
CSCI 1520: Algorithmic Aspects of Machine Learning (Spring 2025)

Written Assignment 2

Due at 11:59pm ET, Thursday, Mar 13

1. (5 points) We will explore the uniqueness of the PageRank vector and how to compute it
using iterative methods. Consider an unweighted directed graph G = (V,E) with |V | = n.
We define the transition matrix M ∈ Rn×n of G as

Mi,j =

{
1

d(j) if there is an edge from node j to node i,

0 otherwise,

where d(j) is the outgoing degree of node j.

Let 0 < α < 1 be the teleport probability. Let 1 ∈ Rn be the all-ones vector.

(1) Prove that (I − (1− α)M) is strictly column diagonally dominant.

(A matrix A is strictly column diagonally dominant iff |Aj,j | >
∑

i ̸=j |Ai,j | for all j.)

(2) Prove that there is a unique vector r⋆ ∈ Rn such that r⋆ = α1
n + (1− α)Mr⋆.

(You can use these facts without proving them: all strictly column diagonally dominant
matrices are invertible, and the inverse of an invertible real matrix is a real matrix.)

(3) For a vector x, we define the ℓ1-norm of x as ∥x∥1 =
∑

i |xi|.
For a matrix A, we define the ℓ1-norm of A as ∥A∥1 = maxx ̸=0

∥Ax∥1
∥x∥1

.

Prove that ∥A∥1 = max1≤j≤n
∑n

i=1 |Ai,j |.
(4) The PageRank vector r⋆ ∈ Rn can be approximated as follows:

• Start with any nonnegative vector r0 ∈ Rn with ∥r0∥1 = 1.

• For i = 1, 2, . . . , t, iteratively compute ri = α1
n + (1− α)Mri−1.

Prove that after t iterations for some t = O
(
log(1/ϵ)

α

)
, we have ∥rt − r⋆∥1 ≤ ϵ.

(Hint: You may find the inequality ∥Ax∥1 ≤ ∥A∥1∥x∥1 useful.)

2. (5 points) We will examine some basic properties of the Singular Value Decomposition (SVD).
Let I be the identity matrix of appropriate dimensions. The (compact) SVD of a rank-r matrix
M ∈ Rm×n is a factorization of the form M = UΣV ⊤, where U ∈ Rm×r, Σ ∈ Rr×r, V ∈ Rn×r,
U⊤U = I, V ⊤V = I (i.e., U and V have orthonormal columns), and Σ is a real nonnegative
diagonal matrix. The diagonal entries of Σ are the singular values of M : σi = Σi,i. Suppose
σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0.

(1) Suppose m > r. Prove that the following statement is false: UU⊤ = I.
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(2) A vector z ̸= 0 is an eigenvector of a matrix A iff Az = λz for some λ ∈ R.
Prove that every column of V is an eigenvector of M⊤M .

(3) The Frobenius norm of a matrix M is defined as ∥M∥F =
√∑

i,j(Mi,j)2.

Prove that ∥M∥2F =
∑r

i=1 σ
2
i .

(Hint: You can use the cyclic property of trace without proving it: tr(ABC) = tr(BCA).)

(4) The spectral or operator norm of M is defined as ∥M∥2 = maxx ̸=0
∥Mx∥2
∥x∥2

.

Prove that ∥M∥2 = σ1.

(Hint: You can use ∥U∥2 =
∥∥V ⊤∥∥

2
= 1 without proving it. You may find the inequality

∥Ax∥2 ≤ ∥A∥2∥x∥2 useful.)

(5) Let y ∈ Rm be a unit vector, i.e., ∥y∥2 = 1. Prove that
∥∥M⊤y

∥∥
2
is maximized when

y = u1, where u1 is the first column of U .

3. (4 points) Hyperspectral imaging can capture the spectrum of light for each pixel in an image
of a scene, with the goal of finding objects, identifying materials, or detecting processes.
Unlike the human eye, which mostly perceives colors at three wavelengths (red, green, and
blue), hyperspectral imaging can collect information across the electromagnetic spectrum and
divide the spectrum into many more bands. 1

Consider the hyperspectral unmixing problem, where the input is a hyperspectral image with
n × n pixels. For each pixel, the input data provides intensity information at d different
wavelengths (represented as a vector in Rd). Each pixel contains a mixture of materials (e.g.,
4
7 soil, 2

7 vegetation, and 1
7 water). Each material has a unique signature spectrum (a vector

in Rd) that describes how it reflects light at different wavelengths. The spectrum of a pixel
is a convex combination of the signature spectra of the materials in that pixel. The goal of
hyperspectral unmixing is to find the signature spectrum of each material, and how much of
each material is present in every pixel.

(1) Explain how to formulate hyperspectral unmixing as a Nonnegative Matrix Factorization
(NMF) problem M = AW . What do the matrices M , A, and W represent in this
context? If there are k different materials, what are the dimensions of M , A, and W?

1Explaination and figure are taken from Wikipedia.
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(2) Translate the separability assumption into the context of hyperspectral unmixing.

(Hint: There are two possible translations because the matrices can be transposed.
However, note that usually all entries of the signature spectra vectors are positive.)
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4. (1 bonus point) We will examine normalization in Nonnegative Matrix Factorization (NMF).
Let R≥0 denote the set of nonnegative real numbers.

Suppose we are given an input matrix M ∈ Rm×n
≥0 . We want to compute an NMF, M = AW ,

where every column of A sums to 1.

(1) Let D ∈ Rm×m be a diagonal matrix with Di,i =
∑n

j=1Mi,j . Suppose Di,i > 0 for all i.

Let M̃ = D−1M . Prove that every row of M̃ sums to 1.

(2) Suppose M̃ = Ã W̃ , where Ã ∈ Rm×r
≥0 and W̃ ∈ Rr×n

≥0 . Let B ∈ Rr×r be a diagonal

matrix with Bj,j =
∑m

i=1(DÃ)i,j . Suppose Bj,j > 0 for all j.

Let A = DÃB−1. Prove that every column of A sums to 1.

(3) Let W = BW̃ . Prove that (A,W ) is an NMF of M .

5. (1 bonus point) We are interested in computing the largest eigenvector of a PSD matrix
M ∈ Rn×n. Let λ1 ≥ λ2 ≥ . . . λn ≥ 0 be the eigenvalues of M , and let v1, . . . , vn be
orthonormal eigenvectors such that Mvi = λivi.

The Rayleigh quotient for a matrix M and a non-zero vector x is defined as x⊤Mx
x⊤x

. It can be

shown that maxx∈Rn
x⊤Mx
x⊤x

= λ1. Consider the following algorithm:

Algorithm 1: The power method.

Input : a PSD matrix M ∈ Rn×n and a parameter ϵ > 0.
Output: a vector v ∈ Rn.
Pick x0 ∼ {−1, 1}n uniformly at random.
Let k = O(1ϵ log

n
ϵ ).

for i = 1 to k do
xi ←Mxi−1

return xk

One can show that Pr
[
|⟨x, v⟩| ≥ 1

2

]
≥ 3

16 for any unit vector v when x is sampled uniformly
from {−1, 1}n. (Note that this is not a strong correlation because ∥x∥2 =

√
n.) For simplicity,

we assume ⟨x0, v1⟩ ≥ 1
2 in Algorithm 1.

(1) Suppose λ2 ≤ (1− ϵ)λ1. Prove that
x⊤
k Mxk

x⊤
k xk

≥ (1− ϵ)λ1.

(2) Prove that
x⊤
k Mxk

x⊤
k xk

≥ (1− ϵ)λ1 without the assumption in Part (1).
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