
CSCI 1520: Algorithmic Aspects of Machine Learning (Spring 2025)

Written Assignment 3

Due at 11:59pm ET, Thursday, April 17

1. (4 points) Compute the derivative ∂f
∂x of the following vector-to-scalar functions.

All other variables are constants (i.e., not a function of x).

(1) f(x) = ⟨c, x⟩ = c⊤x. (c ∈ Rn and x ∈ Rn)

(2) f(x) = x⊤Mx. (x ∈ Rn and M ∈ Rn×n)

(3) f(x) = ∥Ax− b∥22. (A ∈ Rm×n, x ∈ Rn, and b ∈ Rm)

(4) f(x) =
(
(a⊤x)2 − z

)2
. (a ∈ Rn, x ∈ Rn, and z ∈ R)

2. (4 points) Compute the derivative ∂f
∂X of the following matrix-to-scalar functions.

All other variables are constants (i.e., not a function of X).

(1) f(X) = ⟨C,X⟩ = tr(C⊤X). (C ∈ Rm×n and X ∈ Rm×n)

(2) f(X) = tr(AXB). (A ∈ Rm×n, X ∈ Rn×p, and B ∈ Rp×m)

(3) f(X) = ∥Y −DX∥2F . (Y ∈ Rm×p, D ∈ Rm×n, and X ∈ Rn×p)

(4) f(X) =
∥∥XX⊤ −M

∥∥2
F
. (X ∈ Rn×r and M ∈ Rn×n)

3. (6 points) Consider the problem of finding the best rank-one approximation of a matrix M .
We focus on the case where M ∈ Rn×n is positive semi-definite (PSD). That is, M = M⊤

and x⊤Mx ≥ 0 for all x ∈ Rn.

Consider the (non-convex) loss function f(x) =
∥∥M − xx⊤

∥∥2
F
where x ∈ Rn.

(1) Let ∇f(x) ∈ Rn and ∇2f(x) ∈ Rn×n be the gradient and Hessian of f at x, respectively.
Show that

∇f(x) = 4(xx⊤ −M)x and ∇2f(x) = 4((x⊤x)I + 2xx⊤ −M) .

(2) Suppose M has a unique largest eigenvalue λ with corresponding (unit) eigenvector z.
Prove that the only second-order stationary points of f are ±

√
λz.

(Hint: If x is a second-order stationary point of f , then ∇f(x) = 0 and z⊤∇2f(x)z ≥ 0.
The following fact may be helpful: For any symmetric matrix A, if Av1 = λ1v1 and
Av2 = λ2v2 with λ1 ̸= λ2, then v⊤1 v2 = 0.)
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4. (1 bonus point) Consider the problem of matrix sensing, where the goal is to recover a hidden
rank-r matrix M from linear measurements. We focus on the case where the hidden matrix
M ∈ Rn×n is symmetric. The input includes the rank r > 0, a list of sensing matrices
A1, . . . , Am ∈ Rn×n, and the corresponding linear measurements bi = ⟨Ai,M⟩.

Consider the loss function f(X) =
∑m

i=1

(
⟨Ai, XX⊤⟩ − bi

)2
where X ∈ Rn×r. We will prove

all local optima of f are globally optimal.

Fix any U ∈ Rn×r such that UU⊤ = M . Suppose X is a second-order stationary point of f .
Let R ∈ Rr×r be an orthogonal matrix that minimizes ∥X − UR∥F . Let ∆ = X − UR.

You can use the following facts without proving them:

• The first and second-order optimality condition of X implies that ⟨∇f(X),∆⟩ = 0 and
∆ : ∇2f(X) : ∆ ≥ 0.

•
∥∥∆∆⊤∥∥2

F
≤ 2

∥∥XX⊤ −M
∥∥2
F
.

(1) Show that ⟨∇f(X),∆⟩ = 0 is equivalent to
m∑
i=1

[(
⟨Ai, XX⊤⟩ − bi

)
⟨Ai, X∆⊤ +∆X⊤⟩

]
= 0.

(2) Show that ∆ : ∇2f(X) : ∆ ≥ 0 is equivalent to
m∑
i=1

[
2
(
⟨Ai, XX⊤⟩ − bi

)
⟨Ai,∆∆⊤⟩+ ⟨Ai, X∆⊤ +∆X⊤⟩2

]
≥ 0.

(Hint: You can use Taylor expansion to derive the first and second-order optimality
conditions in the direction ∆.)

(3) Suppose the sensing matrices satisfy the ( 1
10 , 2r)-restricted isometry property (RIP) as

defined below. Prove that any second-order stationary point of f recovers M exactly.

(Hint: You can follow a similar approach to the matrix completion proof we discussed
in class.)

Definition (Matrix RIP). We say a list of matrices A1, . . . Am satisfies (δ, r)-RIP if the
following condition holds for all matrices M with rank(M) ≤ r:

(1− δ)∥M∥2F ≤ 1

m

m∑
i=1

⟨Ai,M⟩2 ≤ (1 + δ)∥M∥2F .

5. (1 bonus point) Let M ∈ Rn×n be a symmetric matrix. Let U ∈ Rn×r be any matrix such
that UU⊤ = M . Let X ∈ Rn×r be any matrix. Let R ∈ Rr×r be an orthogonal matrix that
minimizes ∥X − UR∥F . Let Z = UR and ∆ = X − Z.

We will prove that
∥∥∆∆⊤∥∥2

F
≤ 2

∥∥XX⊤ −M
∥∥2
F
.

(1) Assume X⊤Z is PSD. Prove that∥∥∥(X − Z)(X − Z)⊤
∥∥∥2
F
≤ 2

∥∥∥XX⊤ − ZZ⊤
∥∥∥2
F
.

(2) Prove that X⊤Z is indeed PSD.
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