CSCI 1520: Algorithmic Aspects of Machine Learning (Spring 2025) Written Assignment 3

Due at 11:59pm ET, Thursday, April 17

- 1. (4 points) Compute the derivative $\frac{\partial f}{\partial x}$ of the following vector-to-scalar functions. All other variables are constants (i.e., not a function of x).
 - (1) $f(x) = \langle c, x \rangle = c^{\top} x$. $(c \in \mathbb{R}^n \text{ and } x \in \mathbb{R}^n)$
 - (2) $f(x) = x^{\top} M x$. $(x \in \mathbb{R}^n \text{ and } M \in \mathbb{R}^{n \times n})$
 - (3) $f(x) = ||Ax b||_2^2$. $(A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n, \text{ and } b \in \mathbb{R}^m)$
 - (4) $f(x) = ((a^{\top}x)^2 z)^2$. $(a \in \mathbb{R}^n, x \in \mathbb{R}^n, \text{ and } z \in \mathbb{R})$
- 2. (4 points) Compute the derivative $\frac{\partial f}{\partial X}$ of the following matrix-to-scalar functions. All other variables are constants (i.e., not a function of X).
 - (1) $f(X) = \langle C, X \rangle = \operatorname{tr}(C^{\top}X)$. $(C \in \mathbb{R}^{m \times n} \text{ and } X \in \mathbb{R}^{m \times n})$
 - (2) $f(X) = \operatorname{tr}(AXB)$. $(A \in \mathbb{R}^{m \times n}, X \in \mathbb{R}^{n \times p}, \text{ and } B \in \mathbb{R}^{p \times m})$
 - (3) $f(X) = \|Y DX\|_F^2$. $(Y \in \mathbb{R}^{m \times p}, D \in \mathbb{R}^{m \times n}, \text{ and } X \in \mathbb{R}^{n \times p})$
 - $(4) f(X) = \|XX^{\top} M\|_F^2.$ $(X \in \mathbb{R}^{n \times r} \text{ and } M \in \mathbb{R}^{n \times n})$
- 3. (6 points) Consider the problem of finding the best rank-one approximation of a matrix M. We focus on the case where $M \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD). That is, $M = M^{\top}$ and $x^{\top}Mx \geq 0$ for all $x \in \mathbb{R}^n$.

Consider the (non-convex) loss function $f(x) = \|M - xx^{\top}\|_F^2$ where $x \in \mathbb{R}^n$.

(1) Let $\nabla f(x) \in \mathbb{R}^n$ and $\nabla^2 f(x) \in \mathbb{R}^{n \times n}$ be the gradient and Hessian of f at x, respectively. Show that

$$\nabla f(x) = 4(xx^{\top} - M)x$$
 and $\nabla^2 f(x) = 4((x^{\top}x)I + 2xx^{\top} - M)$.

(2) Suppose M has a unique largest eigenvalue λ with corresponding (unit) eigenvector z. Prove that the only second-order stationary points of f are $\pm\sqrt{\lambda}z$.

(Hint: If x is a second-order stationary point of f, then $\nabla f(x) = 0$ and $z^{\top} \nabla^2 f(x) z \geq 0$. The following fact may be helpful: For any symmetric matrix A, if $Av_1 = \lambda_1 v_1$ and $Av_2 = \lambda_2 v_2$ with $\lambda_1 \neq \lambda_2$, then $v_1^{\top} v_2 = 0$.) 4. (1 bonus point) Consider the problem of matrix sensing, where the goal is to recover a hidden rank-r matrix M from linear measurements. We focus on the case where the hidden matrix $M \in \mathbb{R}^{n \times n}$ is symmetric. The input includes the rank r > 0, a list of sensing matrices $A_1, \ldots, A_m \in \mathbb{R}^{n \times n}$, and the corresponding linear measurements $b_i = \langle A_i, M \rangle$.

Consider the loss function $f(X) = \sum_{i=1}^{m} (\langle A_i, XX^{\top} \rangle - b_i)^2$ where $X \in \mathbb{R}^{n \times r}$. We will prove all local optima of f are globally optimal.

Fix any $U \in \mathbb{R}^{n \times r}$ such that $UU^{\top} = M$. Suppose X is a second-order stationary point of f. Let $R \in \mathbb{R}^{r \times r}$ be an orthogonal matrix that minimizes $||X - UR||_F$. Let $\Delta = X - UR$.

You can use the following facts without proving them:

- The first and second-order optimality condition of X implies that $\langle \nabla f(X), \Delta \rangle = 0$ and $\Delta : \nabla^2 f(X) : \Delta \geq 0$.
- $\|\Delta \Delta^{\top}\|_F^2 \le 2\|XX^{\top} M\|_F^2$.
- (1) Show that $\langle \nabla f(X), \Delta \rangle = 0$ is equivalent to

$$\sum_{i=1}^{m} \left[\left(\langle A_i, XX^{\top} \rangle - b_i \right) \langle A_i, X\Delta^{\top} + \Delta X^{\top} \rangle \right] = 0.$$

(2) Show that $\Delta : \nabla^2 f(X) : \Delta \ge 0$ is equivalent to

$$\sum_{i=1}^{m} \left[2 \left(\langle A_i, XX^{\top} \rangle - b_i \right) \langle A_i, \Delta \Delta^{\top} \rangle + \langle A_i, X\Delta^{\top} + \Delta X^{\top} \rangle^2 \right] \ge 0.$$

(Hint: You can use Taylor expansion to derive the first and second-order optimality conditions in the direction Δ .)

(3) Suppose the sensing matrices satisfy the $(\frac{1}{10}, 2r)$ -restricted isometry property (RIP) as defined below. Prove that any second-order stationary point of f recovers M exactly. (Hint: You can follow a similar approach to the matrix completion proof we discussed in class.)

Definition (Matrix RIP). We say a list of matrices $A_1, \ldots A_m$ satisfies (δ, r) -RIP if the following condition holds for all matrices M with rank $(M) \leq r$:

$$(1 - \delta) \|M\|_F^2 \le \frac{1}{m} \sum_{i=1}^m \langle A_i, M \rangle^2 \le (1 + \delta) \|M\|_F^2.$$

5. (1 bonus point) Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Let $U \in \mathbb{R}^{n \times r}$ be any matrix such that $UU^{\top} = M$. Let $X \in \mathbb{R}^{n \times r}$ be any matrix. Let $R \in \mathbb{R}^{r \times r}$ be an orthogonal matrix that minimizes $\|X - UR\|_F$. Let Z = UR and $\Delta = X - Z$.

We will prove that $\|\Delta\Delta^{\top}\|_F^2 \leq 2\|XX^{\top} - M\|_F^2$.

(1) Assume $X^{\top}Z$ is PSD. Prove that

$$\left\| (X - Z)(X - Z)^{\top} \right\|_F^2 \le 2 \left\| XX^{\top} - ZZ^{\top} \right\|_F^2.$$

(2) Prove that $X^{\top}Z$ is indeed PSD.