversarially corrupted?



Motivation
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Can we make non-convex 
optimization robust?

[Eykholt+ ’18]

[Sharif+ ’16]



Motivation
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Can we design ML systems that work well when the data is 
provided by self-interested agents?



Challenges

What are challenges in developing robust ML algorithms?
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What are challenges in developing robust ML algorithms?
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model/parameters data algorithms



Challenges

What are challenges in developing robust ML algorithms?
• Adversarial attacks.
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model/parameters corrupted data algorithms



Challenges

What are challenges in developing robust ML algorithms?
• Adversarial attacks.
• Model misspecification/Strong assumptions.
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model/parameters data algorithms



Challenges

What are challenges in developing robust ML algorithms?
• Adversarial attacks.
• Model misspecification/Strong assumptions.
• Strategic behaviors.
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strategic agents data algorithms



Challenges

What are challenges in developing robust ML algorithms?
• Adversarial attacks.
• Model misspecification/Strong assumptions.
• Strategic behaviors.

Design fast and provably robust algorithms for ML.
• Focus on basic problems that are well-understood w/o corruption.
• Bring together ideas from ML, optimization, and game theory.
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Automated
Mechanism Design

[ZCC AAAI’21]
[ZCC NeurIPS’19]

[ZCC ICML’19]

Faster Algorithms
for Robust Statistics

[CL ICLR’21]
[CDGW COLT’19]
[CDG SODA’19]

[CDKS NeurIPS’18]

Robust Non-Convex
Matrix Completion

[CG COLT’18]

Spectral
Graph Theory

Non-Convex
Optimization

Robustness
in Machine
Learning

Game
Theory

May 2, 2022 Yu Cheng

Mechanism Design and
Equilibrium Computation

[CGMW WINE’18 Best Paper]
[CDS SODA’17]
[CCT ITCS’17]

Graph Sparsification
[CCPS ICALP’21]
[CCLPT COLT’15]

Information Structure Design
[BCKS EC’16]

[CCDEHT FOCS’15]

Fairness and Social Choice
[KJWCM AISTATS’21]

[CJMW EC’19]
[ZCC AAAI’19]
[CDK AAAI’18]

[CDK EC’17]

Planning in MDPs with Agents
[ZCC AAAI’22]
[ZCC AAAI’21]

Robust Estimation
via Gradient Descent

[CDGS ICML’20]



Outline

Part I: Introduction
• Motivation/Challenges

Part II: Robust Algorithms for ML
• High-Dimensional Statistics
• Non-Convex Optimization
• Learning with Strategic Agents

Part III: Future Directions
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Mean Estimation

• Input: 𝑛 samples {𝑋!, … , 𝑋"} drawn from 𝒩(𝜇⋆, 𝐼) on ℝ$ .

• Goal: Learn 𝜇⋆.

Empirical mean !𝜇 = !
"
∑!"#$ 𝑋! works:

-𝜇 − 𝜇⋆ % ≤ 𝜖 when 𝑛 = Ω(𝑑/𝜖%).
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Robust Mean Estimation

14

𝜇⋆

May 2, 2022 Yu Cheng

𝑑



𝜖-Corruption Model
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Goal: given an 𝜖-corrupted set of 𝑛 samples, learn 𝜇⋆.

specifies sample complexity 𝑛.

draws 𝑛 samples from 𝒩(𝜇⋆, 𝐼).

replaces 𝜖𝑛 samples with arbitrary points.
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Classical Estimators and Why They Fail

• Empirical mean

• Empirical median
• Coordinate-wise median: can be
Θ(𝜖 𝑑) far from the true mean.

• Tukey median: 𝑂(𝜖) error but is
NP-Hard to compute.
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Robust Mean Estimation
Algorithm Error Guarantee Runtime

Coordinate-wise median 𝑂(𝜖 𝑑) 𝑂(𝑛𝑑)
Tukey median 𝑂(𝜖) NP-Hard

May 2, 2022 Yu Cheng 17



Robust Mean Estimation
Algorithm Error Guarantee Runtime

Coordinate-wise median 𝑂(𝜖 𝑑) 𝑂(𝑛𝑑)
Tukey median 𝑂(𝜖) NP-Hard

[Lai+ ’16] 𝑂(𝜖 log 𝑑)
Polynomial

[Diakonikolas+ ’16] 𝑂(𝜖 log(1/𝜖))

May 2, 2022 Yu Cheng 18

There has been a flurry of research that obtained polynomial-time 
robust algorithms for a wide range of  high-dimensional learning tasks. 



High-Dimensional Robust Statistics
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When a small fraction of the input is corrupted:

[Tukey ’60, Huber ’64]: provably robust statistical estimators.



High-Dimensional Robust Statistics
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Polynomial-time ≠ Scalable!
These algorithms are often much slower than the

fastest non-robust ones.

When a small fraction of the input is corrupted:

[Tukey ’60, Huber ’64]: provably robust statistical estimators.

[Diakonikolas+ ’16, Lai+ ’16]: provably robust statistical estimators that 
can be computed in polynomial-time.



High-Dimensional Robust Statistics

May 2, 2022 Yu Cheng 21

[C Diakonikolas Ge ’19]: provably robust statistical estimators 
that are as efficient as their non-robust counterparts.

When a small fraction of the input is corrupted:

[Tukey ’60, Huber ’64]: provably robust statistical estimators.

[Diakonikolas+ ’16, Lai+ ’16]: provably robust statistical estimators that 
can be computed in polynomial-time.



Robust Mean Estimation
Algorithm Error Guarantee Runtime

Coordinate-wise median 𝑂(𝜖 𝑑) 𝑂(𝑛𝑑)
Tukey median 𝑂(𝜖) NP-Hard

[Lai+ ’16] 𝑂(𝜖 log 𝑑)
Polynomial

[Diakonikolas+ ’16] 𝑂(𝜖 log(1/𝜖))
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Robust Mean Estimation
Algorithm Error Guarantee Runtime

Coordinate-wise median 𝑂(𝜖 𝑑) 𝑂(𝑛𝑑)
Tukey median 𝑂(𝜖) NP-Hard

[Lai+ ’16] 𝑂(𝜖 log 𝑑)
Ω(𝑛𝑑")

[Diakonikolas+ ’16] 𝑂(𝜖 log(1/𝜖))

Robust mean estimation in nearly-linear time?

May 2, 2022 Yu Cheng 23



Algorithm Error Guarantee Runtime

Coordinate-wise median 𝑂(𝜖 𝑑) 𝑂(𝑛𝑑)
Tukey median 𝑂(𝜖) NP-Hard

[Lai+ ’16] 𝑂(𝜖 log 𝑑)
Ω(𝑛𝑑")

[Diakonikolas+ ’16] 𝑂(𝜖 log(1/𝜖))
[C Diakonikolas Ge ’19] 𝑂(𝜖 log(1/𝜖)) .𝑂(𝑛𝑑)/poly 𝜖

May 2, 2022 Yu Cheng 24

For constant 𝜖, our algorithm has the best-possible error guarantee, 
sample complexity, and running time (up to log factors).

Robust Mean Estimation in Nearly Linear Time
[C Diakonikolas Ge ’19]

.𝑂
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Robust Mean Estimation in Nearly Linear Time
[C Diakonikolas Ge ’19]

When there is no corruption,

𝑀 ≜ #
$
∑%&#$ 𝑋% 𝑋%'

• top eigenvalue of 𝑀 ≈ 1 + 𝜇⋆ "
"

• top eigenvector of 𝑀 ≈ !⋆

!⋆ #
≜ 𝑦

With corruption, the top eigenvector of 𝑀 can be an arbitrary vector 𝑦’ !

May 2, 2022 Yu Cheng

≈ 𝐼 + 𝜇⋆𝜇⋆'
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Key idea: robust top eigenvector.

When measuring variance along a direction, 
remove 𝝐-fraction of the farthest points.

(1 − 𝜖)-variance in direction 𝑦 ≫ 𝑦′.

max
( #&#

average of the smallest (1 − 𝜖)−fraction of 𝑋%'𝑦
"

%&#

$

Robust Mean Estimation in Nearly Linear Time
[C Diakonikolas Ge ’19]

May 2, 2022 Yu Cheng
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max
)⪰+,-.())1#

average of the smallest (1 − 𝜖)−fraction of 𝑋%'𝑌 𝑋% %&#
$

optimal solution ≈ 𝑦𝑦', can be written as a packing SDP.

Robust Mean Estimation in Nearly Linear Time
[C Diakonikolas Ge ’19]

May 2, 2022 Yu Cheng

Key idea: robust top eigenvector.

When measuring variance along a direction, 
remove 𝝐-fraction of the farthest points.

(1 − 𝜖)-variance in direction 𝑦 ≫ 𝑦′.
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Robust Mean Estimation in Nearly Linear Time
[C Diakonikolas Ge ’19]

• Start with coordinate-wise median that is 𝑂( 𝑑) far from 𝜇⋆.

• The distance to 𝜇⋆ decreases by half  in each iteration.
• Each iteration takes nearly-linear time

(mostly solving a packing SDP).
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[CDG’19]: mean estimation in time &𝑂(𝑛𝑑)/poly 𝜖 .

[DL’19][DHL’19]: &𝑂 𝑛𝑑 time, heavy-tail mean estimation.

[CDGW’19][LY’20]: covariance estimation.

[C+’20]: linear regression.

[C+’20][D+’20]: list-decodable mean estimation.

[CL’21]: learning fixed-structure Bayesian networks.

[DKKLSS’19]: robust gradient descent.

provably robust statistical estimators that are as
efficient as their non-robust counterparts.

Beyond Mean Estimation



Beyond Mean Estimation

31
[DKKLMS ’17]

[Novembre+ ’08]
May 2, 2022 Yu Cheng

With a few outliers, top singular
vectors can be arbitrary.

Use robust top singular vectors.



Outline
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• Non-Convex Optimization
• Learning with Strategic Agents

Part III: Future Directions
32May 2, 2022 Yu Cheng



Non-Convex Optimization

May 2, 2022 Yu Cheng 33

Extremely successful in practice.



Non-Convex Optimization
Extremely successful in practice.
• In theory: NP-Hard.
• In practice: can be solved via (stochastic) gradient descent.

Why does non-convex optimization work?
• One possible explanation: all local optima are globally optimal.
• How robust are such landscape results?

May 2, 2022 Yu Cheng 34



Matrix Completion

-1

1

1 1 -1 1

1 -1

-1

1 1 -1 1 -1

1 1 -1 1 -1

1 1 -1 1 -1

1 1 -1 1 -1

1 1 -1 1 -1
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An unknown 𝑛 by 𝑛 matrix 𝑀⋆ with rank 𝑟 ≪ 𝑛.

Input: 𝑀23
⋆ for a set of  observed entries 𝑖, 𝑗 ∈ Ω.

Goal: Recover 𝑀⋆.



Matrix Completion

36

Application: recommendation systems
(e.g., [Fiat et al. ’01, Rennie and Srebro ’05, Koren ’09]):

May 2, 2022 Yu Cheng



Matrix Completion

1 0 -1 1 -1 0 -1 -1

0 1 1 1 -1 1 1 0

0 -2

1 1

1 0

2 0

2 2

-1 1

1 1

-2 2

=

𝑛 movies

𝑛 users

𝑟 features
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0 -2 -2 -2 2 -2 -2 0

1 1 0 2 -2 1 0 -1

1 0 -1 1 -1 0 -1 -1

2 0 -2 2 -2 0 -2 -2

2 2 0 4 -4 2 0 -2

-1 1 2 0 0 1 2 1

1 1 0 2 -2 1 0 -1

-2 2 4 0 0 2 4 2

Application: recommendation systems
(e.g., [Fiat et al. ’01, Rennie and Srebro ’05, Koren ’09]):

May 2, 2022 Yu Cheng

We hope to recover𝑀⋆

given .𝑂 𝑛𝑟 observations.



Previous Work

• Convex Relaxation (e.g., [Candès and Tao ’10] [Recht ’11])

• min 𝑀 ⋆ s.t. 𝑀"# = 𝑀"#
⋆

• Runtime: 𝑂(𝑛$).

In practice, people use non-convex approaches.

38May 2, 2022 Yu Cheng



Previous Work

• Non-Convex Approaches

• min 𝑓 𝑋 = ∑ ",# ∈' 𝑋𝑋( "# − 𝑀"#
⋆

)
for 𝑋 ∈ ℝ*×, .

If 6Ω(𝑛𝑟-) entries are observed uniformly at random,
any local optima 𝑋 of 𝑓 has 𝑋𝑋. = 𝑀⋆ [Ge Lee Ma ’16].

min 𝑋𝑋' −𝑀⋆
2
"

39May 2, 2022 Yu Cheng

What if the observations are not uniformly at random?



Semi-Random Adversary
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0 -2 -2 -2 2 -2 -2 0

1 1 0 2 -2 1 0 -1

1 0 -1 1 -1 0 -1 -1

2 0 -2 2 -2 0 -2 -2

2 2 0 4 -4 2 0 -2

-1 1 2 0 0 1 2 1

1 1 0 2 -2 1 0 -1

-2 2 4 0 0 2 4 2

0 -2 -2 -2 2 -2 -2 0

1 1 0 2 -2 1 0 -1

1 0 -1 1 -1 0 -1 -1

2 0 -2 2 -2 0 -2 -2

2 2 0 4 -4 2 0 -2

-1 1 2 0 0 1 2 1

1 1 0 2 -2 1 0 -1

-2 2 4 0 0 2 4 2

0 -2 -2 -2 2 -2 -2 0

1 1 0 2 -2 1 0 -1

1 0 -1 1 -1 0 -1 -1

2 0 -2 2 -2 0 -2 -2

2 2 0 4 -4 2 0 -2

-1 1 2 0 0 1 2 1

1 1 0 2 -2 1 0 -1

-2 2 4 0 0 2 4 2
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Robust Matrix Completion [C Ge ’18]

However, existing non-convex
algorithms are not robust against

such a semi-random adversary.

42May 2, 2022 Yu Cheng

Does not hurt convex approaches:
min 𝑀 ⋆ s.t. 𝑀23 = 𝑀23

⋆



Counter Examples [C Ge ’18]

𝑓 𝑋 = ∑ 2,3 ∈6 𝑀23
⋆ – 𝑋𝑋7 23

%
has bad local optima.

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 -1 -1 -1 -1
1 1 1 1 -1 -1 -1 -1
1 1 1 1 -1 -1 -1 -1
1 1 1 1 -1 -1 -1 -1
-1 -1 -1 -1 1 1 1 1
-1 -1 -1 -1 1 1 1 1
-1 -1 -1 -1 1 1 1 1
-1 -1 -1 -1 1 1 1 1

1
1
1
1
-1
-1
-1
-1

𝑋 =
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Counter Examples [C Ge ’18]

1 1 1 1 -1 -1 -1 -1

1 1 1 1 -1 -1 -1 -1

1 1 1 1 -1 -1 -1 -1

1 1 1 1 -1 -1 -1 -1

-1 -1 -1 -1 1 1 1 1

-1 -1 -1 -1 1 1 1 1

-1 -1 -1 -1 1 1 1 1

-1 -1 -1 -1 1 1 1 1

1

1

1

1

-1

-1

-1

-1

1
−1 → 𝑋 = 1

−(1 − 𝜖) → ⋯ → 1
1

𝑋𝑋! ≈ 1 −1 + 𝜖
−1 + 𝜖 1 − 2𝜖

44

𝑓 𝑋 = 9
",# ∈'

𝑋𝑋( "# − 𝑀"#
⋆

)
≈ 𝑋𝑋. −𝑀⋆

/
)

May 2, 2022 Yu Cheng



Robust Matrix Completion [C Ge ’18]

• Against a semi-random adversary:

Existing non-convex algorithms are not robust
against such a semi-random adversary.

We can fix the non-convex approaches 
while preserving their efficiency.
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Robust Matrix Completion [C Ge ’18]

If we know the adversary is changing the input like this …

Preprocessing step: reweight the samples so that the input is “similar”
to a random input.

46

𝑓A 𝑋 = ∑ 2,3 ∈6 𝑾𝒊𝒋 𝑀23
⋆ – 𝑋𝑋7 23

%

May 2, 2022 Yu Cheng



Our Fix: Preprocessing [C Ge ’18]

The graph formulation:

47May 2, 2022 Yu Cheng



Our Fix: Preprocessing [C Ge ’18]

The graph formulation:

48

• Input: 𝐻 = 𝐺 𝑛, 𝑛, 𝑝 + extra edges

May 2, 2022 Yu Cheng



Our Fix: Preprocessing [C Ge ’18]

The graph formulation:

• Input: 𝐻 = 𝐺 𝑛, 𝑛, 𝑝 + extra edges
• Goal: Recover 𝐺. Recover a graph (spectrally) similar to 𝐺.

49May 2, 2022 Yu Cheng



Our Fix: Preprocessing [C Ge ’18]

We show this can be solved in time: ?𝑂(𝑚 poly ⁄1 𝜖 ).
(𝑚 = 𝐸3 , 𝐻′ ≈4 𝐺)

Adapt algorithmic techniques developed for Graph Sparsification
[Batson Spielman Srivastava ’12, Lee and Sun ’17].
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Robust Matrix Completion [C Ge ’18]

After preprocessing, 𝑓A(𝑋)
has no bad local optima.

𝑓" 𝑋 = ∑ #,% ∈' 𝑾𝒊𝒋 𝑀#%
⋆ – 𝑋𝑋+ #%

,

51May 2, 2022 Yu Cheng



Non-convex
optimization

52

Lightweight
convex optimization

Robust Non-Convex Optimization

May 2, 2022 Yu Cheng

A meta framework for making non-convex approaches 
robust while preserving their efficiency.
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• Data often come from agents, but traditionally we ignore the
agents’ incentives and consider learning problems in isolation.

• When the algorithms are used to make important decisions 
about the agents, agents may want to strategically provide data.

• Goal: design optimal algorithms or policies that take the
agents’ strategic behavior into consideration.

Learning with Strategic Agents

May 2, 2022 Yu Cheng



Strategic Reporting [Zhang C Conitzer ’19]

Motivating examples:
• Hiring committee

55

Principal Agent
May 2, 2022 Yu Cheng



Strategic Reporting [Zhang C Conitzer ’19]

Motivating examples:
• Hiring committee

56

Principal Agent
May 2, 2022 Yu Cheng



Strategic Reporting [Zhang C Conitzer ’19]

Motivating examples:
• Hiring committee
• College scout

The principal does not have direct access to the samples 
and relies on a strategic agent to provide samples.

What is the optimal policy?
57May 2, 2022 Yu Cheng



Two types of  agents: good            or bad           .
• Principal wants to accept the good type and reject the bad type.

• Agent wants to get accepted.

Principal has time to read 𝑚 paper.

Each agent has 𝑛 papers.
• Agent generates 𝑛 samples from a publicly-known distribution based on 

his/her type, then choose which 𝑚 ≤ 𝑛 samples to report. 

58May 2, 2022 Yu Cheng

Strategic Reporting [Zhang C Conitzer ’19]



Optimal policy: accept iff agent submits { }
• is accepted with prob. 1 − 0.9501 ≈ 0.92.

• is accepted with prob. 1 − 0.99501 ≈ 0.22.
59

Example 1 [Zhang C Conitzer ’19]

0.05 0.95

0.005 0.995

𝑛 = 50, 𝑚 = 1.
: top conference
: average conference

May 2, 2022 Yu Cheng
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Example 2 [Zhang C Conitzer ’19]

0.8 0.2 0

0.1 0.1 0.8

{ }

𝑚 = 2.

{ }



62

Example 2 [Zhang C Conitzer ’19]

𝑛 = 3, 𝑚 = 2.

Which policy maximizes
Pr accept 𝑔 ] − Pr accept 𝑏 ]?

Accept { } and ! Not monotone in
the likelihood ratio!

May 2, 2022 Yu Cheng

0.8 0.2 0

0.1 0.1 0.8



Automated Mechanism Design

65May 2, 2022 Yu Cheng

We study the structure and computation of the optimal policy.

• [Zhang C Conitzer ’19]: Agents can withhold samples.
• [Zhang C Conitzer ’19]: 

Agents can transform the samples in limited ways.



Automated Mechanism Design

66May 2, 2022 Yu Cheng

We study the structure and computation of the optimal policy.

• [Zhang C Conitzer ’19]: Agents can withhold samples.
• [Zhang C Conitzer ’19]: 

Agents can transform the samples in limited ways.
• [Zhang C Conitzer ’21]: 

Agents may have different preferences over outcomes. 
Generalization to more outcomes than accept/reject.
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？

？
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Future Direction I: Simple Algorithms

May 2, 2022 Yu Cheng 71

This talk:
• Polynomial time.
• Fastest possible asymptotic runtime.

Future work: speed up the technology transfer into practice.
• Beyond fast asymptotic runtime.
• Leverage modern ML architectures (GPUs, DL packages).



Future Direction I: Simple Algorithms

May 2, 2022 Yu Cheng 72

When a small fraction of the input is corrupted:

[Tukey ’60, Huber ’64]: provably robust statistical estimators.

[Diakonikolas+ ’16, Lai+ ’16]: polynomial-time robust statistical estimators.

Fast asymptotic runtime ≠ Practical
Many algorithms are very sophisticated
(e.g., ellipsoid method, SoS, JL lemma,
matrix multiplication weight update) or

require parameters that need careful tuning.

[C Diakonikolas Ge ’19]:

provably robust estimators 
that are as efficient as their

non-robust counterparts.



High-Dimensional Robust Statistics
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When a small fraction of the input is corrupted:

[Tukey ’60, Huber ’64]: provably robust statistical estimators.

[Diakonikolas+ ’16, Lai+ ’16]: polynomial-time robust statistical estimators.

[C Diakonikolas Ge ’19]:

provably robust estimators 
that are as efficient as their

non-robust counterparts.

[C Diakonikolas Ge Soltanolkotabi ’20]:

provably robust estimators 
that can be computed using

standard first-order methods.



• We consider non-convex formulations of  robust mean estimation:

• Despite its non-convexity, we show that
any (approximate) stationary point works!

May 2, 2022 Yu Cheng 74

Robust Mean Estimation via Gradient Descent
[C Diakonikolas Ge Soltanolkotabi ’20]
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[CDG’19]:
mean estimation in time &𝑂(𝑛𝑑)/poly 𝜖 .

[DL’19][DHL’19]:
&𝑂 𝑛𝑑 time, heavy-tail mean estimation.

[CDGW’19][LY’20]:
covariance estimation.

[C+’20]:
linear regression.

[C+’20][D+’20]:
list-decodable mean estimation.

[CL’21]:
learning Bayesian networks.

[CDGS’20]:
mean estimation via gradient descent.

[HLZ’20]:
heavy-tailed mean estimation.
improved # of  iterations via mirror descent.

[Zhu+’21]:
covariance estimation, linear regression.

[CDKGGS’22, ongoing]:
sparse mean estimation and sparse PCA.

Robust estimators that are as efficient
as their non-robust counterparts.

Robust estimators that can be computed 
using standard first-order methods.

Sparse mean?

Fast and simple?
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Future Direction II: Robust Deep Learning

May 2, 2022 Yu Cheng

This talk:
• Design and analysis of robust non-convex algorithms for

problems that we understand very well w/o corruption.

Future work: robustness in deep learning.
• Expand the success of robust non-convex optimization.
• Develop heuristics based on theoretical analysis.



Non-convex
optimization

79

Lightweight
convex optimization

Future Direction II: Robust Deep Learning

May 2, 2022 Yu Cheng

[CGZ, ongoing]: one-bit and noisy matrix completion.

[CDG, ongoing]: matrix sensing and phase retrieval.
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Future Direction II: Non-Convex Optimization

May 2, 2022 Yu Cheng

Robustness of  neural networks:

• Under what assumptions can neural nets still converge to
good parameters if 1% of the data is corrupted?

• If  we want to throw away 1% of  the training data, which 1%  
should we throw away?
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Spectral
Graph Theory

Non-Convex
Optimization

Robustness
in Machine
Learning

Game
Theory
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Automated
Mechanism Design

Faster Algorithms
for Robust Statistics

Simple Algorithms
for Robust Statistics

Robust Non-Convex
Matrix Completion
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Robust Non-Convex Phase Retrieval
One-Bit Matrix Completion?

Spectral
Graph Theory

Non-Convex
Optimization

Robustness
in Machine
Learning

Game
Theory
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Fast and Simple
Robust Estimators?

Robust Sparse Mean in
Nearly-Linear Time?
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Efficient
Algorithms for
Planning with
Participation?

Robust Non-Convex Phase Retrieval
One-Bit Matrix Completion?

Spectral
Graph Theory

Non-Convex
Optimization

Robustness
in Machine
Learning

Game
Theory
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Fast and Simple
Robust Estimators?

Robust Sparse Mean in
Nearly-Linear Time?

Private Signaling
in Network

Routing Games?

Self-Supervised
Learning?

Robustly Escaping
Saddle Points?



Future Directions III: General Theory of Robustness

• Systematic exploration of  robustness.
• Explore different adversarial models and examine whether

commonly used algorithms are robust in these models.
• Develop faster/simpler robust algorithms.
• Translate the success of  robust algorithm design to broader areas.

• Bridge the gap between the growing need for robust 
algorithms and the lack of  general theory of  robustness.
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Part I: Introduction
• Motivation/Challenges

Part II: Robust Algorithms for ML
• High-Dimensional Statistics
• Non-Convex Optimization
• Learning with Strategic Agents

Part III: Future Directions
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Thanks!
Questions?


