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Can we design algorithms that are robust when a small fraction
of the data is adversarially corrupted?
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Motivation
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Can we design ML systems that work well when the data 1s
provided by self-interested agents?
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Challenges

What are challenges in developing robust ML algorithms?
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What are challenges in developing robust ML algorithms?
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Challenges

What are challenges in developmg robust ML algorithms?

e Adversarial attacks.
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Challenges

What are challenges in developing robust ML algorithms?
* Adversarial attacks.

* Model misspecification/Strong assumptions.
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Challenges

What are challenges in developing robust ML algorithms?
e Adversarial attacks.
* Model misspecification/Strong assumptions.

* Strategic behaviors.
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strategic agents

algorithms
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Challenges

What are challenges in developing robust ML algorithms?

* Adversarial attacks.
* Model misspecification/Strong assumptions.

* Strategic behaviors.

Design fast and provably robust algorithms for ML.

* Focus on basic problems that are well-understood w/o corruption.

* Bring together ideas from ML, optimization, and game theory.



Robustness
in Machine

Spectral

Faster Algorithms
for Robust Statistics
[CL. ICLR21]
[CDGW COLT’19]
[CDG SODA19]
[CDKS NeurlPS’18]

Automated
Mechanism Design
[ZCC AAAT21]
[ZCC NeurIPS19]
[ZCC ICML’19]

Robust Non-Convex
Matrix Completion
[CG COLT’18§]

Robust Estimation
via Gradient Descent

[CDGS ICMI220]

Optimization

May 2, 2022 Yu Cheng

Mechanism Design and
Equilibrium Computation

[CGMW WINE’18 Best Papet]

[CDS SODA'17]
[CCT TTCS’17]

Graph Sparsification
[CCPS ICALP’21]
[CCLPT COLT’15]

Information Structure Design
[BCKS EC’16]
[CCDEHT FOCS’15]

Fairness and Social Choice
[KJWCM AISTATS21]
[CIMW EC’19]
[ZCC AAAT19]
[CDK AAAT’1§]
[CDK EC’17]

Planning in MDPs with Agents
[ZCC AAAT22]
[ZCC AAAT21]
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Part I: Introduction

* Motivation/Challenges

Part II: Robust Algorithms for MI

* High-Dimensional Statistics
* Non-Convex Optimization

* Learning with Strategic Agents

Part I11: Future Directions
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Mean Estimation

* Input: n samples {X1, ..., X;;} drawn from N (u*, 1) on R%.
* Goal: Learn u™.

Empirical mean I = % i1 X; works:
1T — u*ll, < € whenn = Q(d/e?).



Robust Mean Estimation

May 2, 2022 Yu Cheng
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e-Corruption Model

- Q
. (ﬁ;{g ‘speciﬁes sample complexity n.

O o ® .’.0.: Q
& > ‘\ ::.
\g draws n samples from N (u™, ).

q replaces €n samples with arbitrary points.

Goal: given an e-corrupted set of n samples, learn u™.

May 2, 2022 Yu Cheng 15



Classical Estimators and Why They Fail

]

_Empirical mean

]

* Empirical median
* Coordinate-wise median: can be e @ 6l ',3-;-:&.
@(E\/c_l) far from the true mean. : a .....,
* Tukey median: O(€) error but is : N
NP-Hard to compute. . °°

May 2, 2022 Yu Cheng 16



Robust Mean Estimation

Coordinate-wise median 0(eVd) 0 (nd)
Tukey median 0(€) NP-Hard

May 2, 2022 Yu Cheng 17



Robust Mean Estimation

Coordinate-wise median 0(eVd) O(nd)
Tukey median 0(€) NP-Hard
[Lai+ *10] O(e+/logd) ,
. | Polynomial
[Diakonikolas+ 106] 0 (E\/ log(1/€))

There has been a flurry of research that obtained polynomial-time

robust algorithms for a wide range ot high-dimensional learning tasks.

May 2, 2022 Yu Cheng 18



High-Dimensional Robust Statistics

When a small fraction of the input is corrupted:

[Tukey ’60, Huber ’64]: provably robust statistical estimators.

Robust

Statistics

May 2, 2022 Yu Cheng
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High-Dimensional Robust Statistics

When a small fraction of the input is corrupted:

[Tukey ’60, Huber ’64]: provably robust statistical estimators.

[Diakonikolas+ *16, Lai+ *16]: provably robust statistical estimators that
can be computed in polynomial-time.

Polynomial-time # Scalable!

These algorithms are often much slower than the
fastest non-robust ones.



High-Dimensional Robust Statistics

When a small fraction of the input is corrupted:

[Tukey ’60, Huber ’64]: provably robust statistical estimators.

[Diakonikolas+ *16, Lai+ *16]: provably robust statistical estimators that
can be computed in polynomial-time.

|C Diakonikolas Ge ’19]: provably robust statistical estimators
that are as efficient as their non-robust counterparts.

May 2, 2022 Yu Cheng 21



Robust Mean Estimation

Algorithm Error Guarantee Runtime
Coordinate-wise median 0(eVd) O(nd)
Tukey median 0(€) NP-Hard
[Lai+ *10] 0(e4/log d) ,
Polynomial

[Diakonikolas+ *16]

0(eylog(1/e))

May 2, 2022

Yu Cheng
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Robust Mean Estimation

Algorithm

Error Guarantee

Runtime

Coordinate-wise median 0(eVd) O(nd)
Tukey median 0(€) NP-Hard
ait+ 16 O(e/logd
[ ] (eylogd) O(nd?)
[Diakonikolas+ *16] 0, (e\/ log(1/€))

Robust mean estimation in nearly-linear time?

May 2, 2022

Yu Cheng
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Robust Mean Estimation in Nearly Linear Time

|C Diakonikolas Ge "19]

Algorithm Error Guarantee Runtime

Coordinate-wise median 0(eVd) O(nd)
Tukey median 0(€) NP-Hard

ait+ 16 O(e/logd
[L. ] (€y/log d) 0(nd?)
[Diakonikolas+ *106] 0 (E\/log(l/E))
|C Diakonikolas Ge "19] 0 (e\/log(l/e)) 0(nd)/poly(e)

For constant €, our algorithm has the best-possible error guarantee,

sample complexity, and running time (up to log factors).

May 2, 2022 Yu Cheng 24



Robust Mean Estimation in Nearly Linear Time
|C Diakonikolas Ge "19]

n there is no corruption,

f
Y ) <« — — — 0————)/ .3

With corruption, the top eigenvector of M can be an arbitrary vector y' |

May 2, 2022 Yu Cheng 25



Robust Mean Estimation in Nearly Linear Time
|C Diakonikolas Ge "19]

Key idea: robust top eigenvector.

o When measuring variance along a direction,
o® @ . .
;0 o ® remove €-fraction of the farthest points.
o
o . . . .
Sowrs (1 — €)-variance in direction y > V',

n
max average of the smallest (1 — €)—fraction of {(X iTy)z}_
1=

lyllz=1 1



Robust Mean Estimation in Nearly Linear Time
|C Diakonikolas Ge "19]

Key idea: robust top eigenvector.

o When measuring variance along a direction,
o® o) . .
;0 o ® remove €-fraction of the farthest points.
o
o . . . .
Sowrs (1 — €)-variance in direction y > V',
f
0 e
.. < — — — —_— — >
y/
: T n
max average of the smallest (1 — €)—fraction of {X i Y X i}i—l

Y>0,tr(Y)=<1

optimal solution & yy ', can be written as a packing SDP.



Robust Mean Estimation in Nearly Linear Time
|C Diakonikolas Ge "19]

e Start with coordinate-wise median that is 0(v/d) far from u*.

* The distance to y* decreases by half in each iteration.

* Each iteration takes nearly-linear time . o
®

(mostly solving a packing SDP). 0

1%, ®
V3



Beyond Mean Estimation

provably robust statistical estimators that are as
efficient as their non-robust counterparts.

[CDG’19]: mean estimation in time O (nd)/poly(¢€).
DI 19][DHI19]: 0(nd) time, heavy-tail mean estimation.
CDGW’19][LY’20]: covariance estimation.

C+20]: linear regression.

C+°20][D+20]: list-decodable mean estimation.

CL21]): learning fixed-structure Bayesian networks.
DKKISS19]: robust gradient descent.

May 2, 2022 Yu Cheng
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With a few outliers, "top singular
vectors can be arbitrary.

.
AP The Associated Press ¢ L~ W Follow
AP

Breaking: Two Explosions in the White !
House and Barack Obama is injured

4~Reply T3 Retweet W Favorite ®ee More

e B DO EODERR

Fabb Lo L Lol

=
u—if

Use robust top sinéhlar vectors.
[DKKILMS *17]

[Novembre+ *08]
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Outline

Part I: Introduction

* Motivation/Challenges

Part II: Robust Algorithms for MI

* High-Dimensional Statistics
* Non-Convex Optimization

* Learning with Strategic Agents

Part I11: Future Directions
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Non-Convex Optimization

Extremely successtul in practice.

May 2, 2022 Yu Cheng
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Non-Convex Optimization

Extremely successtul in practice.
* In theory: NP-Hard.

* In practice: can be solved via (stochastic) gradient descent.

Why does non-convex optimization work?
* One possible explanation: all local optima are globally optimal.

* How robust are such landscape results?

M, Al

: D=
i, |
N

D

T
’ ’,5454%11%1!01 |

D

May 2, 2022 Yu Cheng T 34




Matrix Completion

An unknown n by n matrix M™ with rank r <K n.

Input: M;j for a set of observed entries (i,j) € ().
Goal: Recover M™.

May 2, 2022 Yu Cheng
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Matrix Completion

Application: recommendation systems
(e.g:, [Fiat et al. ’01, Rennie and Srebro *05, Koren *09]):

-l il

S e

\
)

TOMERS WHO
oueny Tats STEM:

4
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Matrix Completion

Application: recommendation systems
(e.g:, [Fiat et al. ’01, Rennie and Srebro *05, Koren *09]):

n movies

T features

Nn users

['\)»—A,;[\J[\J»—A»—AQ

We hope to recover M™

oiven O(nr) observations.

NS I I B S Il Il B NG
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Previous Work

* Convex Relaxation (e.g, [Candés and Tao *10] [Recht *11])
* min ”Ml x S.t. Ml] — Ml*]

e Runtime: O(n?).

In practice, people use non-convex approaches.



Previous Work

* Non-Convex Approaches min |[XXT — M*||%

2
« min f(X) = X vea ((XXT)U _ M;‘j) for X € R™¥T,

If Q(nr®) entries are observed uniformly at random,

any local optima X of f has XX = M”* [Ge Lee Ma ’16]. g

What if the observations are not uniformly at random?

May 2, 2022 Yu Cheng 39



Random Adversary

1-

Sem

41
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Robust Matrix Completion [cce1s)

Does not hurt convex approaches:

min HMH* S.T. Ml] = M:}

However, existing non-convex

algorithms are not robust against

such a semi-random adversary.

May 2, 2022 Yu Cheng 42



Counter Examples [cGe 18]

f(X) = Z(i,j)eﬂ (M:} — (XXT)l-j)z has bad local optima.

N LN BN LN N I N B
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Counter Examples [cGe1s)

~ (—11+ € Il—-;ee)
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Robust Matrix Completion [cce1s)

* Against a semi-random adversary:

Existing non-convex algorithms are not robust

against such a semi-random adversary.

We can fix the non-convex approaches
while preserving their efficiency.

May 2, 2022 Yu Cheng 45



Robust Matrix Completion [cce1s)

If we know the adversary is changing the input like this ...

e

s

Preprocessing step: reweight the samples so t!

to a random input.

nat the input is “similar

fwr X)) = X vea Wii(M]; - (XXT)U)Z

May 2, 2022 Yu Cheng
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Our Fix: Preprocessing (cGe1s)

The graph formulation:
L[]

May 2, 2022 Yu Cheng

47



Our Fix: Preprocessing [cGe 18]

The graph formulation:

* Input: H = G(n,n,p) + extraedges

BT @

May 2, 2022 Yu Cheng
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Our Fix: Preprocessing [cGe 18]

The graph formulation:

- .
\\\\_:%:

* Input: H = G(n,n,p) + extraedges
* Goal: Revovesle  Recover a graph (spectrally) similar to G.

May 2, 2022 Yu Cheng 49



Our Fix: Preprocessing (cGe1s)

We show this can be solved in time: 6(m poly(1/¢€)).
(m = |Eyl, H = G)

Adapt algorithmic techniques developed for Graph Sparsification

[Batson Spielman Srivastava 12, LLee and Sun *17].

May 2, 2022 Yu Cheng 50



Robust Matrix Completion [cce1s)

2

fW(X) — Z(i,j)eg Wij(Mi*j — (XXT)ij)
% After preprocessing, fi (X)

has no bad local optima.

May 2, 2022 Yu Cheng 51



Robust Non-Convex Optimization

A meta framework for making non-convex approaches
robust while preserving their efficiency.

Lightweight Non-convex
convex optimization optimization

May 2, 2022 Yu Cheng
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Outline

Part I: Introduction

* Motivation/Challenges

Part II: Robust Algorithms for ML

* High-Dimensional Statistics

* Non-Convex Optimization

* Learning with Strategic Agents

Part I11: Future Directions
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Learning with Strategic Agents

* Data often come from agents, but traditionally we ignore the

agents’ incentives and consider learning problems in isolation.

* When the algorithms are used to make important decisions

about the agents, agents may want to strategically provide data.

* Goal: design optimal algorithms or policies that take the

agents’ strategic behavior into consideration.



Strategic Reporting (zhang ¢ conitzer 19

Motivating examplesz

. Eiring committee

Principal
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Strategic Reporting (zhang ¢ conitzer 19

Motivating examples:

. Hiring committee

Principal
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Strategic Reporting (zhang ¢ Conivzer 19

Motivating examplesz

. Hiring committee

* College scout

The principal does not have direct access to the samples

and relies on a strategic agent to provide samples.

What 1s the optimal policy?



Strategic Reporting (zhang ¢ conitzer 19

Two types of agents: good \

* Principal wants to accept the good type and reje»t the bad type.

* Agent wants to get accepted.

Principal has time to read m paper.

Fach agent has n papers.

* Agent generates N samples from a publicly-known distribution based on

his/her type, then choose which m < n samples to report.

May 2, 2022 Yu Cheng 58



Example 1 [Zhang C Conitzer *19]

n=>50 m=1.
@: top conference

¥
0.05

©
0.95

@: average conference 0.005

0.995

May 2, 2022 Yu Cheng
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Example 2 [Zhang C Conitzer *19]

%) x) (®
0.8 0.2 0
0.1 0.1 0.8




Example 2. [Zhang C Conitzer *19]

%) x) ®
0.8 0.2 0
0.1 0.1 0.8

Not monotone in

Accept { (1) (1)} and {(K) (K)}! the likelihood ratio!

May 2, 2022 Yu Cheng
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Automated Mechanism Design

We study the structure and computation of the optimal policy.

* [Zhang C Conitzer *19]: Agents can withhold samples.

* [Zhang C Conitzer *19]:
Agents can transtorm the samples in limited ways.

TML-H - T >| COLT
TML-L 0.1

/_ 0.4 > A 2l KDD
AML-HF— .
AML-L (B >| NeurIPS




Automated Mechanism Design

We study the structure and computation of the optimal policy.

* [Zhang C Conitzer *19]: Agents can withhold samples.

* [Zhang C Conitzer *19]:
Agents can transtorm the samples in limited ways.

* [Zhang C Conitzer *21]:
Agents may have different preferences over outcomes.

Generalization to more outcomes than accept/reject.
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Future Direction I: Simple Algorithms

This talk:
* Polynomial time. X

* Fastest possible asymptotic runtime. N4

Future work: speed up the technology transter into practice.
* Beyond fast asymptotic runtime.

* Leverage modern ML architectures (GPUs, DL packages).



Future Direction I: Simple Algorithms

When a small fraction of the input is corrupted:
[Tukey ’60, Huber ’64|: provably robust statistical estimators.

|[Diakonikolas+ ’16, Lai+ ’16]: polynomial-time robust statistical estimators.

Fast asymptotic runtime # Practical

|C Diakonikolas Ge ’19]:
Many algorithms are very sophisticated

(e.g., ellipsoid method, SoS, JL. lemma,

matrix multiplication weight update) or
non-robust counterpatts. require parameters that need careful tuning,

provably robust estimators
that are as efficient as their



High-Dimensional Robust Statistics

When a small fraction of the input is corrupted:
[Tukey ’60, Huber ’64|: provably robust statistical estimators.

|[Diakonikolas+ ’16, Lai+ ’16]: polynomial-time robust statistical estimators.

|C Diakonikolas Ge ’19]: |C Diakonikolas Ge Soltanolkotab1 *20]:
provably robust estimators provably robust estimators
that are as efficient as their that can be computed using

non-robust counterparts. standard first-order methods.

May 2, 2022 Yu Cheng 73



Robust Mean Estimation via Gradient Descent
|C Diakonikolas Ge Soltanolkotabi "20]

* We consider non-convex formulations of robust mean estimation:

* Despite its non-convexity, we show that

any (approximate) stationary point works!

for itr = 1l:numltr
Sigma_w_fun = @(v) X' x (w .x (X % v)) = (X' % w)™2 % v;
[u, lambdal = eigs(Sigma_w_fun, d, 1);
nabla_f w = (X % u) .% (X x u) =2 % (w' % (X % u)) % (X % u);
w =w — stepSize *x nabla_f_w / norm(nabla_f_w);
w = project_onto_capped_simplex(w, 1 / (N - epsN));
end

May 2, 2022 Yu Cheng 74



Robust estimators that are as efficient
as their non-robust counterparts.

[CDG’19]:

mean estimation in time O (nd)/poly(¢€).

[DI’19][DHL19]:
O (nd) time, heavy-tail mean estimation.

[CDGW’19][LY*20]:
covariance estimation.

[C+20]:

. , 5
linear regression. Sparse mean:

[C+20][D+20]:
list-decodable mean estimation.

[CL>21]:
learning Bayesian networks.

May 2, 2022

Robust estimators that can be computed
using standard first-order methods.

[CDGS’20]:
mean estimation via gradient descent.

[HLZ720]:
heavy-tailed mean estimation.

improved # of iterations via mirror descent.

[Zhu+’21]:
covariance estimation, linear regression.

[CDKGGS22, ongoing]:

sparse mean estimation and sparse PCA.

Fast and simple?

Yu Cheng 77



Future Direction II: Robust Deep Learning

This talk:

* Design and analysis of robust non-convex algorithms for

problems that we understand very well w/o corruption.

Future work: robustness in deep learning.

* Expand the success of robust non-convex optimization.

* Develop heuristics based on theoretical analysis.



Future Direction II: Robust Deep Learning

A8

May 2, 2022

Lightweight Non-convex
convex optimization optimization

CGZ, ongoing]

CDG, ongoing]

: one-bit and noisy matrix completion.

: matrix sensing and phase retrieval.

Yu Cheng

79



Future Direction 1I: Non-Convex Optimization

Robustness of neural networks:

* Under what assumptions can neural nets still converge to

good parameters if 1% of the data is corrupted?

* If we want to throw away 1% of the training data, which 1%

should we throw away?



Spectral
Graph Theory

Faster Algorithms
for Robust Statistics

Non-Convex
Optimization

May 2, 2022

Robustness
in Machine §
Learning

Robust Non-Convex
Matrix Completion

Automated
Mechanism Design

Simple Algorithms
for Robust Statistics




Robustness
in Machine §
Learning

Spectral
Graph Theory

Robust Sparse Mean in
Nearly-Linear Time?

— e

Fast and Simple
Robust Estimators?

Robust Non-Convex Phase Retrieval
One-Bit Matrix Completion?

Non-Convex
Optimization
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Robustness g
in Machine §
Learning

Spectral
Graph Theory

Robust Sparse Mean in

Nearly—LinearEime? Efficient

Algorithms for

: Planning with
Fast and Simple Partici 5 y
. articipations:

Robust Estimators? P

Robust Non-Convex Phase Retrieval

One-Bit Matrix Completion?
e

Private Signaling
in Network
Routing Games?

Non-Convex
Optimization Robustly Escaping
Saddle Points?
Self-Supervised
Learning?
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Future Directions III: General Theory of Robustness

* Systematic exploration of robustness.

* Explore different adversarial models and examine whether

commonly used algorithms are robust in these models.
* Develop faster/simpler robust algorithms.

* Translate the success of robust algorithm design to broader areas.

* Bridge the gap between the growing need for robust

algorithms and the lack of general theory of robustness.
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