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Abstract

Consistency Models generate high-quality images with few number of function
evaluations (NFE) through consistency distillation or consistency training [13]]. We
introduce CT Inversion, a novel approach that solves the initial value problem
of the forward probability flow ODE from image distribution to Gaussian noise
deterministically. Training with CT Inversion, our noiser model is able to encode
the latent noise of a given image with 1 NFE as oppose to the baseline DDIM
Inversion [10] that typically uses 35~100 NFE’s. In addition to the acceleration on
inference speed, our noiser model demonstrates close performance compared to
DDIM Inversion in image reconstruction when coupled with off-the-shelf diffusion
models or consistency models on the CIFAR-10 dataset. With classifier-free guid-
ance, we further showcase on the MNIST dataset that CT Inversion can intuitively
substitute DDIM Inversion in controlable generation algorithms such as image
editing. In the end, we discuss future work on controllable generation by training
CT Inversion on large scale image/text-image datasets. We also highlight its unique
alignment learning training fashion as a new representation learning approach in
comparison with traditional self-supervised methods using autoencoders or VAE’s.

1 Introduction

Recent advancements in diffusion models (DM) have led to significant progress in synthesis of
high-quality images. Consistency Models (CM) are a novel family of models designed to expedite the
generation process by mapping noise to data through consistency distillation (CD) and consistency
training (CT)[L3]]. CD samples images that lie on the same probability-flow (PF) ODE trajectory
computed by a parent DM, then establishes consistency matching between adjacent images of
different noise scales. However, CM’s multi-step sampling procedure results in semantic variation
as it involves alternating between zero noise and noise. Consistency Trajectory Models solves this
problem by flexibly traversing backwards to any point on the PF ODE, with the option to jump
forward for diverse generation controlled by a ~ factor. [6]]. Latent Consistency Models leverages
consistency matching within the latent space of pretrained Stable Diffusion [12] autoencoders. Their
guided CD method enables classifier-free guidance for few-step 2~4 or even 1-step sampling.

DMs and CMs, often referred to as denoisers, are recognized for their ability to transform noisy
images into clean ones. The endeavor to solve the inverse problem, i.e., deducing the unique noise
from a given clean image, has gained attention in the realm of inversion-based image editing works
(10,19, 3]]. Building on the assumption that the ODE process can be reversed and approximated when
considering infinitesimally small steps, DDIM Inversion performs diffusion in the reverse direction
to find an image’s noise encoding [10]]. However, the inverse process is time-intensive due to the high
number of function evaluations (NFE) of diffusion models.
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We introduce Consistency Training (CT) Inversion, a novel approach for solving the initial value
problem of the PF ODE from image distribution to Gaussian noise deterministically. Our method
significantly reduces the NFE’s required for noise encoding. It also achieves similar performance to
the baseline DDIM Inversion on image reconstruction. In summary,

* We propose CT Inversion for deterministic noise encoding with only 1 NFE.

* We showcase that CT Inversion can be paired with off-the-shelf denoiser for image recon-
struction tasks on CIFAR-10 [8]] and MNIST [2]. With off-the-shelf DM’s and CM’s on
CIFAR-10, CT Inversion provides 30 times speed up while having acceptable performance
compared to the DDIM Inversion baseline.

* We also demonstrate its potential for controllable generation tasks via classifier-free guidance
on the MNIST dataset. However, we leave the actual prompt-to-prompt image editing task
for future work by training CT Inversion on large scale text-image datasets.

¢ Inspired by CM’s, we introduce a novel alignment learning training style for representation
learning in isolation, distinct from traditional self-supervised methods that uses autoencoders
or VAE’s [7]].

2 Background

2.1 Consistency Models

Consistency Models (CM) are built upon the framework of diffusion stochastic differential equations
(SDE). Att = 0, a real image sampled from the dataset x( ~ D, the generalized form describing the
noisify process is given by:

day = p(xe, t) dt + o(t) dw, (1)

Solving the Fokker-Planck Equation [[11] yields the probability-flow Ordinary Differential Equation
(ODE) as dzy = [u(x4,t) — $0(t)*V log(py(¢))] dt. The absence of the stochastic term dw, makes
the evolution of x; deterministic. For instance, in the Variance Exploding (VE) SDE [14] family with
p = 0and o(t) = v/2t, the corresponding PF-ODE becomes:

dzy
dt

x¢ — Elzo|zy]

= —tVlog(p:(zs)) = i

@)
Given the initial condition at ¢ = ¢, * = x;, as well as an optional ODE solver as an oracle,
CM’s are trained to model the landscape of the initial value problem (IVP) at ¢ = 0, x = xg.
Denote the full trajectory of an image {x;};c[c 77, the consistency property [13] is expressed as
fo(ziyr,t+ 1) = fo(ae, t), Vt € [e, T]. Consequently, CM’s loss function is defined as:

L(0) = E\®)d(fo(ver1,t + 1), fo- (2, 1))] ©)

Inspired by EDM’s [5]], CM’s are parameterized with skip connections, fy(z¢,t) = coip(t)z: +
Cout(t)NNp(z¢, t). This allows boundary conditions at t = ¢ to propagate effectively to higher noise
levels by setting cip(€) = 1, cour(€) = 0, and cip(T") = 0, couc(T") = 1. Consequently, fo(z., ) =
2. skips the model’s inference when input is approximately xg, and fg(z7,T) = NNy(z¢, t) requires
full model inference when the noisiest possible image is provided.

2.2 DDIM Inversion

The VE SDE’s deterministic denoising process follows the euler update rule by:

xy — Elzg|zy]

Ty =z +day, day = r

dt “

Following the common technique proposed in DDIM Inversion [10], we can approximate E[x |2
with E[xg|z;—1]. By rearranging terms in Eq the DDIM Inversion update rule is as follows:



Ty = Tt—1 —

t—1

1—E _
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In practice, the expected value is approximated by a trained DM denoiser gg (¢, t) ~ Elxo|z,].

2.3 Inversion-based Image Editing

Null-text Inversion [[10] ensures the fidelity of the original image by fine-tuning the null-text embed-
ding in guided DM’s [4]. Substituting the null-text placeholder with source text, Negative-prompt
Inversion [9] accelerates image editing inference by 25 times with minimal performance degradation.
With the use of a proximal function and mutual self-attention control [1]], ProxEdit [3] prevents
overestimation of the guidance strength without tuning parameters.

In this technical report, we will demonstrate CT Inversion’s use case on changing MNIST digits by
different digit classes. We show that CT Inversion + off-the-shelf CM’s successfully changes the
appearance of the input digit to the target class, while preserving the style of the original input as
much as possible.

3 Image to Noise: Consistency Training Inversion

We propose CT Inversion, an algorithm that trains a model to directly map the source distribution
to Gaussian noise by solving an IVP of the defined ODE in Eq[2] Specifically, through consistency
matching, CT Inversion computes the noise latent z7 given any noise scale image x;, i € [¢,T]. For
details, refer to the training objective in Alg[l]

Algorithm 1 Consistency Training Inversion (CT Inversion)

Require: dataset D, initial model parameter 6, learning rate 7, step schedule N (), loss function
d(-,-), weight schedule A(-), and scale distribution P
I: 0=0"and k=0
2: repeat
: Sample xg ~ D andn ~ P
Sample z ~ N(0,1)
Ty, =To +tnz

xn-{-l(l‘na 330) =z, + (tn-‘rl - tn)(znti;zw

3

4

5

6:

7: L(97 97) < )‘(tn)d(fG* (xn—&-la tn—&-l)v fe(xn7 tn))
8: 0~ « stopgrad(f)

9: k<« k+1

10: until convergence

As oppose to CM’s, the propagation of the boundary condition flows backwards from ¢ = T to
t = €. We adopt the same skip connection structure as CM’s and define cuip(t) = 1, cou(t) =T — t
such that it naturally satisfies f(x7) = ar. In case of low noise ¢, emphasis on the prediction
is scaled up linearly in contrast to the skip connection of x;. In practice, the input image x; is
also scaled by cin(t) = 1/4/t> + 02,,,,» which we choose to omit for clarity. It can be shown that
such parametrization yields unit variance between the input and target, a nice property to have for
training neural networks. The derivation of each parametrization for cyip (%), Cou(t), cin(t) follows
the Appendix in [5].

We highlight that the ground truth of an image’s noise representation is unknown and intractable
under CT Inversion training. Unlike traditional VAE that utilizes an autoencoder pipeline for self-
supervision, CT Inversion is able to train the noise encoder in isolation without the help of a denoiser
or an oracle ODE Solver. This, however, is based on the assumption that we are able to approximate
clean images zo with low noise images z.. Otherwise, the uniqueness of the encoding process will
not hold given the source distribution are dirac deltas in theory.
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Figure 1: Toy illustration of CM denoiser (left) and CT Inversion encoder (right). The source data is
uniformly distributed across five values in {-1.0,-0.5,0.0,0.5,1.0}. The xy-axis in the top row figures
represents noise scale ¢ and perturbed data z; respectively. The color of each data point is the model’s
prediction, i.e., fo(z¢,t). BY lifting the value of each color up in 3d, we can see that CM learns to
match the source data distribution given noisy data, while CT Inversion learns to match Guassian
noise given clean data.

Corollary 3.1 The stochastic process designed for consistency matching in CT Inversion matches
the target density derived from Fokker-Plank Equation.

Corollary 3.2 The deduced target image x,,+1 is dependent on xq and x,, where x,, is obtained via
the stochastic process that fulfills Corollary 3.1}

Theorem 3.3 (Equivalence of CT Inversion’s Objective and PF ODE Solution at time T)
Objective Jor can be written as the following expected value:

Jor = Eeg n[Mtn)d(fo- (Tni1, tag1), fo(Tn, tn))]

= Ea M)+ (b = 80) T2 1 0), ol )]

= By Ao (o + (1 — 1) 2= ErolZ0ln])

= Exn,n[/\(tn)d(fef (xn +dzxy, tn+1)7 f@(xm tn))]
Because of Corollary the density p(x,,) matches the PF-ODE density at t = n. Following the
deterministic path by x.,, +dx,, the density p(x,,1) also matches the PF-ODE assuming infinitesimal

step sizes. Further assume that the objective Jor converges to 0, this induces that images on the
same PF-ODE trajectory {x;}c|c 1] are mapped to the same vector fo(x7,T) = 7.

7tn+1)7 fG(mn, tn))]

The effect of consistency matching on the denoising and encoding process is depicted in Fig[T] We
call this new unsupervised training style alignment learning for representation learning tasks, which
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Figure 2: MNIST reconstruction qualitative results. Left: ground truth batch (input to the noiser).
Right: reconstruction batch (prediction from the denoiser). The noiser and denoiser are trained
separately.

effectively aligns the source distribution to Gaussian noise. Without knowing the representation
ground truth of individual samples from the dataset, we demonstrate in Sec[A]that our encoder is able
to communicate with a denoiser by reconstructing images from the CT Inversion’s latent.

4 Experiments

To evaluate CT Inversion’s proof of concept, we consider two simple datasets, MNIST and CIFAR-10,
For the CIFAR-10 datasets, we further compare our results with DDIM Inversion as a baseline in terms
of its Ipips/ssim/psnr metric scores, as well as the average inferencing speed per batch data through
the entire testing dataset. The DM baseline model, as well as the CM baseline models are downloaded
from the open source github repo at/https://github.com/openai/consistency_models!

We unify the UNet architecture for both the noiser and denoiser. Following training curriculum
suggested in [[13], we adopt a noise schedule by setting p = 7.0, maximum noise scale 80.0, minumum
noise scale 0.002. For MNIST, the noiser models are trained about 40 A5000 gpu hours, completing
100K training iterations. As for CIFAR-10, the noiser models are trained about 288 A5000 gpu hours
(8 gpus, 1.5 days), completing 300k training iterations. For image reconstruction tasks, our model is
trained without guidance. In other words, both noiser and denoiser takes an image and its noise scale
as input. For the experiments in Sec[4.2] the models take an additional class embedding as input in
order to encode/generate class-conditioned results.

4.1 Image Reconstruction

For the MNIST dataset, the noiser is trained with CT Inversion, while the denoiser is trained with
CT. The results show that despite being trained in isolation, the noise encoder can falk to another
separately trained denoiser by reconstructing faithful images same as the input. Pairing CT Inversion
+ CT, we achieve high metric scores with Ipips=0.0619, ssim=0.9270, and psnr=21.6735 (Fig[2).

According to the update rules in Eq[5} we set both the DDIM Inversion and DM inference steps to
30. We show a total of 4 experiments as shown in Tableﬂ], DDIM Inversion + DM, CT Inversion +
CM, DDIM Inversion + CM and CT Inversion + DM. Similar to the results from MNIST, the noiser
trained via CT Inversion is able to reconstruct faithful images when paired with off-the-shelf models.
Surprisingly, when paired with DM’s, CT Inversion even obtained marginal performance boost with
the cost of inference time from the denoising process. We also observed that the reconstruction quality
of CM-based methods are clearer than DM ones. However, metric-wise, CT Inversion still gets
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Figure 3: CIFAR-10 reconstruction qualitative results. With CT Inversion, the noiser is able to
capture the denoiser’s latent space. This is not possible for DDIM Inversion when pairing it with a
CM denoiser. Overall, CT Inversion latents can be decoded into clearer images than their DDIM
counterparts. However, noticeable tone deviation can be seen from the more contrasting images

reconstructed by CT Inversion.

punished for the overall tone deviation from the ground truth. To conclude, CT Inversion achieves up
to 40 times speed up with acceptable degradation on reconstruction quality. We present the qualitative

results in Fig[3]

Table 1: CIFAR-10 reconstruction results

Ipips({) ssim(f) psnr(f) cost (sec/batch)({)
DDIM_Inv + DM  0.2165 0.8298 22.9758 6.9768
DDIM_Inv+CM  0.6262  0.2499 10.3434 3.4931
CT_Inv + CM 0.2426  0.7911 18.0738 0.1851
CT_Inv + DM 0.2369 0.8024 18.1951 3.6525

4.2 MNIST: Style Preserving Digit Conversion

Inversion-based methods for controllable generation, e.g., image editing, are the main applications of
DDIM Inversion for DM’s. Previous works attempted to save the inference and optimization cost by
eliminating the need of per-image fine-tuning. With CT Inversion, we can potentially further improve

the inference cost significantly for fewer NFE’s.



Source images

Denoiser

Source labels:
{6,1,8,3,3,7,4,9}

Target labels:
{0}s, {2}'s, {6}'s, {8}'s

Figure 4: MNIST style preserving conversion qualitative results. The first row represents the source
image, and the bottom row represents its conversion. CT Inversion manages to preserve the style of
the source image even after conversion, e.g., stroke thickness, width length, thinness, source digit
feature, etc.

In this section, we exhibit CT Inversion’s capability of style preserving digit conversion on the
MNIST dataset. Similar to the image editing task, we are given a source (image, class) pair, the
objective is to modify the image according to a target class. As illustrated in Figld} CT Inversion is
capable of converting the source image if the target class is different from the source, otherwise, it
reconstructs the source image.

5 Closing

Inspired by consistency matching from CM’s, CT Inversion reduces the computational burden
associated with noise encoding. It’s ability to achieve noise encoding with just 1 NFE surpasses
baseline methods, ensuring rapid inference speed with minimal tradeoff in metric scores. With
alignment training on a universal representation space, CT Inversion is capable of substituting DDIM
Inversion in previous controllable generation algorithms without compatability concerns of the type
of denoiser (as long as they are trained on the same source distribution).

Future work will extend CT Inversion to large-scale image and text-image datasets, maximizing
its potential in inversion-based generation tasks like image editing. Furthermore, CT Inversion’s
alignment learning approach offers a unique path for representation learning, distinguishing it from
traditional self-supervised methods. These efforts promise to advance generative models and enable
more efficient and versatile applications across domains.
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A Appendix

Additional experimental results are shown here.

Figure 5: CIFAR-10 ground truth (single batch)



Figure 6: CIFAR-10 reconstruction: DDIM Inversion — DM
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Figure 8: CIFAR-10 reconstruction: CT Inversion — CM
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Figure 9: CIFAR-10 reconstruction: CT Inversion — DM
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