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Abstract

A key innovation of the past 5 years in few-shot image classification was the
development of nearest-centroid based meta-learning algorithms. We examine
the robustness of one such algorithm, Meta-Baseline [Chen et al., 2021], and
find that it is vulnerable to random corruption of 20% of the support examples
at inference time when evaluated on MiniImageNet [Vinyals et al., 2016] and
TieredImageNet [Triantafillou et al., 2018] in the 5-shot and 20-shot environments.
We find that classifying using the Euclidean distance is particularly vulnerable, with
an accuracy drop of 37.7% on average across datasets and shots compared to the
cosine similarity’s 14.5%. We attempt to improve Meta-Baseline’s robustness by
employing Cheng et al. [2020]’s robust mean estimation algorithm with Euclidean
distance classification, and find that this reduces this accuracy loss by 34 percentage
points on average for MiniImageNet and 9 percentage points for TieredImageNet.
We conclude that this is an effective proof of concept for this technique and offer
multiple straightforward avenues for future work to improve upon our result. The
codebase for this project can be found at https://github.com/nickpetrocelli/meta-
baseline-extension.

1 Introduction

One of the most studied problems in machine learning is that of image classification, where a model is
trained to categorize input images into particular classes based on their content. Traditionally, training
a model to classify images requires large amounts of annotated class-image pairs; for example, the
current best performing model on the ImageNet [Deng et al., 2009], CoCa [Yu et al., 2022], trains on
the JFT-3B dataset [Zhai et al., 2022], which contains almost 3 billion such pairs. In contrast, humans
can learn to classify many categories of images after viewing just a few examples. This contrast
inspired the field of few-shot learning, where models are designed to classify images after seeing
only a few examples of each potential class. Today, many high-performing few-shot classification
algorithms make use of a meta-learning paradigm, where the model "learns to learn" by transferring
knowledge from training tasks to learn a new task at inference time. Specifically, a popular class
of algorithms first learns an image embedding space by learning to classify a set of base classes at
training time, then classifies novel classes at inference time by computing the centroid of the few
support examples for each class in the embedding space and classifying query images based on the
nearest centroid. In this project, we specifically study Meta-Baseline [Chen et al., 2021], a recent
algorithm that reaches competitive performance with modern few-shot baselines by applying this
paradigm.

A potential weakness of Meta-Baseline is that it relies heavily on the support examples for each
category being representative of their class. This makes Meta-Baseline vulnerable to corruption of
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Figure 1: Figure 1 from Chen et al. [2021], demonstrating architecture of Meta-Baseline and 2-phase
training procedure.

the support examples, as any corrupted support example could arbitrarily alter the centroid. Here, we
examine one potential avenue to make Meta-Baseline more robust against such attacks: calculating
the class centroids via high-dimensional robust mean estimation. Specifically, we use Cheng et al.
[2020]’s algorithm, which uses gradient descent to calculate an estimate of the mean in a relatively
straightforward manner.

We test this combination of algorithms on MiniImageNet [Vinyals et al., 2016] and TieredImageNet
[Triantafillou et al., 2018] in the 5-shot and 20-shot settings. We find that applying Cheng et al.
[2020]’s algorithm does significantly improve Meta-Baseline’s robustness when 20% of the support
examples are corrupted at test time. We find that when classifying using the Euclidean distance, the
loss in accuracy between the un-corrupted and corrupted settings is reduced by 34 percentage points
on average for MiniImageNet and 9 percentage points on average for TieredImageNet. We also find
that robust mean estimation does not reduce Meta-Baseline’s performance in un-corrupted settings
on either dataset. However, we also note substantial runtime issues with the robust mean estimation
algorithm, and detail clear areas in which future work can improve upon our results to produce a
more practical form of this algorithm.

2 Background

2.1 Few-shot image classification

In traditional supervised image recognition, a model is trained on some set of N in-domain classes,
with access to a large number of examples during training time. The model is then evaluated on
the same set of N classes at testing time using a testing set that consists of novel examples of those
classes.

In contrast, the few-shot image recognition task pursued in this paper and its predecessors places
additional constraints on the testing environment. Here, a model is still trained on some set of N
in-domain classes, but at testing time is evaluated on a set of query examples from n unseen classes
after seeing only k examples of each class, with q query examples per class. This is referred to as
"n-way, k-shot" learning.

2.2 Meta-Baseline and distance metrics

In this paper and its preceding work, a model is trained to perform the few-shot classification task
using a meta-learning paradigm. Meta-learning is defined by Lemke et al. [2015] as any model that
"...include[s] a learning subsystem, which adapts with experience...extracted in a previous learning
episode on a single dataset, and/or from different domains or problems." The specific meta-learning
method that we extend here is Meta-Baseline from Chen et al. [2021]. Meta-Baseline relies on a
simple 2-phase learning process (Figure 1) that leads to good few-shot generalization in practice:
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1. First, a backbone classifier is trained on the N in-domain classes using standard supervised
learning procedures, thereby learning an embedding space suitable for image classification.

2. Second, the encoder from this classifier is transferred to a meta-learning model, which
fine-tunes the embedding space by repeatedly sampling n classes, k × n support examples,
and q×n query examples from the training data and thereby simulating the few-shot learning
task. Each one of these simulations is called a training episode.

In order to classify each query example during a few-shot episode, the Meta-Baseline model first
computes an embedding for each of the support examples for each class and then computes a centroid
ci for each class i ∈ [1 . . . n] [Chen et al., 2021]. Then, to perform classification on some query
example, the model simply computes an embedding for the example and outputs the class of the
nearest centroid. Importantly, Chen et al. [2021] defines a centroid as a point in the embedding space
equidistant from all k support examples according to some distance metric. Chen et al. [2021] utilizes
the cosine similarity metric for this purpose. However, other methods that employ nearest-centroid
classification sometimes use different metrics, such as Prototypical Networks [Snell et al., 2017]
which utilizes the Euclidean distance. In particular, Snell et al. [2017] also proved that performing
nearest-centroid classification using the Euclidean distance is equivalent to performing mixture-
density estimation using spherical gaussians as the densities, where the estimated mean of each
density is the Euclidean mean of the support vectors. Thus, for Euclidean distance nearest-centroid
classification to be robust, we require some means of obtaining a good estimate for the centroid in
terms of ℓ2 norm in a corrupted-data setting.

2.3 Robust Mean Estimation

2.3.1 ϵ-corruption

Following earlier works in the field of robust statistics such as Huber [1964] and Diakonikolas et al.
[2019], we say our model is robust if it can deliver accurate results in an ϵ-corrupted setting, i.e.
when some fraction 0 < ϵ < 0.5 of the support examples have been removed by some adversary
and replaced with arbitrary points. More specifically, we wish for our models to minimize the
drop in accuracy when evaluated in an ϵ-corrupted setting versus an uncorrupted one, and maintain
comparable accuracy to base Meta-Baseline when evaluated in an uncorrupted setting.

2.3.2 Robust Mean Estimation using Projected Gradient Descent

For an algorithm to compute this estimate, we chose Cheng et al. [2020]’s gradient descent-based
algorithm. Like previous works in high-dimensional robust mean estimation such as Cheng et al.
[2019], this algorithm provides excellent error guarantees - specifically, that the difference in ℓ2
norm between the output estimate and the mean of the uncorrupted sample set is O(ϵ

√
log(1/ϵ))

when the uncorrupted set of samples is at least N = Ω̃(d/ϵ2) in size and the number of iterations is
Õ(Nd3/ϵ), where d is the dimensionality of the sample vectors [Cheng et al., 2020]. However, the
main advantage of this algorithm is that it is much more straightforward to implement than previous
approaches, as it does not require a nearly-linear time Semi-Definite Program solver as in Cheng et al.
[2019] nor any heuristics as in Diakonikolas et al. [2017].

Despite these advantages, it must be made clear that in the few-shot setting, we necessarily lack
the number of samples needed for the error guarantees in Cheng et al. [2020] to take effect with
high-dimensional data (d = 512 in our case). However, while we may not have provable guarantees,
there are two intuitions that might indicate that the algorithm will be nonetheless effective:

1. One reason why a large number of samples is needed is so that the covariance of the
uncorrupted samples resembles that of the underlying data distribution [Cheng et al., 2019].
However, because we are specifically fine-tuning the underlying embedding space on the
few-shot classification task, the covariance of the sample embeddings may be well behaved
even without a large number of samples.

2. The algorithm in Cheng et al. [2020] assumes that the underlying data distribution from
which the samples are drawn is a spherical Gaussian with unknown mean; however, this
assumption is already implicitly made by the act of performing nearest-centroid classification
using the ℓ2 norm, as Snell et al. [2017] proved. Thus, utilizing the algorithm in Cheng et al.
[2020] does not introduce any additional assumptions on the sample distribution.
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3 Methods

3.1 Datasets and backbone

Here, we train and evaluate the extended Meta-Baseline on two datasets: MiniImageNet, from Vinyals
et al. [2016], and TieredImageNet, from Triantafillou et al. [2018], both of which are subsets of
ImageNet [Deng et al., 2009]. Here, we use the same training and testing class splits as in Chen
et al. [2021]. While both datasets are subsets of ImageNet, the TieredImageNet presents a more
difficult task for the model, both because it contains more classes to sample from (608 vs. 100 for
MiniImageNet [Triantafillou et al., 2018]), but also because the split ensures that the training and
testing classes are from distinct semantic categories [Triantafillou et al., 2018]. For each dataset, we
train a ResNet-12 model [He et al., 2016] to act as the backbone classifier and provide the transferred
embedding space for meta-learning. Training hyperparameters for these classifiers are identical to
those in Chen et al. [2021].

Chen et al. [2021] also trains and evaluates Meta-Baseline on two additional datasets: Imagenet-800,
a randomly split 800-base-class subset of ImageNet of their own creation, and Meta-Dataset from
Triantafillou et al. [2019]. We did not train or evaluate on these datasets, however, due to a lack of the
necessary compute to train the ResNet-18 and ResNet-50 [He et al., 2016] backbones used by Chen
et al. [2021] on these datasets.

3.2 Experimental settings

3.2.1 Few-shot settings

Here, as we are evaluating a new method of finding the class centroids when multiple support
examples are present for each class, we evaluate the model in the 5-shot and 20-shot settings, differing
from Chen et al. [2021]’s 1- and 5-shot settings. We chose to run experiments with an increased
number of samples in order to determine if there is a difference in effectiveness of the algorithm
between differing sample sizes that are each still below the Ω̃(d/ϵ2) derived by Cheng et al. [2020].

3.2.2 Corruption setting

Here, we evaluate the robustness of our model at testing time only, and therefore assume that the
training data has not been ϵ-corrupted. We do this both because it is standard for ImageNet and its
derivatives [Deng et al., 2009] to be hand-annotated and therefore would be extremely unlikely to be
attacked by an adversary, and also because running the robust mean estimation algorithm substantially
slowed evaluation time, so running it during training was not practical with our available time and
compute (discussed further in Section 6). When evaluating for robustness, we corrupt 20% of the
support set for each class (i.e. ϵ = 0.2) by adding a Gaussian noise tensor to each corrupted sample,
with a standard deviation of 20 for each color value in each pixel. We do this in order to simulate
random noisy disruptions to the input images such as dropped and corrupted pixels. These disruptions
have been shown to significantly reduce the performance of standard classification models such as
ConvNets [Momeny et al., 2021]. While noising the data in this way is potentially more extreme than
real-world noise, we chose this method as it was straightforward to implement and sufficient to create
enough corruption to affect the efficacy of Meta-Baseline.

3.3 Application of Robust Mean Estimation

As we restrict the corruption setting to only the support examples for each class, this is where we
apply the algorithm from Cheng et al. [2020]. In each evaluation run where we are evaluating the
algorithm’s effectiveness, we run the algorithm for 10 iterations in order to calculate the centroid for
each class. We use 10 iterations as this was the suggested starting point from Cheng et al. [2020]’s
implementation of the algorithm; unfortunately, we did not have time to perform a hyperparameter
search for the most effective number of iterations, as we discuss further in section 6.

In each experiment where we performed robust mean estimation, we performed nearest-centroid clas-
sification of the query examples using the euclidean distance, rather than the cosine similarity. While
Chen et al. [2021] found that the Euclidean distance is less effective than the cosine similarity when
performing nearest-centroid classification using Meta-Baseline, we were interested in determining if
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Table 1: Results of ϵ-corruption of the support set on MiniImageNet [Vinyals et al., 2016].

Method Shot Corrupted? Accuracy Delta

Cosine
5 No 0.792± 0.006

Yes 0.626± 0.008 −0.166± 0.014

20 No 0.848± 0.002
Yes 0.686± 0.008 −0.162± 0.010

Euclid.
5 No 0.776± 0.005

Yes 0.246± 0.002 −0.530± 0.007

20 No 0.848± 0.003
Yes 0.222± 0.003 −0.626± 0.006

the robust mean estimation algorithm would improve the performance of using the Euclidean distance,
and if its effectiveness for model robustness would differ between the two methods. However, we
unfortunately ran out of time before we could perform evaluation runs using robust mean estimation
with cosine similarity estimation.

3.4 Training Meta-Baseline

To implement the above experimental settings, we trained four versions of Meta-Baseline on each of
the two datasets: one fine-tuned using the cosine similarity and one fine-tuned using the Euclidean
distance for each of the 5-shot and 20-shot settings, respectively. Aside from the shot number and
distance metric used, training hyperparameters were identical to those in Chen et al. [2021].

4 Results

4.1 Testing Details

As stated previously, all tests where the support set is corrupted are run with ϵ = 0.2. All evaluations
are run 5-way, with 10 testing epochs consisting of 200 batches of 4 testing episodes, for a total of
800 testing episodes per evaluation. All results are reported here as the average top-1 accuracy of the
best testing epoch ± the 95% confidence interval for that epoch.

In evaluations where robust mean estimation (RME) is used, the algorithm is run for 10 iterations
with ϵ = 0.2.

4.2 Results of ϵ-corruption

First, we replicate Chen et al. [2021]’s 5-shot results and examine the effects of ϵ-corruption of the
support set.

On MiniImageNet [Vinyals et al., 2016] we find that in the 5-shot un-corrupted environment the
cosine similarity metric outperforms the Euclidean distance by about 1.6%, aligning with Chen
et al. [2021]’s results. Interestingly, however, this advantage vanishes in the 20-shot un-corrupted
setting, where the two metrics perform nearly identically. In the corrupted environment, we find
that the cosine similarity metric is fairly robust on its own, with an accuracy drop of about 16%
in both the 5-shot and 20-shot environments. In contrast, the Euclidean distance is crippled in the
corrupted environment, with accuracy drops of 53% and 62% in the 5-shot and 20-shot scenarios,
respectively. Curiously, the Euclidean distance performs worse in a corrupted 20-shot environment
than in a corrupted 5-shot environment. A possible explanation for this effect is that even though the
proportion of outlier to inlier samples is the same in the 5-shot and 20-shot cases, the absolute number
of outliers is higher in the 20-shot case. As each outlier can corrupt the covariance of the sample
distribution in different directions, this would allow multiple outliers with the same noise distribution
to have more cumulative effect on the sample mean than one corrupted sample could. However, the
Euclidean norm still performs better than random guessing in both cases (20% accuracy). Full results
on MiniImageNet [Vinyals et al., 2016] can be found in Table 1.

On TieredImageNet [Triantafillou et al., 2018], we find that the cosine similarity vastly outperforms
the Euclidean distance, with the 5-shot un-corrupted accuracy of the cosine similarity being about
double that of the 20-shot un-corrupted Euclidean distance, 83% vs. 41%. Chen et al. [2021] did not
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Table 2: Results of ϵ-corruption of the support set on TieredImageNet [Triantafillou et al., 2018].
Note the greater under performance of the Euclidean distance compared to results on MiniImageNet
[Vinyals et al., 2016]

Method Shot Corrupted? Accuracy Delta

Cosine
5 No 0.825± 0.006

Yes 0.699± 0.007 −0.127± 0.013

20 No 0.859± 0.005
Yes 0.735± 0.002 −0.124± 0.007

Euclid.
5 No 0.341± 0.006

Yes 0.210± 0.001 −0.131± 0.007

20 No 0.413± 0.005
Yes 0.201± 0.000 −0.212± 0.005

Table 3: Results running robust mean estimation via Cheng et al. [2020]’s algorithm on the support
set for MiniImageNet [Vinyals et al., 2016] and TieredImageNet [Triantafillou et al., 2018] and
classifying using the Euclidean Distance. Note the substantial reduction in accuracy loss between the
un-corrupted and corrupted environments.

Dataset Shot Corrupted? Accuracy Delta

Mini
5 No 0.773± 0.006

Yes 0.651± 0.003 −0.122± 0.009

20 No 0.847± 0.003
Yes 0.504± 0.004 −0.343± 0.007

Tiered
5 No 0.351± 0.006

Yes 0.315± 0.006 −0.036± 0.012

20 No 0.425± 0.005
Yes 0.297± 0.003 −0.128± 0.008

report the performance of the Euclidean distance on TieredImageNet, so this result is new and defies
straightforward explanation. As was stated in section 3.1, the TieredImageNet dataset is generally
considered a more difficult task for few-shot image classification models than MiniImageNet, which
could explain the Euclidean distance’s under performance; however, this explanation does not account
for the cosine similarity’s high performance on this dataset, where it outperforms its prior results on
MiniImageNet, replicating Chen et al. [2021]’s result. We leave further exploration of this for future
work.

In the corrupted setting on TieredImageNet, the cosine similarity proves to be even more robust than
on MiniImageNet, losing about 12% of its accuracy in both the 5- and 20- shot cases. On the other
hand, the Euclidean distance is reduced to essentially random guessing, with about 20% accuracy in
both the 5- and 20-shot cases. Full results can be found in Table 2.

4.3 Results with robust mean estimation

Next, we evaluate the effect of running Cheng et al. [2020]’s robust mean estimation algorithm on the
support set while classifying using the Euclidean distance on both MiniImageNet and TieredImageNet.
In all cases, we note either no change or a slight improvement in accuracy in the un-corrupted
environment compared to using the Euclidean distance without robust mean estimation, and a
significant increase in accuracy in the corrupted environment. The results are especially stark on
TieredImageNet, where robust mean estimation rescues the Euclidean distance from random guessing
to only having an accuracy loss of 3.6% in the 5-shot case. Still, the Euclidean distance with RME is
outperformed by the cosine similarity without RME in all cases except for the 5-shot corrupted case
on MiniImageNet, where the Euclidean distance with RME slightly overperforms with 65% accuracy
vs. cosine similarity’s 63%. Full results can be found in Table 3.

5 Discussion

Overall, our results show that nearest-centroid based few-shot learning algorithms for image classifi-
cation are vulnerable to attacks against their support sets, even when these attacks come in the form
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of random noise rather than adversarially selected examples. Algorithms that utilize the Euclidean
distance for nearest-centroid measurement appear to be especially vulnerable to such attacks, as
Meta-Baseline consistently loses over 50% of its accuracy on MiniImageNet and is reduced to random
guessing on TieredImageNet when its support sets are attacked. In contrast, the cosine similarity
seems inherently more robust, as a Meta-Baseline that utilizes it never dropped below 60% accuracy
in any of our evaluations.

Our hypothesis for why the cosine similarity is more robust is that the cosine similarity likely
inherently ignores certain alterations to the covariance of the support set, due to it being invariant to
the magnitude of the vectors being compared. Thus, for any corruption to alter the cosine similarity
between two examples, it would need to alter the angle of the embedding, not simply its magnitude,
and this may be less probable of an occurrence with random Gaussian corruptions on the original
input images. Further work might seek to test this hypothesis by directly corrupting the embedding
vectors’ angle and magnitude, rather than simply altering the raw images.

Our other major result is that despite not having any error guarantees on datasets of this size, the robust
mean estimation algorithm from Cheng et al. [2020] does improve the performance of Meta-Baseline
in a corrupted environment, at least when evaluating using the Euclidean distance for nearest-centroid
estimation. In all evaluations, utilizing robust mean estimation significantly reduced the accuracy
deficit between the un-corrupted and corrupted tests, especially on TieredImageNet where running
RME saved Meta-Baseline from random guessing. While there still exist several barriers to this being
applied at scale in a real-world environment (see Section 6), this is an important proof of concept
demonstrating that algorithms such as Cheng et al. [2020]’s can be used in a few-shot setting, and
leaves ample opportunity for future work to further improve on these results.

6 Limitations and future work

Due to time and compute constraints on this project, there are a number of questions we have left
unanswered that would be straightforward for future work to explore. Along with the issues discussed
below, a lack of available compute kept us from evaluating on Imagenet-800 [Chen et al., 2021] or
Meta-Dataset [Triantafillou et al., 2019] as we could not train the required ResNet-18 or ResNet-50
[He et al., 2016] backbone classifiers.

A key issue is that we derived our implementation of Cheng et al. [2020]’s algorithm by porting their
implementation into Python via the NumPy [Harris et al., 2020] library. While this allowed us to
perform the necessary operations to execute the algorithm (such as top-1 eigenvalue decomposition),
this required executing the algorithm on CPU rather than GPU. This, alongside the algorithm’s
inherent complexity, greatly slowed down evaluation: evaluations without RME took about 45
minutes on an NVIDIA Titan RTX GPU, whereas evaluations with RME took about 36 hours. Future
work should seek to develop means to parallelize the algorithm in order to increase evaluation speed.

The primary evaluation that we were unable to perform was running Cheng et al. [2020]’s algorithm
while performing classification using the cosine similarity. This would be straightforward to imple-
ment, as Chen et al. [2021]’s method for calculating the centroid via cosine similarity first computes
the mean of the support embeddings in terms of ℓ2 norm. As we found the cosine similarity to be
inherently more robust than the Euclidean distance, we believe that augmenting cosine similarity
evaluation with robust mean estimation will lead to the most robust version of the Meta-Baseline
model.

Another key issue left unaddressed here due to time is that we did not perform any hyperparameter
search on the number of iterations for the robust mean estimation algorithm. We executed the
algorithm for only 10 iterations in every evaluation, far below the Õ(Nd3/ϵ) required by Cheng et al.
[2020] for their error guarantees. We hypothesize that running the algorithm for additional iterations
would further improve the robustness of Meta-Baseline, but doing so would be impractical unless the
above efficiency improvements were achieved.

One of the key constraints of this work is that we only evaluated the use of Cheng et al. [2020]’s
algorithm during testing, and did not employ it during the meta-learning phase of Meta-Baseline’s
training. Our results suggest that employing robust mean estimation during training would not have
affected our results while training on an un-corrupted dataset, as testing with robust mean estimation
did not significantly alter the model’s accuracy on un-corrupted testing data. However, future work
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should confirm this hypothesis, as well as examine the effects of corrupted training data and the
efficacy of robust mean estimation during training at mitigating those effects.

Finally, there are multiple issues that would challenge this system in a real-world environment that
we left unexamined here. First is that applying Cheng et al. [2020] requires a prior assumption on
the value of ϵ, i.e. the fraction of data that is corrupted. While here we assumed that the algorithm’s
ϵ was exactly equal to the true fraction of corrupted data for simplicity, future work should test the
effects of over- or under-estimating ϵ in a corrupted-data environment. Additionally, here we used
random corruption of the data for simplicity; many other works on robustness, however, instead focus
on developing adversarial examples, e.g. Subramanya and Pirsiavash [2022]. Future work should test
if Cheng et al. [2020]’s algorithm also improves robustness against such examples.

7 Related Work

7.1 High-dimensional robust mean estimation

This work relies heavily on previous research on high-dimensional robust statistics, most prominently
Cheng et al. [2020]’s algorithm for high-dimensional robust mean estimation, which utilizes a form
of projected gradient descent that Cheng et al. [2020] prove is optimal at all critical points. This work
itself follows from earlier robust mean estimation methods, such as Diakonikolas et al. [2017] which
relies on filtering heuristics to eliminate outliers and Cheng et al. [2019] which formulates the robust
mean estimation problem as a semi-definite program.

7.2 Meta-learning

Here, we rely on Chen et al. [2021]’s Meta-Baseline as our few-shot classification model. This
model is one of the latest in a line of research focused on performing nearest-centroid classification
in a learned embedding space; such techniques originated with Prototypical Networks [Snell et al.,
2017] and were developed further in works such as Tian et al. [2020]. This method contrasts other
meta-learning techniques such as MAML [Finn et al., 2017] in its simplicity, and is competitive with
contemporaneous state of the art methods for few-shot classification, such as Constellation Networks
[Xu et al., 2021].

7.3 Robust classification and meta-learning

The field of robust image classification has become an increasingly active area of research in recent
years. Momeny et al. [2021] develops a method for adapting convolutional neural networks to
be noise-robust through additional noise mapping and adaptive resizing layers. Subramanya and
Pirsiavash [2022] also focuses on few-shot methods similar to Meta-Baseline, but their techniques
rely on adversarial training and transfer learning to inure models to adversarially-selected examples.
Kong et al. [2020] focuses on robust meta-learning across differently-sized tasks where some tasks
are corrupted to varying degrees, and tests its methods in a constrained mixed linear regression
environment.

As far as we are aware, applying robust mean estimation for robustness in image classification or
meta-learning is novel.
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